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Decision Problems 

To keep things simple, we will mainly concern ourselves with 
decision problems. These problems only require a single bit output:
``yes'' and ``no''. 

How would you solve the following decision problems? 

* Is this directed graph acyclic? 
* Is there a spanning tree of this undirected graph with total

weight less than w? 
* Does the pattern p appear as a substring in text t? 
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Class P

P is the set of decision problems that can be solved in worst-case 
polynomial time: 

If the input is of size n, the running time must be O(nk). 
Note that k can depend on the problem class, but not the

particular instance. 

All the decision problems mentioned above are in P. 
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Nice Puzzle 

The class NP (meaning non-deterministic polynomial time) is the
set of problems that might appear in a puzzle magazine: ``Nice
puzzle.'' 

What makes these problems special is that they might be hard to
solve, but a short answer can always be printed in the back, and it
is easy to see that the answer is
correct once you see it. 
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Class NP

Technically speaking: 

A problem is in NP if it has a short accepting certificate. 
An accepting certificate is something that we can use to 

quickly show that the answer is ``yes'' (if it is yes). 
Quickly means in polynomial time. 
Short means polynomial size. 

This means that all problems in P are in NP (since we don't even
need a certificate to quickly show the answer is ``yes''). 

But other problems in NP may not be in P. Given an integer x, is
it composite? How do we know this is in NP? 
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Exponential Upperbound

Another useful property of the class NP is that all NP problems can
be solved in exponential time (EXP). 

This is because we can always list out all short certificates in
exponential time and check all O(2nk) of them. 

Thus, P is in NP, and NP is in EXP. Although we know that P is
not equal to EXP, it is possible that NP = P, or EXP, or neither. 
Frustrating! 
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NP-hardness 

As we will see, some problems are at least as hard to solve as any 
problem in NP. We call such problems NP-hard. 

How might we argue that problem X is at least as hard (to within
a polynomial factor) as problem Y? 

If X is at least as hard as Y, how would we expect an algorithm
that is able to solve X to behave? 
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NP-Complete Problems
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Evolutionary Computation
(“Genetic Algorithms”)

What is Evolutionary Computation? 
Example: A Genetic Algorithm:
• Works from a definition of a set (“space”) of designs so 

that specifying a string (vector) of values (often 
numbers, or “yes or no” values) can completely define 
one design

• Starts from random “population” of solutions (designs or 
“chromosomes”)

• Mutates some designs each generation
• Recombines some pairs of designs each generation
• Uses some analysis or simulation tool to evaluate each 

new design, keeps the better ones
• Quits when out of time or when no longer making 

progress
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Genetic Algorithms:

• Are a method of search, often applied to 
optimization or learning

• Are stochastic – but are not random search
• Use an evolutionary analogy, “survival of 

fittest”
• Not fast in some sense; but sometimes more 

robust; scale relatively well, so can be useful
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The Canonical or Classical GA

• Maintains a set or “population” of 
strings at each stage 

• Each string is called a chromosome, 
and encodes a “candidate solution”–
CLASSICALLY, encodes as a binary 
string (but today, can be string of real 
numbers or almost any conceivable 
representation)
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Criterion for Search

• Goodness (“fitness”) or optimality of a string’s 
solution determines its FUTURE influence on 
search process -- survival of the fittest

• Solutions which are good are used to generate 
other, similar solutions which may also be 
good (even better)

• The POPULATION at any time stores ALL we 
have learned about the solution, at any point

• Robustness (efficiency in finding good 
solutions in difficult searches) is key to GA 
success
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Classical GA: 
The Representation

1011101010 – a possible 10-bit string 
(“CHROMOSOME”) representing a possible 
solution to a problem

Bits or subsets of bits might represent choice of some 
feature, for example.  Let’s represent choice of 
shipping container for some object:

bit position meaning
1-2 steel, aluminum, wood or cardboard
3-5 thickness (1mm-8mm)
6-7 fastening (tape, glue, rope, hinges/latches)
8 stuffing (paper or plastic “peanuts”)
9 corner reinforcement (yes, no)
10 handle material (steel, plastic)
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Terminology
Each position (or each set of positions that encodes 

some feature) is called a LOCUS (plural LOCI)
Each possible value at a locus is called an ALLELE
We need a simulator, or evaluator program, that can 

tell us the (probable) outcome of shipping a given 
object in any particular type of container

• may be a COST (including losses from damage) (for 
example, maybe 1.4 means very low cost, 8.3 is very 
high cost on a scale of 0-10.0), or

• may be a FITNESS, or a number that is larger if the 
result is BETTER (expected net profit, for example)
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How Does a GA Operate?

• For ANY chromosome, must be able to 
determine a FITNESS (measure of 
performance toward an objective) using a 
simulator or analysis tool, etc.

• Objective may be maximized or minimized; 
usually say fitness is to be maximized, and 
if objective is to be minimized, define 
fitness from it as something to maximize

• Can have one or many objectives, and 
possibly constraints
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GA Operators:
Classical Mutation

• Operates on ONE “parent” chromosome
• Produces an “offspring” with changes.
• Classically, toggles one bit in a binary 

representation
• So, for example: 1101000110 could 

mutate to: 1111000110
• Each bit has same probability of 

mutating
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Classical Crossover

• Operates on two parent chromosomes
• Produces one or two children or offspring
• Classical crossover occurs at 1 or 2 

points:
• For example:  (1-point) (2-point)

1111111111 or  1111111111
X 0000000000 0000000000

1110000000 1110000011
and 0001111111      0001111100



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Selection

• Traditionally, parents are chosen to mate 
with probability proportional to their fitness: 
proportional selection

• Traditionally, children replace their parents
• Many other variations now more commonly 

used (we’ll come back to this)
• Overall principle:  survival of the fittest
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Typical GA Operation -- Overview

Initialize population at random

Evaluate fitness of new 
chromosomes

Perform crossover and 
mutation on parents

Select survivors (parents) 
based on fitness

Good
Enough? DoneYes

No
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Synergy – the KEY

Clearly, selection alone is no good …
Clearly, mutation alone is no good …
Clearly, crossover alone is no good …
Fortunately, using all three 

simultaneously is sometimes 
spectacular!
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EXAMPLE!!!
Let’s Design a Flywheel

GOAL:  To store as much energy 
as possible (for a given size of 
flywheel) without breaking 
apart (think about spinning a 
weight at the end of a string):

• On the chromosome, a number 
specifies the thickness (height) 
of the “ring” at each given radius

• Center “hole” for a bearing is 
fixed

• To evaluate:  simulate spinning 
it faster and faster until it breaks; 
calculate how much energy is 
stored just before it breaks
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Flywheel Example

So if we use 8 rings, the chromosome might look like:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

If we mutate HERE, we might get:
6.3 3.7 4.1 3.5 5.6 4.5 3.6 4.1
And that might look like (from the side):

Centerline
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Recombination

If we recombine two designs, we might get:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

x
3.6 5.1 3.2 4.3 4.4 6.2 2.3 3.4

3.6 5.1 3.2 3.5 5.6 4.5 3.6 4.1

This new design might be BETTER or WORSE!
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When Might a GA
Be Any Good?

• Highly multimodal functions
• Discrete or discontinuous functions
• High-dimensionality functions, including 

many combinatorial ones
• Nonlinear dependencies on parameters 

(interactions among parameters) --
“epistasis” makes it hard for others

• Often used for approximating solutions to 
NP-complete combinatorial problems

• DON’T USE if a hill-climber, etc., will work 
well
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The Limits to Search

• Efficient search must be able to EXPLOIT 
correlations in the search space, or it’s no 
better than random search or enumeration

• Must balance with EXPLORATION, so don’t 
just find nearest local optimum
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Representation Terminology
Genotype vs. Phenotype mapping

• Classically, binary string: individual or 
chromosome

• What’s on the chromosome is GENOTYPE
• What it means in the problem context is the 

PHENOTYPE (e.g., binary sequence may 
map to integers or reals, or order of 
execution, or inputs to a simulator, etc.)

• Genotype determines phenotype, but 
phenotype may look very different
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Discretization – Representation 
Meets Mutation!

• If problem is binary decisions, bit-flip mutation  is 
fine

• BUT if using binary numbers to encode integers, 
as in [0,15] [0000, 1111], problem with Hamming 
cliffs:
– One mutation can change 6 to 7:  0110 0111, 

BUT
– Need 4 bit-flips to change 7 to 8:  0111 1000
– That’s called a “Hamming cliff”

• May use Gray (or other distance-one) codes to 
improve properties of operators: for example: 000, 
001, 011, 010, 110, 111, 101, 100
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Defining Objective/Fitness 
Functions

• Problem-specific, of course
• Many involve using a simulator
• Don’t need to know (or even HAVE)  

derivatives
• May be stochastic
• Need to evaluate thousands of times, so 

can’t be TOO COSTLY
• For real-world, evaluation time is typical 

bottleneck
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Selection
In a classical, “generational” GA:
• Based on fitness, choose the set of 

individuals (the “intermediate” population) 
that will soon:
– survive untouched, or
– be mutated, replaced, or
– in pairs, be crossed over and possibly 

mutated, with offspring replacing parents
One individual may appear several times in 
the intermediate population (or the next 
population)
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Types of Selection

• “roulette wheel” -- classical Holland --
chunk of wheel ~ relative fitness

• stochastic uniform sampling -- better 
sampling -- integer parts 
GUARANTEED; still proportional
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Explaining Why a GA Works –
Intro to GA Theory

• Just touching the surface with two 
classical results:
– Schema theorem – how search effort is 

allocated
– Implicit parallelism – each evaluation 

provides information on many possible 
candidate solutions
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What is a GA DOING?  (Schemata 
and Hyperstuff)

• Schema -- adds “*”, means “don’t care”
• One schema, two schemata
• Definition: ORDER of schema H = o(H):   # of non-*’s
• Def.:  Defining Length of schema, Δ(Η): distance 

between first and last non-* in a schema; for example:  
Δ (**1*01*0**) = 5       (= number of positions where 1-pt 
crossover can disrupt it).
(NOTE:  diff. xover diff. relationship to defining 
length)

• Strings or chromosomes are order L schemata, where 
L is length of chromosome (in bits or loci).  
Chromosomes are INSTANCES (or members) of 
lower-order schemata
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Vertices are order ? schemata

Edges are order ? schemata

Planes are order ? schemata

Cubes (a type of hyperplane) 
are order ? schemata

8 different order-1 schemata 
(cubes):  0***, 1***, *0**, 
*1**, **0*, **1*, ***0, ***1

Cube and Hypercube
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Hypercubes, Hyperplanes, 
Etc.

• A string is an instance of how many 
schemata (a member of how many 
hyperplane partitions)? (not counting 
the “all *’s,” per Holland)

• If L=3, then, for example, 111 is an 
instance of how many (and which) 
schemata:  7 schemata

• 23-1
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GA Sampling of Hyperplanes

So, in general, string of length L is an 
instance of 2L-1 schemata

But how many schemata are there in the 
whole search space?

(how many choices each locus?)
Since one string instances 2L-1 schemata, 

how much does a population tell us about 
schemata of various orders? 

Implicit parallelism: one string’s fitness tells 
us something about relative fitnesses of 
more than one schema.
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Whitley’s illustration of 
various partitions of 
fitness hyperspace

Plot fitness versus one 
variable discretized as a 
K = 4-bit binary 
number: then get 

First graph shades 0***

Second superimposes 
**1*, so crosshatches 
are ?

Third superimposes 
0*10

Fitness and Schema/ Hyperplane Sampling
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How Do Schemata 
Propagate?

• Via instances -- only STRINGS appear 
in pop – you’ll never actually see a 
schema

• But, in general, want schemata whose 
instances have higher average 
fitnesses (even just in the current 
population in which they’re instanced) 
to get more chance to reproduce.  
That’s how we make the fittest survive!
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Proportional Selection Favors 
“Better” Schemata

• Select the INTERMEDIATE population, the 
“parents” of the next generation, via fitness-
proportional selection

• Let M(H,t) be number of instances (samples) of 
schema H in population at time t.  Then fitness-
proportional selection yields an expectation of:

• In an example, actual number of instances of 
schemata (next page) in intermediate generation 
tracked expected number pretty well, in spite of 
small pop size

f
tHftHMintermedtHM ),(),(),( =+
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Results of example run (Whitley) showing that observed numbers 
of instances of schemata track expected numbers pretty well
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Now, What Does
CROSSOVER Do to Schemata

• One-point Crossover Examples (blackboard)
11******** and 1********1

• Two-point Crossover Examples (blackboard)
(rings)

• Closer together loci are, less likely to be 
disrupted by crossover.  A “compact 
representation” tends to keep alleles together 
under a given form of crossover (minimizes 
probability of disruption).
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Linkage and Defining Length

• Linkage -- “coadapted alleles”
(generalization of a compact 
representation with respect to 
schemata)

• Example, convincing you that 
probability of disruption by 1-point 
crossover of schema H of length Δ(H) is 
Δ(H)/(L-1):

1****01**1
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The Fundamental Theorem of 
Genetic Algorithms -- “The”

Schema Theorem
Holland published in ANAS in 1975, had taught 

it much earlier 
It provides lower bound on change in sampling 

rate of a single schema from generation t to 
t+1.  We’ll consider it in several steps, 
starting from the change caused by selection 
alone:

f
tHftHMintermedtHM ),(),(),( =+
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Schema Theorem Derivation (cont.)

Now we want to add effect of 
crossover:

Conservative assumption: crossover 
within the defining length of H is 
always disruptive to H, and will ignore 
gains (we’re after a LOWER bound --
won’t be as tight, but simpler).  Then:

)]1(),([),()1()1,( ),(),( sdisruptiontHMptHMptHM
f

tHf
cf

tHf
c −+−≥+
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Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland 
ignored:

prob. of disruption by x-over is:

Then can simplify the inequality, dividing by popsize
and rearranging re pc:

So far, we have ignored mutation and assumed 
second parent is chosen at random.  But it’s 
interesting, already.

)),(1(1
)( tHPL

H −−
Δ

))],(1(1[),()1,( 1
)(),( tHPptHPtHP L

H
cf

tHf −−≥+ −
Δ
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Schema Theorem Derivation (cont.)

Now, we’ll choose the second parent based on 
fitness, too:

Now, add effect of mutation.  What is 
probability that a mutation affects schema 
H?  (Assuming mutation always flips bit or 
changes allele):

Each fixed bit of schema (o(H) of them) 
changes with probability pm, so they ALL 
stay UNCHANGED with probability: 

)]),(1(1[),()1,( ),(
1
)(),(

f
tHf

L
H

cf
tHf tHPptHPtHP −−≥+ −

Δ

)()1( Ho
mp−
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Schema Theorem Derivation (cont.)

Now we have a more 
comprehensive schema theorem:

People often use Holland’s earlier, 
simpler, but less accurate bound, first 
approximating the mutation loss factor 
as (1-o(H)pm), assuming pm<<1.
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Schema Theorem Derivation (cont.)

That yields:

But, since pm<<1, we can ignore small cross-
product terms and get:

That is what many people recognize as 
the “classical” form of the schema 
theorem.

What does it tell us?

])(1][1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ

])(1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ
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Using the Schema Theorem

Even a simple form helps balance initial 
selection pressure, crossover & mutation 
rates, etc.:

Say relative fitness of H is 1.2, pc = .5, pm = .05 
and L = 20:  What happens to H, if H is long?  
Short?  High order?  Low order?

])(1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ
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Building Block Hypothesis

Define a Building block as:  a short, low-order, 
high-fitness schema

BB Hypothesis:  “Short, low-order, and highly fit 
schemata are sampled, recombined, and 
resampled to form strings of potentially higher 
fitness… we construct better and better 
strings from the best partial solutions of the 
past samplings.”

-- David Goldberg, 1989
(GA’s can be good at assembling BB’s, but GA’s 

are also useful for many problems for which 
BB’s are not available)
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Traditional Ways to Do GA 
Search…

• Population “large”
• Mutation rate (per locus) ~ 1/L
• Crossover rate moderate (<0.3) or high 

(per DeJong, .7, or up to 1.0)
• Selection scaled (or rank/tournament, 

etc.) such that Schema Theorem allows 
new BB’s to grow in number, but not 
lead to premature  convergence
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The N3 Argument (Implicit or 
Intrinsic Parallelism)

Assertion:  A GA with pop size N can usefully 
process on the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 = 1 million)
To elaborate, assume:
• Random population of size N. 
• Need φ instances of a schema to claim we are 

“processing” it in a statistically significant 
way in one generation.
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The N3 Argument (cont.)
Instead of general case, Fitzpatrick & Grefenstette

argued:
• Assume 
• Pick φ=8, which implies 
• By inspection (plug in N’s, get   ’s, etc.), the number 

of schemata processed is greater than N3.  For 
example, N=64, # schemata order 3 or less is > 2**61 
> 64**3 = 2**18 = 256K.

• So, as long as our population size is REASONABLE 
(64 to a million) and L is large enough (problem hard 
enough), the argument holds.  

• But this deals with the initial population, and it does 
not necessarily hold for the latter stages of 
evolution.  Still, it may help to explain why GA’s can 
work so well…

206 22and64 ≤≤≥ NL
17θ3 ≤≤

θ
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Exponentially Increasing 
Sampling and the K-Armed 

Bandit Problem
Question:  How much sampling should above-average 

schemata get?
Holland showed, subject to some conditions, using 

analysis of problem of allocating choices to 
maximize reward returned from slot machines (“K-
Armed Bandit Problem”) that:

• Should allocate an exponentially increasing fraction 
of trials to above-average schemata

• The schema theorem says that, with careful choice 
of population size, fitness measure, crossover and 
mutation rates, a GA can do that:

• (Schema Theorem says M(H,t+1) >= k M(H,t))
That is, H’s instances in population grow 
exponentially, as long as small relative to pop size 
and k>1 (H is a “building block”).
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Crowding

Crowding (DeJong) helps form “niches” and 
reduce premature takeover by fit individuals

For each child:
• Pick K candidates for replacement, at 

random, from intermediate population
• Calculate pseudo-Hamming distance from 

child to each
• Replace individual most similar to child
Effect?
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Crossover Operators for 
Permutation Problems

What properties do we want:
• 1) Want each child to combine building 

blocks from both parents in a way that 
preserves high-order schemata in as 
meaningful a way as possible, and

• 2) Want all solutions generated to be 
feasible solutions.



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Operators for Permutation-Based 
Representations, Using TSP Problem:

Example:  PMX -- Partially Matched Crossover

• 2 sites picked, intervening section specifies 
“cities” to interchange between parents:

• A =     9 8 4 | 5 6  7  | 1 3 2 10
• B =     8 7 1 | 2 3 10 | 9 5 4  6
• A’ =    9 8 4 | 2 3 10 | 1 6 5  7
• B’ =  8 10 1 | 5 6  7  | 9 2 4  3

• (i.e., swap 5 with 2, 6 with 3, and 7 with 10 in both 
children.)

• Thus, some ordering information from each parent 
is preserved, and no infeasible solutions are 
generated

• Only one of many specialized operators developed
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What is Ant Algorithms
• Ant optimisation algorithms [Dorigo 1996] are 

multi-agent systems, which consist of agents 
with the collective behavior (stigmergy) of ants 
for finding shortest paths

– Alternative to applying complex algorithms to static 
datasets 

– A set of artificial ants implement a simple algorithm 
collectively to solve a combinatorial problem by a 
cooperative effort

– Originated from Alife research



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

A Brief History - Timeline
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Deneubourg’s Simple Experiment
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Terminology Index
• Node: a vertice

• Edge: a line connecting 2 vertices

• Graph: Diagram connecting nodes with edges

• Weighted graph: Edges have weights

• Path: Sequence of nodes-edges from between two nodes

• Hamiltonian path: A path without any node revisited

• Sigma: a sum of terms

• Delta: a difference between terms
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Computational Model
• The environment

– Weighted graph representing distances 
between nodes

• The ants
– Init population randomly distributed

– Travel across the graph

– Ordered tabu list of visited nodes

– Follow a Hamiltonian path
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• Ant Tour
– Hamiltonian path across all nodes in graph

– Path length L computed based on distances η

– Pheromone left on each node in the path
• Short tour High pheromone
• Long Tour Low Pheromone

– Pheromone increase at the end of tour

• Evaporation
– Remove edges of poor paths

Computational Model



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Application: Travelling Salesman 
Problem

• A set of cities. A salesman needs to 
travel through all the cities following an 
optimal route (Hamiltonian path) that 
minimises the distance travelled.

– Fist studied in 1930s

– NP-hard: Not been found an algorithm that 
solves the general problem (for any number 
of cities at any arrangement), in polynomial 
time.

– (Sub-)optimal solutions are possible for 
specific instances of the problem
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TSP: Sample run (30 cities)
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TSP: Sample run (50 cities)
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Hillclimbing, Simulated 
annealing, and GA

A nice (and very interesting) comparison
Notice that in all [hill-climbing] methods discussed so far, the 

kangaroo can hope at best to find the top of a mountain close to
where he starts. There’s no guarantee that this mountain will be 
Everest, or even a very high mountain. Various methods are 
used to try to find the actual global optimum.

In simulated annealing, the kangaroo is drunk and hops around 
randomly for a long time. However, he gradually sobers up and 
tends to hop up hill.

In genetic algorithms, there are lots of kangaroos that are 
parachuted into the Himalayas (if the pilot didn’t get lost) at 
random places. These kangaroos do not know that they are 
supposed to be looking for the top of Mt. Everest. However, 
every few years, you shoot the kangaroos at low altitudes and 
hope the ones that are left will be fruitful and multiply”.
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Adaptation

• Feedback process in which external changes 
in an environment are mirrored by 
compensatory internal changes in a system.

• Simple case: thermostat
• Interesting case : adaptation in complex 

systems
– Actions of the adaptive unit can affect the 

environment, which, in turn, feeds the information 
back into the adaptive system.

– Adaptation can be seen as a computation of the 
most complex form that emerges through the 
multiplicity and recursion of simple subunits.
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Genetics and Evolution

• The predictive and explanatory power of 
evolution and natural selection has shed light on 
every facet of biology
– Microscopic scale of how bacteria quickly adapt and 

become resistant to new drugs
– Macroscopic scale of the distribution and 

interrelatedness of whole species.
• There are many details behind evolution that are 

still a mystery.
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Biological adaptation

• Adaptation = variation + heredity + selection



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Variation

- Refers to how individual can differ from each 
other.

- Evolution operates on no single individual but on 
entire species.

- Can be expressed only in terms of multiple 
individuals

- Parallelism and multiplicity are essential 
ingredients in the algorithm of evolution.
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Heredity

• A form of temporal persistence
• Traits are inherited in discrete chunks of 

information
• Traits are iteratively passed down a time 

line.
• Parallelism and iteration as fundamental 

pieces of the biological equation for 
adaptation.
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Selection (1/2)

• With limitation on available resources, 
reproduction is far from a sure thing.

• You and I can proudly make the claim that 
every one of our ancestors, without exception, 
survived long enough to reproduce.

• If we consider the number of organisms that 
did not survive long enough to reproduce, we 
can be seen as members of a truly exclusive 
club.
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Selection (2/2)
– Our ancestors may have been strong, fast, clever, or 

even sexy.
– But what really counts in natural selection is an 

organism’s ability to reproduce.
– In fact, fitness can often be associated with a trait that 

may actually decrease the functionality of an 
organism.

• Peacock’s gaudy tail feathers may decrease a peacock’s 
ability in the daily business of survival, but are selective for
survival solely because peahens find them sexy.
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Coevolution
• Two species mutually adapt to one another in 

such a way to have a circular relationship, with 
one species’ influence on another ultimately 
returning to the first species in a feedback loop.

• Coevolution of predator and prey
– Lions and gazelles
– Lions become victims of their own success.

• Coevolution of bats and moths
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Bats and moths

• Bats have evolved a technique to filter out the most 
powerful sounds so that they can concentrate on the 
faint return signals.

• Moths have evolved a soft covering on their bodies 
and wings.

• Bats have evolved new frequencies that can identify 
the moths’ fuzzy coating.

• Moths have come up with a jamming technique that 
emits their own sounds.

• Bats have evolved an elaborate flight pattern that can 
overwhelm a moth’s senses and periodically turn off 
their echolocation.



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Adaptation

• Every species partially molds its own 
environment, which makes the boundary 
between the selector and selected 
somewhat blurry.

• Earth as a whole may be best understood 
and appreciated as one enormous 
complex adaptive system.
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Heredity

• Neo-Darwinist view of biological adaptation 
differs from Darwin’s original formulation in 
that it includes a method of heredity.

• Gregor Mendel
– Austrian monk and amateur botanist
– Showed that traits are inherited in discrete chunks 

of information.
– Refuted the idea that traits are merged or blended.

• Offspring from the paired tall and short pea plants are 
either tall or short, not medium.
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Molecular biology

• In the 1950s, Mendelian genetics was further 
solidified by work in molecular biology.
– Nucleic acid
– DNA triplets code amino acids that form proteins, the 

building blocks for everything from digestive acids, skin, 
bone, eyes, blood, and brain.

– DNA consists of extremely long chains of chemical bases, 
denoted by A, C, G, T.

– Each base has a complement, double helix, etc..

• The crucial part of all of this is that the 
language of life has a discrete alphabet.
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Why does evolution produce 
increasingly complex structures 

and organisms?
• Stephen J. Gould has proposed that evolution 

tends to fill niches.
– With a world consisting entirely of some simple 

organisms, say bacteria, where are only so few 
innovation that can be made that improve fitness yet 
maintain the defining features of what it means to be a 
bacterium.

– As the number of bacteria increases, it becomes easier 
to make a living as something that bacteria have not 
already mastered.

– The major innovations in nature are the consequences 
of species trying to find new room to grow.



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Unit of Selection
• Richard Dawkins has persuasively argued 

that a surprisingly large number of biological 
phenomena can be accounted for as artifacts 
of the gene being the sole unit of selection.
– Altruistic animal behavior

• Bees that sacrifice themselves for the benefit of the hive
• Birds that warn of predators
• Gazelles that do an eccentric dance to distract lions

– A gene actually improves its long-term survival 
rate if it encourages self-sacrifice for the benefit of 
other relatives that share the same gene.
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Natural selection as an 
explanation of evolution in non-

biological systems
• Richard Dawkins has coined the term meme to 

stand for a unit of cultural information.
– Examples of memes are tunes, ideas, catch-phrases, 

clothes fashions, ways of making pots, or building 
arches. Just as genes propagate themselves in the 
gene pool by leaping from body to body via sperms or 
eggs, so memes propagate themselves in the meme 
pool by leaping from brain to brain via a process 
which can be called imitation.
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Lamarckism (1/2)

• Central dogma of biology
– Genetic information flows in one direction, 

that is, DNA codes protein but protein does 
not code DNA.

• Lamarckism would suggest that a giraffe 
can endow its offspring with a longer neck 
solely through its efforts to stretch.
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Lamarckism (2/2)

• Lamarckism may now sound ridiculous for 
biological adaptation, it is a perfectly 
reasonable method of heredity for non-
biological systems.

• In the next chapter we will combine ideas 
from evolution and cultural adaptation into 
a single adaptive mechanism.
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Fitness Landscapes

• A visualization of the relationship between 
genotype and reproductive success

• Fitness Landscape Models: generate the 
state space of possible solutions and use 
heuristic methods to efficiently find best 
(most fit) solutions

• Adaptive Landscapes
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Fitness

• An individual’s capability to reproduce

• A genotype’s (or variation’s) capability to 
reproduce
–Proportion of individual’s genes in all the genes 

of the next generation

• A measure of likelihood of survival and 
reproductive potential
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Fitness Landscapes
• Evolution is an uphill struggle across a fitness landscape

• Mountain Peaks: high fitness, ability to survive

• Valleys: low fitness

• As a population evolves, it takes an adaptive walk across 
the fitness landscape
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Understanding Landscapes

Modified from http://en.wikipedia.org/wiki/Image:Fitness-landscape-cartoon.png
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Understanding Landscapes

From Poelwijk et al. 2007
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NK Fitness Landscapes

• Stuart Kaufmann (1993): Origins of Order

• A model of genetic interactions

• Developed to explain and explore the 
effects of local features on the ruggedness 
of a fitness landscape

• Why do we care about ruggedness?
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NK Fitness Landscape

• A landscape has N sites (a site is an amino 
acid sequence that codes for a specific 
protein or peptide)
–Each site contributes to overall fitness of 

landscape
–Each of the N sites has one of A possible 

states
–The total number of possible landscape states 

is AN.
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NK Fitness Landscape
• Calculate fitness of each 

peptide

• Map out adaptive walk 
toward uphill values

– Begin at any of the 16 corners, 
– A series of uphill moves from one 

corner to its neighbor along one 
edge of the hypercube. 

– Each move leads to a change at 
exactly 1 of the 4 amino acid sites,

– Because the walk is adaptive, each 
move results in an improved fitness. 

– The adaptive walk ends when a 
corner is reached which has no 
immediate neighbors with better 
fitness.

From http://gemini.tntech.edu/~mwmcrae/esre95.html
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NK Fitness Landscape
• In a rugged landscape, 

some adaptive walks will 
result in suboptimal 
fitness 

• Because a local, non-
global maximum is 
reached 

• This ruggedness is 
quantified by the K
parameter of the NK 
model.

From http://gemini.tntech.edu/~mwmcrae/esre95.html
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NK Fitness Landscape
• Consider a fitness 

landscape for a peptide 
that is 4 amino acids 
long (N = 4)
– Each can be one of 2 different 

amino acids (A = 2). 
– The number of possible 

peptides upon this fitness 
landscape is 16. 

– Represent each by a four-bit 
string (e.g., 0101). 

– Since N is 4, this fitness 
landscape can be mapped in a 
4-D  space, where each of the 
possible peptides is at one of 
the 16 corners of a 4-D cube, or 
hypercube. 

From http://gemini.tntech.edu/~mwmcrae/esre95.html
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NK Fitness Model

• Each node of the solution space makes a 
“fitness contribution” to the landscape that 
depends on the relationship between itself 
and the state of the other K nodes

• K ~ the degree to which nodes are 
interconnected 
–K = 0 all nodes independent (single smooth 

peak)
–K = N – 1 all nodes connected (completely 

random)
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Types of Fitness 
Landscapes

NK: ruggedness due to 
interconnectedness of alleles 

Internal
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Problems with the NK approach

• Uncertainty of mapping of genotype to 
phenotype

• Reproductive success easier to judge 
through phenotype

• Number of phenotypes occupying a single 
“adaptive peak” increases in proportion to 
the number of biological tasks that must be 
simultaneously performed (Niklas 1997)
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Principal of Frustration

From Marshall 2006
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Morphogenetic 
Fitness Landscape

Ruggedness due to trying to 
optimize too many problems 
simultaneously External 

From Marshall 2006
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Morphogenesis

• How shape is formed
• Processes that control organized spatial 

distribution of cells and/or large-scale 
features during development

• Morphogenetic Rules: the rules that govern 
morphogenesis
–Mathematical Model (Niklas)
–L-systems (Prusinkiewicz and Lindenmayer)
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Niklas 1997

• Geometric Representation
• Generated Adult Morphologies
• All morphologies are built using the same 

rules

• Fitness: 
–Ability to maximize light interception
–Mechanical stability
–Reproductive success
–Minimize total surface area
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Search through Adaptive Walk
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Principal of 
Frustration in 
Practice

One Task: 
A: reproduction
B: Light Interception
C: Minimal Area
D: Mechanical Stability

From Niklas 1997
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Principal of 
Frustration

Two Tasks:
A: Stability and Reproduction
C: Light Interception and Stability
D: Light Interception and Area
F: Reproduction and Light

From Niklas 1997
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Principal of 
Frustration

Three Tasks
A: stability, light, reproduction
B: stability, light, area
C: stability, reproduction, area
D: light, reproduction, area

From Niklas 1997
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Principal of 
Frustration

Four Tasks:

From Niklas 1997
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Summary of Niklas’s Results

More solutions per peakMore solutions per peak

Solutions are less optimalSolutions are less optimal
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Niklas 2004
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Niche Partitioning

Robert MacArthur
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Question

• Are adaptive walks emergent?
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Types of Fitness 
Landscapes

NK: ruggedness due to 
interconnectedness of alleles 

Internal



Stephan Steigele Combinatorial Optimization + Fitness Landscapes

Morphogenetic 
Fitness Landscape

Ruggedness due to trying to 
optimize too many problems 
simultaneously External 

From Marshall 2006
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