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Genetic algorithms

• Holland’s original GA is now known as 
the simple genetic algorithm (SGA)

• Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms
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SGA technical summary tableau

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with 
fixed probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parents

Speciality Emphasis on crossover
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Genotype space = 
{0,1}L

Phenotype space

Encoding 
(representation)

Decoding
(inverse representation)

011101001

010001001
10010010

10010001

Representation
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SGA reproduction cycle

1. Select parents for the mating pool 
(size of mating pool = population size)

2. Shuffle the mating pool
3. For each consecutive pair apply crossover with 

probability pc , otherwise copy parents
4. For each offspring apply mutation (bit-flip with 

probability pm independently for each bit)
5. Replace the whole population with the resulting 

offspring
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SGA operators: 1-point 
crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails
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SGA operators: mutation

• Alter each gene independently with a 
probability pm 

• pm is called the mutation rate
– Typically between 1/pop_size and 1/

chromosome_length
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An example after Goldberg ‘89 (1)

• Simple problem: max x2 over {0,1,…,31}
• GA approach:

– Representation: binary code, e.g. 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation 
– Roulette wheel selection
– Random initialisation

• We show one generational cycle done by 
hand 
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x2 example: selection
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X2 example: crossover
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X2 example: mutation
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Crossover OR mutation?

• Decade long debate: which one is better / 
necessary / main-background 

• Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– both have another role
– mutation-only-EA is possible, xover-only-EA would not 

work



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Exploration: Discovering promising areas in the search space, i.e. 
gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using information
There is co-operation AND competition between them

• Crossover is explorative, it makes a big jump to an area somewhere 
“in between” two (parent) areas

• Mutation is exploitative, it creates random small diversions, thereby 
staying near (in the area of ) the parent

Crossover OR mutation? 
(cont’d)
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• Only crossover can combine information from two 
parents

• Only mutation can introduce new information (alleles)

• Crossover does not change the allele frequencies of 
the population (thought experiment: 50% 0’s on first 
bit in the population, ?% after performing n
crossovers)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? 
(cont’d)
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Royal Road for Genetic Algorithms
• Question is how fitness landscapes are best 

explored by GAs
• What are the effects of landscape features to 

GA performance

• Define a set of landscape features
• Construct classes of landscapes that contain 

these features in varying degrees
• Study these features in detail
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Properties of fitness landscapes
• Deception
• Sampling error
• Number of local optima

• Are these all relevant features of fitness 
landscapes with respect of GA performance??
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Again: schema processing
• GAs search implicitly a space of patterns
• Space of patterns could be thought as 

hyperplanes {0,1}l (schemas)
• Schemas are defined of alphabet {0,1,*}
• Schema Therorem states that above average 

fitness schemas will receive an exponentially 
increasing number of samples

• Schema theorem doesn’t state how new 
schemas are discovered
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Again: schema processing
• Building block hypothesis states that new 

schemas are discovered via crossover
• The actual discovery processes are hard to 

understand

• But first we need to understand more about 
landscape features of Gas
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Landscape features of GA
• General: Conflict between the need to explore 

new regions of the search space vs. the need 
to exploit the currently most promising 
directions

• Analysis by landscape features that are more 
directly connected to the building block 
hypothesis:

- Degree of hierarchically structured schemas
- Degree of “stepping stones” between low order and 

high order schemas
- Degree of isolation of fit schemas
- Presence or absence of conflicts among fit schemas
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Describing the landscapes

• Fitness functions F:{0,1}l -> R

• Construct “royal roads” for the GA to follow to 
the global optimum

- can be hierarchically clustered
- Should trick bit-wise mutation techniques used 

e.g. by hill-climbing methods ..
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Royal Road function 1
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Royal Road function 2
Isolated high-fitness regions

With highest value 9 for point X=1111 and 
average fitness u(s) of five schemas
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Royal Road function
• In such a feature, the regions of high 

fitness are isolated from supporting 
(lower-order schemas)

• Hill-climbing get stuck in intermediate 
regions (**11) and (11**)

• Slow at crossing the intervening desserts 
of lower fitness (*111) and (111*)

• “partially deceptive functions”
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Royal Road function 3
Multiple conflicting solutions
Consider a function with two equal peaks:

F(x) = (x-(1/2))2

Which has two optima, 0 and 1.

There is a risk, that the GA converges on 
One by exploiting random fluctuations.
There is even a higher risk that 

crossover produces hybrids from both 
solutions
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Perfomance on Royal Road 
functions

• All desired schemas are known in advance
• Tracing of individual schemas

• Degree of “regality” of the path to the optimum 
can be varied

• E.g. change the number of levels of schemas 
(schemas of order 8,16,32,64 are for levels) to 
three levels 
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To what extent does crossover help 
the GA finding highly fit schemas

Bottlenecks ?

• Waiting time for desirable schemas to be 
discovered 

• Role of intermediate levels in the hierarchy
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To what extent does crossover help 
the GA finding highly fit schemas

• Competitive setup of hill-climbing and GAs with 
and without crossover
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To what extent does crossover help 
the GA finding highly fit schemas

There are two stages in the discovery process of 
a given schema 

• The time for the schemas lower-order 
components to appear in the population

• The time for two instances to cross over in the 
right way to create the desired schema
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The simple GA
• Has been subject of many (early) studies

– still often used as benchmark for novel GAs
• Shows many shortcomings, e.g.

– Representation is too restrictive
– Mutation & crossovers only applicable for bit-

string & integer representations
– Selection mechanism sensitive for converging 

populations with close fitness values
– Generational population model (step 5 in SGA 

repr. cycle) can be improved with explicit 
survivor selection
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Alternative Crossover Operators
• Performance with 1 Point Crossover depends 

on the order that variables occur in the 
representation
– more likely to keep together genes that are near 

each other
– Can never keep together genes from opposite ends 

of string
– This is known as Positional Bias
– Can be exploited if we know about the structure of 

our problem, but this is not usually the case
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n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents
• Generalisation of 1 point (still some positional 

bias)
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Uniform crossover
• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second 

child
• Inheritance is independent of position
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Permutation Representations
• Ordering/sequencing problems form a special type
• Task is (or can be solved by) arranging some objects in a certain 

order 
– Example: sort algorithm: important thing is which elements 

occur before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing 

is which elements occur next to each other (adjacency)
• These problems are generally expressed as a permutation:

– if there are n variables then the representation is as a list of n
integers, each of which occurs exactly once
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Permutation representation: TSP 
example

• Problem:
• Given n cities
• Find a complete tour with 

minimal length
• Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one 

permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG: 
for 30 cities there are 30! ≈ 1032

possible tours
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• “Normal” crossover operators will often 
lead to inadmissible solutions

Many specialised operators have been devised which 
focus on  combining order or adjacency information 
from the two parents

Crossover operators for 
permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5
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Order 1 crossover
• Idea is to preserve relative order that elements occur
• Informal procedure:

1. Choose an arbitrary part from the first parent
2. Copy this part to the first child
3. Copy the numbers that are not in the first part, to 

the first child:
• starting right from cut point of the copied part, 
• using the order of the second parent 
• and wrapping around at the end

4. Analogous for the second child, with parent roles 
reversed
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Order 1 crossover example

• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2
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Multiparent recombination
• Recall that we are not constricted by the practicalities 

of nature
• Noting that mutation uses 1 parent, and “traditional”

crossover 2, the extension to a>2 is natural to examine
• Been around since 1960s, still rare but studies indicate 

useful
• Three main types:

– Based on allele frequencies, e.g., p-sexual voting 
generalising uniform crossover

– Based on segmentation and recombination of the 
parents, e.g., diagonal crossover generalising n-
point crossover

– Based on numerical operations on real-valued 
alleles, e.g.,  center of mass crossover, generalising 
arithmetic recombination operators
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Simulated Annealing
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TSP

• There are certain optimization problems that 
become unmanageable using combinatorial 
methods as the number of objects becomes 
large. 

• A typical example is the traveling salesman 
problem (TSP).
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MSA as an optimization 
problem

• Sum of Pairs
– Formally, for column a 

multiple alignment of N 
sequences with a length M, 
the total SP score is

• Minimum Entropy
– The basic idea of the 

minimum entropy 
method is to try to 
minimize the total 
entropy ME for all 
columns.
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Method of Steepest Descent 

• An algorithm for finding the (nearest local) 
minimum of a function. 

• Steepest descent, also called the gradient 
descent method, starts at a point p0 and, 
as many times as needed, moves from pi
to pi+1 by minimizing along the line 
extending from pi in the direction of, the 
local downhill gradient. 

http://mathworld.wolfram.com/Gradient.html
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Conjugate gradient method
• The conjugate gradient method is an algorithm

for finding the nearest local minimum of a 
function of variables which presupposes that the 
gradient of the function can be computed. It uses 
conjugate directions instead of the local gradient
for going downhill. 

• If the vicinity of the minimum has the shape of a 
long, narrow valley, the minimum is reached in 
far fewer steps than would be the case using the 
method of steepest descent. 

• Gradient methods “stuck” in local minima.
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Simulated Annealing

• For problems, like TSP, there is a very effective 
practical algorithm called simulated annealing 
(thus named because it mimics the process 
undergone by misplaced atoms in a metal when 
its heated and then slowly cooled). 

• While this technique is unlikely to find the 
optimum solution, it can often find a very good 
solution, even in the presence of noisy data. 



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

What is simulated annealing? 

• Simulated annealing (SA) is a generic 
probabilistic meta-algorithm for the global 
optimization problem, namely locating a 
good approximation to the global optimum
of a given function in a large search 
space. 

• Simulated annealing is a generalization of 
a Monte Carlo method for examining the 
equations of state and frozen states of n-
body systems [Metropolis et al. 1953]. 

http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Global_optimization
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Metropolis

Repetition
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Metropolis

• Simulated annealing improves gradient 
method strategy through the introduction 
of two tricks. The first is the so-called 
"Metropolis algorithm" (Metropolis et al. 
1953), in which some trades that do not 
improve the score are accepted when they 
serve to allow the solver to "explore" more 
of the possible space of solutions. Such 
"bad" trades are allowed using the 
criterion that 



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Metropolis
• where ∆D is the change of score implied by the 

trade (negative for a "good" trade; positive for a 
"bad" trade), T is a "synthetic temperature," and 
R(0,1) is a random number in the interval [0,1].

• D is called a "cost function," and corresponds to 
the free energy in the case of annealing a metal. 

• If T is large, many "bad" trades are accepted, 
and a large part of solution space is accessed. 
Objects to be traded are generally chosen 
randomly, though more sophisticated techniques 
can be used.
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Metropolis
• The second trick is, again by analogy with annealing of a 

metal, to lower the "temperature." 
• After making many trades and observing that the cost 

function declines only slowly, one lowers the 
temperature, and thus limits the size of allowed "bad" 
trades. 

• After lowering the temperature several times to a low 
value, one may then "quench" the process by accepting 
only "good" trades in order to find the local minimum of 
the cost function. 

• There are various "annealing schedules" for lowering the 
temperature, but the results are generally not very 
sensitive to the details.
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What is simulated annealing? 
• The concept is based on the manner in which liquids 

freeze or metals recrystallize in the process of annealing. 
• In an annealing process a melt, initially at high 

temperature and disordered, is slowly cooled so that the 
system at any time is approximately in thermodynamic 
equilibrium. 

• As cooling proceeds, the system becomes more ordered 
and approaches a "frozen" ground state at T=0. 

• If the initial temperature of the system is too low or 
cooling is done insufficiently slowly the system may 
become quenched forming defects or freezing out in 
metastable states (ie. trapped in a local minimum energy 
state). 
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What is simulated annealing? 
• Simulated annealing is a technique, which was 

developed to help solve large combinatorial optimization 
problems. It is based on probabilistic methods that avoid 
being stuck at local (non-global) minima. It has proven to 
be a simple but powerful method for large-scale 
combinatorial optimization. 

• For practical purposes, simulated annealing has solved 
the famous traveling salesman problem: find the 
shortest of N! paths connecting N cities. Simulated 
annealing finds a very good approximation to the 
shortest path out of the huge number of all possible 
paths. 

• Annealing is nature's trick to find extrema in very 
complicated situations. Simulated annealing mimics on a 
computer the natural process by which crystal lattices of 
glass or metal relax when heated. 
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What is simulated annealing? 
• The molecules of hot glass or metal are free to move 

about. 
• Temperature is an average of the thermal energy in each 

molecule of an object. 
• If the temperature drops quickly, these molecules solidify 

into a complex structure. 
• However, if the temperature drops slowly, they form a 

highly ordered crystal. 
• The molecules of a crystal solidify into a minimal energy 

state. 
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Cooling schedule
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Convergence of simulated annealing 

HILL CLIMBING

HILL CLIMBING

HILL CLIMBINGC
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NUMBER OF ITERATIONS

AT INIT_TEMP

AT FINAL_TEMP

Move accepted with
probability
= e-(^C/temp)

Unconditional Acceptance
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Ball on terrain example – Simulated Annealing vs
Greedy Algorithms

The ball is initially placed at a random 
position on the terrain. From the current 
position, the ball should be fired such that it 
can only move one step left or right.What 
algorithm should we follow for the ball to 
finally settle at the lowest point on the 
terrain?
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Ball on terrain example – SA vs Greedy Algorithms

Greedy Algorithm
gets stuck here!
Locally Optimum

Solution.

Simulated Annealing explores
more. Chooses this move with a
small probability (Hill Climbing)

Upon a large no. of iterations,
SA converges to this solution.

Initial position
of the ball



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

The algorithm 

• In the simulated annealing (SA) method, 
each point s of the search space is 
compared to a state of some physical 
system, and the function E(s) to be 
minimized is interpreted as the internal 
energy of the system in that state. 

• Therefore the goal is to bring the system, 
from an arbitrary initial state, to a state 
with the minimum possible energy. 
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The algorithm 
• In the simulated annealing algorithm, an 

objective function to be minimized is defined.
• In TSP it will be the total path length through a set of 

points. The distance between each pair of points is 
equivalent to the "energy" of a molecule. 

• Then, "temperature" is the average of these lengths. 
Starting from an initial point, the algorithm swaps a pair 
of points and the total "energy" of the path is calculated. 

• Any downhill step is accepted and the process repeats. 
An uphill step may be accepted. 

• Thus, the algorithm can escape from local minima. 
• This uphill decision is made by the Metropolis criteria. 
• As the optimization process proceeds, the algorithm 

closes in on the global minimum. 
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The basic iteration
• At each step, the SA heuristic considers some 

neighbor s' of the current state s, and 
probabilistically decides between moving the 
system to state s' or staying put in state s. 

• The probabilities are chosen so that the system 
ultimately tends to move to states of lower 
energy. 

• Typically this step is repeated until the system reaches a 
state which is good enough for the application, or until a 
given computation budget has been exhausted.

http://en.wikipedia.org/wiki/Probabilistic
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The neighbors of a state

• The neighbors of each state are specified by the 
user, usually in an application-specific way. 

• For example, in the traveling salesman problem, 
each state is typically defined as a particular tour
(a permutation of the cities to be visited); 

• then one could define two tours to be neighbors 
if and only if one can be converted to the other 
by interchanging a pair of adjacent cities. 

http://en.wikipedia.org/wiki/Permutation
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The neighbors of a state
• The neighbor selection method is particularly critical. 
• The method may be modeled as a search graph — where 

the states are vertices, and there is an edge from each 
state to each of its neighbors. 

• Roughly speaking, it must be possible to go from the initial 
state to a "good enough" state by a relatively short path on 
this graph, and such a path must be as likely as possible to 
be followed by the SA iteration.

http://en.wikipedia.org/wiki/Graph_theory
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The neighbors of a state
• In practice, one tries to achieve this criterion by using a 

search graph where the neighbors of s are expected to 
have about the same energy as s. 

• It is true that reaching the goal can always be done with 
only n-1 general swaps, while it may take as many as n(n-
1)/2 adjacent swaps. 

• However, if one were to apply a random general swap to a 
fairly good solution, one would almost certainly get a large 
energy increase; 

• whereas swapping two adjacent cities is likely to have a 
smaller effect on the energy.
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The algorithm’s parameters

• Since the algorithm makes very few 
assumptions regarding the objective function, it 
is quite robust. The degree of robustness can be 
adjusted by the user using some important 
parameters: 
– factor - annealing temperature reduction factor 
– ntemps - number of temperature steps to try 
– nlimit - number of trials at each temperature 
– glimit - number of successful trials (or swaps) 
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Transition probabilities
• The probability of making the transition from the current 

state s to a candidate new state s' is a function P(e, e' , 
T) of the energies e = E(s) and e' = E(s' ) of the two 
states, and of a global time-varying parameter T called 
the temperature.

• One essential requirement for the transition probability P
is that it must be nonzero when e' > e, meaning that the 
system may move to the new state even when it is worse
(has a higher energy) than the current one. 

• It is this feature that prevents the method from becoming 
stuck in a local minimum — a state whose energy is far 
from being minimum, but is still less than that of any 
neighbor.

http://en.wikipedia.org/wiki/State_transition


Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Transition probabilities
• On the other hand, when T goes to zero, the 

probability P(e, e' , T) must tend to zero if e' > e, and 
to a positive value if e' < e. 

• That way, for sufficiently small values of T, the 
system will increasingly favor moves that go 
"downhill" (to lower energy values), and avoid those 
that go "uphill". 

• In particular, when T becomes 0, the procedure will 
reduce to the greedy algorithm — which makes the 
move if and only if it goes downhill.

http://en.wikipedia.org/wiki/Greedy_algorithm
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Transition probabilities
• The P function is usually chosen so that the 

probability of accepting a move decreases when the 
difference e' − e increases — that is, small uphill 
moves are more likely than large ones. 

• However, this requirement is not strictly necessary, 
provided that the above requirements are met.

• Given these properties, the evolution of the state s
depends crucially on the temperature T. 

• Roughly speaking, the evolution of s is sensitive only 
to coarser energy variations when T is large, and to 
finer variations when T is small.
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The annealing schedule
• Another essential feature of the SA method is that the 

temperature is gradually reduced as the simulation proceeds. 
• Initially, T is set to a high value (or infinity), and it is decreased 

at each step according to some annealing schedule — which 
may be specified by the user, but must end with T=0 towards 
the end of the allotted time budget. 

• In this way, the system is expected to wander initially towards 
a broad region of the search space containing good solutions, 
ignoring small features of the energy function; 

• then drift towards low-energy regions that become narrower 
and narrower; and finally move downhill according to the 
steepest descent heuristic. 
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Pseudo-code
• The following pseudo-code implements the simulated 

annealing heuristic, as described above, starting from 
state s0 and continuing to a maximum of kmax steps or 
until a state with energy emax or less is found. 

• The call neighbour(s) should generate a randomly 
chosen neighbour of a given state s; the call random() 
should return a random value in the range [0, 1). 

• The annealing schedule is defined by the call temp(r), 
which should yield the temperature to use, given the 
fraction r of the time budget that has been expended so 
far. 
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Pseudo-code
• s := s0; e := E(s) // Initial state, energy.
• k := 0 // Energy evaluation count.
• while k < kmax and e > emax // While time remains ANDnot

// good enough:
• sn := neighbour(s) // Pick some neighbor.
• en := E(sn) // Compute its energy.
• if random() < P(e, en, temp(k/kmax)) then

// Should we move to it?
• s := sn; e := en // Yes, change state.
• k := k + 1 // One more evaluation done

• return s // Return current solution
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Saving the best solution seen
• s := s0; e := E(s) // Initial state, energy.
• sb := s; eb := e // Initial "best" solution
• k := 0 // Energy evaluation count.
• while k < kmax and e > emax // While time remains & not 

good enough:
• sn := neighbor(s) // Pick some neighbor.
• en := E(sn) // Compute its energy.
• if en < eb then // Is this a new best?
• sb := sn; eb := en // Yes, save it.
• if random() < P(e, en, temp(k/kmax)) then

// Should we move to it?
• s := sn; e := en // Yes, change state.
• k := k + 1 // One more evaluation done
• return sb // Return the best solution found.
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Pseudocode for TSP
• initialize temperature
• for i := 1...ntemps do
• temperature := factor * temperature
• for j := 1...nlimit do

try change a shift of a random sequence
• delta := current_cost - trial_cost
• if delta < 0 then
• make the swap permanent
• increment good_swaps
• else
• p := random number in range [0...1]
• m := exp( - delta / temperature )
• if p < m then                    // Metropolis criterion
• make the swap permanent
• increment good_swaps
• end if
• end if
• exit when good_swaps > glimit
• end for
• end for
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MSA Example
• The MSA without gaps with a SP-score scheme 

can be used as an example application of 
simulated annealing. 

• Given: 
– window-size W
– set of N sequences x: |xi|>W for 1 ≤ i ≤ N

• In this problem, many sequences should be 
aligned (a position of the window in each 
sequence should be found or, in other words, a 
vector of shifts should be found) to maximize the 
sum of pairwise scores. 
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Related methods
• Tabu search (TS) is similar to simulated 

annealing, in that both traverse the solution 
space by testing neighbors of the current 
solution. In order to prevent cycling, the TS 
algorithm maintains a "tabu list" of solutions 
already seen, and moves to those solutions are 
suppressed.

• Stochastic hill climbing (SH) runs many hill-
climbing searches from random initial 
locations.

http://en.wikipedia.org/wiki/Tabu_search
http://en.wikipedia.org/wiki/Taboo
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Tabu search
• tabu search: In this general category of meta-heuristics, 

the essential idea is to 'forbid' search moves to points 
already visited in the (usually discrete) search space, at 
least for the upcoming few steps. 

• That is, one can temporarily accept new inferior 
solutions, in order to avoid paths already investigated. 

• This approach can lead to exploring new regions of D, 
with the goal of finding a solution by 'globalized' search. 

• Tabu search has traditionally been applied to 
combinatorial optimization (e.g., scheduling, routing, 
traveling salesman) problems. 
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