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L

what is Comparative Genomics?

what is Comparative Genomics?

lets start with THE examples
Initial sequencing and analysis of the
human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human t, iology, icine and
Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
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Lwhat is Comparative Genomics?

what is Comparative Genomics?

® There appe:r to be about 33,000—40,000 protein-coding genes in
the human genome—only about twice as many as in worm or fly.
However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

® The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

® Hundreds of human genes appear likely to have resulted from
horizontal transfer from bacteria at some point in the vertebrate
lineage. Dozens of genes appear to have been derived from trans-
posable elements.

® Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.

® The pericentromeric and subtelomeric regions of chromosomes
are filled with large recent segmental duplications of sequence from
elsewhere in the genome. Segmental duplication is much more
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LContributions

selected slides were inspired/taken from many people:

Ann-Charlotte Berglund Sonnhammer
Benny Chor

Lawrence Hunter

Mathieu Blanchette

Kay Nieselt

Daniel Huson

vV V.V VvV VY
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LComparative Gene Prediction

Comparative Gene Prediction

Gene
A sequence of nucleotides coding for protein

Gene Prediction Problem
Determine the beginning and end positions of genes in a
genome

Stephan Steigele
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I—Comparative Gene Prediction

a piece of DNA

aatgcatgcggctatgctaatgcatgcggctatgctaagectgggatccgatgacaatgcatgecggetatgetaatgcatgegg
ctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgeggctatgetaatgaatggtcttggga
tttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaata
taatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggetatgectaatgcatgeggetatgecaagetgggate
cgatgactatgctaagctgcggctatgctaatgcatgecggctatgctaagectgggatccgatgacaatgecatgeggectatget
aatgcatgcggctatgcaagctgggatcctgecggectatgectaatgaatggtcttgggatttaccttggaatgectaagectggga
cgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgeggectatgectaaget
gaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggectatgcaagectgggata
ccgatgactatgctaagctgcggctatgctaatgcatgecggctatgctaagctcatgecggctatgctaagectgggaatgecatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgecggctatgcaagectgggatccgatgacte
atgctaagctgcggctatgctaatgcatgecggctatgctaagctcggectatgectaatgaatggtcttgggatttaccttggaa
ctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgeg
ctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgecggectatgctaatgcatgecggeta
atgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgeggectatgectaagetcatgegg

Stephan Steigele
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LCt:)mparative Gene Prediction

Annotation of Genomic Sequence

Given the sequence of a genome, we would like to be
able to identify:

Genes

Exon boundaries & splice sites
Beginning and end of translation
Alternative splicings

vV v v Vv Y

Regulatory elements (e.g. promoters)

Computational methods can

» Achieve moderate accuracy quickly and cheaply
» Help direct experimental approaches.

Stephan Steigele
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LCc:)mparative Gene Prediction

Gene prediction : Three Approaches

» Statistical or ab initio methods. These methods attempt to
predict genes based on statistical properties of the given
DNA sequence. Programs are e.g. Genscan, GenelD,
GENIE and FGENEH

» Homology methods. The given DNA sequence is
compared with known protein structures, e.g. using
“spliced alignments”. Programs are e.g. Procrustes and
GeneWise

» Comparative methods. The given DNA string is compared
with a similar DNA string from a different species at the
appropriate evolutionary distance and genes are predicted
in both sequences based on the assumption that exons will
be well conserved, whereas introns will not. Programs are
e.g. CEM (conserved exon method) and Twinscan
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I—Comparative Gene Prediction
L ORF Lengths

A simple measure: ORF length Comparison of
Annotation and Spurious ORFs in S. cerevisiae
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L Codon Bias

Gene prediction : Codon bias

» Synonymous codons depict the same Amino-acids
(degenerative genetic code)

» For each species, the use of one of the codon for a similar
AA will be vary based on the relative abundance of the
corresponding tRNA. (Codon bias).

» This is true only for Coding regions. In non coding regions
the appearance of a codon will appear randomly.

CODOIBREFERENCE of! gb_botscoonper (k! 775, 1 4o 0270 Ootsbar 6, L006 18201
Eodon Teble? SerfurDiata:sschlg,cod FrofAirn: 25 Fare Cockn Theoshalas 0.1
Dol 4.5
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L Procaryotic

Gene Prediction in Procaryotes

» Most bacterial promoters contain the Shine-Delgarno
signal, at about -10 that has the consensus sequence:
5-TATAAT-3'.

» The terminator: a signal at the end of the coding sequence
that terminates the transcription of RNA

» The coding sequence is composed of nucleotide triplets.
Each triplet codes for an amino acid. The AAs are the
building blocks of proteins.

Stephan Steigele
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L Procaryotic

Gene Prediction in Procaryotes is rather easy

Every 21 nucleotide (&) is a stop

The coding region of all protein-coding genes starts with a
START codon and ends with a STOP codon. So called ORFs
(Open Reading Frames) can be searched in the genome
sequence. Valid only for prokaryots or lower eukaryots (few or

1000 2000 3000 4000 5000 6000 7000

TR RN FRATA AN FRTRR CRTI ATANTRRTRU RRTRRTENI FRTRRIRRNTH AT
3 3
1)) m 1 1
L I 1 !
= ] RO T ! | [ 1]
3 i NN | A 3
'I [1|Iflrl TTTTTrTrTT III] ||l1
1000 2000 3000 4000 5000 6000 7000

Figure 8.1. ORF map of a portion of the E. coli lac operon using the DNA STRIDER program (Marck
1988). Shown are AUG and termination codons as one-half and full vertical bars, respectively, in all
six possible reading frames. The lacZ gene is visible as an ORF that runs from positions 1284 to 4355

no |ntr0ns) in frame 3.
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L Procaryotic

ORF prediction combined with Ribosomal Binding Site
makes Glimmer

1055 E. coli Ribosome binding sites listed in the Miller book

Stephan Steigele
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L Eucaryotic

But whats with Eucaryotic Genes ?

the p53 tumor supressor gene

RefSeq Genes,
NT_010718.226,

3’ untranslated
region

Internal exons

This particular gene lies on the reverse strand.

Stephan Steigele
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L Eucaryotic

Many Signals in Eucaryotic Genes

promoter
Intron 1 Exon 2 Exon 3 3
DNA
| | gt ag g
Transcription factor
inding sites Transcription downstream
TATA-box lelement
CCAAT-box
Efon 1 Intron 1 Exon 2 Intron 2 Expn 3 ¢
" Primary
s Bl 7 K transcript
dug ;
i P
k cleayage
Splicing polyA  site
signal
.. DS Mature
S'CAP ! AAA-AAA mRNA
Start codon
aug Stop codon
. {uga,una, uag) cleavage
Translation site
Protein

Stephan Steigele
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L Eucaryotic

Signal Vs. Content

In gene finding, a small pattern within the genomic DNA is
referred to as a signal, whereas a region of genomic DNA
is a content

» Examples of signals: splice sites, starts and ends of
transcription or translation, branch points, transcription
factor binding sites

» Examples of contents: exons, introns, UTRs, promoter
regions

Stephan Steigele
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L Eucaryotic

What is it about genes that we can measure (and

model)?
Most of our knowledge is biased towards protein-coding
characteristics

» ORF (Open Reading Frame): a sequence defined by
in-frame AUG and stop codon, which in turn defines a
putative amino acid sequence.

» Codon Usage: most frequently measured by CAl (Codon
Adaptation Index)

Other phenomena

» Nucleotide frequencies and correlations: value and
structure

» Functional sites: splice sites, promoters, UTRs,
polyadenylation sites

Stephan Steigele
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L Alignments within the same species

EST alignment to predict Intron/Exon boundaries

EST: Expressed Sequence Tag. cDNA is produced from
mRNA and sequenced.

» Very powerful

» If several ESTs are available, allows the identification of
alternative splicing products

» Programs: EST-GENOME; Genseqer
» BUT:

» EST sequences are usually very poor quality (sequence
errors)

» EST sequences are often contaminated

» Presence of an EST sequence depends on expression
(level, tissus...)

Stephan Steigele
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LComparative

Gene prediction: sequence conservation

» Between organisms, protein sequence conservation can
be conserved (homology). Homology will be detectable
only in the coding regions.

» Database search programs such as Blast ot tFasta can be
used to search the DNA sequence against a protein
database. The DNA sequence is translated in all six-frame
and searched individually against the database.

Stephan Steigele
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LComparative
Using Homology : the comparative Approach

Homologous protein
name Expect
value

¥
DNA frame >YMR272C GENE: YWR272C CHR. XITIC REV FRefi: 209623 To: 210777 Coordinat
where the hit HERER & 280 e of the

Score = 485 bits (1248), Expect = e-137 hlt on the
= 2747383 (10%), Gaps = 4/383 (2%) DNA

" Identities = 232/383 (60%), Positives =
b TR sequence

Query: 3708 SKMVSKTL IYDVSQE] DYAGKDIT 3887
S SKIL L+SK T+Q+H V++FL EHPGGD+ ILDYAGKDIT
TYDVTRFL: 1 61

sbjct: 2 STNTSICTLELT SR

was found

Query: fb888 JAvLKDKLT e DTTT 4055
WAKD 4HEHS4+AYEIL++ YLOGYLAT+EE +LLTN+ H +EV DeTT
Sbjct: 6. E 1 DSTT 121
Query: 4056 F TRDFYIDQI 4235
FVKELPAEE LS+ATD+ DY KH +F +DFY+DQT
sbjct: 122 F LNRPLLMQT v b Here must
be a

gene!ll

Stephan Steigele
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L Introns

An Intron

revcomp(CT)=AG
GT : signalsstart of intron
G : signalsend of intron

Basebosion| om0 | g | [ | oo | | men|  mmsal o mma | mml el
T £ TR 8 TCOTH QR A BA SO ALSAAAGSTEATAARAGTOA AL TEAGOCAT MCTOCACGETTSETOTC LT AL CECTIE TS TCOTALRRETTACETE!

RefSeq Gengs
7ec: I
r_ovor1s 220 |

revcomp(AC)=GT

Genscan Gene Preditions

5’ splice site

3’ splice site

Donor Site

bits.

TAs

Acceplor Site

Stephan Steigele
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L Introns

The problem: INTRONS

the detection of the numerous introns in higher eukaryotic
genes is difficult

» It does not help to search for ORFs

» There are often many introns per gene

» The intron splicing sites do not always have a strict
consensus.

» The existence of alternative splicing makes the things even
more difficult.

Stephan Steigele
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L Introns

Lewis Caroll Example (Procrustres)

"TWAS BRILLIG, AND THE SLITHY TOVES DID GYRE  AND GIMBLE IN THE WABE
[Twas BRILLIG, AND THE SU[THE DOVES  GYRATED AND GAMBLED[IN THE wavy
[TWAS BRILLIGG, AND THE SI)[THE DOVES  GVRATED]  NIMBLY IN THE WAVE

[T WRILLING [neL vLisn] [DOVES  GYRATED AND GAMBLED|IN THE WAVE]
[ mercung [ang [wee_uisu] [ooves  cveaten] [ NIMBLY IN THE WavE

L

s ot g | wowsy

.. [mniue |: l‘l Y

}\mnn INTHE WAVES

| ——1
T HE DOVES GYRATER | AND GAMELED
B

|
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and what’s now ??

Stephan Steigele
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L GenScan

Prior knowledge

» We want to build a probabilistic model of a gene that
incorporates our prior knowledge.

» E.g., the translated region must have a length that is a
multiple of 3.

Stephan Steigele
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L GenScan

Prior knowledge

» The translated region must have a length that is a multiple
of 3.

Some codons are more common than others.

v

v

Exons are usually shorter than introns.

v

The translated region begins with a start signal and ends
with a stop codon.

5/ splice sites (exon to intron) are usually GT;
37 splice sites (intron to exon) are usually AG.

The distribution of nucleotides and dinucleotides is usually
different in introns and exons.

v

v

v

Stephan Steigele
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L GenScan

GenScan

(not GeneScan, a commercial
product)

» A Semi-Markov Model

» Explicit state model of how long to
stay in a state (rather than just
self-loops, which must be
exponentially decaying)

» Tracks phase of exon or intron (0
coincides with codon boundary, or 1
or 2)

» Tracks strand (and direction)

Stephan Steigele
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L GenScan

GenScan Parameters

Initial probabilities for being in each state
All transition probabilities
A set of length distributions for all states

A set of sequence generating models for each state.

Fitting Semi-Markov processes is much more
computationally complex
» use explicit length distributions only when necessary
» others are made exponentially decreasing like HMMs.

vV VY VvV VY
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Simple HMM : Prokaryotes

0 0 0
_|0.5 0.998 0.002
0.5 0.001 0.996
0 0.001 0.002

%, @) = probability of being in state m at position i;
H(my) = probability of emitting character y, in state m;

®_, = probability of transition from state k to m.
Stephan Steigele
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I—Comparative Gene Prediction

|—GenScan
A simple gene model
Intergenic _ _ Intergenic
WW Gene ‘ Transcription End
0= 4 S— ————stop——|
Intergenic

Stephan Steigele
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I—Comparative Gene Prediction

I—GenScan
: :
A probabilistic gene model
]
Intergenic
Intergenic 025 |ntergenic
WWO Gene Transcription| o075 [+
[ \m )L/NQH’ |

0.33

Intergenic

Every box stores transition probabilities for outgoing arrows (states in our HMM).
Every arrow stores emission probabilities for emitted nucleotides (emissions in our HMM).

Stephan Steigele
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L GenScan

Parse

ACTGACTACTACGACTACGATCTACTACGGGCGCGACCTATGCG
P = ITIITIIITIIITIIIIIIIIITIIIIIIIIITIIIIIIIIIIIIGGGGG

n
1}

TATGTTTTGAACTGACTATGCGATCTACGACTCGACTAGCTAC
GGGGGGGGGGIIIIIITIIIIIIIIIIIIIIIIIIIIIIIIIIL

* For a given sequence, a parse is an assignment of gene
structure to that sequence.

* In a parse, every base is labeled, corresponding to the
content it (is predicted to) belongs to.

* In our simple model, the parse contains only
“I” (intergenic) and “G” (gene).

* A more complete model would contain, e.g., “” for
intergenic, “E” for exon and “I” for intron.
Base Position | 7775000 | 7780000 | 7785000 | 7790000 |
RefSeq Genes
RefSeq Genes el ————H-H—H 1

Genscan Gene Predictions
B

NT_010718.226 | | NT_010718,227 o+

Stephan Steigele
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I—Comparative Gene Prediction

I—GenScan
I
The probability of a parse
Intergenic— -
(—
Sl
E—
[ P
Intergenic 025 |ntergenic
W1»00 Gene = Transcription] o7s= /"
[ \SEEII\L )L/Wﬁ’ |
033

Intergenic

%

ACTGACTACTACGACTACGATCTACTACGGGCGCGACCTATGCGTATGTTTTGAACTGACTATGCGATCTACGACTCGACTAGCTAC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIGGGGGGGGGGGGGGGIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Pr(parse P| sequence S, model M)

=0.67 x 0.0000543 x 1.00 x 0.00000000142 x 0.75 x 0.0000789
=3.057 x 108

Stephan Steigele
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L GenScan

Finding the best parse

» For a given sequence S, the model M assigns a probability
Pr(P|S, M) to every parse P.

» We want to find the parse Px that receives the highest
probability.

P* = argmax,Pr(p|S, M)

» Viterbi
» Posterior decoding

Stephan Steigele
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The generation of a parse of a given sequence L:

1. Aninitial state gy is chosen according to an initial
distribution 7 on the states, i.e. m; = P(g; = Q1), where
QU)(j =1,...,27) is an indexing of the states of the model.

2. A state duration or length d; is generated conditional on
the value of g; = Q) from the duration distribution £ -

3. A sequence segment sy of length d; is generated,
conditional on d; and g1, according to an appropriate
sequence generating model for state type g;.

4. The subsequent state g» is generated, conditional on the
value of gy, from the (first-order Markov) state transition
matrix T, i.e. T;j = P(gkr1 = QU|gx = Q).

Stephan Steigele
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The generation of a parse of a given sequence L:

» This process is repeated until the >"7_, d; of the state
durations first equals or exceeds L, at which point the last
state duration is appropriately truncated, the final stretch of
sequence is generated and the process stops.

» The resulting sequence is simply the concatenation of the
sequence segments, S = s15y...5.

Stephan Steigele
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Maximum likelihood prediction
Given such a model M. For a fixed sequence length L, consider
Q =d, x S, where ¢, is the set of all possible parses of M of
length L and S; is the set of all possible sequences of length L.
The model M assigns a probability density to each point
(parse/sequence pair) in Q2. Thus, for a given sequence S C Sy,
a conditional probability of a particular parse ¢ C &, is given by:

P(6.S) _  P(6.5)
P(S) ~ Tyce P(#.5)

using P(M, D) = P(M|D)P(D).

The essential idea is to specify a precise probabilistic model of
what a gene looks like in advance and then to select the parse
¢ through the model M that has highest likelihood, given the
sequence S.

P(¢]S) =
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L GenScan

Initial and transition probabilities

» For gene prediction in randomly chosen blocks of
contiguous human DNA, the initial probability of each state
should be chosen proportionally to its estimated frequency
in bulk human genomic DNA.

» This is a non-trivial problem, because gene density and
certain aspects of gene structure vary significantly in
regions of differing C+G content (so-called “isochores”) of
the human genome, with a much higher gene density in
C+G-rich regions.

» Hence, in practice, initial and transitional probabilities are
estimated for four different categories:
(I) < 43% C+G, (II) 43-51% C+G, (III)
51-57% C+G, and (IV) > 57% C+G.

Stephan Steigele
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Initial and transition probabilities

» The following initial probabilities were obtained from a
training set of 380 genes by comparing the number of
bases corresponding to each of the different states:

» Group I II III IV
C+G-range < 43% 43-51% 51-57% > 57%
Initial probabilities:
Intergenic 0.892 0.867 0.540 0.418
Intron 0.095 0.103 0.338 0.388
5’ UTR 0.008 0.018 0.077 0.122
3’ UTR 0.005 0.011 0.045 0.072

» For simplicity, the initial probabilities for the exon, promoter
and poly-A states were set to 0.

» Transition probabilities are obtained in a similar way.

Stephan Steigele



Comparative Genomics
LCc:)mparative Gene Prediction
L GenScan

Simple signal models

» There are a number of different models of biological signal
sequences, such as donor and acceptor sites, promoters,
etc.

» One of the earliest and must influential approaches is the
weight matrix method (WMM), in which the frequency Pé')
of each nucleotide a at position i of a signal of length nis
derived from a collection of aligned signal sequences.

> The product P(A) = [ P{ is used to estimate the
probability of generating a particular sequence
A=aia...an.

Stephan Steigele
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Positional Independence

Pr(“ACTT”|M)

= Pr(“A” at position 1 and “C” at position 2 and “T”
at position 3 and “T” at position 4|M)

= Pr(“A” at position 1|M) x Pr(“C” at position 2|M) x
Pr(“T” at position 3|M) x Pr(“T” at position 4|M)

* In general, probabilities of independent events
get multiplied.

* A PSSM assumes independence among
nucleotides at different positions.

Stephan Steigele
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|—Comparative Gene Prediction

LGenScan
Positional dependence

* In this data, every ACTG
time a “G” appears in ACTT
position 1 an ' GCAC

appears in position 3.
) ACTT

+ Conversely, an “A” in
position 1 always ACTA
occurs with a “T” in GCAT
position 3. ACTA
ACTT

Stephan Steigele
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L Comparative
L GenScan

Stephan Steigele

Gene Prediction

nt-order PSSM

Normally, PSSM entry (i,j)
gives the score for
observing the i" letter in
position j.

In an nt"-order PSSM,
each score is conditioned
on the preceding letters in
the sequence.

The entries A|A, C|A, G|A
and T|A should sum to 1.

AlA

0.25

0.45

0.12

0.21

AIC

0.29

0.20

0.24

0.15

AlG

0.33

0.13

0.41

0.33

AT

0.13

0.22

0.23

0.31

C|IA

0.34

0.35

0.09

0.10

TIT

0.19

0.24

0.25

0.31

2d-order PSSM
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nt-order PSSM

* Normally, PSSM entry (i,j)
gives the score for
observing the i" letter in
position j.

* In an nt-order PSSM,
each score is conditioned
on the preceding letters in
the sequence.

* How many rows are in a
3rd-order PSSM for
nucleotides? nt"-order?

Stephan Steigele

1 2 3 4
AJA|0.25/0.45/0.12] 0.21
A|C|0.29] 0.20] 0.24] 0.15
A|G10.33] 07/ 041033
Al oheoana 0.23]0.31
CIA oventatme 0-09]0.10

already observed
.| a“C”in position
T| = 0.25| 0.31

‘U,Iv‘ U.A‘F‘

2d-order PSSM
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Conditional probability

« The conditional probability Pr(x]y) =
GCG

o Number of occurrences of y:x

& Number of occurrences of y:*

CCT

CCG

GGG .
cGe where * is any letter.
GCG

AGG

CAG

CCT

CAT

CCT

GCG

Stephan Steigele
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Conditional probability

GCG

cas  » What is the probability of observing

sce a “G” at position 3, given that we

e observed a “C” at the previous

GCG 1+
oo position?
CCG
GGG
CGG
GCG
AGG
CAG
CCT
CAT
CCT
GCG

Stephan Steigele
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Conditional probability

GCG

cas  » What is the probability of observing

sce a “G” at position 3, given that we

e observed a “C” at the previous

ace position?

CCT
ccc Answer: 9/12 = 75%.
CGG
GCG
AGG
CAG
CCT
CAT
CCT
GCG

Stephan Steigele
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Simple signal models

» The weight array matrix (WAM) is a generalization that
takes dependencies between adjacent positions into
account.

» In this model, the probability of generating a particular
sequence is

n
P(A) = PY [T Po s
i=1

» where pf,f.},”' is the conditional probability of generating a
particular nucleotide v at position i/, given nucleotide w at

position i — 1

Stephan Steigele
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WMM for recognition of a start site

Pos. -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5

A .16 .29 .20 .25 .22 .66 .27 .15 10 0
C .48 .31 .21 .33 .56 .05 .50 .58 0 0 0
G .18 .16 .46 .21 .17 .27 .12 .22 0 0 1
T .19 .24 .14 .21 .06 .02 .11 .05 01 0

P> Under this model, the sequence . . .CCGCCACC ATG GCGC. .. has the highest probability of containing a

start site, namely:

P =0.48 x0.31 x 46 x 0.33 X 0.56 X 0.66 X 0.5 0.58 x 1 x 1 x 1x0.48 X 0.29 x 0.45 X 0.4 = 0.006.
. . has the lowest non-zero probability of containing a start site

P The sequence ...AGTTTTTIT ATG TAAT .
at the indicated position, namely:

P =0.16x0.16 X 0.14 X 0.21 X 0.06 X 0.02 X 0.11 X 0.05 x 1 x 1 x 1 X 0.09 X 0.24 X 0.11 x 0.21 =

20.4 x 10~ 1.

Stephan Steigele

.28
.16
.48
.09
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+6 +7
.24 .11
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Transcriptional and translational signals

» Poly-A signals are modeled as a 6 bp WMM model with
consensus sequence AATAAA.

» A 12 bp WMM, beginning 6 bp prior to the start codon, is
used for the translation initiation signal.

» In both cases, one can estimate the probabilities using the
GenBank annotated “polyA signal” and “CDS” features of
sequences.

Stephan Steigele
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Transcriptional and translational signals

» Approximately 30% of eukaryotic promoters lack a TATA
signal. Hence, a TATA-containing promoter is generated
with 0.7 probability, and a TATA-less one with probability
0.3.

» TATA-containing promoters are modeled as a 15 bp TATA
WMM and an 8 bp cap site WMM.

» the length between the two WMMs is generated uniformly
from the range 14 ...20 bp.

» TATA-less ones are modeled as intergenic regions of 40
bp.

Stephan Steigele
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Modeling the 5’ splice site

-
site |GT Intron site

* Most introns begin with the letters “GT.”
* We can add this signal to the model.

Stephan Steigele
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Modeling the 5’ splice site

* Most introns begin with the letters “GT.”
* We can add this signal to the model.

* Indeed, we can model each nucleotide
with its own arrow.

Stephan Steigele
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Modeling the 5’ splice site

Intron

* Like most biological phenomenon, the
splice site signal admits exceptions.

* The resulting model of the 5’ splice site is
a length-2 PSSM.

Stephan Steigele
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Real splice sites

exon | intron

bits

* Real splice sites show some conservation at
positions beyond the first two.
* We can add additional arrows to model these

states.

webloao.berkelev.edu

Stephan Steigele
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Modeling the 5’ splice site

5’ splice 3’ splice

site ntron site

Stephan Steigele
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Splice signals

» The donor and acceptor splice signals are probably the
most important signals, as the majority of exons are
internal ones.

» Previous approaches use WMMs or WAMSs to model them,
thus assuming independence of sites, or that
dependencies only occur between adjacent sites.

Stephan Steigele
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Splice signals

The consensus region of the donor splice sites covers the last 3
bp of the exon (positions -3 to -1) and the first 6 bp of the
succeeding intron (positions 1 to 6):

exon intron. . .
Position -3 -2 -1 +1 +2 +3 +4 +5 +6
Consensus c¢/a A G G T a/g A G t

WMM :

A .33 .60 .08 0 0 .49 .71 .06 .15
c .37 .13 .04 0 0 .03 .07 .05 .19
G .18 .14 .81 1 0 .45 .12 .84 .20
T .12 .13 .07 0 1 .03 .09 .05 .46

Stephan Steigele
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Donor site model

» However, donor sites show significant dependencies
between non-adjacent positions, which probably reflect
details of donor splice site recognition by U1 snRNA and
other factors.

» Given a sequence S. Let C; denote the consensus
indicator variable that is 1, if the given nucleotide at
position / matches the consensus at position i, and 0
otherwise. Let X denote the nucleotide at position ;.

Stephan Steigele
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Donor site model

For example, consider:

...exon | intron. . .
Position 3 -2 -1 41 +2 +3
Consensus c¢/a A G G
S

+4 +5 +6
T a/ge A G ¢
.. T A A C G T A A G C C..

Here, C_1 =0and C,¢ =0, and = 1, for all other positions.
Similarly, X 3=A, X 2 =A, X_1 =C etc.

Stephan Steigele
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Donor site model

» We use x? statistics for the variable C; versus X; , for all
pairs i, j with i = j in the set of donor sites from the genes
of the given learning set, based on the C; versus X;
contingency table:

X
cy-‘ A C G T
Jo(A) fo(C) fo(G)  fo(T)
H(A) A(©) AG) AT,

where fi(x) is the frequency at which the training set has
the consensus base at position / and the base x at position
J-

» A significant x? score indicates that there is a dependency
between site / and ;.

Stephan Steigele



Comparative Genomics
LCc:)mparative Gene Prediction
L GenScan

Donor site model
The idea is then to identify an ordering of the sites by
decreasing discriminatory power and then to derive separate
WMNMs for each of the different cases, thus obtaining a
so-called maximal dependence decomposition:

Al donor splice sites
(1254)

Pos A% €% G% L% Pos A% €% G% U%
3 om0 1 3 5416 6
2 s 15 15 1S 2w 4 7 5
-1 9 4 7 9 Gs -1 2 1 97 0
43 4 ER| : (1057 FER 3
s 413 9 + 12 9 1
R T 62 0 0 %
ERE TR ST a0 a2 s
2 s 0 s e 4 0 17N
0 4 53 3 3 6 o4 0
- 0 416 w0 4 e 2 3 3
6 112 @ 5w w0 %
3 @ o2 o1 2 0 18 x
FE s st 5 ER: s 1
4 & s 2 on T 4 8 &
6 15 20 25 6 6 1 a6 w9
3 w0 B s 3 E
B 4 w0 #5G-1A.2U¢ 3 6 4
< sl s

am)

© 7T THere, H=AlC|U,
B = C|G|U and V = A|C|G. For example, G5, or H5, is the set
of donor sites with, or without, a G at position +5, respectively.

Stephan Steigele
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Exon models

>

>

Coding portions of exons are modeled using an
inhomongeneous 3-periodic fifth order Markov model.
Here, separate Markov transition matrices, ¢y, ccandcs, are

determined for hexamers ending at each of the three
carTTTT]

codon positions, respectively: e

This is based on the observation that frame-shifted
hexamer counts are generally the most accurate
compositional discriminator of coding versus non-coding
regions.

However, A+ T rich genes are often not well predicted
using hexamer counts based on bulk DNA and so
Genscan uses two different sets of transition matrices, one
trained for sequences with < 43%C + G content and one

for all others.
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Modeling variable-length regions

w0 e se0
Exon length

Stephan Steigele



Comparative Genomics
I—Comparative Gene Prediction
L GenScan

The HMM solution

Fixed-length signals
site Intron site

Variable-length content

Stephan Steigele
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A small problem

0.9

» Say that each blue arrow emits one letter.

* What is the probability that the intron will
be exactly 2 letters long?

* 3 letters long?
4 |etters long?

Stephan Steigele
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A small problem

0.9

» Say that each blue arrow emits one letter.

* What is the probability that the intron will
be exactly 2 letters long? 10%

* 3 letters long? 9%
4 letters long? 8.1%

Stephan Steigele
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State length distributions

» In general, the states of the model correspond to sequence
segments of highly variable length.

» For certain states, most notably for internal exon states E,
length is probably important for proper biological function,
i.e. proper splicing and inclusion in the final processed
mRNA.

» For example, it has been shown in vivo that internal
deletions of exons to sizes below about 50 bp may often
lead to exon skipping, and there is evidence that steric
interference between factors recognizing splice sites may
make splicing of small exons more difficult.

» There is also evidence that spliceosomal assembly is
inhibited if internal exons are expanded beyond 300 bp.
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State length distributions

» In summary, these arguments support the observation that
internal exons are usually 120 ... 150bp long, with only a
few of length less that 50 bp or more than 300 bp.

» Constraints for initial and terminal exons are slightly
different.

» The duration in initial, internal and terminal exon states is
modeled by a different empirical distribution for each of the
types of states.

Stephan Steigele
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State length distributions

» In contrast to exons, the length of introns does not seem
critical, although a minimum length of 70 ...80bp may be
preferred.

» The length distribution for introns appears to be
approximately geometric (exponential).

» However, the average length of introns differs substantially
between the different C + G groups: In group |, the
average length is 2069 bp, whereas for group 1V , the
average length is only 518 bp.

» Hence, the duration in intron states is modeled by a
geometric distribution with parameter q estimated for each
C + G group separately.
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Empirical length distributions for introns and exons:

o R o \777 ——

Lonstn )

Introns

—
{

.

—

Internal exons Terminal exons For the 5/ UTR and 3/ UTR States,

geometric distributions are used with mean values of 769 and
457 bp, respectively.

Stephan Steigele
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Using Homology : the comparative Approach

Homologous protein

name

Expect
value

*
>YMR272C GENE: YMR272C
Length = 384

DNA frame
where the hit

was found

Score = 485 bits (1248), Expect = e-13'
Identities = 232/383 (60%), Positives =

M Frame = +3

CHR. XIIIC REV FRS

: 209623 TO: 210777

7
274/383 (70%), Gaps = 4/383 (1%)

DYAGKDIT 3887

Query: 3708 SKMVSKTL IYDVSQE]
S SKIL L+SK T+Q+H V++FL EHPGGD+ ILDYAGKDIT

sbjct: 2 STUISKILELE S TYDVTRFLS 1 61

Query: (3888 JAVLKDKLI TLDESYL DITT 4055
++KD +HEH+++AYEIL++ YL+GYLAT+EE +LLIN+ H +EV D+TT

Sbjct: 62~ E. ] DSTT 121

Query: 4056 F TRDFYIDQT 4235
FVKELPAEE LS+ATD+ DY KH +F +DFY+DQI

sbjct: 122 F LNRPLLMOT Y

Stephan Steigele
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TwinScan

» The input to Twinscan consists of a target sequence, i.e. a
genomic sequence in which genes are to be predicted, and
an informant sequence, i.e. a genomic sequence from a
related organism.

» For example, the target sequence may come mouse
genome and the informant sequence may be the human
genome.

» Given a target and an informant, in a preprocessing step,
one determines a set of top homologs (e.g. using BLAST)
from the informant sequence, i.e. one or more sequences
from the informant sequence that match the target
sequence best.

mouse

~ conserved human (top homologs)
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Conservation sequence

» The top homologs represent the regions of conserved
informant sequence, which we will simply call “the
informant sequence” in the following.

» Similarity is represented by a conservation sequence,
which pairs one of three symbols with each nucleotide of
the target:

unaligned | matched : mismatched

» Gaps in the informant sequence become mismatch

symbols, gaps in the target sequence are ignored.

» Consider:

123456789 position
GAATTCCGT target sequence

Stephan Steigele
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Conservation sequence

» and suppose that BLAST yields the following HSP:

345 6789 target position

ATT-CCGT target alignment

|| | | | BLAST alignment

ATCACC-T Informant alignment

» The conservation sequence derived from this HSP is:

123456789 position

GAATTCCGT target sequence
..l1:l1:] conservation sequence

Stephan Steigele
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Conservation sequence

» Note that the conservation symbol assigned to the target
nucleotide at position i is determined by the best HSP that
covers i, regardless of which homologous sequence it
comes from.

» Position i is classified as unaligned only if none of the
HSPs overlap it.

» Probability of sequence and conservation sequence

» Recall that Genscan assigns each nucleotide of an input
sequence to one of seven categories: promoter, 5’ UTR,
exon, intron, 5" UTR, poly-A signal and intergenic.

Stephan Steigele
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Conservation sequence

» Genscan chooses the most likely assignment of categories
to nucleotides according to the Genscan model, using an
optimization algorithm (i.e., a modification of the Viterbi
algorithm).

» Given a sequence, the Genscan model assigns a
probability to each parse of the sequence (i.e., path
through the model that generates the sequence.)

» The Twinscan model assigns a probability to any parsed
DNA sequence together with a parallel conservation
sequence. Under this model, the probability of a DNA
sequence and the probability of the parallel conservation
sequence are independent, given the parse.
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Example

» Consider the following example:

10 20 30
123456789|123456789|123456789|123456789
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC target sequence T

(I T T [fzllIIIIIIlzllzlll::|| conservation sequence C

» Consider the probability of observing the target sequence
T7 33 extending from position 7 to 33, given the hypothesis
E7 33 that an internal exon extends from position 7 to 33.

Stephan Steigele
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Example

» Consider the following example:

10 20 30
123456789|123456789|123456789|123456789
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC target sequence T
[Tl eeeeeenns. lslel 1T LIIll=ll:zlll::]] conservation sequence C

» This is simply the probability of the target sequence T7 33
under the Genscan model times the probability of the
conservation sequence Cy 33 under the conservation
model, assuming the parse E7 33:

P(T733, C7,33|E7.33) = P(T7,33|E7,33) P(C7 33| E7 33).

Stephan Steigele
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TWINSCAN'’s model

» Twinscan consists of a new, joint probability model on DNA
sequences and conservation sequences, together with the
same optimization algorithm used by Genscan.

» Twinscan arguments the state-specific sequence models of
Genscan with models of the probability of generating any
given conservation sequence from any given state.

» Coding, UTR, and intron/intergenic states all assign
probabilities to stretches of conservation sequence using
homogeneous 5th-order Markov chains:

NN

cccccccceeccl c2 ¢3 ¢4 ¢h cb ceececccecce

Stephan Steigele
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TWINSCAN’s model

One set of parameters is estimated for each of these types of
regions.
» Again, consider:

10 20 30
123456789(123456789(123456789|123456789
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC target sequence T
(I T T s fsfzl I IIIIIllzllzlll::|| conservation sequence C

» The probability of observing C7 33, given E7 33, is:
Pc(Cr.33|E7,33) = Pe(C77|Co6) x - - - x Pg(Cs333|Cog 32),

where Pg(Cs3 33| Cog 32), for example, is the estimated
probability of a ‘|” (match) following the five context
symbols ‘|:||:’ in the conservation sequence of an exon.

Stephan Steigele
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TWINSCAN’s model

» Models of conservation at splice donor and acceptor sites
are modeled using 2nd-order WAMs of length 9 bp and 43
bp, respectively (lengths as in Genscan).

Stephan Steigele



Comparative Genomics

I—Comparative Gene Prediction

I—TwinSt:an

was it worth !l

-38500

-38000

-37500

Il ——wr—w—rorer—sreews

-37000
-36500
-36000

O

-35500

RIE

Stephan Steigele

Ny

Conservation
TWINSCAN
GENSCAN
Annotation

-36700

-36650

-36600

-36550




Comparative Genomics
LComparative Gene Prediction
Lthe benefit

Comparative genomics approach to annotation

Ashbya/Yeast as an example of synteny.

Saccharomyces
chromosome |

Ashbya
chromosome |

Saccharomyces
chromosome Il

Overlooked intron Overlooked ORF
or frame-shift

Comparative annotation approach: translated DNA parison allow detection of homology
outside annotated features and annotation of overlooked ORF, intron, or detection of Frame-
shifts in the sequence

Stephan Steigele
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L Evaluate the accuracy of Gene Prediction

Accuracy of GenPrediction: Nucleotide Level

TP

real gene :>—_—‘——7' i
real gene
coding non-coding

o
g '-f Tp FP Sensitivity = TP/(TP+FN)
-;l) o
:
g B |FN TN
E § Specificity = TP/(TP+FP)
=}
=

Stephan Steigele
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L Evaluate the accuracy of Gene Prediction

Accuracy of GenPrediction: Exon Level

Exon Levels

Ireal gene wrong exon correct exon missing exon

ipredicted gene - - _ _

Sensitivity Sn =number of correct exons / number of actual exons
Specificity Sp= ber of correct exons / ber of predicted exons

Stephan Steigele
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L Evaluate the accuracy of Gene Prediction

Evaluations of Gene Finding

Two important competitive evaluations of genomic
annotation (mostly gene finding)

» GRASP on 3Mb of Drosophila genome around ADH in
2000.

» EGRASP on 1% of Human genome in 2006

Many ways to measure accuracy

» Per nucleotide (% correct, sensitivity/specificity)
» Per exon (missed exons, wrong exons)

Stephan Steigele



Comparative Genomics

I—Comparative Gene Prediction

L Evaluate the accuracy of Gene Prediction

EGASP results per nucleotide
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EGASP results per Exon
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L Evaluate the accuracy of Gene Prediction

EGASP results per Gene
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For what Orthologs?

Ortholog assignment

» One important question for evolutionary analysis and for
life science in general is a definition of uniqueness and
invention in the sets of protein sequences

» this is important for promotor analysis and functional
elucidation

» so, what we need is to know more about homologous
genes

Stephan Steigele
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and what are Orthologs

Homology

genes with a common origin
» May be genes in the same or in different organisms
» Does not say that function is identical
» Can only be true or false, and not a percentage!

Stephan Steigele
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Homologs

Orthologs Paralogs

Stephan Steigele
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Gene trees and species trees

HL Chicken
H2

c Mouse

H3

M Human

Stephan Steigele
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A Gene tree evolves with respect
to a Species tree

GeneK

Species tree
Q Speciation

Il Duplication
@ Loss (deletion)

Stephan Steigele
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Gene X
in ancient animal

Gene X
in ancient mammal

Gene Y
in ancient mammal

Gene X

Gene Y1 in
human

Gene Y2 in
human

Stephan Steigele
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In/Out-paralog definition

Sonnhammer & Koonin, Trends Genet. 18:619-620 (2002)

» In-paralogs eq. co-orthologs

» paralogs that were duplicated after the speciation and
hence are orthologs to a cluster in the other species

» Out-paralogs = not co-orthologs

» paralogs that were duplicated before the speciation. Not
necessarily in the same species.

Stephan Steigele
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Orthologs for functional genomics

» Co-orthologs / inparalogs are more likely than
outparalogs to have identical biochemical functions and
biological roles

» Co-orthologs can be used to discover human gene
function via model organism experiments

» Co-orthologs are key to exploit functional
genomics/proteomics data in in model organisms
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LOrtholog Assignment

Orthology and function conservation

» Orthology does not say anything about evolutionary
distance

» Close orthologs, e.g. human-mouse are very likely to have
the same biological role in the organism

» Distant orthologs, e.g. human-worm are less likely to have
the same

Stephan Steigele
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How to find orthologs?

» Calculate phylogenetic tree, look for orthologs in the tree:

— YHC1_YERAST/3a-458 5, cerevisise
," (9MVHA/8-418 H, sapiens
(IN7/L-36L 0, melanogaster
BODG_HUHAN/L5-380 H, sapiens
96RO/ 26-397 0, melanozaster
0924,/ 35005 I, melanogaster
(9WaBA/132-504 T, melanozaster

» Two-way best matches between two species can be used
to find orthologs without trees. [However, in-paralogs are
harder to find this way]

Stephan Steigele



Comparative Genomics

LOrtholog Assignment

Orthology is not transitive!

YHC1_YERST/25-d58 5, cerevizize
(9MHE/5B-d18 H, sapiens
OVIM7/1-361 0, melanogaster
BODG_HUMA/15-380 H, sapiens

(9V6P0/26-397 0, melanogaster
EQ9W24/35-405 [, melanogaster
045BA/132-504 D, melanogaster
Multiple species at

different distances may give erroneous groups, that includes
out-paralogs

Stephan Steigele
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Orthology is not transitive!

D1
H2

H2
D1

» Orthology strictly defined for only 2 species/clades
» Combining species of different distances is very dangerous
» But OK to combine multiple equidistant ones

Stephan Steigele



Comparative Genomics

I—Ortholog Assignment

BLAST-based methods

» COG/KOG (Clusters of Orthologous Groups).
» InParanoid
» OrthoMCL

Stephan Steigele
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Two-way best match approach to finding orthologs

Definition of x| and x2 as a Stable Pair

lowerscotes _ - =~

" highes sare

ighest scote

=7 lowel seoies”
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COG -Clusters of Orthologous Groups of proteins

Classify proteins from completely sequenced genomes.
The algorithm 2

» Mask coiled coil and low-complexity regions (COILS2 &
SEQG).

» All-against-all sequence comparsions (BLAST blastpgp).
» |dentify in-paralogs.
» Detect best hits between genomes.

» Calculate the probability that a gene is assigned to a given
COG.

2Tatusov et al (Nucleic Acids Res 2000) Tatusov et al (Nucleic Acids Res
2001)
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COG/KOG

KatG

'YKROB6C: 111987

» COG: prokaryotes and
unicellular eukaryotes

» KOG: eukaryotes

sli0184<>
5110306 O
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LCOG -Clusters of Orthologous Groups of proteins

KOG cluster for 60s ribosomal protein L39

Stephan Steigele

ECU09g0335 |

H=17443824
Hs17457639
H=20541952
H=20535633
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H=18590969
H=18592185

Arabidopsis
thaliana

Atag25210
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InParanoid
Classify proteins from completely sequenced eukaryotic
genomes.
The algorithm?3:
» Filter out shorter transcripts.

» All-against-all sequence comparsions (BLAST blastp +
filtering with SEG).

» Detection of inparalogs.

» Detection of mutual best hits.

» Add inparalogs + confidence values.
» Resolve overlapping groups.

» Bootstrap-based confidence values.

SRemm et al (J Mol Biol 2001) O?Brien et al (Nucleic Acids Res 2005)

Stephan Steigele
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InParanoid

@ Species 1
O Species 2
o o
0
0
©® - :
o o
o
[
[e]
° o
° 0
) )
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Resolve overlapping clusters

No overlap - no problems: oo /4@

Partial overlap - separate:

Complete overlap - merge:

Stephan Steigele



Comparative Genomics
I—Ortholog Assignment
L InParanoid

InParalog score

Score for inparalog

_ scoreAP — scoreAB
"~ scoreAA — scoreAB

Stephan Steigele
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Confidence values for main orthologs from sampling

TVHIVDDEEPVR-—--KSLAFM-—--LTMNGFA
T+ ++DD +R KL M +T+ G A
TILLIDDHPMLRTGVKQLISMAPDITVVGEA

Sampling with replacement; insertions kept intact

GAFDEP——-LVTHVR..........
GA + ++T +R
GAEEHMAPDILTLLR..........

Bootstrap alignment — bootstrap score
Confidence = (bootstrap alignments best-best matches / nr of
bootstraps)

Stephan Steigele



Comparative Genomics
I—Ortholog Assignment
L InParanoid

InParanoid clusters
-

G- - @80 D (L) wpdinosranod se.susel

Allsy
Human vs all
ch

Text search
Blast search

Summary : - .
FAQ InParanoid: Eukaryotic Ortholog Groups
e 26 organisms: 509.483 sequences
] TN Version 5.1, Updated Jamuary 2007
i3 S
b &
%, & « BROVWSE the database - Seect two species and view ll thir orthelogs

+ BROWSE the human results - Select a species to compare against Human
« SEARCH BY SEQUENCE IDs - View orthologs of a specife gene or protein

 TEXT SEARCH - Query InParanoid by keywords

« BLAST SEARCH - Find orthol to your
« REQUEST A PATRWISE GENOME COMPARISON
 SUMMARY OF INPARANOID - Stafistcs of the dafabase and genomes used

« DOWNL.OAD DATA - Obtain tables, b, s, sequenices and core data

Stand-alone InParanoid Program

Tmportant notice: IxParanoid only supperts BLAST up to version 2.2.12. Ifyou are using.
a bigher version you can fry to add the option -VT to emuate the old behavionr

TnParanoid Version 2 0is avaiable - email inparancid@sbe u.se to obtain a copy.
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InParanoid clusters

,.

Inparalog and Orthologs clusters for Homo sapiens (Ensembl) and Caenorhabditis elegans (Wormbase) (4588
clusters in total)

Stephan Steigele
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OrthoMCL

Classify proteins from completely sequenced genomes*

Between Species: Within Species:
Reciprocal best similarity pairs| - |Reciprocal better similarity pairs|
Putative orthologs (recent) paralogs

Similarity Matrix
(normalized by species)
Markov Clustering

Ortholog groups
with (recent) paralogs

“Li et al (Genome Res 2003) Chen et al (Nucleic Acids Res 2005)

Stephan Steigele



Comparative Genomics
LOrthc:)log Assignment
L OrthoMCL

Similarity Matrix

The relationships are turned into a weighted graph, where the
nodes are the protein sequences and the edge weight their

Species A

Species B

A3 oo > A1
paralogs
y 3

B1 @ecceee » B2
paralogs

orthologs
A2

Similarity Matrix
A1| A2| A3| B1| B2
A1 300 152| 61| 29
A2| 233 150| 60| 29

Normalized
weights A3| 118| 117 40| 30 -logyo (P-value)
B1| 69| 68| 45 88

relationship®. B2| 33| 33| 34| 100

SLi et al (Genome Res 2003)

Stephan Steigele
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What is normalized ?

» the edge weight connecting each pair of sequences w;; is

divided by % where W represents the average weight
among all ortholog (underlined) and ‘recent’ paralog
(italicized) pairs, and Wj; represents the average edge
weight among all ortholog pairs from species i and j.

» the net result of this normalization is to correct for
systematic differences in comparisons between two
species (e.g., differences attributable to nucleotide
composition bias), and whenj = j, to minimize the impact
of ‘recent’ paralogs (duplication within a given species) on
the clustering of cross-species orthologs.
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OrthoMCL cluster
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orthoMCL DB

Ortholog Groups of Protein Sequences
[ rome T iboutononce | vetsbese L seorcn |
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o
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OrthoMCL cluster

Group Summary (OG1_4124)

| # Sequences |# Taxa | # Match Pairs (%) | Ave E-Value | Ave % Coverage | Ave % Identity
25 21 290 (96.6%) | 310e-19 | 922 | 405
Phyletic Pattern

S
o

Pfam Domain Architecture

Bacteria
BioLayout Graph
Multiple Sequence Alignment Atchasa
Get Sequences (FASTA) Single Colla
Eukeryota
Mol Celler
Eukaryota

List of Protein Sequences

1| ddi6716 | Dictyostelum discoideum oopousess

o
VPS55, Late endosomal protein involved in late endosome
to vacuole traffcking, fanctional homolog of human obesity
seceptor gene-related protein (OB-RGRP)
acen 1
involved in infracellular protein transport

4 scezszg | Saccharomyces carovisiae

3| 01039 | Schizosaccharomycespombe | 122

YALDROZITg.
30 similar to wiNCU06713.1 Neurospora crassa
NCU06713.1 hypothetical protein

4 5429 Yarrowia lipolytica CLIB99

‘Lame
42 | sinular to sp[P47111 Saccharomyces cerevisiae YIR044c
singleton

5 K1a3961 | Kluyverompyces lactis CLIB2I0

mame
6 ha578 | Debaryomyces hansenii CBS767| 140 | highly similar to CA3048IPF14991 Candida albicans
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OrthoMCL cluster VS. KOG (COG) clusters

A
EC 1.1.1.205 X 10
IMP dehydrogenase
.
KOG2550 (=
IMP dehydrogenase =
/ GMP reductase
* .
DCS: 0.74 *
OrthoMCL,
el
EC1.7.17X4
GMP reductase
DCS: 067 *
« )
.
DCS: 1.00
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Drawbacks of Blast-based orthology assignment

» No guarantee that the same segment is used in different
sequences

» No evolutionary distance model
» Does not take multiple domains into account

Stephan Steigele
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L HomoloGene

HomoloGene

Classify proteins from completely sequenced genomes.®

» Uses the NCBI Taxonomic tree.

» For closely related species: DNA sequence similarity &
conserved gene order (= synteny).

» For distantly related species: protein sequence similarity.

Inparalogs are usually present in different clusters.

5Wheeler et al (Nucleic Acids Res. 2007)

Stephan Steigele
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L HomoloGene

HomoIoGene clusters

- @ @ | tiivambio b gofectrelauery egpb=benogene

¥ 0ow[d

HomoIoGene

History | Clipboard | Details

HomoloGens s a system for automated detection o harnologs among the annatated
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HomoloGene Release 54 Statistics What's New
il mumets o gens fom compiee gn
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L HomoloGene

HomoloGene clusters

Limits Preview/index Histary. N Cliphoard Details
Display| Summary v |show|20 v[Sendto v
‘All: 128 Fungi: 0 | Mammals: 28 jﬁ
Items 1 - 20 of 128 of 7 Next
O11: FlarmoloBens 1731 Gene consered i Armniois Downisad, Links
H sapiens Teptin receptor
P troglodytes LEPR leptin receptor
C familiaris LEPR leptin receptor
M musculus Lepr Teptin receptor
R.norvegicus Lepr leptin receptor
G.gallus. LEPR leptin receptar
[02: HomoloGene: 193. Gene conserved in Eutheria Download, Links
sapiens LEP leptin {obesity homolag, mouss)
P troglodytes LEP leptin (obesity homolag, mouse)
C.familiaris 0B leptin (obesity homalog, mouse)
M.musculus Lep leptin
Runonegicus Lep leptin
[03: HomoloGene:41031. Gene conserved in Bilateria Download, Links.
H.sapiens LEPROTL1 leptin receptor overlapping transcript-lik.
Puoglodytes  LOC4T2729  similarto Leptin receptor overlapping tra
C familiaris LOCA75601  similar to leptin receptor overlapping tra.
M.musculus Leprotl1 leptin receptor overlapping transcript-lik.
R.nonvegicus Leprott leptin receptor overlapping transcript-li
G.gallus. LEPROTLI Ieptin receptor overlapping transcript-|
C.elegans €3085.2 2b
[04: HomoloGene: 10582. Gene conserved in Amniota Download, Links.
H.sapiens LEPROT leptin receptor verlapping transcript
C.familiaris LOCB0S115  similar to Leptin receptor gene-related pr
M.musculus Leprot leptin receptor overlapping transcript
R.norvegicus. Leprot leptin receptor overlapping transcript
G gallus LEPROT leptin receptor averlapping transcript
[O5: HomoloGene:5163. Gene conserved in Amniota Download, Links.
H.sapiens TRH thyrotropin-releasing hormone
P.troglodytes TRH thyrotropin-releasing hormone
C familiaris LOC484643  similar to Thyroliberin precursor (Thyrotr.
M.musculus Trh thyrotropin releasing hormone
Ronorvegicus Trh thyrotropin releasing hormone:
G.gallus. TRH thyrotropin-releasing hormone
[36: HomoloGene:10308. Gene conserved in Eutheria Download, Links
H.sapiens. APOM M
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Orthostrapper: Gene Trees

» A gene family is a set of homologous genes. (Common
descent.)

» A vertex in a gene tree is either a speciation event or a
duplication event.

» Divereged through a speciation event: Orthologs.
» Divereged through a duplication event: Paralogs.

Stephan Steigele
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Orthostrapper

» analyze a set of bootstrapped trees instead of single gene
trees

» frequency of orthology assignment in bootstrapped trees
are used in support values for orthology assignment

Stephan Steigele
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Orthostrapper

» Partial tree reconciliation.
» Find pairwise orthologs by computer parsing of tree.

YHCL_YEAST/30-458 5, cerevisiae
(9¥HR/58-416 H, sapiens
(WIN7/L-36L 0, melanogaster
BODG_HUMAR/L5-380 H, sapiens
WoV6PO/26-397 [, melanogaster
92/ 36-005 I, melanogaster
(9W5BA/132-504 T, melanogaster

Stephan Steigele
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orthostrapper.cgb.ki.se
o x|

File View Help

i
[o
Cutoff 75%
042006
001426
Cutoff 75%
[Java Applet Wirdow
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Drawbacks of tree reconciliation for orthology
assignment

» Assumption that the species tree is fully known.
» Does not always give confidence values.
» Computationally expensive.

Stephan Steigele
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Sequence Motifs

To understand the regulatory network of many 1000 genes is
still one of the big challenges in molecular biology and
bioinformatics.

» microarray technology.
» orthologous genes

offer the “possibility” to analyse promoter regions and to identify
regulatory elements contained in them.

Stephan Steigele
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Sequence Motifs

» Starting point is the assumption that genes with similar
expression profiles are co-regulated.

» This assumption implies that the similarity of the profile is
the result of a similarity of the regions that are involved in
transcription regulation.

» The term promoter was coined in the 60s, when geneticists
described the function of a locus immediately upstream of
the three genes in the lactose operon. The locus appeared
to promote expression of the genes.
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: b2 B
4 [UAS™ Jroo{ TATA [ororos i diddtrd

Core promoter

Distal

s oo TR

Upstream

Downstream

-'I’ (RE o[ TATA w l
Proxmal promoter

elements Core promoter

Figure from: M Levine and R Tjian (2003) Transcription regulation and animal diversity. Nature 424:147-51.
Comparison of a simple eukaryotic promoter and extensively diversified metazoan regulatory modules. a, Simple
eukaryotic transcriptional unit. A simple core promoter (TATA), upstream activator sequence (UAS) and silencer
element spaced within 100 — 200 bp of the TATA box that is typically found in unicellular eukaryotes. b, Complex
metazoan transcriptional control modules. A complex arrangement of multiple clustered enhancer modules
interspersed with silencer and insulator elements which can be located 10 — 50 kb either upstream or downstream

StepharPE8:¢9RRPOsite core promoter containing TATA box (TATA), Initiator sequences (INR), and downstream promoter
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Motivation

Besides the actual promoter the following regulatory elements
are known:

» Promoter
DNA sequence close to the 5’-end of a gene, that serves as the
binding site for the RNA polymerase and from which
transcription is initiated.

» Enhancer
Control element, that enhances level of transcription.

» Locus control region
Locus Control Regions are defined by their ability to enhance
the expression of linked genes to physiological levels in a
tissue-specific and copy number-dependent manner at ectopic
(abnormal) chromatin sites.
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Motivation

» Insulator
A DNA sequence, that prevents activation or inactivation of
transcription because of surrounding chromatin.

» Silencer
Control element, that suppresses gene expression independent
of distance or direction of gene from the element.

» Matrix attachment region
An AT-rich DNA segment, that serves as binding point to the
nuclear matrix.

Stephan Steigele
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Frequently-found metazoan motifs in the core
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Eukaryotic promoter diversity
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Biol. Evol. 20(9):1377-1419.
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High evolvability of regulatory sequences

» most of the changes in regulatory networks are likely to
occur in cis; changes in trans (transcription factors) may
often have too strong effects.

» one single mutation may lead to the acquisition of a new
DNA-factor interaction (rapid turnover)?

» the expression in one tissue may evolve independently of
expression in another tissue (promoter modular
organization)

Wray et al. (2003) The Evolution of Transcriptional Regulation in Eukaryotes.
Mol. Biol. Evol. 20(9):1377-1419.
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Transcription factor binding sites (TFBS) are short and
imprecise

-short sequence motifs (6-12 bp)

TATAAA
TATAGA
- some positions of the motif are variable Iﬁlm
GATAAA
. . L . TATAAA
- sometimes different transcription factors can recognize the TATAAA
same sequence motif TATAAT
I
TATA box
TATAAA
TATAGA 1 2 3 4 5 6
TATAAA Lo oo
TATAAA A 0 8 0 8 7 7
GATAAA co 0 0 0 0 0
TATAAA G1 0 0 0 1 0
TATAAA T7 0 8 0 0 1
TATAAT . .
Weight matrices

Stephan Steigele
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TFBS prediction using weight matrices

o

@ Promo

B

325
TOAATGECCTCOGCAGTCCT AGCGOCTGCOAAGGOGACCAAATAAGGC AAGGET GECACGACCGEGCCCCCCACCCCTECCCCCAGCTGCTCCAACTGACCCTATCCATC AGC
i B ] e il

il .

25 250 215 300 325
AGAATGGUCTCAGCGGTCOT AGATGOTGOT AAGGCGACCAAATAAGGT AAGGTGOCAGATCAGGEGCCCCCCATCCCTGECCCOGEETGOTCCAACTGACCOCGTCOATCAL
= 2|

- Ty [

225 250 215 300
COGCOCTOCGCOOCCATGOCGCCGAGCCOOCCALAT AAGAGALGGTOCOCTSCCCCOECUCOCGGACCOUEGECCGCCELGEECT AT ALAGUGGCAGCTTC

P 5

25 250 275 300 325
CTCACCTACTCOATTAATGGCTTCTITGCTTTTC AATGO0CAGAAGCT ACCARAT AAGGGCAGTT! CTTTCGGAGCTCCCACTGACTOOTC AMCTCCAGGCAGET]
2 | 1 i s .

D., et al. (2003). Nucleic Acids Research 31: 1739-1748.
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Motif Logo
TGGGGGA
Motifs can mutate on non TGAGAGA
important bases TGGGEGEGA
The five motifs in five TGAGAGA
different genes have
TGAGGGA

mutations in position 3 and

5

Representations called

motif logos illustrate the

conserved and variable 7
regions of a motif

Bits

A

o

- o n

LR w ©
Sequence position
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Motif Logos: An Example

HEH

bits

Stephan Steigele

NHOQRNANAWNK

SDSDETesS4A3 2001234567829

AT C R CCCS
-l _Wad ad T andi ad e
T e e T P
TIATCTITCTE
T AT P
TAACC‘LAT{:T S
TTATC:’@.,,{“TT {“

P op U P v D — O =+ LD O o o
12 Lambda cl and cro binding sites

(http://www-Immb.ncifcrf.gov/~toms/sequencelogo.html)



Comparative Genomics

I—Sequence Motifs

High false positive rate in TFBS prediction

Test Sequences: 200 vertebrate promoter sequences
607 experimentally-verified sites

Predictions: Transfac v.6.4

SENSITIVITY: 46%

SPECIFICITY: 2%

Very low!

Blanco, E., et al..
(2006). Nucleic Acids Research 34: D63-D67.

Stephan Steigele



Comparative Genomics

LSequence Motifs

Comparative approaches are necessary

Select those motifs or regions that are shared by:
» orthologous sequences : phylogenetic footprinting
» co-expressed genes : shared regulatory motifs

Stephan Steigele
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Functional Microarray experiments or orthologous indicate that
some sets of genes are regulated by common transcription
factors (TFs). These attach to the DNA upstream of the coding
sequence, at certain binding sites. Such a site displays a short
motif of DNA that is specific to a given type of TF.

To find such motifs, one considers a collection of genes that are
believed to be coregulated:

IIIIIIII ‘ ES0S ‘
moti

TF

—

TF motif
(I, ‘ Hone ‘
motif TF
(] ‘ e ‘
TF motif
(I ‘ gone ‘

motif
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Phylogenetic footprinting

Highly conserved
enhancer in gene DACH1

Stephan Steigele
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Motivation

In the ‘upstream’ regions of this set of genes one searches for
common motifs. The search for motifs is hampered because of
the following problems:

» The motif has unknown length

» The motif for a given TF is not 100% conserved

» The sequences that are used for the motif search do not

necessarily contain the complete promoter sequence
» Different transcription factors with different target genes

can have very similar binding motifs (example: the TF
MRE binds to crRcaaaw, the TF SCB binds to CNCGAAR).
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Motif Finding Algorithms

We will discuss a number of different algorithms that address
motif finding. These are all heuristics, and aren’t guaranteed to
solve the problem:

» Brute-Force-Approach
» Planted Motif Problem
» FootPrinter

» Gibbs Sampling

Stephan Steigele
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Planted Motif Problem

The computational problem is to determine such a motif by
analyzing a set of sequences that contain instances of the
motif.

We formalize the problem as follows (Pevzner and Sze):

Planted (/, d)-Motif Problem: Suppose there is a
fixed but unknown nucleotide sequence M (the motif)
of length |. The problem is to determine M, given t
sequences each of length n, and each containing a
planted variant of M. More precisely, each such
planted variant is a substring of length | which differs
from M at up to d positions.
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Planted Motif Problem

To inspire research in this area, Pevzner and Sze formulated
the following:

Challenge Problem: Find a (15, 4)-motifin t = 20
sequences of length 600.

These are typical values for finding TF binding sites in
coregulated gene promoter regions in yeast.

Stephan Steigele
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Planted Motif Problem

But why is this such a difficult problem, ie. a challenge?

Any two instances of the (/, d)-motif may differ by up to 2d
positions. In this case for the (15, 4)-signal, two strings of
length 15 can differ by as many as 8 mutations.

Two differentiate between signals and non-signals in this case
is of course extremely difficult.

Stephan Steigele
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The Motif Finding Problem

Additional information:
» The hidden sequence is of length 8

» The pattern is not exactly the same in each array because
random point mutations may occur in the sequences

Stephan Steigele
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The Motif Finding Problem

+ The patterns revealed with no mutations:
cctgatagacgctatctggctatcggtcctctgtgcgaatctatgcgtttccaaccat

{acatacath

agtactggtgtacatt a tge

facatace]

a

5caccctctttcttcvtggct;\

tgatgtat ttt

Consensus String

Stephan Steigele



Comparative Genomics
I—Sequence Motifs
L Brute-Force-Approach

The Motif Finding Problem

- The patterns with 2 point mutations:

cctgatagacgctatctggetatccaGgtacTtaggtectcetgtgegaatetatgegtttccaaccat

agtactggtgtacatttgatC tgc
aaacgtTAgtgcaccctetttettegtggetet. gatgtat tttt

agcctccgatgtaagtcatagetgtaactattacctgecacecctattacatcttacgtCeAtataca

ctgttatacaacgcgtcatggeggggtatgegttttggtegtegtacgetegategttaCegtacgGe

Can we still find the motif, now that we have 2 mutations?

Stephan Steigele
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Defining Motifs

» To define a motif, lets say we know where the motif starts
in the sequence

» The motif start positions in their sequences can be
represented as s = (s1, 82,3, ...,5¢)7

motif start index
gene start

4

S et

S2

Sz g

Sq

. 8y
Stephan Steigele
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Defining Motifs

=8 DNA

cctgatagacgctatctggetatccaGgtacTtaggtectetgtgegaatetatgegtttecaaccat]

agtactggtgtacatttgatC aacctga t tgd

agcctcecgaty CtgtaactattacctgccacccctattacatcttacgtCeAtataca

ctgttatacaacgeg ggcggggtatgegttttggtegtegtacgeteghtegttaCegtacaGe

t=5 | aaacgtTAgtgcaccetetttettggtggetetyg tgatgtat Tttt

/ n=69

s{s,=26 s,=21 s;=3 s,=56 s5,=60 }

Stephan Steigele
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Motifs:

Alignment

Profile

Haa»

Profiles and Consensus

acst :cchtt Line up the patterns by

acgtTagt their start indexes

acgtCcAt

c t G -

cgracy S=(5,,55 ..., S

30103110 Construct matrix profile

24001400 with frequencies of each

01400031 H H

0coct1ois nucleotide in columns
_— Consensus nucleotide in

ACGTACGT each position has the

Consensus

Stephan Steigele

highest score in column
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» We have a guess about the consensus sequence, but how
‘good’ is this consensus?

» Need to introduce a scoring function to compare different
guesses and choose the ‘best’ one.

Stephan Steigele
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Defining Some Terms

» - number of sample DNA sequences

» n - length of each DNA sequence

» DNA - sample of DNA sequences (t x n array)?

» /- length of the motif (/-mer)?

» s, - starting position of an |I-mer in sequence i

» s=(s1,s2,...5s;) - array of motif’s starting positions

Stephan Steigele
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Scoring of Weight Matrices

appap
anaaa@
Q@aa»a
oot ottt
pPOaHD
Qoo

Haa»
comw
ormoO
ownor
mooo
roR W
P wor
AR OO

Consensus acgtacagt

Score 3+4+4+5+3+4+3+4=30

Stephan Steigele
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The Motif Finding Problem

» If starting positions s = (51,52, ... st) are given, finding
consensus is easy even with mutations in the sequences
because we can simply construct the profile to find the
motif (consensus)

» But: the starting positions s are usually not given. How can
we find the ‘best’ profile matrix?

Stephan Steigele
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The Motif Finding Problem: Formulation

» Goal: Given a set of DNA sequences, find a set of I-mers,
one from each sequence, that maximizes the consensus
score

» Input: A t x nmatrix of DNA, and /, the length of the
pattern to find

» Output: An array of t starting positions s = (s1,s2,...5;)
maximizing Score(s, DNA)?

Stephan Steigele
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Brute-Force Algorithm

One brute-force approach to solving this problem is the
following:

For each sequence s;, consider all n — / + 1 contained /-mers.
For each such choice of t selected /-mers, compute the
consensus sequence C and the total distance of all t selected
I-mers to C. Return the sequence C with the smallest total
distance. The run time of this is O(/n').

Stephan Steigele
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Brute-Force Algorithm

Another brute-force approach is:

For all 4/ possible I-mers M, compute the total distance of M to
all t sequences. Return the I-mer M with the smallest total
distance. The run time of this is O(4'n?).

In both cases, the algorithm is too slow.

Stephan Steigele
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The Motif Finding Problem: Brute Force Solution

» Compute the scores for each possible combination of
starting positions s

» The best score will determine the best profile and the
consensus pattern in DNA

» The goal is to maximize Score(s, DNA) by varying the
starting positions s;, where:

si=[1,...,n—=1+1]i=[1,...,{

Stephan Steigele
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Scoring of Weight Matrices

BruteForceMotifSearch(DNA. t. n, I)

bestScore < 0

for each s=(s,,s,, ..., s)from(1,1...1)

to (n-I+1, . . ., n-I+1)

if (Score(s,DNA) > bestScore)
bestScore < score(s, DNA)
bestMotif < (s,,s,,...,s)

return bestMotif

Stephan Steigele
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Running Time of BruteForceMotifSearch

» Varying (n— I + 1) positions in each of t sequences, we're
looking at (n — / + 1)! sets of starting positions

» For each set of starting positions, the scoring function
makes / operations, so complexity is /(n — [+ 1)t = O(In")?

» That means that for t = 8, n = 1000, / = 10 we must
perform approximately 102° computations - it will take
billions years

Stephan Steigele
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When is the Problem Solvable?
Consider the expected number of (/, d)-motifs in the problem.
For simplicity, assume that the background sequences are i.i.d.
Then the probability (using the Binomial distribution) that a
given /-mer C occurs with up to d substitutions at a given
position of a random sequence is:

d

Puay = (f) (3/4)'(1/4)

i=0

Then the expected number of length / motifs that occur with up
to d substitutions at least once in each of the t random length n
sequences is:

E(l,d,t,n) ~4'(1 — (1 = pyg)™ """ (1)

Stephan Steigele
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When is the Problem Solvable?

>

The above formulas are only an estimate since they do not
model overlapping motifs, and the assumption of i.i.d.
background distribution is usually incorrect.

Nevertheless, the formula gives a good estimate of the
solvability of the respective problem.

For example, by this estimate, 20 random sequences of
length 600 are expected to contain more than one

(9, 2)-motif by chance, whereas the chances of finding a
random (10, 2)-motif are less than 10~7.

So, the (9,2) problem is impossible to solve, because
‘random motifs” are as likely as the planted motif.

However, for the (10, 2) the probability of a random motif
occurring is very small.
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Phylogenetic footprinting

Highly conserved
enhancer in gene DACH1

Stephan Steigele
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Phylogenetic footprinting

Functional regions of DNA evolve slower than nonfunctional
7
ones.

» Consider a set of orthologous sequences from different
species

» |dentify unusually well conserved substrings (i.e., ones that
have not changed much over the course of evolution)?

"Tagle et al. 1988

Stephan Steigele
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Small Example

AGTCGTACGTGAC

Size of motif sought: k=4

Stephan Steigele

AGTAGACGTGCCG...

i ACGTGAGATACGT..
GAACGGAGTCCGT...

TCGTGACGGTGAT...

(Human)

(Chimp)

. (Rabbit)

(Mouse)
(Rat)
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Solution
ACGT AGTCGTACGTGAC. . .
{ AGTAGACGTGCCG. . .
ACGT — o ACGTGAGATACGT. . .
| GAACGGAGTCCGT. ..
ACGT TCGTGACGGTGAT. . .

ACGG

Parsimony score: 1 mutation

Stephan Steigele
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Parsimony: Sankoff-Algorithm

A dynamic programming algorithm for counting the smallest
number of possible (weighted) state changes needed on a
given tree
» Let Sj(i) be the smallest (weighted) number of steps
needed to evolve the subtree at or above node j, given that
node j is in state i. Suppose that cij is the cost of going
from state i to state j.

» Initially, at tip (say) j

Si(i) =

0 if node j has (or could have) state i
oo if node j has any other state

Stephan Steigele
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» Then proceeding down the tree (postorder tree traversal)
for node a whose immediate descendants are / and r

Sali) = ”’j.i”[Ci/ + Si()] + min[cic + Sy(k)]

» The minimum number of (weighted) steps for the tree is
found by computing at the bottom node (0) the Sy(/) and
taking the smallest of these.



Comparative Genomics
LSequence Motifs
L Phylogenetic Footprinting

An example using Sankoff’s algorithm
{c} {A} {c} {A} {G}

/N )

EEEEEEEE HEna -
cost matrix

to
/ fro A C G

T

EEEEE 0 25 1

/ 25 0 25

1 25 0
[6]7]8]
'\ Ok

25

1

28

0]
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FootPrinter Algorithm®

» the inputs to the algorithm are n homologous sequences
817827---;Sn

» the phylogenetic tree T relating them
» the length k of the motifs sought
» and the maximum parsimony score d allowed.

8Tompa/Blanchette
Stephan Steigele
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FootPrinter Algorithm

» The algorithm proceeds from the leaves of T to its root.

» At each node u of T, it computes a table W, containing 4%
entries, one for each possible k-mer.

» For each such k-mer s, let W,[s] be the best parsimony
score that can be achieved for the subtree of T rooted at v,
if the ancestral sequence at v was forced to be s.

» Let the set of children of u be denoted C(u); let h(s, t) be
the number of positions at which k-mers s and ¢ differ; and
et ={AC,G,T}.

The table W, is computed according to the following
recurrence: W,[s] =

0 , if uis aleaf and s is a substring of S,
“+o00 , ifuis aleaf and s is not a substring of S,
2vecw) Mingesk Wy[t] + h(s,t) , if uis notaleaf
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FootPrinter Algorithm?®

W, [s] = best parsimony score for subtree rooted at node u, if u
is labeled with string s.

ACGG: +00
. . ACGG 1 ACGT: 0
4k entries ACGT: 0. .

—0 AGTCGTACGTG

ACGGGACGTGC
ACGG: 2 ®
ACGT:

- 'y ACGTGAGATAC
® GAACGGAGTAC

¢ TCGTGACGGTG

= °
ACGG:1

ACGT:1..  ACGG:0 N0
ACGT:2 ACGT: +oo0 ..

Stephan Ste?gIQmpa/anChette
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FootPrinter Algorithm™®

W, [s] = best parsimony score for subtree rooted at node u, if u
is labeled with string s.

ACGG: +00
. . ACGG 1 ACGT: 0
4k entries ACGT: 0. .

—0 AGTCGTACGTG

ACGGGACGTGC
ACGG: 2 ®
ACGT:

- 'y ACGTGAGATAC
® GAACGGAGTAC

¢ TCGTGACGGTG

= °
ACGG:1

ACGT:1..  ACGG:0 N0
ACGT:2 ACGT: +oo0 ..

Stephan StéiogIQmpa/Blanchette
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Gibbs Sampling

Gibbs sampling is a well-known method for finding motifs
(and/or patterns) in DNA sequences (Lawrence et al. 1993'").
It belongs to the alignment-based methods which
» Compute a stochastically derived multiples alignment of all
sequences with the putative motif
» Compute a profile: relative frequency of A,G,C,T at each
position
» Result: log-odds weight matrix

"CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, JC
Wootton (1993) Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science 262:208-214.
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Gibbs Sampling

Gibbs sampling is a well-known method for finding motifs
(and/or patterns) in DNA sequences (Lawrence et al. 1993'").
It belongs to the alignment-based methods which
» Compute a stochastically derived multiples alignment of all
sequences with the putative motif
» Compute a profile: relative frequency of A,G,C,T at each
position
» Result: log-odds weight matrix

"CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, JC
Wootton (1993) Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science 262:208-214.
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Gibbs Sampling

» Given t sequences sq, ..., S;, each of length n, and an
integer /, the goal is to find an /-mer in each of the
sequences s; such that the “similarity” between these t
I-mers is maximized.

» Let (ay,...,a:) be alist of I-mers contained in s, ..., st.
These form a t x [ alignment matrix A.

> Let P(A) = (pj) denote the corresponding 4 x / profile,
where p;; denotes the frequency with which we observe
nucleotide 7 at position j.

» Usually, we add pseudo counts to ensure that P does not
contain any zeros (Laplace correction).
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Greedy Profile Search

For a given profile P and an arbitrary /I-mer a, consider

Prob(a | P) = Hpa,,,

the probability that a was generated by P. Any /-mer that is
similar to the consensus string of P will have a “high”
probability, while dissimilar ones will have “low” probabilities.

Stephan Steigele
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Greedy Profile Search

For example, consider P given by:
| 1 2 3 4

A| .33 .60 .08

c| .37 .13 .04

G| .18 .14 .81

T

e

6 7 8 9
.49 .71 .06 .15
.03 .07 .05 .19
.45 .12 .84 .20
.03 .09 .05 .46

o P O O
= O O Oo|lwu

.12 .13 .07

We obtain:

Prob(CAGGTAAGT | P) = 0.02417294365920
Prob(TcccTccca | P) = 0.00000000982800.

Stephan Steigele
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Greedy Profile Search

So, given a profile P, we can evaluate the probability of every
I-mer ain a sequence s to find the P-most probable I-mer in s,
defined as

a* = argmax Prob(a | P).

This motivates a simple greedy heuristic, greedy profile search:

» Given sequences sy, ..., St of length n, randomly select
one /-mer a; for each sequence s; and construct an initial
profile P.

» For each sequence s;, determine the P-most probable
I-mer &. Set P equal to the profile obtained from &, ..., a;
and repeat.

Stephan Steigele
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Greedy Profile Search

This naive approach starts with a random seed profile and then
attempts to improve on it using a greedy strategy.
Does it work well?

Stephan Steigele
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Greedy Profile Search

This naive approach starts with a random seed profile and then
attempts to improve on it using a greedy strategy.
Does it work well? No.

Stephan Steigele
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Greedy Profile Search

» The number of possible seeds is huge and thus any
randomly chosen seed will rarely be close to the optimum.
Even if we run it many times, this approach does not work
well.

» In each iteration, the greedy profile search method can
change any or all t of the profile I-mers and thus will jump
around in the search space.

» Gibbs sampling is similar in that it starts with a random

seed profile, and the key idea is that it is then only allowed
to change one /-mer per iteration.
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Gibbs Sampling Algorithm

» For this we generalize the Motif Finding Problem as
follows: given a multivariable scoring function
f(y1, Yo, ..., ¥t), find the vector y that maximizes f.

» Consider a probability distribution p where p ~ f.
Intuitively, if f is relatively large at the optimum, then if we
repeatedly sample from the probability distribution p, then
we are likely to quickly encounter the optimum.

» Gibbs Sampling provides us a method of sampling from a
probability distribution over a large set.

Stephan Steigele



Comparative Genomics
LSequence Motifs
L Gibbs-Sampling

Gibbs Sampling Algorithm

» Gibbs Sampling uses the technique of Monte Carlo Markov
Chain simulation.

» The idea is to set up a Markov Chain having p as its
steady-state distribution, and then simulate this Markov
Chain for long enough to be confident that an
approximation of the steady-state has been attained.

» The final state of the simulation approximately represents a
sample from the steady-state distribution that contains the
maximum.

Stephan Steigele
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Gibbs Sampling Algorithm

Gibbs sampling operates as follows:

1.

7.
8.

At the beginning of every iteration, a substring a; of length /
in each of the t sequences s;, ..., S; is chosen.

Randomly select one input sequence s,.

Build a 4 x / profile P from ay, ..., an_1, ans1,- .., ar.
Compute background frequencies Q from input sequences
S1,...,81-1,8h41,---, St-

For each /-mer a € sp,, compute w(a) = 22a?)

— Prob(alQ)-
Set a, = a, for some a € s, chosen randomly with
probability /W(a)

5 w(a’)
Use ay,a,...,a,...,a; and restart with 2
Repeat until “converged”

Stephan Steigele
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Gibbs Sampling Algorithm

Gibbs sampling is a method that often works well in practice.
However, it has difficulties finding subtle motifs.

» Also, its performance degrades if the input sequences are
skewed, that is, if some nucleotides occur much more often
than others. The algorithm may be attracted to low
complexity regions like AAAAAAA. . ..

» To address this problem, the algorithm can be modified to
use “relative entropies” rather than frequencies.

The Gibbs sampling algorithm is very similar to the expectation
maximization (EM) algorithm.

Stephan Steigele
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Distinctions

We can use two main components to classify motif searching
algorithms.

» The first distinction can be made on whether the
algorithms search in the space of starting positions, or
whether they search in motif space starting from some
suitable initial motifs.

» Most modern algorithms do the latter.

» The second distinction can be made upon whether the
algorithms work internally with patterns or with profiles.

» The second approach has some advantages in finding
motifs with many degenerate positions but are in general
somewhat more costly.
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The EM Algorithm

» The EM algorithm is a very general iterative algorithm for
parameter estimation by maximum likelihood when some
random variables involved are not observed, i.e.
considered missing or incomplete.

» The EM algorithm follows a intuitive idea when some of the
data are missing

» replace missing values by estimated values
» estimate parameters
> repeat

Stephan Steigele
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The EM Algorithm

» the first step uses estimated parameter values as true
values

» the second step uses estimated missing values as
“observed” values

» they are iterated until convergence

Stephan Steigele
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The EM Algorithm

» The idea has been in use for many years before Orchard
and Woodbury (1972) in their missing information principle
provided the theoretical foundation of the underlaying idea

» The term EM was introduced in Dempster, Laird, and
Rubin (1977) where proof of general results about the
behavior of the algorithm was first given as well as a large
number of applications.

Stephan Steigele
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The EM Algorithm

We now discuss the EM algorithm in general terms.

» Suppose we are given a probability density function
p(x | ©) that depends on some parameters ©.

» Suppose we are given measurements X = {x1,..., Xy}
The goal of maximum likelihood estimation is to find
parameters

© that maximize:

p(x |©)=]]p(xi|©)=L(®] 1),

Xi

that is, to find
©* = arg max L(O ]| X).

Stephan Steigele
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The EM Algorithm

Depending on the probability density function p(x | ©) this
problem is either easy or hard. For example,

» if p(x | ©) is simply a Gaussian function with the
parameters of © being the mean value and standard
deviation,

» then one computes the derivative of £(© | X') and/or
log £L(© | X),

» sets it to zero and solves directly for the mean and
standard deviation.

Note also that the k-means algorithm is a variant of the
expectation-maximization algorithm in which the goal is to
determine the kK means of data generated from Gaussian
distributions.
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The EM Algorithm

Expectation maximization (EM) is a general technique for
finding the maximum likelihood estimate of the parameters of
an underlying distribution from a given dataset, when the data
is incomplete or has missing / hidden values.

» Assume that X is observed data that is generated by some
distribution. Let us call X the incomplete-data.

» Assume that a complete data set Z = (X, ) exists and
has the joint density function

p(z|©) =p(y| O, x)p(x | O).
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The EM Algorithm

We define the complete-data likelihood function as:
LO|Z2)=LO|X,))=pX,V]0).

This is a random variable, as ) is unknown, random and
assumed to be governed by some underlying distribution.
Thus, we can think of this likelihood as a function of V:

L(©|X,Y) =hxe(Y),

where X and © are constant and ) is a random variable.

Stephan Steigele
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The EM Algorithm

EM alternates between performing an

» expectation (E) step, which computes an expectation of the
likelihood by including the latent variables as if they were
observed,

» and a maximization (M) step, which computes the
maximum likelihood estimates of the parameters by
maximizing the expected likelihood found in the E step

The parameters found in the M step are then used to begin
another E step, and the process is repeated.
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The EM Algorithm

E-step: Find the expected value of the complete-data
log-likelihood p(X', Y | ©) with respect to the unknown data Y
and the current parameter estimates. That is, define:

Q(e,0'" V) =Eflogp(x, ¥ | ©) | x,00 1], (2)

where ©(~1) are the current parameter estimates and © are
the new parameters that we will optimize to increase Q.

Note that X and ©(~1) are constants, ) is a random variable
governed by f(y | &,©0-")) and © is a normal variable that we
seek to adjust.
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The EM Algorithm

The equation above can be rewritten as:

Ellogp(X,Y | ©) | x,00-D] =
/ log p(¥.y | ©)f(y | X,00-)dy.
yeY

Here we integrate over all possible values of y. This is a
deterministic function that could be maximized if desired.

Stephan Steigele
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The EM Algorithm

M-Step: Maximize the expectation that we computed in the first
step. That is, find:

o) = arg max Q(®, el=1). (3)

» If we choose ©() = argmaxg Q(©,0(~1)) we will always
make the difference positive and thus the likelihood of x
under the new model unless () = @(i=1),

» The two steps are repeated as necessary.

» The algorithm is guaranteed to converge to a local
maximum.

Stephan Steigele
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The EM Algorithm

» Hence, as indicated in the beginning, we first replace the
missing values y by estimated values (called E-step).

» Then we compute a new parameter set using the estimated
y values as observed values. To do this, we maximize
Q(©,00-1)) with respect to © (called the M-step).

Stephan Steigele
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The EM Algorithm

Lets look at a small example in the context of motif finding.
Assume we are given the data x = x1, X0, X3 as follows. It is the
observed data.

123456
x 1 =ACAGCA
X 2 =AGGCAG
Xx3=TCAGTC

We are missing the start positions z;; of the hidden motif (which
one is it?) and want to represent them by a matrix w where w;
is the probability that the pattern starts at position j in sequence
i

Stephan Steigele
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The EM Algorithm

Assume that a motif finding algorithm resulted in the following
model parameters © which in our case is a 4 x (/ + 1) matrix p
describing
» in the Oth column the background probabilities of the 4
nucleotides

» and in the other / positions the probabilities that a certain
letter is in the motif.

Stephan Steigele



Comparative Genomics
LSequence Motifs
LThe EM Algorithm

The EM Algorithm

Assume that our motif has length three and is

0123

A 0.25 0.1 0.5 0.2
Cc 0.25 0.3 0.2 0.1
G 0.25 0.3 0.1 0.4
T 0.25 0.3 0.2 0.3

We use this initial guess now to estimate the missing data w.
Using Bayes rule and assuming that all starting positions are
equally likely we can write

- - _ P(x|zj=1,p)
wj = P(zj =11x,p) = 5 5B

Stephan Steigele



Comparative Genomics
LSequence Motifs
LThe EM Algorithm

The EM Algorithm

This yields the following matrix w:

0.0520 0.7790 0.0130 0.1558
0.1108 0.0416 0.01l66 0.8390
0.0170 0.8547 0.0427 0.0855

Now we estimate the missing data using our initial model. We
can then refine the model by assuming the probabilities for the
motif starting positions are correct.

Stephan Steigele
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The EM Algorithm

» If we ask now about the probability of each letter we can
re-estimate the new model by updating the frequencies of
each letter with the weights given by w.

» For example for the first pattern position being a ¢ we add
Wy > + Wo 4 + W3 o to the previous frequency, that is
p; 4 = 0.7790 + 0.8390 + 0.8547 + 0.3 and so on.

Then the new frequencies need to be normalized, that is

_ Pia
p1’1 o Z/‘p/{J ’

Stephan Steigele
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The EM Algorithm

This results in:

0123

A 0.079 0.742
@ 0.692 0.110
G 0.150 0.077
T 0.079 0.071

As one can see the new model tends to model the motif CAG
quite well.

Stephan Steigele
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The Projection Algorithm
In the Planted (/, d)-Motif Problem assume the motif is
ACAGGATCA
The following 4 sequences now each contain a planted version
of this motif:
AGTTATCGCGGCACAGGCTCCTTCTTTATAGCC
ATGATAGCATCAACCTAACCCTAGATATGGGAT
TTTTGGGATATATCGCCCCTACACAGGATCACT
GGATATACAGGATCACGGTGGGAAAACCCTGAC
When we now have a closer look at the four morif variants we
notice that some variants fully agree on a subset of the
positions of the full motif:
ACAGGcTCc
AtAGCATCA
ACAGGATCA
ACAGGATCA

Stephan Steigele
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The Projection Algorithm

The key idea is now to choose k positions in an /-mer,
concatenate them to form a k-mer. Then this k-mer is a
projection of the /-mer in the Hamming space:

ACAGGATCA =5 AAGTC

Stephan Steigele
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The Projection Algorithm

To address the Planted (/, d)-Motif Problem,

» the key idea of this method is to choose k of / positions at
random,

» then to use the k selected positions of each /-mer x as a
hash function h(x).

» When a sufficient number of I-mers hash to the same
bucket, it is likely to be enriched for the planted motif M:

Stephan Steigele
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S, XX ® 0
1)

Sz X X0 OX

iy
S3 X 0 OXX | » hash to

m, same bucket

S4 X XOXO

My —

(Here, for each instance m; of the planted motif M, x’s mark the
d = 3 substitutions and o’s mark the k = 2 positions used in
hashing.)



Comparative Genomics
LSequence Motifs
LThe Projection Algorithm

The Projection Algorithm

» Like many probabilistic algorithms, the Projection algorithm
performs a number of independent trials of a basic
iteration.

» In each such trial, it chooses a random projection h and
hashes each /-mer x in the input sequences to its bucket
h(x).

» Any hash bucket with sufficiently many entries is explored
as a source of the planted moitif, using a series of
refinement steps, as described below.

Stephan Steigele
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Random Projections

» Choose k of the / positions at random, without
replacement.

» For an I-mer x, the hash function h(x) is obtained by
concatenating the selected k residues of x.

» Viewing x as a point in /-dimensional Hamming space,
h(x) is the projection of x onto a k-dimensional subspace.

» If M is the (unknown) motif, then we call the bucket with
hash value h(M) the planted bucket.

Stephan Steigele
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Random Projections

» The key idea is that, if kK < | — d, then there is a good
chance that some of the t planted instances of M will be
hashed to the planted bucket, namely all planted instances
for which the k hash positions and d substituted positions
are disjoint.

» So, there is a good chance that the planted bucket will be
enriched for the planted motif, and will contain more entries
than an average bucket.

Stephan Steigele
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Example

1234567
S1 cagtaat
So> ggaactt
S3 aagcaca

Given the sequences and the (unknown)

(8,1)-motif M = aaa.
Hashing with k = 2 produces the following hash table:

h(x) pos. h(x) pos. h(x) pos.
aa (1,5), (2,3), (3,1) cg gt (1,3)
ac (2,4), (3,5) ct (2,5) ta (1,4)
ag (1,2), (3,2) ga (2,2) tc

at (1,6) gc (3,3) tg

ca (1,1), (3,4), (3,6) gag (2.1) tt (2,6)
g€

The motif M is planted at positions (1,5), (2,3), (3,1) and
(3,5) and in this example, three of the four instances hash to
the planted bucket h(M) = aa.

Stephan Steigele
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Finding the Planted Bucket

» Obviously, the algorithm does not know which bucket is the
planted bucket.

» So, it attempts to recover the motif from every bucket that
contains at least s elements, where s is a threshold that is
set so as to identify buckets that look as if they may be the
planted bucket.

» In other words, the first part of the Projection algorithm is a
heuristic for finding promising sets of /-mers in the
sequence. It must be followed by a refinement step that
attempts to generate a motif from each such set.

Stephan Steigele
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Choosing the Parameters

The algorithm has three main parameters:
» the projection size kK,
» the bucket (inspection) threshold s, and
» and the number of independent trials m.

Stephan Steigele
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Choosing the Parameters

The algorithm has three main parameters:
» the projection size k,
» the bucket (inspection) threshold s, and
» and the number of independent trials m.

In the following, we will discuss how to choose each of these
parameters.

Stephan Steigele
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Choosing the Parameters
Projection size:

» |deally, the algorithm should hash a significant number of
instances of the motif into the planted bucket, while
avoiding contamination of the planted bucket by random
background /-mers.

» To minimize the contamination of the planted bucket, we
must choose k large enough. What size must we choose k
so that the average bucket will contain less than 1 random
I-mer?

Since we are hashing t(n — I + 1) I-mers into 4 buckets, if we
choose k such that

45 > t(n—1+41),

then the average bucket will contain less than one random
I-mer.
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Choosing the Parameters

For example, in the Challenge (15, 4)-Problem, with t = 20 and
n = 600, we must choose k to satisfy:

k<l—-d=15—-4=11 and

log(t(n—1/+1)) log(20(600 —15+1))
k > 109(4) = l0g(4) ~ 6.76.

Stephan Steigele
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Choosing the Parameters

Bucket threshold: In the Challenge Problem, a bucket size of
s = 3 or 4 is practical, as we should not expect too many
instances to hash to the same bucket in a reasonable number

of trials.

Stephan Steigele
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Choosing the Parameters
Number of independent trials: We want to choose m so that
the probability is at least g = 0.95 that the planted bucket
contains s or more planted motif instances in at least one of the
m trials.
Let p(/, d, k) be the probability that a given planted motif
instance hashes to the planted bucket, that is:

I-d
)
—
(k)
Then the probability that fewer than s planted instances hash
to the planted bucket in a given trial is B; 5, 4 )(S)-
Here, B; p(s) is the probability that there are fewer than s

successes in t independent Bernoulli trials, each trial having
probability p of success.

p(l,d, k) =
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Choosing the Parameters

If the algorithm is run for m trials, the probability that s or more
planted instances hash to the planted bucket in at least one trial
is:
m
1— (Bpuan(s)” >q.
To satisfy this equation, choose

log(1 —q)
m= . (4)
{'09(Bz,b(/,d,k)(3))
Using this criterion for m, the choices for k and s above require
at most thousands of trials, and usually many fewer, to produce

a bucket containing sufficiently many instances of the planted
motif.

Stephan Steigele
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Motif Refinement

» The main loop of the Projection algorithm finds a set of
buckets of size > s. In the refinement step, each such
bucket is explored in an attempt to recover the planted
motif.

» The idea is that, if the current bucket is the planted bucket,
then we have already found k of the planted motif
residues. These, together with the remaining / — k
residues, should provide a strong signal that makes it easy
to obtain the motif in only a few iterations of refinement.

» We will process each bucket of size > s to obtain a
candidate motif. Each of these candidates will be “refined”
and the best refinement will be returned as the final
solution.
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Motif Refinement

Candidate motifs are refined using the expectation
maximization (EM) algorithm based on the following
probabilistic model:

» An instance of some length-/ motif occurs exactly once per
input sequence.

» Instances are generated from a 4 x / weight matrix model
W, whose (i, j)th entry gives the probability that base i
occurs in position j of an instance, independent of its other
positions.

» The remaining n — / residues in each sequence are chosen
randomly and independently according to some
background distribution.
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Motif Refinement

Let S be a set of t input sequences, and let P be the
background distribution. The EM-based refinement seeks a
weight matrix model W* that maximizes the likelihood ratio

Prob(S | W*, P)
Prob(S| P) '’

that is, a motif model that explains the input sequences much
better than P alone.

Stephan Steigele
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Motif Refinement

» The position at which the motif occurs in each sequence is
not fixed a priori, making the computation of W* difficult,
because Pr(S | W*, P) must be summed over all possible
locations of the instances.

» To address this, the EM algorithm uses an iterative
calculation that, given an initial guess W, of the motif
model, converges linearly to a locally maximum-likelihood
model in the neighborhood of W.

Stephan Steigele
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Summary of Projection Algorithm

Algorithm Projection
Input: sequences sy, ..., S;, parameters k, s and m
Output: best guess motif

fori=1to mdo
choose k different positions I € {1,2,...,/}
for each I-mer x € s4,...,s: do
compute hash value h;, (x)
Store x in hash bucket
for each bucket with > s elements do
refine bucket using EM algorithm
return consensus pattern of best refined bucket

Stephan Steigele
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Performance
The following table gives an overview of the performance of
PROJECTION compared to other motif finders on the
(1, d)-motif problem. The measure is the average performance
definedas | KNP | /| KUP | where K is the set of the /;
residue positions of the planted motif instances, and P is the
corresponding set of positions predicted by the algorithm.

| | d | Gibbs | WINNOWER | SP-STAR | PROJECTION
10 | 2 | 0.20 0.78 0.56 0.82
11|12 | 0.68 0.90 0.84 0.91
12 | 3 | 0.03 0.75 0.33 0.81
13 | 3 | 0.60 0.92 0.92 0.92
14 | 4 | 0.02 0.02 0.20 0.77
15| 4 | 0.19 0.92 0.73 0.93
16 | 5 | 0.02 0.03 0.04 0.70
17 | 5| 0.28 0.03 0.69 0.93
18 | 6 | 0.03 0.03 0.03 0.74
Eqa | e | nNE N N N AN 0 O/
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Pattern Branching

Main idea:

» Pattern branching searches in the spave of motifs rather
than in the space of starting positions.

» The sample-driven approaches (see the a) in the following
figure) generally use random sample strings as seeds for a
local search. the extended versiuon of this approach (see
b)) searches the neighborhood of the samples and typically
find the global optimum, albeit a large computational cost.

» The branching approach (c)) finds the optimum by a
deterministically driven branching process.
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Pattern Branching

(a) Sample-driven approach

(b) Extended sample-driven approach

(¢) Branching from sample strings

Stephan Steigele
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Pattern Branching

Let M be an unknown motif of length /, and let Ay be an
occurrence of M in the sample with exactly k substitutions.
Given Ay, how do we determine M?
» Since the Hamming distance d(M, Ay) = k, we have
M e D_x(Ao), defined as the set of patterns of distance
exactly k from Aq.
> We could look at all (;)3* elements of D_x(Ao) and score
each pattern as a guess of M.
» However, as this must be applied to all sample strings Ag
of length /, it would be too slow.
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Pattern Branching

The idea of the Pattern Branching algorithm is to construct a
path of patterns

Ay — A — ... — A,

in each step, moving to the “best neighbor” in D_1(A;). The
pattern A, is scored as a guess for M.

Stephan Steigele
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Pattern Branching
Given a pattern A of length /, two questions must be
addressed:

» How do we score A?
» How do we determine the “best neighbor” of A?

Stephan Steigele
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Pattern Branching
Given a pattern A of length /, two questions must be
addressed:

» How do we score A?
» How do we determine the “best neighbor” of A?

First, we score A using its total distance from the sample. For
each sequence s; in the sample S = {sq, ..., st}, let

d(A,sj) = min{d(A,P) | P € s;},

where P denotes an /-mer contained in s;.
Then the total distance of A from the sample is

d(A,S) =D d(As).

SieS
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Pattern Branching

Second, we define a best neighbor of A to be any pattern
B € D_4(A) with smallest total distance d(B, S).
The resulting algorithm is very straight-forward:

Algorithm Pattern Branching(S, /, k)
Input: Sequences S, motif length /, number of substitutions k
Output: best guess motif M
Init: M «— arbitrary motif pattern
for each I-mer Ay € S do
for j — O to k do
if d(A;, S) < d(M, S) then M — A;
A1 < BestNeighbor(A))
Output M
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Pattern Branching

To conduct a more thorough search of D_x(Ay), one can keep
a set A of r patterns at each iteration instead of a single
pattern, defining BestNeighbors(.A) to be the set of r patterns

B € D_1(.A) with lowest total distance d(B, S).

Letting Ao = {Ao}, we thus have |Ag| = 1 and |A;| = r for j > 0.
The algorithm returns the motif that has the smallest total
distance to all input strings.

Stephan Steigele
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Profile Branching

The Profile Branching algorithm is similar to the Pattern
Branching algorithm. However, the search is in the space of
motif profiles, instead of motif patterns. The algorithm is
obtained from the Pattern Branching algorithm by making the
following changes:

convert each sample string Ap to a profile P(Ap),
generalize the scoring method to score profiles,
modify the branching method to apply to profiles, and

use the top-scoring profile found as a seed for the EM
algorithm.

S eSS
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Profile Branching
To convert an initial sample string Ay into a profile P(Ay), the
authors follow the idea of MEME'2.
Let Ap = a; ... g be an I-mer of nucleotides. Then P(Ap) is
defined as the 4 x [ profile matrix (pvw) which in column w has

probability
Pvw =
else.

For example, for Ag = ACGA we obtain:

|f V = aw,

n|—

o=

|1 2 3 4
T 1 1 T
Pz s os oz
PRI=Cly s g8
°le 8 2%
Tl 5 5 5

Stephan Steigele
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Profile Branching

The total distance score for patterns is replaced by an entropy
score for profiles:

Let P = (pw/) be a profile and A= ay ... a; a pattern. The log
probability of sampling A from P is given by:

e(A| P)= Zlog B

For each sequence S; € S = {81 yeoey St let
e(S;i| P) =max{e(S;| A) | Ac S;}.
The entropy score of P is
e(P,S) =Y e(P,S)).
SieS

This value describes how well P matches its best occurrence in
sStephangsizodie cantiance Nnf the inni it
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Profile Branching

We define the best neighbor of a profile P to be the profile
Y € D_+(P) with highest entropy e(Y, S).
The Profile Branching algorithm proceeds as follows. For each
I-mer Ay in the sample S, let Py = P(Ap) and construct a path
of profiles

Py— Py — ... — P4,

by iteratively applying the best neighbor calculation for profiles.
After branching for k iterations for each /-mer Ag in the input
sample, the EM algorithm is run to convergence on the
top-scoring profile found.
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Profile Branching
The algorithm is as follows:

Algorithm Profile Branching
Input: Sequences S, motif length /, number of substitutions k
Output: best guess motif profile P
Init: P* — arbitrary motif profile
for each /-mer Ay € S do
Py — P(Ao)
forj — Oto k do
if e(P;, S) < e(P*,S) then P* — P;
Pi 1 < BestNeighbor(P})
Run EM algorithm with P* as seed and return result

Stephan Steigele
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Profile Branching

This algorithm runs about 5 times slower than the Pattern
Branching algorithm.

The Pattern Branching algorithm clearly outperforms the Profile
Branching algorithm on Challenge-like problems. However,
pattern-based algorithms have difficulties finding motifs with
many degenerate positions.

Stephan Steigele
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Software

Gibbs based:
http://bayesweb.wadsworth.org/gibbs/gibbs.html
MEME (Multiple Expectation maximization for Motif Elicitation):
http://meme.sdsc.edu/meme/intro.html

Pattern/Profile Branching:
http://www-cse.ucsd.edu/groups/bioinformatics/softw

Stephan Steigele
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