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Abstract. The analysis of the 3D structure of tumour invasion fronts
within the uterine cervix is considered essential for both discovering and
understanding inherent architectural-functional relationships. The vari-
ation range of the invasion patterns known so far reaches from a smooth
tumour-host boundary to more diffusely spreading patterns, which all
are supposed to have a different prognostic importance. However, any
verbal morphological quantifications in previous studies have been made
just on single histological sections. Therefore, the intention of this paper
is twofold: to provide reconstructed 3D tumoural tissue data and to apply
an algorithmic tumour invasion quantification. Thus, to stay as much as
close to routine pathology we as well use HE-stained histological sec-
tions but as serial sections of remarkable extent (90–500 slices). Slicing
and staining, however, may induce some severe artefacts rarely to avoid,
mainly different kinds of distortions.
The paper introduces an extended processing chain doing a robust vol-
ume reconstruction starting from stacks of digitised transmitted light
microscope colour images resulting in a 3D visualisation of the invasion
front of the cervical tumour. For the invasion quantification we refer to
digital compactness which is considered to be in tight correspondence to
those invasion features pathologists generally are paying attention when
verbally assessing 2D sections in routine.

1 Introduction

The main interest of our research is in the 3D characterisation of invasion pat-
terns exhibited by squamous epithelial carcinoma of the uterine cervix. This
is a current clinical question. By considering tissue volumes instead of single
slices it is expected to enable new insight views about tumour morphology and
growth, some of the present research fields in tissue organisation. In particular,
a new quality of the structural and morphological assessment of the considered
tumours is expected. At present, we focus on specimen out of regions around
tumour invasion fronts. Properties of those fronts are supposed to have relevance
for the further prognosis of the respective patient [1].



Fig. 1. An overview of the processing chain towards tumour invasion front quantifica-
tion on 3D reconstructed histological serial sections. Solid items are briefly introduced.
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Unfortunately, at present there is no easy-to-apply direct 3D standard imag-
ing technique available for obtaining details about those tumours. For our ex-
perimental investigations, despite its huge effort the method of choice for data
acquisition was transmitted-light microscopy on stained histological serial sec-
tions. This setup inherently gives demand for both high level image processing
and analysis. The paper mainly reports on the invasion quantification aspect of
our ongoing research project aiming the further clarification of the morphological
tumour expression.

2 Material and Methods

The processing chain given here (see fig. 1) is an extension of previous work [2].
Modifications and add-ons mainly consider the postprossing of the segmentation
and the tumour invasion front quantification itself. While the latter is given in
detail, all other steps regarding the 3D reconstruction and its key aspects are
mentioned in brief.

Parameters of the Serial Sections

Sections typically have a rough extent of 2.5 cm × 1.0 cm. The raw digitisation
area is 1300 × 1030 pixels corresponding to 10.45mm × 8.28mm = 0.865 cm2

at a nominal pixel size of 8.042 µm2. The digitisation of the serial sections was
carried out manually using a digital camera mounted on a transmitted light
microscope. Under these conditions, due to the still limited field of view the
digitisation practically should be considered as a rough selection of a region of
interest (ROI) out of the tumour invasion front.

Rigid Registration

In the first stage, a serial section undergoes a successive pair-wise rigid co-
registration of all slices using computed gray-levelled images (luminance of the



original colour images). By this, the data set is restricted to an effectively cap-
tured volume of interest (VOI). The approach we are using is a non-iterative
two-step algorithm consisting of a combination of the polar-logarithmic Fourier-
Mellin invariant (FMI, [3]) and phase-only matched filtering (POMF, [4]).

Colour Adaptation

Here we are going to treat fluctuations of the HE colour staining appearing along
the serial sections in order to improve the tumour segmentation accomplished
later on. The idea behind this simple but effective procedure is as follows: the con-
cerned sample image’s colour is subsequently adapted using a colour transform
based on statistical distribution parameters determined referring to a certain
reference image. Its essence is just to force all sample images to have the same
mean and covariance matrix applying a linear transform.

Non-Linear Polynomial Registration

This third stage basically does the compensation for slice-global distortions ap-
plying a polynomial warping [5] using sparsely-populated displacement vector
fields. Those displacement vectors rely on the pairwise correlate of partially over-
lapping image tiles (i. e. subimages). Again, we use POMF for their computation.
For the estimates for the coefficients of the applied 5th degree polynomials, a
multivariate linear regression using a least-squares error minimisation is accom-
plished.

Colour-based Tumour Probability

To treat the remainig local registration errors, we will need to subsequently
apply yet another registration step. Instead of referring to some luminance re-
lated images, we are going to use scalar images highlighting the tumour regions.
Those are generated simply by computing colour-based tumour probability maps
relying on the HE staining, necessarily required for thresholding in tumour seg-
mentation applied later on. The reason for swapping these two steps is to further
attenuate artefacts which mostly occur outside the tumour regions which facili-
tates the final registration step. After manually obtaining representative tumour
colour sample segments, we can estimate the multivariate distribution densities
for both tumour and background (normal tissue, vessels, inflammation). The
densities are estimated utilising chromaticities. What is taken as tumour prob-
ability is the quotient of the density for tumour and the sum of the densities for
tumour and background.

Curvature-based Non-linear Registration

Now, what is necessary to remove local registration errors is the determination of
the complete remaining displacement vector field. Therefore, a curvature-based
non-linear registration described by a 4th order partial differential equation
(PDE) is accomplished [6]. The coupled system of PDEs for the displacement
fields is solved using successive approximation and discrete Fourier transform
(DFT). The respective slice will undergo a spatial transformation according to
the determined field.

Total Variation Filtering

Due to the pixel based colour segmentation the data contains a significant
amount of noise. To selectively remove this noise component, but at the same



time to effectively keep edges a nonlinear total variation (TV) filter for the 3D
data is used. Contrasting to e. g. nonlinear diffusion filtering, the advantage of
TV filtering is to exhibit a fixed point representing the denoised image itself.
The most important filtering parameter is the variance of the assumed Gaus-
sian white noise. A solution method with low memory demands was proposed
by Osher et. al. [7], basically transforming the energy minimisation into a time
depend problem.

Tumour Invasion Quantification

Actual goal of the overall processing chain is to quantify the tumour invasion
front. We apply a method relying on the sizes of both tumour surface and volume.
A pretty much known description consisting of just these two components is
compactness. This is an intrisic 3D object property and is dimensionless defined
as ratio surface3/volume2 with the sphere as that particular object providing the
absolute minimum at 36π. Direct compactness implementations, however, do
lack of sufficient robustness, in the presence of noise surface enlargements would
cause quite misleading compactness results. An alternative way to determine a
compactness which far less can be irritated is digital compactness introduced for
volumes in [8]. Instead of directly considering both surface and volume, digital
compactness CD relies on internal voxel contact surfaces and is defined simply
as:

CD =
AC −ACmin
ACmax −ACmin

. (1)

Herein, AC denotes the number of contact surfaces within a 3D object consisting
of n voxels, whereas correspondingly ACmax= 3(n− n

2

3 ) is the theoretical max-
imum of contact surfaces achieved with a cubic object consisting of the same
n voxels (isotropic case). Constrasting to [8], we define ACmin= 0, in order to
consistently allow for objects consisting of neighbouring voxels even without con-
tact surfaces, so that CDmax= 1 for a “cube” and CDmin= 0 for a diagonal “voxel
chain”. A sphere, however, build up from discrete voxels, obviously would be
evaluated little less compact than a cube.

3 Results and Discussion

The procedure meanwhile was applied to an overall of 13 specimens of squamous
cell carcinoma of the uterine cervix with volumes in between 6.43mm × 4.82mm
× 0.54mm = 16.74mm3 and 9.04mm × 5.43mm × 3.0mm = 147.26mm3. The
compactnesses for all specimen are rather equally distributed between 0.883
(diffuse invasion) and 0.976 (close invasion, see fig. 2). A corresponding linear
regression with a three-tiered 2D based clinical routine assessment based on
single slices out of the same specimen yielded a correlation coefficient of 0.73.
With the above drafted scheme an objective quantification of the invasion

of these tumours could be achieved for the first time. The obtained correlation
indicates no complete conformity of the 3D compactness and the 2D verbal ex-
perts’ assessment. Basically, this is plausible at all, since the basic motivation for
doing this work was to provide the pathologist an additional but reliable means



Fig. 2. Views at three selected 3D reconstructed specimen with tumour invasion fronts,
displayed as three-plane orthogonal reconstructions and surface renderings of seg-
mented tumours. Individual digital compactnesses CD are given below.

(a) 0.976 (b) 0.943 (c) 0.915

for an automated and by this objective 3D tumour assessment which obviously
per se is considered superior of any verbal tumour invasion front description.
From this point of view, the above mentioned correlation coefficient emphasises
the appropriateness of the digital compactness as description method for the
tumour invasion.
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