The YRO percolate throughout cellular physiology. Some of these
dynamics differ between the short period YRO observed in the IFO 0233
strain, and longer period YRO, with a stronger coupling to the cell
division cycle. Most importantly and often misunderstood (see PubPeer
comments for Tu et al.
(2005)), fermentation and glycogen cycling occur in opposite
phases: glycogen is accumulated during the LOC phase (Küenzi and Fiechter
1969) and used to fuel the HOC phase, with a short peak of
fermentation, in CDC-coupled YRO (Sonnleitner and Hahnemann 1994);
but produced during the HOC and consumed during the fermentative LOC
phase in short period YRO (Satroutdinov, Kuriyama, and Kobayashi
(1992); Keulers,
Satroutdinov, et al. (1996); DB Murray (1997/unpublished)). When
grown on ethanol as carbon source, Keulers, Suzuki, et al. (1996) detected
no glycogen at all during the YRO. This shows that the main mechanistic
model of the YRO is not generally valid.
In contrast, ATP and specifically the ATP/ADP ratio has been
consistently shown to peak in early HOC phase and reach a minimum in
early LOC phase in both long period (Meyenburg 1969; Xu,
Yaguchi, and Tsurugi 2004; Müller 2006) and short period YRO
(Machné and
Murray 2012; Amariei et al. 2014). Similarly, the pH is minimal
in HOC and maximal in LOC phase in both (Keulers, Satroutdinov, et al.
1996; O' Neill et al. 2020).
Amariei, C., R. Machné, V. Stolc, T. Soga, M. Tomita, and D. B. Murray.
2014.
"Time Resolved DNA Occupancy Dynamics During
the Respiratory Oscillation Uncover a Global Reset Point in the Yeast
Growth Program." Microb Cell 1 (9): 279-88.
https://doi.org/10.15698/mic2014.09.166.
Chin, S. L., I. M. Marcus, R. R. Klevecz, and C. M. Li. 2012.
"Dynamics of Oscillatory Phenotypes in Saccharomyces
Cerevisiae Reveal a Network of Genome-Wide Transcriptional
Oscillators." FEBS J 279 (6): 1119-30.
https://doi.org/10.1111/j.1742-4658.2012.08508.x.
Keulers, M., A. D. Satroutdinov, T. Suzuki, and H. Kuriyama. 1996.
"Synchronization Affector of Autonomous Short-Period-Sustained
Oscillation of Saccharomyces Cerevisiae." Yeast
12 (7): 673-82.
https://doi.org/10.1002/(SICI)1097-0061(19960615)12:7<673::AID-YEA958>3.0.CO;2-C.
Keulers, M., T. Suzuki, A. D. Satroutdinov, and H. Kuriyama. 1996.
"Autonomous
Metabolic Oscillation in Continuous Culture of Saccharomyces
Cerevisiae Grown on Ethanol." FEMS Microbiol
Lett 142 (2-3): 253-58.
Küenzi, M. T., and A. Fiechter. 1969.
"Changes in Carbohydrate
Composition and Trehalase-Activity During the Budding Cycle of
Saccharomyces Cerevisiae." Archives of
Microbiology 64 (4): 396-407.
https://doi.org/10.1007/BF00417021.
Machné, R., and D. B. Murray. 2012.
"The Yin and Yang of Yeast
Transcription: Elements of a Global Feedback System Between Metabolism
and Chromatin." PLoS One 7 (6): e37906.
https://doi.org/10.1371/journal.pone.0037906.
Meyenburg, Kaspar von. 1969. "Katabolit-Repression und der Sprossungszyklus von
Saccharomyces cerevisiae."
Vierteljahrsschrift Der Naturforschenden Gesellschaft in
Zürich. PhD thesis, ETH Zürich.
Müller, Dirk. 2006. "Model-Assisted Analysis of Cyclic
AMP Signal Transduction in Saccharomyces
Cerevisiae — cAMP as Dynamic Coordinator of Energy Metabolism and
Cell Cycle Progression." PhD thesis, Universität Stuttgart.
O' Neill, J. S., N. P. Hoyle, J. B. Robertson, R. S. Edgar, A. D. Beale,
S. Y. Peak-Chew, J. Day, A. S. H. Costa, C. Frezza, and H. C. Causton.
2020.
"Eukaryotic Cell Biology Is Temporally Coordinated to
Support the Energetic Demands of Protein Homeostasis." Nat
Commun 11 (1): 4706.
https://doi.org/10.1038/s41467-020-18330-x.
Satroutdinov, A. D., H. Kuriyama, and H. Kobayashi. 1992.
"Oscillatory Metabolism of Saccharomyces
Cerevisiae in Continuous Culture." FEMS Microbiol
Lett 77 (1-3): 261-67.
https://doi.org/10.1016/0378-1097(92)90167-m.
Sillje, H. H., J. W. Paalman, E. G. ter Schure, S. Q. Olsthoorn, A. J.
Verkleij, J. Boonstra, and C. T. Verrips. 1999.
"Function of
Trehalose and Glycogen in Cell Cycle Progression and Cell Viability in
Saccharomyces Cerevisiae." J Bacteriol 181 (2):
396-400.
https://doi.org/10.1128/JB.181.2.396-400.1999.
Sonnleitner, B., and U. Hahnemann. 1994.
"Dynamics of the
Respiratory Bottleneck of Saccharomyces Cerevisiae."
Journal of Biotechnology 38 (1): 63-79. https://doi.org/
http://dx.doi.org/10.1016/0168-1656(94)90148-1.
Tu, B. P., A. Kudlicki, M. Rowicka, and S. L. McKnight. 2005.
"Logic of the Yeast
Metabolic Cycle: Temporal Compartmentalization of Cellular
Processes." Science 310 (5751): 1152-58.
Xu, Z., S. Yaguchi, and K. Tsurugi. 2004.
"Gts1p
Stabilizes Oscillations in Energy Metabolism by Activating the
Transcription of TPS1 Encoding Trehalose-6-Phosphate
Synthase 1 in the Yeast Saccharomyces Cerevisiae."
Biochem J 383 (Pt 1): 171-78.
https://doi.org/10.1042/BJ20040967.