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Source Materials

Main sources for this lecture:

Some parts of this lecture were simply taken from scripts
developed at University Tuebingen from Prof. Daniel Huson
and in part by Dr. Kay Nieselt between 2002 and 2005.
More important: All parts of the lecture are highly inspired by
the following book:

I Jospeh Felsenstein, Inferring Phylogenetics, Sinauer
Associates, 2004

Reading of the book is highly recommended ..
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Source Materials

Additional Material

More sources for this lecture:
I R. Durbin, S. Eddy, A. Krogh & G. Mitchison, Biological

sequence analysis, Cambridge, 1998
I J. Setubal & J. Meidanis, Introduction to computational

molecular biology, 1997.
I D.W. Mount. Bioinformatics: Sequences and Genome

analysis, 2001.
I D.L. Swofford, G.J. Olsen, P.J.Waddell & D.M. Hillis,

Phylogenetic Inference, in: D.M. Hillis (ed.), Molecular
Systematics, 2 ed., Sunderland Mass., 1996.
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Introduction to Evolutionary Analysis

What is Phylogenetic Analysis?

Phylogenetic analysis

Given a collection of extant species. The goal of phylogenetic
analysis is to determine and describe the evolutionary
relationship between the species. In particular, this involves
determining the order of speciation events and their
approximate timing.
It is generally assumed that speciation is a branching process:
a population of organisms becomes separated into two
sub-populations. Over time, these evolve into separate species
that do not cross-breed.
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Introduction to Evolutionary Analysis

What is Phylogenetic Analysis?

Phylogenetic analysis

Because of this assumption, a tree is often used to represent a
proposed phylogeny for a set of species, showing how the
species evolved from a common ancestor. We will study this in
detail.
However, there are a number of situations in which a tree is
less appropriate than a phylogenetic network. We will study
this in a later Chapter.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Definitions of Molecular Phylogenetics

I Molecular phylogenetics refers to any method of inferring
evolutionary relationships from similarities or differences in
molecular structure.

I However: Molecular characters suffer from problems that
also afflict morphological characters.

I For example, neither molecules nor morphology may be
able to resolve the phylogeny of evolution that was both
ancient and rapid, as in the Cambrian Explosion.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

The Character of evolution

I One problem shared by molecular and morphological
characters is homoplasy (nonhomologous characters
appearing to be similar in different taxa).

I Another problems shared by molecular and morphological
phylogenetics arise from polymorphism (homologous
characters appearing differently in the same species).
Because of polymorphism, the time of divergence may
appear to be earlier than it was.

I Polymorphism can also result in the incorrect phylogenetic
sequence.

I Similar problems result from different copies of duplicated
genes
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Polymorphism
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Gene Tree Vs Species Tree
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Some Problems and new insights
I Another problem with molecular phylogenetics is

long-branch attraction: the tendency of fast-evolving
molecules to appear more closely related than they
actually are.

I Molecular phylogenetics has gained wide acceptance in
spite of these and other problems because it provides a
large amount of evidence that is independent of
morphology, as well as other advantages.

I Several kinds of experiments support the validity of
molecular phylogenetics

I Because of long-branch attraction, differences in sequence
alignment, limitations in the size of study groups, and
different methods of tree reconstruction, conflicting
molecular phylogenies have been proposed.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Polyphyletic Origin of Protozoans
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Molecular Characters

I Molecular characters can be of two types: discrete
(qualitative) differences in molecular sequence and
continuous (quantitative) distance between molecules.

I The first step in molecular phylogenetics is to select a
suitable molecule that is homologous in all the taxa to be
included in the phylogeny.

I Many molecular characters are much less susceptible to
homoplasy and longbranch attraction than are nucleic-acid
sequences.

I These characters include amino-acid sequences, the
positions of short and long interspersed elements, and Hox
genes.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Molecular Characters

I Elongation factors, actin, and tubulins are among the
widely used proteins.

I The positions of short and long interspersed elements
(SINEs and LINEs) are another increasingly common
source of discrete characters.

I Hox genes have also been used to infer phylogenetic
relationships.

I The most commonly used molecular data for higher
taxonomic levels are base sequences from genes that
encode ribosomal RNA, especially 18S rDNA.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Modeling Evolution

I Assumptions may be needed about the probabilities of
different molecular changes.

I Molecular relationships are represented as trees
constructed of branches with nodes at both ends of each
branch.

I Inferring (reconstructing) a phylogeny consists of creating
or selecting one tree out of perhaps millions of possible
ones.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Jukes-Cantor Model
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Many Ways to do it !!
I The neighbor-joining method (distance based) is an

algorithm that generates one tree with the shortest total
branch length.

I The maximum parsimony method (character based)
selects the cladogram with the minimum number of
changes in character state.

I The maximum likelihood method (character based)
begins with an explicit model of evolution and possible
trees, then it attempts to find the tree that is most likely
with the given data.

I With more than a few taxa, any method requires a
computer.

I Phylogenies reconstructed by different methods are
generally similar to each other
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Neighbor-Joining Tree
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Maximum Parsimony Tree
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Maximum Likelihood Tree
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Getting Confidence

I Confidence in an internal branch can be tested by
bootstrapping

I A branch with low bootstrap support may be collapsed.
I Molecular and morphological data can be combined to

create a total-evidence tree.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Bootstraping
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Collapsed Tree

A consensus tree can be created by collapsing branches that
are not supported in all trees created by different methods of
analysis. A consensus tree can also be produced by comparing
molecular and morphological trees.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Consistency

I As techniques have improved and more molecules from
more species have been sequenced, many of the past
conflicts have been resolved.

I Testing the Validity of Traditional Morphological
Characters by Seeing Whether They Are Consistent With
Molecular Trees

I To be consistent with a given phylogenetic tree, a character
must map onto the tree with few changes in character
state.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Examples for Consistency

I For example, bilateral symmetry is consistent with the
traditional morphology based cladogram for the Big Nine
phyla (those with more than 5,000 named species), since it
requires only one change in character state.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Bilateral Symmetry
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Examples for Consistency

I Segmentation, however, is less consistent with traditional
morphology based phylogenetic trees, because it requires
at least two changes in character state: one for annelids
and arthropods and one for chordates.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Segmentation
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Examples for Consistency

I Lack of consistency implies that either the character is not
synapomorphic (homologous), or the phylogenetic tree is
incorrect.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Combining Evidence

I A character that is consistent with both a morphological
and a molecular phylogeny is more likely to be
phylogenetically informative

I Morphological characters have not led to a consensus
phylogeny.

I The following morphological characters traditionally used
in phylogenetics are also consistent with the widely
accepted molecular phylogenetic tree of the Big Nine
Phyla: bilateral symmetry and triploblasty, deuterostomy,
and spiral cleavage pattern.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Example: Morpholocial Markers that fit Molecular
Analysis
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Combining Evidence

I Bilateral symmetry and triploblasty are also consistent
with a molecular phylogenetic tree that includes all animal
phyla.

I Deuterostomy in Echinodermata, Hemichordata, and
Chordata is also consistent in a molecular phylogenetic
tree of all animal phyla.

I The spiral-cleavage pattern is somewhat consistent with a
molecular phylogenetic tree that includes all animal phyla.
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

How Much Information??
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Introduction to Evolutionary Analysis

Molecular Phylogenetics

Informative Sites in Molecular Data
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

A small tree nursery
A tree consists of nodes connected by branches (also called
edges). Terminal nodes (also called leaves, OTUs) represent
sequences or species for which we have data. Internal nodes
represent hypothetical ancestors. If an internal node has three
branches, it has

dichotomy polytomy

root

interior edge

internal node
(hypothetical ancestor)

terminal node
(leaf)
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Phylogenetic trees

In the following, we will use X = {x1, x2, . . . , xn} to denote a set
of taxa, where a taxon xi is simply a representative of a group
of individuals defined in some way.
A phylogenetic tree (on X ) is a system T = (V ,E , λ)
consisting of a connected graph (V ,E) without cycles, together
with a labeling λ of the leaves by elements of X , such that:

1. every leaf is labeled by exactly one taxon, and
2. every taxon appears exactly once as a label.
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Phylogenetic trees

I Further, we require that either all internal nodes have
degree ≥ 3, in which case T is called unrooted,

I or there exists precisely one internal root node ρ of degree
2, and T is called rooted.

I A phylogenetic tree T is called binary, if every internal
node v has degree 3, except ρ, if T is rooted.

I An X -tree is obtained by relaxing the definition to allow
labels on internal nodes, or nodes to carry multiple labels.

I Occasionally we will allow an arbitrary node to be the root.
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Unrooted trees
An unrooted phylogenetic tree is obtained by placing a set of
taxa on the leaves of a tree:

Pan_panisc
Gorilla
Homo_sap
Mus_mouse
Rattus_norv
harbor_sel
Bos_ta(cow)
fin_whale
blue whale

Pan_panisc
Gorilla

Homo_sap

Mus mouse Rattus norv

blue_whale

fin_whale

harbor_sel
Bos_ta(cow)

Taxa X + tree⇒ phylogenetic tree T on X

Unrooted trees are often displayed using this type of circular
layout.
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Rooted trees
A rooted tree is usually drawn with the root placed at the
bottom, top or left of the figure:

Modern version of the tree of life.Stephan Steigele
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Edge lengths

Consider a phylogenetic tree T on X . The topology of the tree
describes the putative order of speciation events that gave rise
to the extant taxa.
Additionally, we can assign lengths to the edges of the tree.
Ideally, these lengths should represent the amount of time that
lies between two speciation events. However, in practice the
edge lengths usually represent quantities obtained by
some given computation and only correspond very
indirectly to time.
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Introduction to Phylogenetic Trees

What are Phylogenetic Trees?

Edge lengths

In the following, we will use ω : E → R≥0 to specify edge
lengths and will use T = (V ,E , λ, ω) to denote a phylogenetic
tree with edge lengths.
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Introduction to Phylogenetic Trees

Enumerating Trees

The number of edges and nodes of an unrooted
phylogenetic tree

Let T be an unrooted phylogenetic tree on n taxa, i.e., with n
leaves. How many nodes and edges does T have? Let us
assume that T is binary. Any non-binary tree on n taxa will
have less nodes and edges.

Lemma
A binary phylogenetic tree T on n taxa has 2n − 2 nodes,
2n − 3 edges and n − 3 interior edges for all n ≥ 3.
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Introduction to Phylogenetic Trees

Enumerating Trees

The number of edges and nodes of an unrooted
phylogenetic tree

Proof.
by induction. For n = 3 there is exactly one tree: it has 3 outer
edges and zero interior edges. Also it has 3 leaves and one
interior node.
We assume that the lemma has been proven for n. Any tree T ′

with n + 1 leaves can be obtained from some tree T with n
leaves by inserting a new node v into some edge e of T and
connecting v to a new leaf w . This increases both the number
of nodes and the number of edges by 2. Thus T ′ has
2n − 3 + 2 = 2n − 1 = 2(n + 1)− 3 edges. The number of
interior edges is (2n − 3)− n = n − 3.
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Introduction to Phylogenetic Trees

Enumerating Trees

The number of edges and nodes of an unrooted
phylogenetic tree

A B

A B

C

A D

C B

A C

B D

A B

C D

A B

C D

E

A B

E D

C
A B

C E

D

A E

C D

B

E B

C D

A
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Introduction to Phylogenetic Trees

Enumerating Trees

The number of phylogenetic trees
An unrooted tree T with n leaves has 2n − 2 nodes and 2n − 3
edges. A root can be added in any of the 2n − 3 edges, thus
producing 2n − 3 different rooted trees from T :

a

b

c

a b c

a

b

c

ab c ac b

a

b

c
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Introduction to Phylogenetic Trees

Enumerating Trees

Number of phylogenetic trees
For n = 3 there are three ways of adding a root. Similarly, there
are 3 different ways of adding an extra edge with a new leaf to
obtain an unrooted tree on 4 leaves. This new tree has
(2n − 3) = 5 edges and there are 5 ways to obtain a new tree
with 5 leaves etc.
Continuing this, we see that there are

U(n) = (2n − 5)!! := 3 · 5 · 7 · · · · · (2n − 5)

unrooted trees on n leaves. Similarly, there are

R(n) = (2n − 3)!! = U(n) · (2n − 3) = 3 · 5 · · · · · (2n − 3)

rooted trees.
These numbers grows very rapidly with n, for example,
U(10) ≈ 2 million and U(20) ≈ 2.2× 1020.
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Introduction to Phylogenetic Trees

Enumerating Trees

Counting of Trees
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Introduction to Phylogenetic Trees

Enumerating Trees

Tree Space

Stephan Steigele



Some Topics in Phylogenetics

Computer Representation of a phylogenetic tree

Computer representation of a phylogenetic tree

Let X be a set of taxa and T a phylogenetic tree on X .
To represent a phylogenetic tree in a computer we maintain
a set of nodes V and a set of edges E .

I Each edge e ∈ E maintains a reference to its source node
s(e) and target node t(e).

I Each node v ∈ V maintains a list of references to all
incident edges.

I Each node v ∈ V maintains a reference λ(v) to the taxon
that it is labeled by, and, vice versa, ν(x) maps a taxon x to
the node that it labels.

I Each edge e ∈ E maintains its length ω(e).
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Computer Representation of a phylogenetic tree

Computer Representation
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Computer Representation of a phylogenetic tree

Computer Representation allowing Multifurcations
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Computer Representation of a phylogenetic tree

Nested Structure

Nested structure

A rooted phylogenetic tree T = (V ,E , λ) is a nested structure:
I Consider any node v ∈ V .
I Let Tv denote the subtree rooted at v .
I Let v1, v2, . . . , vk denote the children of v .
I Then Tv is obtainable from its subtrees Tv1 , Tv2 , . . . ,Tvk by

connecting v to each of their roots.
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Computer Representation of a phylogenetic tree

Nested Structure

Such a nested structure can be written using nested brackets:

Phylogenetic tree nested description
v1

v2 v3

v4 v5 v6 v7 v8

v9 v10

taxon1 taxon2

taxon3

ta
xo

n4

ta
xo

n5

ta
xo

n6

v1
↓

(v2, v3)
↓

((v4, v5), (v6, v7, v8))
↓

(((v9, v10), v5), (v6, v7, v8))

Description:
(((taxon1, taxon2), taxon3), (taxon4, taxon5, taxon6))
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Computer Representation of a phylogenetic tree

Printing a phylogenetic tree

Printing a phylogenetic tree

Phylogenetic trees are usually printed using the so-called
Newick format. The Newick Standard for representing trees in
computer-readable form makes use of the correspondence
between trees and nested parentheses, noticed in 1857 by the
famous English mathematician Arthur Cayley.

Stephan Steigele



Some Topics in Phylogenetics

Computer Representation of a phylogenetic tree

Printing a phylogenetic tree

Newick Format

I The tree ends with a semicolon.
I Interior nodes are represented by a pair of matched

parentheses.
I Between them are representations of the nodes that are

immediately descended from that node, separated by
commas.

I Tips are represented by their names.
I Trees can be multifurcating at any level.
I Branch lengths can be incorporated into a tree by putting a

real number after a node and preceded by a colon. This
represents the length of the branch immediately below that
node.
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Computer Representation of a phylogenetic tree

Printing a phylogenetic tree

Printing a phylogenetic tree
Here are two examples:

unrooted tree

a

d

c

b

e

Newick string:
((a,b),c,(d,e));

Stephan Steigele



Some Topics in Phylogenetics

Computer Representation of a phylogenetic tree

Printing a phylogenetic tree

Printing a phylogenetic tree
Here are two examples:

rooted tree with edge lengths

Newick string:
((((A:0.5,B:0.5):1.5,C:2.0):1.0,(D:1.0,E:1.0):2.0);
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Computer Representation of a phylogenetic tree

Printing a phylogenetic tree

Printing a phylogenetic tree
Here are two more examples:

unrooted tree rooted tree
a

db

e

c f

ρ

C A B D E

Newick string: Newick string:
((a,b),c,f,(e,d)) ((C,A),((B,D),E))

or e.g.:
((a,b),(c,f,(e,d))) . . .
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Computer Representation of a phylogenetic tree

Algorithm for printing a phylogenetic tree

Algorithm for printing a phylogenetic tree

The following algorithm recursively prints a tree in Newick
format. It is initially called with e = null and v = ρ, if the tree is
rooted, or v set to an arbitrary internal node, else.
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Computer Representation of a phylogenetic tree

Algorithm for printing a phylogenetic tree

Algorithm for printing a phylogenetic tree
Algorithm toNewick(e, v)
Input: Phylogenetic tree T = (V ,E) on X , with labeling λ : V → X
Output: Newick description of tree
begin
if v is a leaf then

print λ(v)
else // v is an internal node

print ’(’
for each edge f 6= e adjacent to v do

If this is not the first pass of the loop, print ’,’
Let w 6= v be the other node adjacent to f
call toNewick(f ,w)

print ’)’
print ’;’
endStephan Steigele
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Computer Representation of a phylogenetic tree

Parsing a phylogenetic tree

Parsing a phylogenetic tree

We need to be able to read a phylogenetic tree into a program.
The following algorithm parses a tree in Newick format from a
(space-free) string s = s1s2 . . . sm. The initial call is
parseNewick(1,m,null).
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Computer Representation of a phylogenetic tree

Parsing a phylogenetic tree

Algorithm parseNewick(i ,j ,v )
Input: a substring si . . . sj and a root node v
Output: a phylogenetic tree T = (V ,E , λ)
begin
while i ≤ j do

Add a new node w to V
if v 6= null then add a new edge {v ,w} to E

if si = ’(’ then // hit a subtree
Set k to the position of the balancing close-bracket for i
call parseNewick(i + 1, k − 1,w) // strip brackets and recurse

else // hit a leaf
Set k = min{k ≥ i | sk+1 = ’,’ or k + 1 = j}
Set λ(w) = si . . . sk // grab label for leaf

Set i = k + 1 // advance to next ’,’ or j
if i < j then

Check that i + 1 ≤ j and si+1 = ’,’
Increment i // advance to next token end
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Computer Representation of a phylogenetic tree

Parsing a phylogenetic tree

Parsing a phylogenetic tree

I In the Newick format, each pair of matching brackets
corresponds to an internal node and each taxon label
corresponds to an external node.

I To add edge lengths to the format, specify the length len of
the edge along which given node we visited by adding :len
behind the closing bracket, in the case of an internal node,
and behind the label, in the case of a leaf.

I For example, consider the tree (a,b,(c,d)). If all edges
have the same length 1, then this tree is written as
(a:1,b:1,(c:1,d:1):1).
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Drawing a phylogenetic tree

Drawing a phylogenetic tree

An embedding of a phylogenetic tree is given by an
assignment of coordinates (x(v), y(v)) to each node v , such
that

I any edge e = (v ,w) is represented by the line segment
connecting points (x(v), y(v)) and (x(w), y(w)),

I no two such line segments cross, and
I for every edge e, the length of the line segment

representing e equals ω(e).
There are many different ways to draw a phylogenetic tree, both
unrooted and rooted. We will describe a method for drawing an
unrooted tree, called the circular embedding method.
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Drawing a phylogenetic tree

Computing a circular embedding

Computing a circular embedding
A circular embedding of a phylogenetic tree T is computed in
two stages:

1. each edge e is assigned an angle α(e), and then,
2. based on the edge angles and lengths, each node v is

assigned coordinates (x(v), y(v)).

reference node

0

12

3

4

e1
e2

e3
e4e5

e7

e6

A

B

C

D

E
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Drawing a phylogenetic tree

Computing the edge angles

Computing the edge angles

Given a phylogenetic tree T with n leaves. Choose an arbitrary
leaf r and call it the reference node. Each leaf v is assigned a
rank h(v) ∈ {0,1, . . . ,n − 1} defined as follows:

I first set h(r) = 0 and then set h(v) = i , if v is the i-th leaf
visited in a depth-first search (DFS) 1 of the tree from r .

We imagine the n leaves arranged around the unit circle in
counter-clockwise order, with the i-th rank leaf v positioned at
the angle αi = i

n 2π.

1
Recall DFS: start from any node, go as far as possible (thus the name Depth First), until it can go no further.

In this case, backtrack one step and repeat the process.
Stephan Steigele
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Drawing a phylogenetic tree

Computing the edge angles

Computing the edge angles

Consider a fixed edge e and let U denote the set of all leaves
that are separated from r by e. By definition of DFS, there exist
two numbers p,q, with 1 ≤ p ≤ q ≤ n − 1, such that
h(U) = {p,p + 1, . . . ,q}. We define α(e) as the mean angle
associated with the leaves that are separated from r by e:

α(e) =
1

q − p + 1

q∑
i=p

αi =
π

n
(p + q)

Stephan Steigele
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Drawing a phylogenetic tree

Computing the edge angles

Computing the edge angles
This algorithm assigns an angle to every edge in the tree. The initial call is
setAngles(0, null , r), where r is the reference leaf.

Algorithm setAngles(h, e, v)
Input: Number h of nodes placed, arrival edge e, current node v
Output: Angle α(e) for every edge e ∈ E .
Returns: New number of placed nodes.
begin
if v is a leaf and v 6= r then

return h + 1
Set a = h // number of nodes placed before recursion
Set b = 0 // number of nodes placed after recursion
for all edges f 6= e adjacent to v do

Let w 6= v be the other node adjacent to f
Set b = setAngles(a, f ,w)

Set α(f ) = π(a+b)
n

Set a = b
return b.
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Drawing a phylogenetic tree

Computing the edge angles

Computing the edge angles

Lemma
The algorithm computes the edge angles of a circular
embedding in linear time.
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Drawing a phylogenetic tree

Computing the edge angles

Proof.
Every edge is visited exactly once, hence the runtime is linear
in the number of edges |E | (which is linear in the number of
leaves).
To see that the algorithm produces the correct result, consider
the situation for some arbitrary edge e and node v .

I The parameter h corresponds to the highest index
assigned so far.

I Let f1, . . . , fk be the list of edges adjacent to v that are
considered by the algorithm,

I let wi denote the corresponding other node,
I and let ai and bi be the values of a and b directly after

processing fi .
I The latter two numbers denote the range of indices

recursively assigned to the set of leaves in the subtree
rooted at wi .
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Computing the edge angles
The situation when processing node v :

2

3

0

ha1

b1

a2

b2

f1

f2
e

r

already visited

v

w1

w2

We then compute
α(fi) = π(ai+bi )

n = 2π
n ·

ai+bi
2 = 2π

n ·
ai+ai+1+···+bi

bi−ai+1 , as required in
the definition of a circular embedding. �

Stephan Steigele



Some Topics in Phylogenetics

Drawing a phylogenetic tree

Determining coordinates

Determining coordinates
Given a phylogenetic tree T and an angle function
α : E → [0,2π], how do we obtain coordinates for the nodes?
Idea: In a depth-first traversal of the tree starting at the
reference node r , for every edge e, simply push the opposite
node away from the current node in the direction specified by
α(e) by the amount specified by the length ω(e):

unplaced
nodes r

v
e →

r

v

w eα(  )
e

before processing e after processing e
Stephan Steigele
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Determining coordinates
The following algorithm does the pushing. Initially, we set
ε(r) = (0,0) (the coordinates of the reference node r ) and
invoke setCoordinates(null , r).

Algorithm setCoordinates(e, v)
Input: Phylogenetic tree T and edge angles α
Output: Circular embedding ε of T
begin
Set p = ε(v)
for each edge f 6= e adjacent to v do

Let w 6= v be the other node adjacent to f
Obtain p′ by translating p in direction α(f ) by amount ω(f )
Set ε(w) = p′

call setCoordinates(f ,w)
end
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Determining coordinates

Determining coordinates

Theorem
A circular embedding is computable in linear time.
Challenge: prove that the resulting configuration is indeed a
planar embedding, that is, that no two edges can cross.
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Example

Example

reference node

0

12

3

4

e1
e2

e3
e4e5

e7

e6

A

B

C

D

E

This is a circular layout with reference node C, which is verified
as follows:

I α(e1) = 2π
5·4(1 + 2 + 3 + 4) = π,

I α(e2) = 2π
5·3(1 + 2 + 3) = 4

5π,
I α(e3) = 2π

5·2(2 + 3) = π,
I . . .
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Distance-Based Tree Reconstruction
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Outline

Constructing phylogenetic trees
There are three main approaches to constructing phylogenetic
trees from molecular data.

1. Using a distance method, one first computes a distance
matrix from a given set of biological data and then one
computes a tree that represents these distances as closely
as possible.

2. Maximum parsimony takes as input a set of aligned
sequences and attempts to find a tree and a labeling of its
internal nodes by auxiliary sequences such that the
number of mutations along the tree is minimum.

3. Given a probabilistic model of evolution, maximum
likelihood approaches aim at finding a phylogenetic tree
that maximizes the likelihood of obtaining the given
sequences.
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Distances

Given a set X = {x1, x2, . . . , xn} of taxa. The input to a distance
method is a dissimilarity matrix D : X × X → R≥0 that
associates a distance d(xi , xj) with every pair of taxa xi , xj ∈ X .
Sometimes we will abbreviate dij := d(xi , xj) or Dij := d(xi , xj).
We usually require that

1. the matrix is symmetric, that is, d(x , y) = d(y , x) for all
x , y ∈ X , and

2. d(x , x) = 0 for all x ∈ X and d(x , y) > 0 for all x 6= y , and
3. the triangle inequalities are satisfied:

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ X .
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Hamming distance
Let a collection of taxa be given by a set of distinct sequences
A = {a1,a2, . . . ,an} and assume we are given a multiple
sequence alignment A∗ of the sequences.

I We define sequence dissimilarity as the (normalized)
Hamming distance Ham(ai ,aj) between two taxa ai and
aj as the number of mismatch positions in a∗i and a∗j ,
divided by the number of comparisons.

I We ignore any column in which both sequences contain a
gap. If only one sequence has a gap in a column then we
can either ignore the column, or treat it as a match, or as a
mismatch, depending on the type of data.

I Usually, one ignores all columns in which any of the n
sequences contains the gap.
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Hamming distance

Lemma
If the alignment is gap-less, then the corresponding distance
matrix is a metric on A.

Proof.
Consider three distinct sequences ai ,aj ,ak ∈ A. If a∗i 6= a∗k ,
then either a∗i 6= a∗j , or a∗k 6= a∗j , and hence
Ham(ai ,ak ) < Ham(ai ,aj) + Ham(aj ,ak ).
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Hamming distance

For protein data, it makes sense to relax the definition of
sequence dissimilarity to the number of “non-synonymous”
residues divided by the number of sequence positions
compared.

I For example, we may choose to ignore “conservative
substitutions” by pooling amino acids with similar
properties into six groups: acidic (D,E), aromatic (F,W,Y),
basic (H,K,R), cysteine (C), non-polar (A,G,I,L,P,V), and
polar (M,N,Q,S,T).

I Two residues are considered synonymous, if they are
contained in the same group, and non-synonymous,
otherwise.
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Hamming Distance

Hamming distance
Example:

a1 C A A C C C C C A A A A A
a2 T A A T T T - C A A A A A
a3 C G G T T T - - A A A A A

Distances:
Ham(a1,a2) =

4
12

= 0.33

Ham(a1,a3) =
5

11
= 0.45

Ham(a2,a3) =
3

11
= 0.27

Hamming distances are only suitable for closely related
sequences. Below we will discuss more sophisticated
distances.
Question: What is the average Hamming distance between two
random gap-free DNA sequences of the same length?Stephan Steigele
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Hamming Distance

Distance-Based Tree Reconstruction

Distance-Based Phylogeny Problem:
Reconstruct an evolutionary tree on n leaves from an n × n
distance matrix
Input: an n × n distance matrix D = (dij) and a labeling λ
Output: a phylogenetic tree T (rooted or unrooted) with n
leaves and edge lengths.

Stephan Steigele



Some Topics in Phylogenetics

Distances

Hamming Distance

Stephan Steigele



Some Topics in Phylogenetics

Distances

Hamming Distance
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UPGMA

We will now discuss a simple distance method called UPGMA
which stands for unweighted pair group method using
arithmetic averages (Sokal & Michener 1958).

I Given a set of taxa X and a distance matrix D, UPGMA
produces a rooted phylogenetic tree T with edge lengths.

I It operates by clustering the given taxa, at each stage
merging two clusters and at the same time creating a new
node in the tree.

I The tree is assembled bottom-up, first clustering pairs of
leaves, then pairs of clustered leaves etc.

I Each node is given a height and the edge lengths are
obtained as the difference of heights of its two end nodes.
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UPGMA example

Example X = {1,2,3,4,5}, distances given by distance in the
plane:

cluster 1 and 2: cluster 4 and 5:

3

4

5

1 2

6 t1=t2=1/2 d(1,2)

1 2

1 2

6

3

4

5

1 2

7

4 5

t4=t5=1/2 d(4,5)
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UPGMA example

cluster 7 and 3: cluster 6 and 8:

1 2

6

3

4

5

1 2

7

4 5

8

1/2 d(3,7)

3

3

4

5

1 2

7

4 5

8

31 2

6

9

1/2 d(6,8)

UPGMA produces a rooted, binary phylogenetic tree.
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The UPGMA Algorithm

The distance between two clusters

Initially, we are given a distance d(x , y) between any two taxa,
i.e. leaves, x and y .
We define the distance d(i , j) := d(Ci ,Cj) between two
clusters Ci ⊆ X and Cj ⊆ X to be the average distance
between pairs of taxa from each cluster:

d(i , j) =
1

|Ci ||Cj |
∑

x∈Ci ,y∈Cj

d(x , y).
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UPGMA

The UPGMA Algorithm

The distance between two clusters

Note that, if Ck is the union of two clusters Ci and Cj , and Cl
is any other cluster, then

d(k , l) =
d(i , l)|Ci |+ d(j , l)|Cj |

|Ci |+ |Cj |
.

This is a useful update formula, because using it in the
algorithm, we can obtain the distance between two clusters in
constant time.
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The UPGMA Algorithm

The UPGMA algorithm

Algorithm UPGMA

Input: A set of taxa X = {x1, . . . , xn} and a corresponding distance matrix D
Output: A binary, rooted phylogenetic UPGMA tree T = (V ,E , ω) on X

Initialization
Set C = {C1 = {x1}, . . . ,Cn = {xn}}

Assign each taxon xi to its own cluster Ci

Set h({xi}) = 0 //Define one leaf of T for each taxon, placed at height zero
Set V = C and E = ∅
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The UPGMA Algorithm

The UPGMA algorithm

Iteration
while |C| ≥ 2 do

Determine two clusters Ci and Cj for which d(i , j) is minimal
Define a new cluster k by Ck = Ci ∪ Cj

Set C = (C − {Ci ,Cj}) ∪ {Ck}
Set d(k , l) for all clusters l using the update formula
Define a node k with daughter nodes i and j , and place it at height h = d(i,j)

2
Set V = V ∪ {k} and E = E ∪ {(i , k), (j , k)}
Set ω(i , k) = h(k)− h(i) and ω(j , k) = h(k)− h(j)

Termination
When only two clusters Ci and Cj remain, place the root at height d(i,j)

2 .
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UPGMA

Application of the UPGMA algorithm

Example of UPGMA applied to 5S rRNA data:

Original distances:

Abbreviations:
Bsu: Bacillus subtilis
Bst: Baclillus stearothermophilus
Lvi: Lactobacillus viridescens
Amo: Acholeplasma modicum
Mlu: Micrococcus luteus

Bsu Bst Lvi Amo Mlu
Bsu − 0.1715 0.2147 0.3091 0.2326
Bst − 0.2991 0.3399 0.2058
Lvi − 0.2795 0.3943

Amo − 0.4289
Mlu −

→

Bsu + Bst Lvi Amo Mlu
Bsu + Bst − 0.2569 0.3245 0.2192

Lvi − 0.2795 0.3943
Amo − 0.4289
Mlu −

→
Bsu + Bst + Mlu Lvi Amo

Bsu + Bst + Mlu − 0.3027 0.3593
Lvi − 0.2795

Amo −

→
Bsu + Bst + Mlu Lvi + Amo

Bsu + Bst + Mlu − 0.3310
Lvi + Amo −
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Application of the UPGMA algorithm
The resulting tree:

00.050.100.150.20

Amo

Lvi

Mlu

Bst

Bsu

This tree is biologically incorrect, as we will see later.
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Tree metrics

Tree metrics
Definition: Given a phylogenetic tree T on X . We say that a
distance function d : X × X → R≥0 is directly obtainable from
T , if each dij was obtained by adding up the edge lengths of the
path between the leaves i and j .

i
j

e1

e2

e3
e4

dij = ω(e1) + ω(e2) + ω(e3) + ω(e4)
Definition: Given a distance function d : X × X → R≥0 fulfilling
the properties of a metric. Then d is a tree metric if there
exists a phylogenetic tree T on X , such that d is directly
obtainable from T .
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Tree metrics

Tree metrics

From this two fundamental questions arise:
I Is each distance function a tree metric?
I If d is a tree metric, does a unique tree and edge weight ω

exist?
As we will see the answer to question one is “no”, while positive
answers for the second question exist.
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Tree metrics

Tree metrics
The goal of phylogenetic analysis is usually to reconstruct a
phylogenetic tree from data, such as distances or sequences,
that was produced by some generating or true tree.

I When reconstructing trees from real data, the generating
tree is the path of events that evolution actually took.

I In this case, the true tree is unknown and the objective is,
of course, to try and reconstruct it.

I In contrast, in simulation studies, a known tree T0 is used
to generate artificial sequences and/or distances, under
some specified model of evolution.

I A tree reconstruction method is then applied and its
performance can be evaluated by comparing the resulting
tree T with the true tree T0.
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The molecular clock hypothesis
Given a distance matrix D, the UPGMA method aims at
building a rooted tree T with the property that all leaves have
the same distance from the root ρ:

1 4 2 3
This approach is suitable for sequence data that has evolved under
circumstances in which the rate of mutations of sequences is constant
over time and equal for all lineages in the tree.
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The molecular clock hypothesis

The molecular clock hypothesis

Definition The assumption that evolutionary events happen at
a constant rate is called the molecular clock hypothesis.
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The molecular clock hypothesis

UPGMA and the molecular clock

I If the input distance matrix D was directly obtained from a
phylogenetic tree T0 that fulfills the molecular clock
assumption, then the tree T reconstructed by UPGMA
from D will equal T0.

I Otherwise, if T0 does not do so, then UPGMA may fail to
reconstruct the tree correctly

for example:
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UPGMA and the molecular clock

2
3

1 4

T0

−→
UPGMA

1 4 2 3

T
The problem here is that the closest leaves in T0 are not
neighboring leaves: they do not have a common parent node.
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UPGMA

The ultrametric property

Definition: A distance matrix D is called an ultrametric, if for
every triplet of taxa xi , xj , xk ∈ X , the three distances d(xi , xj),
d(xi , xk ) and d(xj , xk ) have the property that either:

1. all three distances are equal, or
2. two are equal and the remaining one is smaller.

xkxjxi x’i x’j x’k

condition (1) condition (2)

Lemma
if D was directly obtained from some tree T that satisfies the
molecular clock hypothesis, then D is an ultrametric.
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The ultrametric property

The ultrametric property

We say that a rooted phylogenetic tree T is ultrametric, if
every leaf has the same distance from the root.
One can show the following result:

Theorem
If D is a distance matrix directly obtainable from some
ultrametric tree T , then UPGMA applied to D will produce that
tree T .
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Consistency

So, UPGMA computes the correct tree T , when given distances
D = D(T ) directly obtained from a ultrametric model tree T .

I In applications, we do not know T (of course) and thus
cannot “directly obtain” D from T .

I We usually have an alignment of sequences and use it to
compute an estimation D̂ of D(T ).
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Consistency

Consistency

Given a suitable model of evolution (such as the Jukes-Cantor
model discussed below) that specifies how the sequences
evolve on T . As the length n of the aligned sequences
increases, D̂ will converge to D.

I A tree construction method is called consistent on a
model tree T , if the tree that it produces “converges”
toward T , as n increases.

Lemma
UPGMA is consistent on the set of ultrametic trees.
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Consistency

Estimating the deviation from a molecular clock

Given a distance matrix D obtained by comparison of
sequences generated along some unknown tree T0.

I Biologically, it may be of interest to know how well the
molecular clock hypothesis holds.

In other words, how close is D to being an ultrametric?
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Consistency

Estimating the deviation from a molecular clock

To answer this question, we define the stretch of an
ultrametric U with respect to D as follows:

stretchD(U) = max
i,j∈X

{
Dij

Uij
,
Uij

Dij

}
.

The stretch of D is defined as the minimum stretch over all
possible ultrametrics:

I stretch(D) = minU{stretchD(U)} and gives a lower bound
for the stretch stretchD(T ) of any tree T obtained from D.

This value can be computed in O(n2) time, see 2

2L. Nakhleh, U. Roshan, L. Vawter and T. Warnow, LNCS 2452:287-299
(2002).
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Estimating the deviation
Example of an ultrametric tree metric U and a non-ultrametric
tree metric D:

dcb

0.20.20.1

a

0.3

0.1

0.2

→ U =


a b c d

a − 0.2 0.8 0.8
b − 0.8 0.8
c − 0.4
d −

db

0.2

0.3

0.1

0.2

a

0.2

0.1

c
→ D =


a b c d

a − 0.3 0.8 0.9
b − 0.7 0.8
c − 0.3
d −
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Estimating the deviation from a molecular clock

The stretch of U w.r.t. D is:

stretchD(U) = max
{

0.3
0.2

,
0.9
0.8

,
0.8
0.7

,
0.4
0.3

}
=

3
2
.
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Additivity and the four-point condition

As we have seen a distance matrix often does not fulfill the
ultrametric property. Now we ask if we can define a property of
non-ultrametric tree metrics.
Definition: Given a set of taxa X . A distance matrix D on X
fulfills the so-called four-point condition if for all i , j , k , l ∈ X

d(i , j) + d(k , l) ≤ max{d(i , k) + d(j , l),d(i , l) + d(j , k)}

holds.
That is, two of the three expressions d(xi , xj ) + d(xk , xl ),
d(xi , xk ) + d(xj , xl ), and d(xi , xl ) + d(xj , xk ) are equal and are not smaller
than the third.
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Additivity and the four-point condition

The following theorem now tells us that the four-point condition
and tree metric are equivalent properties, a result due to Peter
Buneman (1971):

Theorem
A distance matrix D on X is a tree metric, if and only if it fulfills
the four-point condition.
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Additivity and the four-point condition

We want to at least prove one direction of the theorem:
I Let D be a tree metric on X .
I Then there exists a binary phylogenetic tree T .
I Let i , j , k , l be elements from X . If they are all different,

then w.l.o.g we assume that (i , j) and (k , l) are neighbors
respectively.

Then it follows that

d(i , j) + d(k , l) ≤ d(i , k) + d(j , l) = d(i , l) + d(j , k)

as can be seen from the following figure:
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Additivity and the four-point condition

and thus D fulfills the four-point condition.
Remark: A tree metric is often called an additive metric.
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The four-point condition

Example additive metric:

D =

0BB@
B C D

A 7 6 5
B 3 6
C 5

1CCA
Check the four-point condition:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 6 + 6 = 12
d(A,D) + d(B,C) = 5 + 3 = 8
⇒ the four-point condition holds.
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Additivity and the four-point condition

The four-point condition
Example additive metric:

D =

0BB@
B C D

A 7 6 5
B 3 6
C 5

1CCA
Check the four-point condition:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 6 + 6 = 12
d(A,D) + d(B,C) = 5 + 3 = 8
⇒ the four-point condition holds.

B

C
D

A

2

1
2

2

3

Stephan Steigele



Some Topics in Phylogenetics

UPGMA

Additivity and the four-point condition

The four-point condition

A non-additive metric:

D =

0BB@
B C D

A 7 7 6
B 4 7
C 5

1CCA
Check the four-point condition:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 7 + 7 = 14
d(A,D) + d(B,C) = 6 + 4 = 10
⇒ d(A,C) + d(B,D) 6≤
max (d(A,B) + d(C,D), d(A,D) + d(B,C))
⇒ 4-point condition doesn’t hold.
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Additivity and the four-point condition

The four-point condition
A non-additive metric:

D =

0BB@
B C D

A 7 7 6
B 4 7
C 5

1CCA
Check the four-point condition:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 7 + 7 = 14
d(A,D) + d(B,C) = 6 + 4 = 10
⇒ d(A,C) + d(B,D) 6≤
max (d(A,B) + d(C,D), d(A,D) + d(B,C))
⇒ 4-point condition doesn’t hold.

C
D

1
2

2

A

3

B

2

2

11
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Neighbor-Joining

The most widely used distance method is Neighbor-Joining
(NJ), originally introduced by Saitou and Nei (1987)3, and
modified by Studier and Keppler (1988).

I Given a distance matrix D, Neighbor-Joining produces an
unrooted phylogenetic tree T with edge lengths.

I It is more widely applicable than UPGMA, as it does not
assume a molecular clock.

3Saitou, N., Nei, Y. (1987) SIAM J. on Comp. 10:405-421
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Neighbor-Joining

Let D be a distance matrix directly obtainable from some
(unknown) tree T .
Assume that we are building a tree based on D by
repeatedly pairing “neighboring” taxa.
The following step reduces the number of leaves by one and we
can repeatedly apply it until we arrive at a single pair of leaves:

I Let i and j be two neighboring leaves that have the same
parent node, k .

I Remove i , j from the list of nodes and add k to the current
list of nodes.

How do we have to set its distance to any given leaf m?
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Neighbor-Joining

By additivity of D, we can compute the distances dkm from
those between equivalent nodes in the original tree:

j

ki

m

In other words, for any three leaves i , j ,m there is a node k
where the paths to them meet.
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Neighbor-Joining

By additivity,

dim = dik + dkm, djm = djk + dkm and dij = dik + djk ,

thus

dim + djm = dik + dkm + djk + dkm = dij + 2dkm,

which implies dkm = 1
2(dim + djm − dij).
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Neighbor-Joining
How to determine which nodes are neighbors?
The Neighbor-Joining method is based on the fact that we
can decide which nodes are neighbors, using only the
distance matrix.

I However, it does not suffice simply to pick the two closest
leaves, i.e. a pair i , j with dij minimal, for example:

0.1

0.4

0.4

0.1

0.1

x2

x1

x4

x3

Given distances generated by this tree.
Leaves x1 and x2 have minimal distance, but are not neighbors.
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Neighbor-Joining

To avoid this problem, the trick is to subtract the “averaged
distances”4 to all other leaves, thus compensating for long
edges. We define:

Nij := dij − (ri + rj),

where
ri =

1
|L| − 2

∑
k∈L

dik ,

and L denotes the set of leaves.

4Note that this is not precisely the average, as the number of summands
is |L|, not |L− 2|.
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Lemma
If D is directly obtainable from some tree T , then the 2 leaves xi
and xj for which Nij is minimal are neighbors in T .
This result ensures that the Neighbor-Joining algorithm will
correctly reconstruct a tree from its additive distances.
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Let us illustrate this result using the previous example:

0.1

0.4

0.4

0.1

0.1

x2

x1

x4

x3
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Here, r1 = 1/2(0.5 + 0.3 + 0.6) = 0.7, and equivalently we
compute r2 = 0.7, r3 = 1.0 and r4 = 1.0. And so,

N =


x2 x3 x4

x1 −1.1 − 1.2 −1.1
x2 −1.1 −1.2
x3 −1.1

The matrix N attains a minimum value for the pair i = 1 and
j = 3 and for the pair i = 2 and j = 4, as required.
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The Neighbor-Joining algorithm

Algorithm (Neighbor-Joining)
Input: Distance matrix D
Output: Phylogenetic tree T
Initialization:

Define T to be the set of leaf nodes, one for each taxon.
Set L = T .

Iteration:
Pick a pair i , j ∈ L for which Nij is minimal.
Define a new node k and

set dkm = 1
2 (dim + djm − dij ), for all m ∈ L.

Add k to T with edges of lengths dik = 1
2 (dij + ri − rj ) and

djk = dij − dik , joining k to i and j , respectively.
Remove i and j from L and add k .

Termination:
When L consists of two leaves i and j , add the remaining

edge between i and j , with length dij .
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Neighbor-Joining algorithm

Why can we use dik = 1
2(dij + ri − rj) to update distances?

By definition, ri = 1
|L|−2

∑
k∈L dik

equals the average distance qi = 1
|L|−2

∑
k∈L,k 6=i,j dik

from i to all other nodes m 6= i , j , plus dij
|L|−2 :
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Neighbor-Joining algorithm

...

m

m

m

m

|L|−2

3

2

1

i

j

k
dij

average distance

qi

qj

As we see from this figure:
2dik = dij + qi − qj = dij + qi − qj +

dij
|L|−2 −

dij
|L|−2 = dij + ri − rj .
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Application of Neighbor-Joining
I Given an additive distance matrix D directly obtained from

a phylogenetic tree T , Neighbor-Joining is guaranteed to
reconstruct T correctly.

I However, in practice we are never given a matrix that
was “directly obtained” from the generating tree, but
rather the distance matrix is usually obtained very
indirectly by a comparison of finite sequence data
generated along the tree. Such data is rarely additive.

I Nevertheless, the Neighboring-Joining method is often
applied to such data and has proved to be a fast, useful
and robust tree reconstruction method.

Moreover:

Lemma
Neighbor-Joining is consistent.
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Input matrix:D0 =

Taxa A B C D r
A − 8 7 12 27
B − 9 14 31
C − 11 27
D − 37

→

N0 =


A B C D

A − −21 −20 −20
B − −20 −20
C − −21
D −
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Data after one merge of neighbors:

D1 =


A + B C D r

A + B − 4 9 13
C − 11 15
D − 20

→

N1 =


A + B C D

A + B − −10 −7.5
C − −4.5
D −
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Example

Data after two merges of neighbors:

D2 =


A + B + C D r

A + B + C − 8 8
D − 8

→

N2 =


A + B + C D

A + B + C −
D −
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Example of Neighbor-Joining applied to 5S rRNA data:

Original distances:

Abbreviations:
Bsu: Bacillus subtilis
Bst: Baclillus stearothermophilus
Lvi: Lactobacillus viridescens
Amo: Acholeplasma modicum
Mlu: Micrococcus luteus

Bsu Bst Lvi Amo Mlu
Bsu − 0.1715 0.2147 0.3091 0.2326
Bst − 0.2991 0.3399 0.2058
Lvi − 0.2795 0.3943

Amo − 0.4289
Mlu

The resulting tree:

0.07295

0.111 0.141

0.065
0.050

0.0490.168Amo
Bsu

Bst

MluLvi
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Rooting unrooted trees

In contrast to UPGMA, most tree reconstruction methods
produce an unrooted tree.

I Indeed, determining the root of a tree using computational
methods is very difficult.

I In practice, the question of rooting a tree is addressed by
adding an outgroup to the set of taxa under consideration.

I This is a taxon that is more distantly related to all other
taxa than any other of the taxa.

I The root is then assumed to be on the branch attaching the
outgroup taxon to the rest of the tree.
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Rooting unrooted trees

In practice, selecting an appropriate outgroup can be difficult:
I if it is too similar to the other taxa, then it might be more

related to some than to others.
I If it is too distant, then there might not be enough similarity

to the other taxa to perform meaningful comparisons.
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Rooting unrooted trees

In the above neighboring tree, Mlu is the outgroup, Hence, the
rooted version of this tree looks something like this:

0.141
0.065

0.050

0.07295

0.049

0.168

0.111

Mlu

Bst

Bsu

Lvi

Amo

I This tree is believed to be closer to the correct tree than
the one produced earlier using UPGMA.
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Rooting unrooted trees

00.050.100.150.20

Amo

Lvi

Mlu

Bst

Bsu
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Rooting unrooted trees

I In particular, the UPGMA tree does not separate the
outgroup from all other taxa by the root node.

I The reason why UPGMA produces an incorrect tree is that
two of the sequences, those of L.viridescens (Lvi) and
A.modicum (Amo) are very much more diverged than the
others.

Stephan Steigele



Some Topics in Phylogenetics

Part III

Models of evolution

Stephan Steigele



Some Topics in Phylogenetics

Outline

Models of evolution
Jukes-Cantor
Jukes-Cantor-Model
Distance Transformations
Accounting for superimposed events
More general transformations

Stephan Steigele



Some Topics in Phylogenetics

Models of evolution

Models of evolution

In phylogenetic analysis, a model of evolution is given by a
rooted tree T , called the model-, true- or generating tree,
together with a procedure for generating sequences along the
model tree.

I Usually, the procedure must determine how to generate an
initial sequence at the root of the tree and specify how to
“evolve” sequences along the edges of the tree.

I This involves obtaining intermediate sequences for all
internal nodes of the tree, and producing a set of aligned
sequences A at the leaves of the tree.
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Observed and expected Distances

I p-distance

Describes the proportion of different homologous sites, it is
expressed as the number of nucleotide differences per site

I g-distance
Accounts for the effects of homoplasy (e.g. A→ G→ C or
A→ G→ A) Here, the p-distance underestimates the true
genetic distance.
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Nucleotide Substitutions as homogeneous Markov
Process

I Nucleotide Substitutions can be generalized as a Markov
Process

I The relative rates of change of each nucleotide is specified
in a Q-Matrix

I Rate of change is independent from one site to another
(Markov Property)

I Substitution rates do not change (homogeneity)
I The relative frequencies of A,C,G,T are at equilibrium

(stationary)
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The Jukes-Cantor model of evolution

T. Jukes and C. Cantor (1969)5 introduced a very simple model
of DNA sequence evolution.
Definition Let T be a rooted phylogenetic tree. The
Jukes-Cantor model of evolution makes the following
assumptions:

1. The possible states for each site are A, C, G and T.

2. The sites evolve identically and independently (i.i.d.) down the edges of
the tree from the root at a fixed rate u.

3. With each edge e ∈ E we associate a duration t = t(e). The
probabilities of change to each of the 3 remaining states are equal.

5T.H. Jukes and C.R. Cantor. (1969) Evolution of protein molecules. In
Mammalian Protein Metabolism, H.N. Munro, ed., Academic Press, New
York, NY, pp. 21-132.
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Jukes-Cantor model

Under the Jukes-Cantor model, the evolutionary event that a
nucleotide changes to any base occurs with a rate α.

I Let P and Q denote the base pair present at a given site
before and after a given time period t .

I What is the probability Prob(Q = P | P, t) that P equals
Q? (and hence become unchanged)

To answer this we make use of differential equations:
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When to mutate ?

For t = 0 it is Prob(P|t = 0) = 1.

At the next time point t = 1 P either changes with rate α into
one of the other 3 bases or it stays in the same state. Thus

Prob(Q = P|P, t = 1) = 1− 3α.

Then it follows
Prob(Q = P|P, t = 2) =

(1− 3α)Prob(Q = P|P, t = 1) + α(1− Prob(Q = P|P, t = 1))
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Exponential Function
After some transformations of the former equation we finally get
the exponential function as solution. The probability that no
mutation occured in the time interval (0, t).

P0(t) = exp(−µt)

The Probability of at least one event is then given by

P1(t) = 1− exp(−µt)

Note that the Poisson Distribution contains the exponential
function.

Pλ(X = k) =
λk

k !
e−λ
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Probabilities of change from the Q-Matrix

A soon as the relative rates of change of each nucleotide are
specified in a Q-Matrix it is possible to calculate the probability
of change during evolutionary time t .

P(t) = exp(Qt)

Normally, detailed solutions require the use of matrix algebra,
in case of Jukes-Cantor the result is straightforward:
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Jukes-Cantor model

For Prob(P = P|P, t) we get the solution

Probii(t) =
1
4

+
3
4

e−
4
3αt

while for Prob(P 6= Q|P, t) we get the solution

Probij(t) =
1
4
− 1

4
e−

4
3αt

For t →∞ Prob(P|t) tends against 1/4. Ie., under the
Jukes-Cantor model in equilibrium the probability of all four
nucleotides is equal to 1/4.
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Interpretation of the Jukes-Cantor model

Think about: how do we “evolve” a sequence down an edge e
under the Jukes-Cantor model ?

I The evolutionary event (C3 =) nucleotide change to one of
the other three bases ocurs at a fixed rate u

I The event (C4 =) nucleotide change to any base is taken
to be 4

3u = 4u
3

I The probability that event C4 does not occur within time t
is: e−

4
3 ut (Poisson distribution with k = 0)

I this leads also to a probablity of 1
4 to end in any particular

base
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Jukes-Cantor model
Let P and Q denote the base pair present at a given site before
and after a given time period t . The probability that an
observable substitution is detected (all changes from
P ∈ {A,C,G,T} to base Q within time t is:

Prob(Q 6= P | P, t) =
1
4

(
1− e−

4
3 ut
)
.

However, there are three additional nucleotides, such that we
have to sum over three such quantities to yield the
probability-of-change formula for the probability of an
observable change occurring at any given site in time t :

Prob(change | t) =
3
4

(
1− e−

4
3 ut
)
.
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Jukes-Cantor model

We can use this model to generate artificial sequences along a
model tree.

I E.g., set the sequence length to 10 and the mutation rate
to u = 0.1.

I Initially, the root node is assigned a random sequence.
I Then the sequences are evolved down the tree, at each

edge using the probability-of-change formula to decide
whether a given base is to change:
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Jukes-Cantor-Model

1

1
2

3

1

0.5 1

1

0.5 0.5

taxon1

taxon2

taxon3

taxon4

taxon5 taxon6

e

ACGTTTCGAG

ACCTTGCGGG

ACGTTTAGAG

The probability of change along edge e is
0.75(1− e−

4
3×0.1×3) = 0.75(1− e−0.4) = 0.247.
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The Jukes-Cantor distance transformation
I Given sequences generated under the Jukes-Cantor

model of evolution.
I We would like to calculate the expected number of

mutations for any given site on the path in a Jukes-Cantor
tree between the leaves ai and aj .

Lemma
The maximum likelihood distance between a pair of sequences
ai ,aj (that is, the most likely ut to have generated the observed
sequences) is given by the following formula:

JC(ai ,aj) = −3
4

ln
(

1− 4
3

Ham(ai ,aj)

)
.

This is called the Jukes-Cantor distance transformation.
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Accounting for superimposed events

Hamming distances are suitable for inferring phylogenies
between closely related species, given long sequences.

I For more distantly related sequences, the problem arises
that mutation events will take place more than once at the
same site.

I These superimposed events will not contribute to the
Hamming distances and thus will go undetected.
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Accounting for superimposed events

I Note that the expected Hamming distance between two
random sequences is 3

4 . Any two sequences ai ,aj for
which Ham(ai ,aj) ≥ 3

4 holds are called saturated w.r.t.
each other.

I Note that the Jukes-Cantor transformation is undefined for
any pair of saturated sequences.

In practice, when a saturated pair of taxa is encountered, their
JC value is simply set to a large number which may be a
fixed-factor times the largest value obtained between any two
non-saturated taxa, for example.
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genetic VS. observed distance
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More general transformations
The Jukes-Cantor model assumes that all nucleotides occur
with the same frequency.

I This assumption is relaxed under the Felsenstein 81
model introduced by Joe Felsenstein (1981), which has the
following distance transformation:

F81(ai ,aj) = −B ln(1− Ham(ai ,aj)B),

where B = 1− (π2
A + π2

C + π2
G + π2

T) and πQ is the frequency
of base Q.

I The base frequency is obtained from the pair of sequences
to be compared, or better, from the complete set of given
sequences.
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More general transformations

I Note that this contains the Jukes-Cantor transformation
as a special case with equal base frequencies
πA = πC = πG = πT = 0.25, thus B = 3

4 .
I Unlike the Jukes-Cantor transformation, this transformation

can also be applied to protein sequences, setting B = 19
20 if

all amino acids are generated with the same frequency,
and B =

∑20
i=1 π

2
i , in the proportional case.
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More general transformations

Both of these transformations assume that all changes of
states are equally likely:

u

u

u

uu

G T

CA

However, this is a very unrealistic assumption. For example, in
DNA sequences, we observe many more transitions, which
are purine-to-purine or pyrimidine-to-pyrimidine substitutions,
than transversions, which change the type of the nucleotide.
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More general transformations

We need to model two separate substitution rates α and β:

G T

CA
β

β

β

α
β

α

(Transitions: A↔ G, C↔ T, transversions: A↔ T, G↔ T, A↔ C, and
C↔ G.)
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More general transformations

Given equal base frequencies, but different proportions P and
Q of transitions and transversions between ai and aj , the
distance for the Kimura 2 parameter model is computed as:

K 2P(ai , aj ) =
1
2

ln
„

1
1− 2P −Q

«
+

1
4

ln
„

1
1− 2Q

«
.

If we drop the assumption of equal base frequencies, then we
obtain the Felsenstein 84 transformation:

F84(ai , aj ) = −2A ln
„

1− P
2A
− (A− B)Q

2AC

«
+ 2(A− B − C) ln

„
1− Q

2C

«
,

where A = πCπT/πY + πAπG/πR , B = πCπT + πAπG, and C = πRπY with
πY = πC + πT , πR = πA + πG.
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More general transformations

Even more general models exist, but we will skip them. The
following figure summarizes the complete overview of the time
reversible models:
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Trees and splits
Any edge e of T defines a split S = {A, Ā} of X , that is, a
partitioning of X into two non-empty sets A and Ā, consisting of
all taxa on the one side and other side of e, respectively.

For example:

e

t1

t2

t3

t4

t5 t6
t7

t8

Here, A = {t3, t4, t5} and Ā = {t1, t2, t6, t7, t8}.
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Trees and splits

I We will use Σ(T ) to denote the split encoding of T , i.e.
the set of all splits obtained from T .

I If x ∈ X and S ∈ Σ, then we use S(x) or S̄(x) to denote the
split part that contains x , or doesn’t contain x , respectively.

I We define the size of a split S = {A, Ā} as
size(S) = min(|A|, |Ā|).

I A split of size 1 is called a trivial split.

Ideally, each edge of the tree separates a monophyletic group
from the rest and this is reflected by the corresponding split.
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Compatible splits

Given a set of taxa X . Let Σ be a set of splits of X . Two splits
S1 = {A1, Ā1} and S2 = {A2, Ā2} are called compatible, if one
of the four following intersections

A1 ∩ A2, A1 ∩ Ā2, Ā1 ∩ A2, or Ā1 ∩ Ā2,

is empty.
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Compatible splits

A set Σ of splits of X is called compatible, if every pair of splits
in Σ is compatible.
Example

I Given the taxa set X = {a,b, c,d ,e}.
I The splits S1 = {{a,b}, {c,d ,e}}, S2 = {{a,b, c}, {d ,e}}

and S3 = {{e}, {a,b, c,d}} are all compatible with each
other.

I However, S4 = {{a, c}, {b,d ,e}} is not compatible with the
first one.

I Hence, the set Σ = {S1,S2,S3} is compatible, but
Σ′ = {S1,S2,S3,S4} is not.
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Compatible splits

I The compatibility condition states that any split S
subdivides either the one side, or the other side, of any
other split S′, but not both sides.

I Hence, any set of compatible splits can be drawn as
follows, without crossing lines:
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Compatible splits

t7
t4

t1

t8

t6t5

t3

t2

This figure also shows the relationship between compatible
splits and a hierarchical clustering6

6A hierarchical clustering of a set X is a system H of subsets of X such
that

S
A∈H A = X and A,B ∈ H ⇒ either A ∩ B = ∅, or A ⊂ B or B ⊂ A.
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Compatible splits and trees
Any compatible set of splits Σ gives rise to a phylogenetic tree
T , for example:

t7
t4

t3

t2

t1

t8

t6t5

Note: To obtain a one-to-one correspondence between trees
and compatible split systems, we now use the relaxed definition
of a phylogenetic tree that allows any leaf to carry more than
one label and also allows labeling of internal nodes, too.
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Compatible splits and trees

In summary:

Theorem
A set of splits Σ is compatible, iff there exists a phylogenetic
tree T such that Σ = Σ(T ).
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Splits from a tree

Given an unrooted phylogenetic tree T on X = {x1, . . . , xn}. We
can easily compute the set Σ(T ) in O(n), where n is the
number of taxa,

I by starting at the leaf labeled x1,
I visit all nodes in a post-order traversal,
I for each edge maintaining and reporting the set of leaves

reached after crossing the edge.
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Splits from a tree

x5x2

x3

x4

x1
v x7

x6

x4,x6,x7

x3,x5

Stephan Steigele



Some Topics in Phylogenetics

Splits from a tree

Splits from a tree
The following algorithm recursively visits all nodes and prints
out a split after visiting all nodes reachable over a particular
edge. Initially, the algorithm is called with e = null and v equal
to the node labeled x1.
Algorithm TreeToSplits(e, v)
Input: A phylogenetic tree T on X
Output: The corresponding compatible splits Σ(T )
Returns: The set λ(e) of all taxa separated from x1 by e
begin Set λ(e) = ∅
for each edge f 6= e adjacent to v do

Let w be the opposite node adjacent to f
if w is a leaf then

add the label of w to λ(e)
else

call TreeToSplits(f ,w) and add the returned labels to λ(e)

print the split {λ(e), λ(e)}
return λ(e)
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Splits from a tree

A tree from splits

Given a compatible set of splits Σ = {S1,S2, . . . ,Sm} of X .
I Assume we have already processed the first i splits and

have obtained a tree Ti .
I To incorporate a new edge e to represent the next split

Si+1 ∈ Σ,
I starting at the node v labeled x1, we follow a path through

the tree
I until we reach the node w at which e is to be inserted
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A tree from splits
Example: insert split {x1, x2, x3, x4, x5} vs {x6, x7}:

x4

x5

x7

x6

x2

x3

x1
v

u

x5x2

x3

x6

x4

e
x7

x1
v

u u’
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Splits from a tree

A tree from splits

This node is found as follows:
I if there is only one edge leaving the current node u that

separates x1 from elements in S̄(x1), then we follow this
edge.

I If more than one separating edges exist, then u = w
I create a new edge e from u to a new node u′ and all

separating edges are moved from u to u′.

Stephan Steigele



Some Topics in Phylogenetics

Splits from a tree

A tree from splits
Algorithm (Splits to tree)
Input: A set Σ = {S1, . . . ,Sm} of compatible splits of X ,
(including all trivial ones)
Output: The corresponding phylogenetic tree T = (V ,E) on X
Initialization: Let T be a star tree with n leaves labeled x1, . . . , xn

Orient all edges away from the node v labeled x1

For e ∈ E , maintain the set τ(e) of all taxa separated from x1 by e

begin
for each non-trivial split S ∈ Σ do

Set u = v
while there is only edge e leaving u with τ(e) ∩ S̄(x1) 6= ∅ do

Set u equal to the opposite node of e
Let F be the set of all edges f leaving u with τ(f ) ∩ S̄(x1) 6= ∅
Create a new edge e from u to a new node u′

Set τ(e) =
S

f∈F τ(f )
Make all edges in F leave from w ′ instead of w

end
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A tree from splits

Lemma
The algorithm constructs the correct tree T in O(n log n)
expected steps.
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Splits from a tree

Splitstree

Counting Splits

There are many possible splits

2n − 2n − 2

compared to the 2n − 3 splits that are compatible.
For example:
When n = 15 there are 27 compatible splits within 16,383 splits.
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Splitstree

Splitstree

How to select for compatible splits?
I the Four-Point-Metric condition tells whether distances

within a quartet of species fit within a tree
I applaying the FPM condition to all quartets of the given

taxa does not guarantee that a unique tree implies all valid
quartets
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Splitstree

How to select for compatible splits?

A good try:
Buneman index

I given the matrix D, Taxa X
I given split S = {A,B} of X , some x , y in A and some u, v

in B
put

β(xy |uv) = min{d(x ,u) + d(y , v),d(x , v) + d(y ,u)}

−(d(x , y) + d(u, v))

which defines the Buneman index βs = 1
2minβ(xy |uv)
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Splits from a tree

Splitstree

Remarkable Facts: Buneman Index

Lemma
The collection of splits, for which βs > 0 holds, is compatible
and, therefore, corresponds to a tree.
However, the selection is too strict and usually elects to discard
too many splits because only the minimum value is choosen
and only one value has to be negative to reject the split.
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Splits from a tree

Splitstree

Isolation Index

I given the matrix D, Taxa X
I given split S = {A,B} of X , some x , y in A and some u, v

in B

put

β(xy |uv) = max{d(x ,u) + d(y , v),d(x , v) + d(y ,u)}

−(d(x , y) + d(u, v))

which defines the Isolation index αs = 1
2minα(xy |uv)
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Splitstree

Consequences: Isolation index

I the Isolation Index corresponds to the weight of internal
edges.

I however, the Splits S of the isolation index are not
necesarily compatible

I Splits with positive isolation index are called d − splits

Lemma
if X has n elements, then the number of splits with positive
isolation index is at most n(n − 1)/2
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Splits from a tree

Splitstree

Weak compatibility

all d − splits are weakly compatible

Definition
a split is weakly compatible, if for every three splits

S = {A,B},T = {C,D},U = {E ,F}

at least one of the intersections

A ∩ C ∩ E ,A ∩ D ∩ F ,B ∩ C ∩ F ,B ∩ D ∩ E

is empty
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Splits from a tree

Splitstree

Consequences: Weak compatibility

the FPM condition is also weakend by applying the weak
compatibility

Lemma
when we look at the quartet ABCD we should have

max(DAB + DDE ,DAE + DDB) > DAD + DBE

for the quartet to be compatible with the split {ACDF |BEG}.

I which means, that the distance sum of pairs of taxa within
sets of the partition should not be the largets of the three
sums
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Splitstree

Drawing

The usual way to draw the networks is to utilize
I outer planar networks.

However, details of the drawing algorithm are beyond the scope
of this lecture.
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Comparison of two trees

Comparison of two trees

Given two unrooted phylogenetic trees T1 and T2 on the same
set of taxa X .

I We will call the first tree T1 the model tree and T2 the
reconstructed tree.

How can we measure how similar their topologies are?
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Comparison of two trees

I Let Σ1 = Σ(T1) and Σ2 = Σ(T2) be the split encodings of
the two trees respectively.

I We define the set of all false positives (FP) as Σ2 \ Σ1.
I These are all splits contained in the estimated tree that are

not present in the model tree.
I Similarly, we define the set of false negatives (FN) as

Σ1 \Σ2 as the set of all splits missing in the estimated tree,
that are present in the model tree.
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Comparison of two trees

S2

S3 S4

S5S1

S3

S1 S5

S4
S2

Model Tree Reconstructed Tree
In this example, there is one false positive {S1,S3} vs
{S2,S4,S5} and one false negative {S1,S2} vs {S3,S4,S5}.
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Simulation studies
Simulation studies play an important role in bioinformatics.
They are used to evaluate the performance of new algorithms
on simulated datasets for which the correct answers are known.

I For example, to evaluate the performance of a tree
construction method, M, we can proceed as follows:

1. Select a model tree T = (V ,E , ω) on X .
2. For a specified sequence length l and mutation rate u,

generate a set of aligned sequences A along the tree T
under the Jukes-Cantor model.

3. Apply the method M to A to obtain a tree M(A).
4. Compute the number of false positives and false negatives.
5. Repeat many times for many different parameters and

report the average performance of the method.
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Simulation studies
Example Under the Jukes-Cantor model with L = 1000 and
u = 0.1, sequences were generated on a model tree, then
Hamming distances were computed, then Neighbor-Joining
was applied:

Model tree Neighbor-Joining tree
Title: x.o.splits
Date : Tue Dec 10 16:15:43 2002

 ntax=12

Homosapiens
M.mulatta

Hylobates

Lemurcatta

Pongo

M.sylvanus

Saimirisciureus

Gorilla

M.fascicularis

Macacafuscata

Tarsiussyrichta

Pan

0.1

Title: x.nj.splits
Date : Tue Dec 10 16:13:37 2002

 ntax=12

M.mulatta

Pongo

Saimirisciureus Gorilla

Lemurcatta

Hylobates

M.sylvanus

M.fascicularis

Homosapiens

Pan

Tarsiussyrichta

Macacafuscata

0.01

FP = FN = 3Stephan Steigele
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Simulation studies

Simulation studies
Example Under the Jukes-Cantor model with L = 1000 and
u = 0.1, sequences were generated on a model tree, then
Hamming distances were computed, then UPGMA was applied:

Model tree UPGMA tree
Title: x.o.splits
Date : Tue Dec 10 16:15:43 2002

 ntax=12

Homosapiens
M.mulatta

Hylobates

Lemurcatta

Pongo

M.sylvanus

Saimirisciureus

Gorilla

M.fascicularis

Macacafuscata

Tarsiussyrichta

Pan

0.1

Title: x.upgma.splits
Date : Tue Dec 10 16:14:01 2002

 ntax=12

Pongo

Macacafuscata

Lemurcatta

arsiussyrichta

Homosapiens

M.sylvanus

Hylobates

M.fascicularis

Pan

M.mulatta

Gorilla

Saimirisciureus

0.01

FP = FN = 5
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Simulation studies

Using the same tree and computations, here we plot7 the
number of false positives obtaining for u = 0.1,0.5 and
different sequence lengths L ranging from 100− 6400:

0 1000 2000 3000 4000 5000 6000 700

"NJ"
"UPGMA"

0 1000 2000 3000 4000 5000 6000 700

"NJ"
"UPGMA"

L vs FP, u = 0.1 L vs FP, u = 0.4
For this particular tree, Neighbor-Joining displays generally
a better performance than UPGMA. However, to obtain
significant results, many trees and many different parameters
must be considered.

7Each point plotted was obtained as the average of five independent
simulations
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Simulation studies

SeqGen: Program for simulation studies
Given the tree in Newick format:
Generation of sequences using SeqGen8

8
Rambaut, A. and Grassly, N. C. (1997) Seq-Gen: An application for the Monte Carlo simulation of DNA

sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13: 235-238
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Algorithms vs optimality criteria

I In phylogenetics, the goal is to estimate the true
evolutionary tree that generated a set of extant taxa.

I Tree reconstruction methods attempt to accomplish this
goal by selecting one of the many different possible
topologies.
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Algorithms vs optimality criteria

This selection process is performed in one of two ways:
1. The tree selected by an algorithmic method such as

Neighbor-Joining or UPGMA is defined by the sequence of
steps that make up the algorithm. This tree does not solve
any explicitly formulated optimization problem.

2. The tree selected by an optimization method is a solution
to an explicitly formulated optimization problem such as
“maximum parsimony” or “maximum likelihood”. Here,
algorithms play a secondary role as a means of obtaining
or approximating a solution to the optimization problem.
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Algorithms vs optimality

Distance methods are usually algorithmically defined and
have polynomial run time. Sequence methods usually involve
solving an optimization problem by finding an optimal tree with
respect to some criterion and are usually NP-hard.

I Algorithmic methods combine the computation and
definition of the preferred tree into a single statement.

I Optimization methods involve formulating and solving two
problems:

I computing the cost for a given tree T , and
I searching through all trees to find a tree that minimizes the

cost.
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Maximum parsimony
Assumptions for Maximum parsimony
The parsimony score of a tree

Parsimony: Example

The small parsimony problem
The Fitch algorithm
Sankoff-Algorithm

The large parsimony problem
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Maximum parsimony

wı̈¿1
2ga dem script

http://www-ab.informatik.uni-
tuebingen.de/teaching/ws02/abi1/AlBiI-WS2002-3-Huson.pdf
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Maximum parsimony

The maximum parsimony method is by far the most used
sequence-based tree reconstruction method.

I In science, the principle of maximum parsimony is well
known: always use the simplest, most parsimonious
explanation of an observation, until new observations force
one to adopt a more complex theory.

I In phylogenetic analysis, the maximum parsimony
problem is to find a phylogenetic tree that explains a given
set of aligned sequences using a minimum number of
“evolutionary events”.
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Assumptions for Maximum parsimony

I Changes in different sites is independent.
I Changes in different lineages is independent.
I The probability of a base substitution that changes the

amino acid sequence is small over the lengths of time in a
branch.

I The expected amounts of change in different branches do
not vary by so much that two changes in a high-rate branch
are more probable than one change in a low-rate branch.

I The expected amounts of change do not vary enough
among sites that two changes in one site are more
probable than one change in another.
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The parsimony score of a tree

The difference between two sequences x = (x1, . . . , xL) and
y = (y1, . . . , yL) is simply their non-normalized Hamming
distance

diff(x , y) = |{k | xk 6= yk}|.
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The parsimony score of a tree

Given a multiple alignment of sequences A = {a1,a2, . . . ,an}
and a corresponding phylogenetic tree T , leaf-labeled by A.

I If we assign a hypothetical ancestor sequence to every
internal node in T ,

I then we can obtain a score for T together with this
assignment,

I by summing over all differences diff(x , y),
I where x and y are any two sequences labeling two nodes

that are joined by an edge in T .
The minimum value obtainable in this way is called the
parsimony score PS(T ,A) of T and A.
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Parsimony: Example
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The small parsimony problem
The small parsimony problem is to compute the parsimony
score for a given tree T . Can it be solved efficiently?

I As the parsimony score is obtained by summing over all
columns, the columns are independent and so it suffices to
discuss how to obtain an optimal assignment for one
position:

b d

e
f

c

a A
C A

C GG

→

G
C A

GA C

unrooted tree rooted tree
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The Fitch algorithm

The Fitch algorithm

I The following algorithm computes the parsimony score for
T and a fixed column c in the sequence alignment.

I It uses a dynamic programming algorithm and assigns sets
of character assignments S(v) to each node v in the tree.

I Initially it is called with e = null and v the root node and
PS(T , c) = 0.
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The Fitch algorithm

The Fitch algorithm

Algorithm ParsimonyScore(e, v) (Walter Fitch 1971)
Input: A phylogenetic tree T and a character c(v) for each leaf v
Output: The parsimony score PS(T , c) for T and c
if v is a leaf node then

Set S(v) = {c(v)}
else

for each edge f1, f2 6= e adjacent to v do
Let wi be the opposite node of fi
Call ParsimonyScore(fi ,wi ) // to compute S(wi )

if S(w1) ∩ S(w2) 6= ∅ then
Set S(v) = S(w1) ∩ S(w2)

else
Set S(v) = S(w1) ∪ S(w2) and PS(T , c) = PS(T , c) + 1

end
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The Fitch algorithm
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The Fitch algorithm

Traceback

The above algorithm computes the parsimony score. An
optimal labeling of the internal nodes is obtained via traceback:

I starting at the root node r ,
I we label r using any character in S(r).
I Then, for each child w , we use the same letter, if it is

contained in S(w),
I otherwise we use any letter in S(w) as label for w .
I We then visit the children von w etc.

Again, the algorithm requires O(nL) steps, in total.
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The Fitch algorithm

Example:

{C,T}

{C}

{C,T}

{C}
{T}{T}{C} C T

C
T

C

C

C

Fitch labeling one traceback result

C T
C

T

C

C

T

C T
C

T

T

T

T

another traceback result not obtainable by traceback
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The Fitch algorithm

The Fitch algorithm on unrooted trees

Above, we formulated the Fitch algorithm for rooted trees.
However, the minimum parsimony cost is independent of where
the root is located in the tree T .

Stephan Steigele



Some Topics in Phylogenetics

The small parsimony problem

Sankoff-Algorithm

more Advanced: Sankoff-Algorithm

A dynamic programming algorithm for counting the smallest
number of possible (weighted) state changes needed on a
given tree

I Let Sj(i) be the smallest (weighted) number of steps
needed to evolve the subtree at or above node j, given that
node j is in state i. Suppose that cij is the cost of going
from state i to state j.

I Initially, at tip (say) j

Sj(i) =

{
0 if node j has (or could have) state i
∞ if node j has any other state
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Sankoff-Algorithm

I Then proceeding down the tree (postorder tree traversal)
for node a whose immediate descendants are l and r

Sa(i) = min
j

[cij + Sl(j)] + min
k

[cik + Sr (k)]

I The minimum number of (weighted) steps for the tree is
found by computing at the bottom node (0) the S0(i) and
taking the smallest of these.
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The small parsimony problem

Sankoff-Algorithm
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The large parsimony problem

Given a multiple alignment A = {a1, . . . ,an}, its parsimony
score is defined as

PS(A) = min{PS(T ,A) | T is a phylogenetic tree on A}.

The large parsimony problem is to compute PS(A).
I Potentially, we need to consider all (n − 5)!! possible trees.
I Unfortunately, in general this can’t be avoided and the

maximum parsimony problem is known to be NP-hard.
I Exhaustive enumeration of all possible tree topologies will

only work for n ≤ 10 or 11, say.
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The large parsimony problem

Thus, we need more efficient strategies that either solve the
problem exactly, such as the branch and bound technique, or
return good approximations, such as heuristic searches9.

9As with most biological problems, we are not only interested in the
optimal solution, but would also like to know something about other near
optimal solutions as well.
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Branch and bound
Shortest Hamiltonian Path Problem
But how to obtain an Branch and bound Algorithm for
Phylogenetic Trees??

The stepwise-additional heuristic

The star-decomposition heuristic

Branch swapping methods
Nearest-Neighbor-Interchange (NMI)
Subtree Pruning and Regrafting (SPR)
Tree bisection and Reattachment (TBR)

Heuristic search

Simulated annealing

The Great Deluge method
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Tree Searching Methods

I Exhaustive search (exact)
I Branch-and-bound search (exact)
I Heuristic search methods (approximate)

I Stepwise addition
I Branch swapping
I Star decomposition
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Shortest Hamiltonian Path Problem
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Branch and bound

Shortest Hamiltonian Path Problem
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Branch and bound

But how to obtain an Branch and bound Algorithm for Phylogenetic Trees??

But how to obtain an Branch and bound Algorithm for
Phylogenetic Trees??

Recall how we obtained an expression for the number U(n) of
unrooted phylogenetic tree topologies on n taxa:

I For n = 3 there are three ways of adding an extra edge
with a new leaf to obtain an unrooted tree on 4 leaves.

I This new tree has (2n − 3) = 5 edges and there are 5
ways to obtain a new tree with 5 leaves etc.
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But how to obtain an Branch and bound Algorithm for Phylogenetic Trees??

Branch and bound

I To be precise, one can obtain any tree Ti+1 on
{a1, . . . ,ai ,ai+1} by adding an extra edge with a leaf
labeled ai+1 to some (unique) tree Ti on {a1, . . . ,ai}.

I In other words, we can produce the set of all possible trees
on n taxa by adding one leaf at a time in all possible ways,
thus systematically generating a complete enumeration
tree.
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But how to obtain an Branch and bound Algorithm for Phylogenetic Trees??

Branch and bound

A simple, but crucial observation is that adding a new sequence
ai+1 to a tree Ti to obtain a new tree Ti+1 cannot lead to a
smaller parsimony score.
This gives rise to the following bound criterion when generating
the enumeration tree:

I if the local parsimony score of the current incomplete tree
T ′ is larger or equal to the best global score for any
complete tree seen so far, then we do not generate or
search the enumeration subtree below T ′.
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Branch and bound

But how to obtain an Branch and bound Algorithm for Phylogenetic Trees??

Branch and bound

I Application of branch-and-bound to evolutionary trees was
first suggested by Mike Hendy and Dave Penny (1982).

I In practice, using branch and bound one can obtain exact
solutions for data sets of twenty or more sequences,
depending on the sequence length and the messiness of
the data.

I A good starting strategy is to first compute a tree T0 for the
data, e.g. using Neighbor-Joining, and then to initialize the
global bound to the parsimony score of T0.
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The stepwise-additional heuristic

I Now we discuss a simple greedy heuristic (Felsenstein
1981) for approximating the optimal tree or score.

I We build the tree T by adding one leaf after the other, in
each step choosing the optimal position for the new
leaf-edge:

I Given a multiple sequence alignment A = {a1,a2, . . . ,an}.
1. Start with a tree T2 consisting of two leaves labeled a1 and

a2.
2. Given Ti . For each edge e in Ti , obtain a new tree T e

i as
follows: Insert a new node v in e and join it via a new edge
f to a new leaf w with label ai+1.

3. Set Ti+1 = arg min{P(T e
i ,A)}.
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The stepwise-additional heuristic
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T3 T e1
3 T e2
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I Obviously, this approach is not guaranteed to obtain an
optimal result.

I Moreover, the result obtained will depend on the order in
which the sequences are processed.
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The star-decomposition heuristic

This employs a similar strategy to Neighbor-Joining.
I We start with a star tree on all n taxa.
I At each step, the optimality criterion is evaluated for every

possible joining of a pair of lineages incident to the central
node.

I The best tree found at one step is then used as the basis
of the next step:
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The star-decomposition heuristic
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Branch swapping methods

The two heuristics just described are both very susceptible to
entrapment in local optima.

I We now discuss a number of branch-swapping
operations that one can use to move through the space of
all trees, hopefully jumping far enough to escape from local
optima.
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Nearest-Neighbor-Interchange (NMI)

In a nearest-neighbor interchange (NNI), two of the four
subtrees around an edge are swapped, in the two possible
different ways:
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Subtree Pruning and Regrafting (SPR)

In branch swapping by subtree pruning and re-grafting, a
subtree is pruned from the tree and re-grafted to a different
location of the tree:
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Tree bisection and Reattachment (TBR)
In branch swapping by tree bisection and reattachment
(TBR), the tree is bisected at an edge, yielding two subtrees.
The two subtrees are then reconnected at two new positions:
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Tree bisection and Reattachment (TBR)

Some Notes

I Each NNI operation is a special case of SPR operation,
and each SPR operation is again a special case of TBR
operation.

I We also note that each of the branch swapping operations
is reversible such that if T ′ is the result of a
branch-swapping operation on T then the same operation
applied to T ′ yields back T .
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Some Notes

In addition we have the following

Theorem
Let T and T ′ be two binary trees. Then T ′ can be constructed
from T by a series of NNI operations. The number of different
trees, that can be constructed from T with a single NNI
operation is 2(n − 3) and with SPR 4(n − 3)(n − 2). For the
TBR the exact number of single operations depends on tree
shape (but usually more than by SPR).
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Heuristic search

If the data set A = {a1, . . . ,an} is too big to be solved exactly
via branch and bound, then we can use a heuristic search
method in an attempt to find or approximate the optimal
solution.

I This involves searching through the space of all unrooted
phylogenetic trees on n labels and trying to proceed
toward a globally optimal one.

I We “move” through tree space using one or more
branching-swapping techniques.
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Heuristic search

Heuristic searches employ hill-climbing techniques:
I we imagine that the “goodness” −PS(T ) of the solution as

a landscape along which we move during the search.
I The general strategy is to always move upwards in the

hope of reaching the top of the highest peak.
Even using the above described branch-swapping techniques,
any heuristic search is in danger of “climbing the wrong
mountain” and getting stuck in a local optimum. Different
strategies have been developed to avoid this problem.
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Simulated annealing

The simulated annealing method employs a temperature that
cools over time (Van Laarhoven and Aarts, 1987).

I At high temperatures the search can move more easily to
trees whose score is less optimal than the score of the
current tree.

I As the temperature decreases, the search becomes more
and more directed toward better trees.

I.e., let Ti denote the current tree at step i and let z(Ti) denote
the goodness of Ti (e.g., −PS(T )).
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Simulated annealing

In hill climbing, a move to Ti+1 is acceptable, if z(Ti+1) ≥ z(Ti).
In simulated annealing, any new solution is accepted with a
certain probability:

Prob(accepting solution Ti+1)

=

{
1 if z(Ti+1) ≥ z(Ti)

e−ti (z(Ti+1)−z(Ti )) otherwise,

where ti is called the temperature and decreases over time.
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The Great Deluge method
I The Great Deluge method, introduced by Guenter Dueck

and Tobias Scheuer (1990), employs a slowly rising water
level and the search accepts any move that stays above
the water level.

I The probability of accepting a new solution Ti+1 is 1, if
z(Ti+1) > wi , where wi is a bound that increases slowly
with time.

I If Ti+1 is accepted, then we update the water level by
setting

wi+1 = c × (z(Ti+1)− z(Ti)) .

I Typically, the constant c is usually about 0.01 to 0.05.
Another of the many heuristics is tabu search method (Glover,
1989) that maintains a tabu list of 5− 10 solutions recently
visited and refrains from revisiting them.
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