
Bioinformatics Leipzig
Institute of Computer Science

University of Leipzig

orthoDeprime: A Tool for Heuristic Cograph
Editing on Estimated Orthology Graphs

Bachelor’s Thesis

submitted by

Felix Kühnl

Advisors:
Dr. Maribel Hernandez-Rosales

Prof. Dr. Peter F. Stadler

February 2014

Thanks to Peter F. Stadler for pointing me to this interesting topic
and for his straightforward help. Maribel, thanks for your great support
and your time whenever I needed it. I also want to thank you, Sarah,
for your help, ideas, discussions and software as well as for your
friendship. Marcus Lechner and Sebastian Simoleit, thank you for
your assistance with your tools. A special thanks goes to Werner
Reutter and Marco Neumann for bravely paving the way through the
hell of bureaucracy for the students of our faculty. Thanks to the chief
scheduler, Petra Pregel.
Finally, I want to thank all my loved ones for supporting me: my

girlfriend Saskia, my parents and my grandparents. Without you I
would not be where I am today.

Abstract: It is a common task in modern biology to analyze or
reconstruct the relationship of different species. Since it is assumed that
related species share a common ancestor species, many genes are shared
between those. Two genes from different species are called orthologous,
if they originate from the same gene in their common ancestor species.
An orthology graph on a set of genes X is the graph with a set of nodes
X where any two nodes are connected if and only if they represent
orthologous genes.

Recently, it has been discovered that a valid orthology graph is a cograph
. However, the true orthology relation for X is unknown in practical
applications, so it has to be estimated with an orthology detection tool.
An example of such a program is POFF which uses sequence similarity
and synteny information to determine orthologous genes in a given set of
sequences. Unfortunately, errors are introduced by this estimation such
that the orthology graph constructed from the output of POFF will in
general not be a cograph.

This work focuses on the task of modifying estimated orthology graphs
by adding and removing edges in a way that it becomes a cograph. This
problem is known as cograph editing and is in general NP -complete, which
is why a heuristic approach is chosen.

The motivation of the cograph editing process lies in the fact that it is
possible to reconstruct the evolutionary history of the input genes when
the cograph structure is restored. This information can then be used
to reconstruct the phylogeny of a set of species. Another benefit is a
more accurate orthology prediction resulting from the fact that the edited
orthology graph will be more similar to the true one.

Selbstständigkeitserklärung: „Ich versichere, dass ich die vorliegende Arbeit selb-
ständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt
habe, insbesondere sind wörtliche oder sinngemäße Zitate als solche gekennzeichnet. Mir
ist bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung des Abschlusses
führen kann.“ [Fak14]

Leipzig, den
Felix Kühnl

V

Contents
1 Introduction 1

2 Biological Background 5
2.1 DNA and the Genetic Code . 5
2.2 The Genome and Single Genes . 5
2.3 The Evolution of Life . 6
2.4 Homology of Genes . 7

3 Mathematical Preliminaries 9
3.1 Undirected and Directed Graphs . 9

3.1.1 Complements, Paths and Connected Components of Graphs . 9
3.1.2 Multipartite graphs . 11
3.1.3 Representations of Graphs . 11

3.2 Trees . 13
3.2.1 Gene trees . 14
3.2.2 Newick Notation . 14
3.2.3 Split Distance . 15

3.3 Cographs . 16
3.3.1 Cographs and the Orthology Relation 16
3.3.2 Equivalence to P4-free Graphs 17
3.3.3 Modular Decomposition . 17
3.3.4 Cotrees . 19
3.3.5 Reconstructing Cographs from their Cotrees 19
3.3.6 Cotrees are Gene Trees . 19
3.3.7 Cograph Editing . 20
3.3.8 Cograph Editing of Orthology Graphs 21
3.3.9 Cograph Completion . 21

4 Third Party Tools and Algorithms 25
4.1 coedit . 25
4.2 Proteinortho . 25

4.2.1 Constructing a Graph . 26
4.2.2 A Relaxed Reciprocal Best Alignment Heuristic 27
4.2.3 Extracting Groups of Co-orthologs 27

4.3 POFF . 28
4.3.1 Extracting Synteny Information 29
4.3.2 Incorporate Synteny Information into Orthology Detection . . 30

4.4 Min-Cut Algorithm . 30
4.4.1 Description . 31
4.4.2 Correctness . 31
4.4.3 Complexity . 33

4.5 SplitDist . 33

VII

4.6 CographCompletion.jar . 34

5 Heuristic for Editing Cographs Based on Orthology Data 35
5.1 Outline of orthoDeprime . 35
5.2 Identifying and Eliminating the Prime Modules 35
5.3 Non-editable Prime Modules . 37
5.4 Choosing the Best Edition Set . 38
5.5 Implementation and Usage . 39
5.6 A Small Example . 39

5.6.1 The Input Data . 39
5.6.2 Locating the Prime Modules 39
5.6.3 Processing the Small Prime Module 39
5.6.4 Processing the Large Prime Module 40
5.6.5 Finishing . 40

6 Results and Evaluation 43
6.1 A Pipeline for Phylogenetic Tree Inference 43
6.2 Tested Datasets . 43
6.3 Estimation of the Orthology Relation 45
6.4 Construction of the Input Graph . 45
6.5 Prime Modules in the Datasets . 46
6.6 Running orthoDeprime . 46
6.7 A Distance Measure for Graphs . 46
6.8 Evaluation of the Output . 47

6.8.1 Number of Edges, Vertices and Prime Modules 48
6.8.2 Distance between the Input and Output Graphs 50
6.8.3 Distances and Edge Counts of the Pruned Graphs 51
6.8.4 Computation of the Split Distances of the Cotrees 51
6.8.5 Evaluating the Split Distances of the Cotrees 53
6.8.6 Consequences . 53

7 Conclusion 55
7.1 Conclusion of the Results . 55
7.2 Limitations and Perspectives for Future Work 55

7.2.1 Publication of this Work . 56

References i

VIII

1 Introduction
As we know today, all organisms living on our planet are derived from a single or
very few different simple organisms. Over millions of years, complex live forms as
we know them evolved and each adapted perfectly to their habitat. It is surprising
how closely related species are that at a first glance do not share any properties.
Since Charles Darwin proposed the theory that all species are related and share a
common ancestor, biologists try to study and to reconstruct the history of life on our
planet. Figure 1 shows the result of an historic attempt to do so. Even in modern
biology, equipped with knowledge and techniques that scientists of past centuries or
just decades could not have dreamed of, the reconstruction of the relationships of
species remains a challenging task.

Since today we are able to sequence the genetic code, we can analyze relationships
of species directly at the level of genes. This work relies on the identification of
orthologous genes to unveil the relationships of genes and even the relationships
of entire species. Two genes from different species are called orthologous, if they
originate from the same gene in their common ancestor species. It will be shown that
one can interpret orthology as a mathematical relation with many properties that
will be very useful to restore the desired information.

The orthology relation can be expressed as a graph that represents genes as vertices
and connects exactly the orthologous vertices by an edge. For a valid orthology
relation, this graph will be a cograph [Hel+13]. Cographs are a well-studied class of
graphs. Using the knowledge of cographs, the relationship of the genes can finally be
restored.
Since in practical applications for a set X of genes the true orthology relation is

unknown, is has to be inferred approximately by a sequence comparison. A tool that
does this job is POFF, which is used to generate the input data used in this work.
When constructing an orthology graph from the output of such tools, however, one
recognizes that their predictions are not always correct, and so the result will in
general not be a cograph. The goal of this work is to modify the estimated orthology
graph in a way that it becomes a cograph. This problem is formally known as cograph
editing and is in general NP -complete [Liu+11], and thus it is hard to give an exact
solution to this problem for graphs as huge as orthology graphs. This is why in this
work a heuristic approach is chosen.

There are two reasons why cograph editing is an interesting task. Firstly, as
already mentioned, from the cograph the relationship of genes and species can be
reconstructed easily. Secondly, since the true orthology relation for the given set
of genes X must be a cograph, editing the estimated orthology graph such that it
becomes a cograph can also increase the precision of the orthology estimation.
This work is organized in seven chapters as follows. The first chapter, hopefully,

introduced the reader to the topic, the goal and the motivation of this work. Chapter 2
provides the biological background information for readers not familiar with biology
at all and defines orthology of genes. In chapter 3 the mathematical concepts
required to model and process the biological input data are described. This includes

1

Figure 1: The tree of life [Hae66], hand-drawn by Ernst Haeckel in 1866. It is a
historic document of the efforts made to reveal the relations of the species
living on this planet.

2

an introduction to graph theory in general as well as a special focus on trees and
cographs. It is explained why those notions are useful for solving biological problems.
The next chapter, chapter 4, lists and explains tools and algorithms of other authors
which are used during this work. Especially POFF is explained in detail, because
its output is the foundation on which this work is build. In chapter 5 the prior
information is combined to craft a heuristic tool called orthoDeprime which can
transform graphs constructed from an estimated orthology relation to cographs. This
program has been implemented in C++ and is tested on simulated sequence data in
section 6. Finally, section 7 concludes the results of this work.

3

2 Biological Background
Here, basic biological terms and concepts used in this work will be explained. The
given information provides a background for the understanding of the tasks performed
in the following chapters.

2.1 DNA and the Genetic Code
A basic property of any life form is that it reproduces itself. This reproduction process
requires exact information on how to “construct” a “copy” of the existing organism.
In all organisms that we know, this information is stored as DNA (desoxyribonucleic
acid) in each of its cells. The DNA consists of sequences of pairs of the bases adenine
(A), cytosine (C), guanine (G) and thymine (T), where A always pairs with T and G
with C. The base pairs are connected by an acidic sugar-phosphate backbone and
form a helical structure consisting of two strands. Due to the specific pairing of bases,
each one of the two strands contains the entire genetic information.
Three base pairs form a so-called triplet, which encodes for a specific amino acid.

This way a sequence of DNA determines a sequence of amino acids which is used by a
cell to generate a protein, a molecule consisting of many connected amino acids folded
to a certain structure. The different proteins fulfill numerous important functions in
every cell. The association of the base triplets with their respective amino acids is
known as the genetic code (summarized in figure 2) and is, with a few exceptions (see
e. g. [WS08]), the same for all organisms we know. The latter property is referred to
as the universality of the genetic code.

2.2 The Genome and Single Genes
Even in complex organisms with different specialized tissues, each cell contains the
entire genetic information of that organism. It is called its genome. Not all of the
DNA of a cell does indeed encode the information for a certain protein. Large parts
of the genome seemed to have no function at all and had been referred to as “junk”,
though in the last years there has been found evidence [The+12] that those regions
might have an important regulatory roll. A single sequence of DNA that is translated
and synthesized to a protein by a cell is called a gene.
Note that, though the genetic code is uniquely determined, it is possible that

from a single sequence of DNA different proteins can be synthesized due to the post-
processing steps (e. g. multiple splicing) performed by the cell after the transcription
process. Also, the genetic code is degenerated, which means that different triplets
may encode for the same amino acid, and thus different genes can translate into the
same protein.

During the course of this work, genes will be compared to each other. Since genes
are sequences of base pairs, these sequences could be compared to each other directly.
But since one is usually interested in the function of a gene, i. e. the function of the

5

Figure 2: The genetic code [Mou14]. Starting in the center and following the letters
of a triplet to the outside gives the amino acid this triplet encodes for.
The amino acids are abbreviated by their respective three letter and one
letter codes. Note that here T (Thymine) has been replaced by U (Uracil),
since this figure shows the translation of RNA triplets to amino acids.
RNA is the transcribed form of DNA.

protein it encodes for, it is often more useful to compare the sequence of amino acids
in the encoded protein than the base sequence of the genes itself.

2.3 The Evolution of Life
On our planet we can see a vast variety of organisms and species. By today it is
generally accepted, at least among scientists, that this variety arose by an evolutionary
process. During replication, the genome of an organism is likely to change, or mutate.
Most of those mutations are either repaired by the cell or do not have any effect at
all, since they do not affect any gene or have no effect on the synthesized protein.
Some however will change the properties of the organism, which can have positive
or negative results for it. Here, a second mechanism comes into action: a successful
organism is more likely to survive and to reproduce itself. This causes a natural
selection of those and can cause a property invented by mutation to spread across an

6

entire population, the sum of the individuals of a species living in a certain geographic
region.
A speciation, the process when a new species arises, is the result of the evolution

of an already existing one. Today it is assumed that all extant species, i. e. the ones
that have not become extinct, evolved from a single “primitive” organism over a
time span of millions of years. As a consequence, all species are related to some
point. The reconstruction of this complex relations is an important task in modern
biology since the theory of evolution published by Charles Darwin became widely
accepted. In the past the relation of two species could only be estimated by their
morphology, the shape of the bodies of their individuals. Today we can sequence and
compare their genomes, allowing for a detailed analysis of the genes they share and
where they differ. This allows to reconstruct the relationship of species even if their
morphological differences allow different possibilities.

2.4 Homology of Genes
Not only species but also genes evolve. Two genes are called homologous if they orig-
inate from the same gene, their most recent or lowest common ancestor. Homologous
genes are further separated into two groups. If a gene is duplicated, the original
gene and its new copy are called paralogous. If two genes originating from the same
ancestor are separated by a speciation event, they are called orthologous.

Orthologous genes, or orthologs for short, usually fulfill a similar function in their
respective species. Therefore, they diverge only slowly and their sequences show
a high similarity. This fact is used by most orthology detection tools for finding
orthologous candidates. It also allows to predict the function of a gene, if the function
of an orthologous gene in another species is already known.
Paralogous genes can be separated into two groups: out-paralogs, which arose by

duplication before a certain speciation event, and in-paralogs, which arose after the
speciation. Usually, in- and out-paralogy is defined with respect to the most recent
common speciation event.
Genes are called co-orthologous with respect to a certain gene, if they are all

orthologous to that gene. Sets of co-orthologs arise e. g. if in-paralogs are orthologous
to the same gene.

7

3 Mathematical Preliminaries
This section will give the basic mathematical definitions and results used throughout
this thesis. Additionally, it will be noted how these will be used to model biological
concepts.

3.1 Undirected and Directed Graphs
An undirected graph G is a tuple (V,E) of two sets V and E. The set V is called
the vertex set whereas E is called the edge set. The vertices are also called nodes.
The elements e ∈ E, the edges, each connect two distinct vertices from the vertex set
with each other. If an edge e connects the vertices u and v, then e = {u, v}. Also
V (G) and E(G) denote the vertex set and edge set of G, respectively. Note that
{u, v} = {v, u} is a set and thus has no order and contains each element at most
once. Therefore, an edge always connects two distinct nodes. Also the edges have no
direction.
A directed graph, in contrast, has an edge set E consisting of tuples (u, v) for

distinct vertices u, v from its vertex set. Therefore, an edge (u, v) is directed from u
to v while the edge (v, u) is directed from v to u.
Graphs, especially smaller ones, can easily be visualized. When drawing graphs,

nodes are usually represented as circles and edges as lines or curves connecting them.
Directed edges are marked with an arrow pointing to the vertex the edge is pointing
to, see figure 3 for an example of an undirected and a directed graph.
If two nodes of a graph are connected by an edge, they are said to be adjacent.

An edge e connecting two nodes u, v is incident to these two nodes, and vice versa u
and v are incident to e.
In biology, graphs are commonly used to model many different kinds of interac-

tions and networks, e. g. gene-regulatory networks, protein-protein interaction or
food chains. In bioinformatics, they are an essential tool to algorithmically solve
many different biological problems, including (consistency-based) multiple sequence
alignments. In this work, graphs will be used to model gene relationships by choosing
a set of genes X as vertex set and connecting orthologous genes with an edge. Such
a graph is called the orthology graph for the genes on X.

3.1.1 Complements, Paths and Connected Components of Graphs

For a given graph G, its complement G is defined as the graph with V (G) = V (G)
and E(G) contains exactly those edges that E(G) does not contain. Figure 4 shows
the complement of the graph shown in figure 3a.

A graph G is called a subgraph of a graph H, if V (G) ⊆ V (H), E(G) ⊆ E(H) and
∀{u, v} ∈ E(G) : u, v ∈ V (G). This last condition means that G may only contain
those edges of H whose incident vertices u, v are in V (G), too. G is called induced
subgraph of H, if G is a subgraph of H and additionally ∀u, v ∈ V (G) : {u, v} ∈
E(G) ⇔ {u, v} ∈ E(H) holds, i. e. the nodes of G are connected by an edge in G if

9

H
A

G

C

F

E

DB

(a)

C

GE

D
F

A
H

B

(b)

F
B

G

A

E

H
C

D

(c)

G

A

B

H

C

E

F

D

(d)

Figure 3: An undirected (a) and a directed (b) graph on the same vertex set
V = {A, . . . , H}. The arrows indicate the direction of the edge, e. g. edge
(C,B) is directed from node C to node B.

Additionally, the complement of graph (a) is shown in (c). Its edge set
contains exactly all the edges that are not in the edge set of (a). In (d)
the same graph is shown with a different layout to improve the readability.
Nevertheless, this example demonstrates that the visualization of bigger
graphs can be a difficult problem.

10

and only if they are connected in H. An induced subgraph on G is fully defined only
by its vertex set.

A path inG = (V,E) is a sequence p = v1e1v2 · · · en−1vn of nodes v1, . . . , vn ∈ V and
edges e1, . . . , en−1 ∈ E such that ∀i ∈ {1, . . . , n− 1} : ei = {vi, vi+1} (ei = (vi, vi+1)
for directed graphs, respectively), i. e. two consecutive nodes in the sequence are
incident to the edge between them. p is a path from v1 to vn and has the length n,
which is the number of its vertices.

In a connected graph G = (V,E), for any two nodes u, v ∈ V there exists a path
from u to v. A graph that is not connected is disconnected. A connected component
C of G is a maximally connected, induced subgraph of G. Maximally connected
means that after removing any vertex to C, it is no longer connected. The graph
in figure 3a has three connected components: the induced subgraphs defined by the
vertex sets {A}, {B,C,D,E,H} and {F,G}.

Two graphs G and H are called disjoint if their vertex sets are disjoint, i. e. if
V (G) ∩ V (H) = ∅ holds.

3.1.2 Multipartite graphs

For a set S, a partition is a decomposition of S into multiple subsets S1, . . . , Sk with
S1∪S2∪ . . .∪Sk = S that are pairwise disjoint (Si∩Sj = ∅ ∀i 6= j, i, j ∈ {1, . . . , k}).
An undirected (directed) graph G = (V,E) is called multipartite, if there is a

partition of its vertex set V such that for any edge e = {u, v} (e = (u, v)) its incident
nodes u and v belong to different subsets of the partition. In other words, the
nodes are divided into different groups and there are no edges connecting two nodes
belonging to the same group. If the partition has exactly two subsets, the graph is
called bipartite. Figure 4 shows a multipartite graph whose nodes are partitioned
into three groups.

The notion of multipartite graphs is used by Proteinortho, an orthology detection
tool described in section 4.2, to identify clusters of co-orthologous genes in an orthology
graph.

3.1.3 Representations of Graphs

Since in Bioinformatics computers are used to process graphs, a representation of
graphs that is machine readable is required. There are many of those, but in this
work two of them will be used.

An adjacency list is a list (i. e. a text file) where each entry (i. e. line) is the name
of a vertex, followed by the names of the nodes that are adjacent to it. An adjacency
list could look like this:

A | B D
B | A
C |
D | A

11

F

E

D

B

H

A

G

C

Figure 4: A multipartite graph with a vertex partition consisting of three subsets
(marked yellow). It is the same graph shown in figure 3a.

This is the adjacency list of a graph H = (V ′, E ′) with V ′ = {A,B,C,D} and edges
connecting A and B, and A and D. C is an isolated vertex and the pipe “ | ” is a
separator. For directed graphs, the edges are always directed from the first vertex
of each line to the other ones following the pipe. For undirected graphs, it needs to
be ensured that if any vertex u is marked as adjacent to v, v needs to be marked as
adjacent to u, too. An adjacency list of an arbitrary undirected graph G = (V,E)
has the size |V |+ 2|E|, since the list needs |V | entries and each edge must be added
to both of its incident vertices. This allows to access incident nodes of a given vertex
in constant time if its position in the list is known. Especially for storing sparse
graphs the adjacency list is a good choice.

Another possibility to store graphs is the adjacency matrix. It is a matrix A ∈
{0, 1}|V |×|V |, i. e. a Boolean matrix consisting of |V | rows and columns of 0 and 1
where each v ∈ V is assigned a (pairwise distinct) position pos(v) from 1 to |V |
(pos is bijective). Let (auv) denote the entry of A in row pos(u) and column pos(v).
Then (auv) = 1 if (u, v) ∈ E, else it is 0. The adjacency matrix of H is given by:

0 1 0 1
1 0 0 0
0 0 0 0
1 0 0 0

The positions of the vertices were chosen according to their lexicographic order. The
entries of the main diagonal of any adjacency matrix are always 0 since no vertex
is adjacent to itself. The adjacency matrix requires a space of size |V |2, no matter
how many edges the graph has. If the positions of two nodes u, v in the graph is
known, checking whether they are adjacent can be performed in constant time using
an adjacency matrix.

12

3.2 Trees
Let T = (V,E) be a graph and v ∈ V) be a nodes. A cycle is a path of length at
least two from v to v, i. e. the path starts and ends at the same vertex. T is said
to be acyclic if it does not contain any cycle. An acyclic graph that additionally is
connected is called a tree. For an example of a tree see figure 5a.

K

E

D
C

H

F

G

A

J

B

I

(a)

D

I

G

C A H

FE JB

K

(b)

Figure 5: An unrooted (a) and a rooted (b) tree on the same vertex set V =
{A, . . . , J} with identical edge sets. Unlike the graph shown in figure 3a,
they are connected graphs and do not include any cycles. Both graphs
are identical (isomorphic) in the sense that only their layout differs. In
(b), node D has been chosen as root, the nodes {B,E,K,G, J} are leaves
and the remaining ones are internal nodes. The Newick notation of this
tree is given by ((B,E)C,A, ((K)F)H, (J)I)D.

The edges in a tree T can be given a direction. This is done by choosing an arbitrary
node ρ ∈ V that is now called the root of T . All edges are pointing away from the
root. Therefore, any node v of a rooted tree has an in-degree (out-degree), defined
as the number of edges incident to v that point to v (away from v, respectively).
ρ is the only node with an in-degree of 0. The vertices having an out-degree of 0
are called the leaves of T . leaves(T) denotes the set of leaves in T . Nodes that are
neither leaves nor the root are called internal nodes. Note that for unrooted trees,
the notion of leaves refers to the vertices incident to exactly one edge, while the other
vertices are the internal nodes. For any node v of a rooted tree, the set of nodes
that are incident to an outgoing edge v is the set of successors or children of v. The
single adjacent node connected to v by an incoming edge is called the predecessors or
father of v.
Trees can be visualized just like graphs, but in contrast to directed graphs the

edge direction of rooted trees is represented implicitly by drawing the root on top

13

and adding the successors of each node below their predecessor, as shown in figure 5.
Since trees are acyclic and connected, there is exactly one path from one node to

another one. For any two nodes u, v in a tree with root ρ, the paths from u to ρ
and from v to ρ will partially overlap, and the first common node of both paths is
called the lowest common ancestor lca(u, v) of u and v. For example, in the tree in
figure 5b, lca(K,G) = H.
Trees are a versatile tool for modeling relations, especially hierarchical ones like

file systems or family trees. In biology, they are used to represent phylogenetic
trees, where the nodes are species and an edge (A,B) means that species B evolved
(directly) from species A. Reconstructing the “tree of life”, i. e. the phylogenetic tree
containing all recent and extinct species of our planet, is a major task of modern
biology.

3.2.1 Gene trees

Just like phylogenetic trees, gene trees model the evolutionary history, but on the
level of single genes. Let X be a set of homologous genes where for any two nodes
from X it is known whether they are orthologous or paralogous to each other. A
labeled gene tree T on X is a rooted tree with leaves(T) = X such that a mapping
f : V (T) \X → {0, 1} exists that assigns to each internal node a label, either 1 or
0. This label shall have the property that the lowest common ancestor lca(x, y) of
any two genes x, y ∈ X will have the label 0, if x, y are paralogs, and 1 if they are
orthologs.

Gene trees model the evolutionary history of genes just like phylogenetic trees do
for species. An internal node labeled with 1 represents a speciation event, while the
label 0 indicates a gene duplication event. The reason why gene trees are interesting
is that they can be used to reconstruct the underlying species tree in polynomial
time as described in [HR+12]. Though in general this reconstruction is ambiguous, it
is nevertheless a useful tool to gain information on the phylogeny of a set of species,
if their annotated genomes are available for analysis.
Indeed, the construction of a proper gene tree will be the goal of this work. As

it turns out, the information stored in a labeled gene tree of a set of genes X is
already contained in the orthology relation of the genes in X [Hel+13], but this will
be explained later.

3.2.2 Newick Notation

Though trees can be stored in any graph representation described in section 3.1.3,
their special structure can be used for a more efficient storage. A very popular form
is the Newick notation. It is defined recursively as follows for any tree T with root ρ:

• If ρ is a leaf, Newick(ρ) = ρ.

• Else, ρ has child nodes ρ1, . . . , ρk. Then

Newick(ρ) = (Newick(ρ1), . . . ,Newick(ρk))ρ.

14

The label ρ after the closing parenthesis can also be omitted, or set to e. g. 0
and 1 to indicate duplication or speciation events in a gene tree. To achieve a
unique representation, the nodes ρ1, . . . , ρk should be ordered, e. g. according
to their lexicographic order.

As an example the Newick notation of the tree in figure 5b is given there. As an
additional example, the representation of the tree in figure 6b is given by((

A,B
)
1,
(
(C,E,D)0, (F,G)0

)
1
)

0.

This notation is required for the tool splitDist (see section 4.5), which is used in
this work for comparing reconstructed gene trees with the original ones. Note that
there exist variations of this notation since there is no official standard describing it.

3.2.3 Split Distance

Given two trees T1, T2 on the same leaf set X, one can ask how different they are. In
the context of this work, this question arises in this form: given two gene trees T1, T2
on a set of genes X, how big is the distance between the evolutionary scenarios those
trees describe? Another use for such a distance measure is the comparison of two
phylogenies on the same set of species.

A well-known distance measure for trees is their split distance. Let T = (V,E) be
a tree and e = {u, v} ∈ E be an edge of T . According to [Mai], the split induced
by e is the partition of the leaf set X of T into two subsets X1, X2 such that X1
(X2) contains exactly those leaves that are in the component of (V,E \ e) containing
u (v, respectively). More intuitively, each edge splits the leaf set into two groups
containing the leaves on each side of this edge. For example, the tree shown in
figure 5a contains the split {A, J,B,E}, {G,K}, induced by the edge {D,H}. The
splits induced by edges incident to a leaf are called trivial splits. Obviously, any two
trees on the same leaf set share the same trivial splits.

Let S(T) denote the set of splits in T . Now, the split distance of T1 and T2 can be
defined as the number of splits in T1 not found in T2. Since this absolute number
strongly depends on the total number of splits in the trees, a normalized variant
is more useful for this work. The normalized split distance sdist(T1, T2) ∈ [0, 1] is
defined as the number of splits in T1 not contained in T2, divided by the total number
of splits in T1, i. e.

sdist(T1, T2) = |S(T1) \ S(T2)|
|S(T1) ∪ S(T2) .

There are several tools available to compute the split distance for given trees. In
section 4.5, one called SplitDist is further described. Though in this work and
in the mentioned tool the above definition of the split distance is used, there is
an alternative and more common definition based on the Jaccard index. It defines
sdistalt(T1, T2) as the symmetric difference of the splits in T1 and T2, divided by the

15

total number of splits in T1 and T2, so

sdistalt(T1, T2) = |S(T1)4S(T2)|
|S(T1) ∪ S(T2) =

∣∣∣(S(T1) \ S(T2)
)
∪
(
S(T2) \ S(T1)

)∣∣∣
|S(T1) ∪ S(T2)| .

Note that the definition used here is, in contrast to the alternative one, not symmetric,
so in general sdist(T1, T2) 6= sdist(T2, T1).
The split distance is one of the two measures used to evaluate the results of the

tool developed in this work. It was chosen because it is popular and tools for its
calculation are available. However, it might not be optimally suited for the task of
comparing gene trees. The major concern is that the split distance neglects the labels
0 and 1 marking orthology and paralogy in the tree. Two gene trees can have the
same edge set, but the labels might be swapped, i. e. 0 instead of 1 and vice versa.

3.3 Cographs
Cographs are a well-known graph class that has been studied since the early 1970s
[CLB81]. They were studied independently in many different areas of mathematics
and therefore have various names or equivalent characterizations. Alternative names
include D∗-graphs or Hereditary Dacey graphs.
A cograph is a graph G that is defined recursively as follows [Liu+11]:

• the graph consisting of only one node (the trivial graph) is a cograph

• for any cograph G, G is also a cograph

• for any any two disjoint cographs G,H, G ∪H is also a cograph

The union G ∪H of two graphs G,H is the graph with the vertex set V (G) ∪ V (H)
and the edge set E(G) ∪ E(H). For disjoint G and H, V (G) ∩ V (H) = ∅ holds.
Figure 6a shows an example of a cograph.

3.3.1 Cographs and the Orthology Relation

Cographs are closely related to gene orthology. Let X be a set of homologous genes.
Then a mapping δ : X ×X → {0, 1} can be constructed such that for distinct genes
x, y ∈ X, δ(x, y) = 1 if x, y are orthologs, and δ(x, y) = 0 if they are paralogs. As
recently shown by [Hel+13], δ is a so called symbolic ultrametric. Furthermore, they
proved that for any symbolic ultrametric on X, the graph G = (X,E) with

E = {{x, y} | x, y ∈ X, δ(x, y) = 1}

is a cograph. This means that any orthology graph is a cograph. Therefore, the
mathematical properties of cographs are particularly interesting for the reconstruction
of the orthology relation of X.

16

EB

D

C

GF

A

(a)

C DE GF

0

1 1

A B 0 0

(b)

Figure 6: A cograph (a) and its associated cotree (b). The cograph does not contain
an induced P4. The cotree has strictly alternating labels and can be used
to reconstruct the cograph (a).

3.3.2 Equivalence to P4-free Graphs

Two graphs G = (V,E), G′ = (V ′, E ′) are called isomorphic to each other, if there
exists a bijective mapping f : V → V ′ such that ∀u, v ∈ V : {u, v} ∈ E ⇔
{f(u), f(v)} ∈ E ′. Intuitively, this means that both graphs can be drawn the same
way, except for the names of their nodes.

A P4 is a graph (V,E) with V = {u, v, w, x} and E =
{
{u, v}, {v, w}, {w, x}

}
, or

any other graph isomorphic to it. In other words, P4 is a path consisting of four
nodes and three edges.
It can be shown that the graphs not containing any P4s as induced subgraph are

exactly the cographs [CLB81]. This provides an intuitive characterization of them,
which will be useful later on. Of course, the cograph in figure 6a does not contain
any P4s.

3.3.3 Modular Decomposition

To further analyze the properties of cographs, a certain decomposition procedure for
graphs called the modular decomposition is required. An arbitrary non-trivial graph
G (i. e. G has more than one vertex) can be decomposed into so-called modules. If G
is connected and its complement G is disconnected, G is called a series module. If
G is disconnected and its complement G is connected, G is called a parallel module.
Otherwise, G is a prime module.
Let G1, . . . , Gn denote the connected components of G. Then either n = 1 (i. e.

G = G1 is connected) or n > 1 (i. e. G is disconnected). Also, let G′1, . . . , G′k be
the connected components of G. Using the above definitions, the canonical modular

17

decomposition tree T (G) can be defined in Newick notation:

T (G) =


v if G is trivial, {v} = V (G)
(T (G1), . . . , T (Gn))0 if G is a parallel module
(T (G′1), . . . , T (G′n))1 if G is a series module
(v1, . . . , vn)P if G is prime, {v1, . . . , vn} = V (G)

The leaves of the decomposition tree are exactly the single vertices. The 0 and 1
behind the parenthesis in the parallel and series module cases are labels for the
internal node of the tree. The label P marks prime modules. They appear only as
the last internal node on any path from the root to a leaf. For on example of a graph
and its associated decomposition tree, see figure 7.

H

B

E

GJ

D

C

A

I

F

(a)

0

E

A

FD

P1

JIGC HB

(b)

Figure 7: (a) This graph is a parallel module, consisting of the trivial graph ({A}, ∅),
the complete graph on the vertices B,C,D and E, and a prime module
which has been highlighted. (b) This is the decomposition tree of (a),
were the children of node 1 form a series module, the children of 0 form a
parallel module and the children of P form a prime module.

In the canonical tree, the labels 1 and 0 alternate on any path from the root to a
leaf, i. e. if an internal node has label 1, any of its internal successor nodes is labeled
0 and vice versa, unless it is a prime or a trivial module. To verify that, assume that
G is a parallel module with components G1, . . . , Gn, n > 1, so G gets the label 0
in the modular decomposition tree. If there was a component Gi, 1 ≤ i ≤ n with
label 0, it would be a parallel module and thus disconnected, contradiction. Assume
now that G is a series module, G′1, . . . , G′n are the components of its complement
and G∗ = G′i, 1 ≤ i ≤ n is a series module, too. Then G∗ is connected and G∗

is disconnected, but G∗ = G′i, and G′i is connected by assumption, contradiction.
Therefore, the claim holds.

18

3.3.4 Cotrees

The definition of the modular decomposition tree looks somewhat similar to the
definition of cographs. So given a cograph G, what will T (G) look like? First,
consider the following lemma:

Lemma. A non-trivial cograph G is connected if and only if its complement is
disconnected.

The lemma trivially holds if |V (G)| = 2, since ({u, v}, ∅) = ({u, v}, {{u, v}}) and
those are the only two graphs with two nodes, up to isomorphism. If G = G1 ∪G2
for two disjoint cographs G1, G2, then G is disconnected. Therefore, any two vertices
u ∈ G1 and v ∈ G2 are non-adjacent in G and adjacent in G. Also, any two vertices
s, t ∈ G1 (s, t ∈ G2) are indirectly connected in G since both s and t are adjacent to an
arbitrary node w ∈ G2 (w ∈ G1, respectively) in the complemented graph. It follows
that G is connected. Note that this argumentation is valid for any disconnected
graph with at least two nodes, not just for cographs.
The other case is that G = G′ for a cograph G′ that by induction satisfies the

claim. Then G = G′ is disconnected if and only if G = G′ is connected.
The consequence of this lemma is that any cograph is either a single vertex, a series

module or a parallel module, but not a prime module. Since any induced subgraph
of a cograph is a cograph, too, this means that a cograph cannot contain a prime
module. Because of that, the decomposition tree of a cograph, also called its cotree,
has strictly alternating labels of 1 and 0 at its internal nodes and single vertices as
leaves. Figure 6b gives an example of a cotree.
Consider also the connection of prime modules and induced P4s. Any prime

module must contain at least one P4, otherwise it would be a cograph and no prime
module. On the other hand, any P4 must be contained in a prime module, since
otherwise a cograph that contains a P4 could be constructed. Therefore, modular
decomposition can be applied to an arbitrary graph to find its prime modules and
thus (approximately) locate the P4s, which is just the approach that is used in this
work to tackle the problem defined in the next sections.

3.3.5 Reconstructing Cographs from their Cotrees

By the section above, it follows that a cograph is uniquely represented by and can be
reconstructed from its associated cotree. To do that, one needs to start at the leaves
of the cotree and interpret them as trivial graphs containing this single node. Then
each internal node G with the children G1, . . . , Gn represents the graph G1∪ . . .∪Gn

if G is labeled with 0, or G1 ∪ . . . ∪Gn if G is labeled with 1. The latter operation is
called the join of G1, . . . , Gn and can also be thought of as taking G1 ∪ . . . ∪Gn and
adding all edges that connect any two vertices u ∈ Gi and v ∈ Gj, where i 6= j.

3.3.6 Cotrees are Gene Trees

There is another useful property of cotrees, as the following lemma shows:

19

Lemma. For a cograph G and its cotree T (G) with the associated labeling function
fT (G) : V (G) \ leaves(G)→ {0, 1},

{u, v} ∈ E(G) ⇔ fT (G)(lcaT (G)({u, v})) = 1

holds for all distinct vertices u, v ∈ V (G).

To verify this, let u, v ∈ V (G) and fT (G)(lca({u, v})) = 0, i. e. the lowest common
ancestor of u and v in the cotree of G is labeled wit 0. Then lca(u, v) is a parallel
module and thus u and v are in distinct components of G, so {u, v} /∈ E(G). Assume
now that fT (G)(lca({u, v})) = 1, so lca(u, v) is a series module and any two nodes
from distinct children of lca(u, v) are connected due to the properties of the join
operation. u and v cannot belong to the same child of lca(u, v), because then the
latter would not be the lowest common ancestor of u and v in T (G).

In a biological context, i. e. when G is a valid orthology graph, this means that in
the cotree fT (G)(lca({u, v})) = 1 if and only if the genes u, v are orthologous. This
means that the cotree T (G) is a gene tree of the genes in V (G).

3.3.7 Cograph Editing

The cograph editing problem is defined as follows:

Instance: An undirected graph G = (V,E).

Question: Find edge sets E+ ⊆
(

V
2

)
\E and E− ⊆ E such that Ĝ = (V,E∪E+\E−)

is a cograph.
(

V
2

)
is the set of all edges connecting two distinct nodes of V .

Cost: Minimize |E+|+ |E−|.

In other words, edges are added to (E+) or removed from (E−) G to transform it
into a cograph. The edges in E+ and E− are called edition operations and are applied
to G, i. e. they are either added or removed. Together, the edges from both sets form
an edition set for G.
As an example, consider the graph from figure 8a. Obviously, it is not a cograph

since e. g. the nodes B,C,D and H form an induced P4. There are numerous
cograph edition sets for this graph, one example would be E+ = {{H,G}} and
E− = {{C,D}, {C,E}, {D,E}}. The minimal edition set is given by E+ = ∅ and
E− = {{D,H}}.

Obviously, such edition sets exist for any graph G, since adding all missing edges
to it will yield a complete graph, which is a cograph since it does not contain an
induced P4. The other extreme case, removing all edges from G, will also result
in a cograph for the same reason. Instead of such trivial solutions, one is usually
interested in edition sets that meet certain criteria. Finding a minimal edition set
is the most common task, i. e. finding a set containing as few edges as possible.
Unfortunately, it has been shown that finding an edition set of at most k edges is
NP -complete [Liu+11], so it is unlikely that there exists a polynomial-time bounded

20

algorithm to solve this task. Note that k is treated as input here. However, this
problem is fixed-parameter tractable, which means that if k is a fixed integer, the
problem can be solved in polynomial time. The complexity increases exponentially
only if k is increased. An implementation of such an algorithm is coedit, described
in section 4.1

3.3.8 Cograph Editing of Orthology Graphs

As described in section 3.2.1, gene trees can be used to reconstruct phylogenetic trees.
Further, is has been explained that an orthology graph is a cograph (section 3.3.1),
and that a gene tree can be reconstructed from an orthology graph easily by modular
decomposition (see section 3.3.3).

Piecing together the puzzle, all that is left to do to reconstruct a possible phylogeny
for a number of species from the sequences of their genes or proteins is building
their orthology graph. Since the true orthology relation is unknown, it has to be
estimated. There are a number of tools for this task, but here a program called POFF
will be used, see section 4.3 for an exact description of how it works. In a nutshell, it
estimates which genes could be orthologous based on their sequence similarity and
their position on the chromosome. However, the result of all such tool is always an
approximation and there will be genes marked as orthologous which are not, as well
as genes which are in fact orthologs but are not reported as such. Because of this
inevitable errors, the graph G constructed from the estimated orthology relation will
most likely not be a cograph.
Since a cograph is required for further processing of the input data as suggested

above, the only solution is to modify G in such a way that it becomes a cograph.
This could be done by computing a minimal edition set for G, but since in practical
applications G can have tens of thousands of vertices, with an exponential-time
algorithm there is no hope of finding an optimal solution within a feasible amount of
time. The focus of this work therefore lies on developing a heuristic algorithm that
can deal with such huge graphs.

3.3.9 Cograph Completion

Another problem related to cograph editing is cograph completion. Again, an arbitrary
graph G = (V,E) is supposed to be transformed into a cograph Ĝ+ but, as the name
suggests, only by adding edges to Gs edge set:

Instance: An undirected graph G = (V,E).

Question: Find an edge sets E+ ⊆
(

V
2

)
\E such that Ĝ = (V,E ∪E+) is a cograph.

Cost: Minimize |E+|.

For example, to transform the graph from figure 8a into a cograph, the cograph
completion set E+ = {{B,D}, {B,H}, {C,H}, {E,H}, {G,F}} is applied to it. The
result is shown in figure 8b.

21

For this problem it is unknown whether there is a polynomial-time algorithm to
find a minimal edition set, however, there is an algorithm that can compute an
inclusion minimal solution in linear time with respect to |V | + |E| [LMP08]. An
edition set E+ is inclusion minimal if no proper subset of E+ exists that is by itself
an edition set for G. Especially, this means that the edition set resulting from the
application of this algorithm may not have the minimal number of edges with respect
to all other edition sets, and thus, is not minimal in the sense used here to describe
cograph edition sets. Nevertheless, the authors suggest that, because of the fast
running time and its probabilistic character, the algorithm can be applied multiple
times and from these samples the best solution can be chosen.

22

F

E

G
C

B

D

H

A

(a)

G

F

H

C

E

B

D

(b)

Figure 8: (a) A graph containing multiple induced P4s, i. e. it is not a co-
graph. A cograph edition set is given by E+ = {{H,G}} and E− =
{{C,D}, {C,E}, {D,E}}, the minimal edition set is given by E+ = ∅ and
E− = {{D,H}}. (b) Here, the cograph completion set (see section 3.3.9)
E+ = {{B,D}, {B,H}, {C,H}, {E,H}, {G,F}} has been applied to the
graph from figure (a).

23

4 Third Party Tools and Algorithms
The tools of other authors have been used as a foundation for this work. In this
section it will be explained how they work.

4.1 coedit

As described in section 3.3.7, cograph editing is an NP -complete but fixed-parameter
tractable problem for the parameter k, where k is the maximal number of edges in
an edition set. An algorithm with a time complexity of O(4.612k + |V |4.5) has also
been proposed by [Liu+11].

The approach is to first edit the input graph to become a P4-sparse graph, a graph
where each induced subgraph of exactly five nodes contains at most one induced P4.
To a P4-sparse graph, cograph editing can be applied in a time of just O(|V |+ |E|).
The transformation of an arbitrary graph into a P4-sparse, however, is complex. It is
performed by identifying a number of forbidden subgraphs which are then eliminated
by using a search tree approach. For each forbidden subgraph certain edition rules
are available, and each application of one of those will mark one edge or non-edge as
permanent so it cannot be modified by later edition steps. The algorithm branches
with each application such that all possible solutions with a size of at most k will be
found. As an additional preprocessing step, before the P4-sparse editing is applied, a
simplification of the input graph called kernelization is performed which substitutes
parts of the graph by single nodes without changing the outcome of the edition step
itself. Figure 9 gives a schematic overview of the entire work flow of the algorithm.

The program coedit [Ber12] is a C++ implementation of the algorithm described
above. It will be integrated into the tool developed in this work to deal with small
prime modules. Due to the enormous demand for computational power, a small value
for k has been chosen (default: k = 5). This means that for prime modules of a size
of roughly 15 vertices or more no edition set can be found and another method needs
to be used.

4.2 Proteinortho

Proteinortho [Lec+11] is a detection tool for orthologous genes and proteins. Com-
peting applications available before its release had the disadvantage that their memory
consumption increased quadratically with the input size. This made the computation
for larger datasets infeasible if no high-end hardware was available. Proteinortho,
however, was designed to run also on modest hardware and made orthology compu-
tation available to a wider audience, which became important especially because the
advancing sequencing technology produced more and more data. It also supports
multiple CPUs and cores.
In this work, Proteinortho is not used directly, but POFF (section 4.3), which is

closely related to it. Therefore Proteinortho is explained first.

25

Graph G

Kernelization

Cograph?

P4-sparse graph?

EDP4 Branching

Cograph

Cograph

Y

N

Y

N

Figure 9: A schematic overview [Ber12] of the cograph editing algorithm of [Liu+11]
that is used by coedit. EDP4 is the name of the algorithm that computes
a cograph from a P4-sparse graph.

4.2.1 Constructing a Graph

Given a set of genes, each belonging to a certain species, the sets of co-orthologous
genes shall be computed.
At first, a pairwise comparison of any gene with all genes of all other species is

performed. This can be done with a tool like blast, which produces a bitscore for
each comparison to measure the sequence similarity of both genes. Those bitscores are
then used to calculate the so-called E-values, which are generated using a statistical
model to represent the probability that two sequences are as similar as they are by
chance. This implies that similar sequences produce a small E-value and that short
similar sequences receive smaller scores than longer ones. Though they are are not
the same, E-values below 0.01 have only a small difference to their statistical p-value,

26

the probability that an E-value occurs by chance.
Once the similarity scores are calculated, groups of orthologous genes are computed

based on them. This is done by constructing a weighted, directed graph ~Υ with
the genes as nodes. For two nodes x, y an edge is added, if w((x, y)), defined as
the bitscore blast generated when comparing x with y, is above a certain E-value
threshold. Finding the orthologous genes corresponds to the task of finding nearly
disjoint, maximal, nearly-complete multipartite (see section 3.1.2) subgraphs in ~Υ.

4.2.2 A Relaxed Reciprocal Best Alignment Heuristic

To extract pairs of ortholog genes from ~Υ, a reciprocal best alignment heuristic
(RBAH) could be used. This means that two genes x and y from species A and B,
respectively, are recognized as orthologs, if and only if the score w(x, y) is maximal
with respect to any other score w(x, y′), ∀y′ ∈ B, and the score w(y, x) is maximal
with respect to any other score w(y, x′), ∀x′ ∈ A. This way a symmetric graph
ΥRBAH is constructed, containing the genes as nodes and edges connecting exactly
those genes which are recognized as orthologous by the RBAH.
The RBAH, however, works correctly only under some assumptions which are

not always fullfilled for real data. For example, for a given gene it can find at most
one ortholog per species, though several co-orthologs could exist. Furthermore, if
two groups of co-orthologous genes exist in two different species, it is possible that,
due to small differences in their score, edges between them could be removed in the
symmetric graph Υ, see figure 10 for an example.
Therefore the RBAH has to be relaxed. A graph ~Υ∗ is constructed with a vertex

set as before, but a modified edge set such that, for a gene x ∈ A and another species
B, it includes edges to all genes in B that are almost as similar as the maximal
similar gene from B, so

(x, y) ∈ E(~Υ∗) ⇔ w((x, y)) ≥ f ·max
y′∈B

(
w((x, y′))

)
, f ∈ (0, 1).

The default value for the relaxation parameter f is 0.95. This change causes co-
orthologs to be included, but at the same time prevents that edges connecting genes
showing too much divergence are added to ~Υ∗. The undirected graph Υ∗ is then
extracted from ~Υ∗ by retaining an edge between any vertices x and y, if and only if
both (x, y) and (y, x) are edges in ~Υ∗.

4.2.3 Extracting Groups of Co-orthologs

Now groups of co-orthologs can be found as nearly complete multipartite subgraphs
of Υ∗. Finding complete multipartite subgraphs is in general an NP-complete
problem [Cor06], and since in Υ there could be edges missing between genes that
are in fact orthologous (false negatives), or edges could connect genes that are not
(false positives), Proteinortho solves the task approximately: complete multipartite
graphs are dense clusters in the elsewise sparse graph Υ∗. Therefore, decomposing it
into its components isolates those subgraphs. If they are sufficiently dense, they are

27

A_1 B_1A_2 B_2

dB

s

dA

(a) A gene tree. The root s represents a
speciation event, the nodes dA and dB
are duplications in species A and B and
the leaves are genes in their respective
species.

0.99

0.97

0.98

0.98

0.99

0.98

0.96 0.97

B_1

A_2B_2

A_1

(b) The normalized similarity scores for the
genes.

Figure 10: In this example, RBAH fails to add any edges to the symmetric graph
Υ∗, though the differences in their similarity scores are negligible.

reported as a group of co-orthologs. If not, then multiple multipartite-like subgraphs
are connected by one or a few spurious edges. Those are eliminated using spectral
partitioning, namely by approximating a minimal cut set using the Fiedler vector
approach (see e. g. [GM95]).

4.3 POFF

The tool POFF [LHR+13] is closely related to Proteinortho. Actually, newer versions
of Proteinortho incorporate the functionality that POFF, which is why the current
version of Proteinortho was used for evaluation in section 6. POFF is an orthol-
ogy detection tool, too, but extends Proteinortho by adding synteny information
evaluation to the detection algorithm, i. e. it uses the relative gene order on the
chromosomes as additional filter to reduce the amount of false positive detections.
Genetic neighborhood is often conserved during speciation events and can be used to
identify duplications that happened before the speciation. This way, large sets of
genes that are detected as co-orthologous by Proteinortho can be separated into
smaller groups of true orthologs by POFF. Note, however, that this approach does
not work for in-paralogs, where the duplication happened after the speciation.

28

4.3.1 Extracting Synteny Information

There are different algorithms to calculate synteny. Some require gene family in-
formation while others rely on pairwise sequence similarity of genes. The heuristic
FFAdj-MCS [DTS12], which is used by POFF, belongs to the latter ones.
FFAdj-MCS uses a simple model to represent genomes. Let G be the set of genes. A

Genome G is a sequence of genes gi ∈ G, where 1 ≤ n ≤ n− 1. |G| = n is called the
size of the genome. The beginning and end of a genome is marked with the symbol ◦
that represents the telomeres, the end of a chromosome. The genes also have a sign
(+,−, + can be omitted) indicating their direction on the chromosome. Note that
this model is unichromosomal, but multiple chromosomes can be treated like one large
chromosome easily. Assuming that a similarity measure w : G × G → [0, 1] for any
two genes is given, for two given genomes G1, G2 a bipartite graph B = B(G1, G2, E)
can be constructed by taking their genes as vertex set and add an edge eij between
the genes gi ∈ G1 and gj ∈ G2 if and only if w(gi, gj) > 0.
The approach to extract synteny information from B is to calculate a so-called

matching M, i. e. a set of disjoint edges (no two edges are adjacent to the same
vertex), in the bipartite graph B(G1, G2, E). Two genes gi, gj from a single genome
are consecutive with respect toM, if they are both incident to (different) edges of
M and no other gene lies between them that is incident to an edge fromM. Two
pairs of consecutive genes gi, gj ∈ G1 and gk, gl ∈ G2 form a conserved adjacency, if
eik, ejl ∈ E(M) and either

• k < l, sign(gi) = sign(gk) and sign(gj) = sign(gl), or

• k > l, sign(gi) 6= sign(gk) and sign(gj) 6= sign(gl),

where sign(g) is the sign of g. Intuitively, this means that orthologs of gi, gj appear
in the other genome consecutively (or reversed with a different sign), and therefore
their adjacency has been conserved. The goal of determining adjacencies for two
genomes can now be achieved by calculating a matching that maximizes both the
number of edges and the number of conserved adjacencies. An exact solution can
be attained with integer programming, but this problem is NP-hard. Therefore an
heuristic approach based on the notion of maximum common substrings (MCS) is
used.
FFAdj-MCS is an iterative algorithm that starts with an empty matching and

terminates when there are no more edges between unmatched genes. By default,
POFF uses only one iteration. In a preprocessing step, all independent genes, i. e.
genes that are not adjacent to any other gene, are removed from their respective
genome. Then, in each iteration, a common substring of length at least β (default
value: β = 3) of both genomes, up to reversal and switched signs, is calculated that
maximizes both the sum of edge weights and the sum of edge weights of conserved
adjacencies. The parameter α ∈ [0, 1] (default value: α = 0.5) of POFF is used to
balance the relative importance of the former two values, though evaluation has
shown that its influence is minor. Both sums are added and form the objective

29

function and FFAdj-MCS greedily chooses in each iteration the common substring
that maximizes it, the maximum common substring. Then, genes in the rest of
the genome are deleted, if all their adjacent genes in B are already matched. This
heuristic is optimized by extending the MCS of the current iteration on both ends
after the deletion step, if possible.

4.3.2 Incorporate Synteny Information into Orthology Detection

Once the matching for two genomes has been computed, it is integrated into the graph
construction algorithm of Proteinortho. The graph Υ∗ is constructed as before (see
section 4.2.2), but now, among multiple paralogs which are co-orthologous to a gene
x, the matching calculated by FFAdj-MCS has selected the one which conserves the
local gene order best. POFF can therefore split the group of co-orthologous genes into
smaller groups of true orthologs.

4.4 Min-Cut Algorithm
Let G = (V,E) be a weighted, undirected and connected graph. A cut set C ⊆ E of
G is a set of edges such that (V,E \C) is disconnected, i. e. removing the edges of C
from G decomposes it into several non-empty components. A cut set is called minimal
if for any other cut set C ′ of the graph, w(C) := ∑

e∈C w(e) ≤ ∑e∈C′ w(e) := w(C ′)
holds. Figure 11 gives an example of a weighted graph for which {{B,D}, {C,E}}
represents a minimal cut set. A minimal cut set C decomposes a graph into exactly
two components since one edge can connect at most two components, and thus, if
applying C resulted in more components, one edge could be removed from C yielding
a cut set with less weight, which contradicts the minimality of C. Given two vertices
s and t of G, an s-t-cut is a cut-set such that, when it is applied to the graph, s and
t lie in different components.

1

2

5

5

2

1

3 1

4

2

3

7

E

B

C

I

F

A D

H

G

Figure 11: A weighted graph for which the edges {B,D} and {C,E}, marked with
a yellow line, form a cut set.

Below a simple algorithm to compute a minimal cut set, or min-cut, is intro-
duced [SW97].

30

4.4.1 Description

The min-cut algorithm presented here is very simple. Its pseudo code is shown in
listing 1. MinimumCut is called with a connected, undirected, weighted input graph
G = (V,E) and outputs a minimal cut-set C for it.

Algorithm 1: MinimumCut(G)
Input: Connected, undirected, weighted input graph G = (V,E)
Output: Min-cut of G
Cmin ← ∅, where w(∅) =∞;
while |V | > 1 do

C ← MinimumCutPhase(G);
if w(Cmin) > w(C) then

Cmin ← C;

return Cmin;

The algorithm iterates while G contains more than one node. In each iteration,
the function MinimumCutPhase is called to compute a minimal s-t-cut, and the one
with the lowest weight is returned as min-cut.

The function MinimumCutPhase initializes a list A with an arbitrary node a and
sucessively appends one node to it in each iteration. More precisely, in every iteration
it adds the most tightly connected node of the current A, i. e. it adds a node v ∈ V \A
such that

w(A, v) :=
∑

{v,u}∈E,u∈A

w({v, u})

is maximal. In other words, w(A, v) is the sum of the weights of all edges connecting
the node v with any node from the list A, and the most tightly connected node is
the node that is currently not in A and maximizes w(A, v).
Let s and t be the last two nodes added to A. Then all edges incident to t are

returned as minimal s-t-cut, and s and t are merged, i. e. they are replaced by a new
node st having edges to the same nodes as s and t, with the sum of the weight of
both old edges. An edge connecting s and t is removed, if it exists.

4.4.2 Correctness

To show that minimumCut indeed calculates a min-cut of G, its authors prove the
following lemma:

Lemma. “Each cut-of-the-phase is a minimum s-t-cut in the current graph, where s
and t are the two vertices added last in the phase.” [SW97, p. 587]

Proof. The algorithm generates a linear ordering A of the nodes in G. A node v is
called active with respect to a cut C if it is not the first node of A and if v and its

31

Function MinimumCutPhase(G)
Input: Connected, undirected, weighted input graph G = (V,E)
Output: Cut-of-the-phase (minimal s-t-cut of G)
A← (a), where a ∈ V is arbitrary;
while A 6= V do

A.append(v), where v ∈ V is As most tightly connected vertex;

C ← {e|e is incident to the node last added to a};
merge the last two nodes of A in G;
return C;

predecessor in A belong to different components in the graph induced by C. For an
arbitrary s-t-cut C (as defined in the lemma) it will be shown that the weight of the
cut-of-the-phase is smaller than w(C). The following notations are used as in [SW97]:
“Let w(C) be the weight of C, Av the set of all vertices added before v (excluding v),
Cv the cut of Av ∪ {v} induced by C, and w(Cv) the weight of the induced cut.”
It will be shown below that

w(Av, v) ≤ w(Cv) (1)

holds for all active nodes v. Since the last two nodes s and t of A are in different
components of the graph induced by C, t is an active node and therefore w(At, t) ≤
w(Ct) = w(C) by inequality 1, i. e. the cut-of-the-phase has a lower weight than the
arbitrary s-t-cut, so it is a minimal s-t-cut.

Inequality 1 is proven by induction on the set of active vertices. For the first active
vertex v, the Cv includes exactly the edges that connect Av and v, so w(Av, v) =
w(Cv).
It is now assumed that inequality 1 holds for all active vertices up to a node u,

and u is the next active vertex. Then

w(Au, u) = w(Av, u) + w(Au \ Av, v), (2)

i. e. the sum of the edge weights can be decomposed into the edges that are connecting
u with the nodes in Av and those that are connecting it with the nodes in Au that are
not in Av. Further, w(Av, u) ≤ w(Av, v) as v was the most tightly connected vertex
when it was added to A. So by induction, w(Av, v) ≤ w(Cv), and with equation 2
the following holds:

w(Au, u) = w(Cv) + w(Au \ Av, u)
Since Cv ⊂ Cu, E(Au \ Av) ⊂ Cu and Cv ∩ E(Au \ Av) = ∅,

w(Au, u) = w(Cv) + w(Au \ Av, u) ≤ w(Cu),

holds as claimed.

32

The lemma shows that each call of MinimumCutPhase correctly computes a minimal
s-t-cut. Afterwards, s and t are merged which prevents the same cut to be computed
twice and reduces the size of V by one in each iteration, so the algorithm terminates.
The weights of edges from another node to s and t are added, edges between s and t
are removed.

A min-cut of a graph is a minimal s-t-cut for some s and t. The algorithm computes
all |V | − 1 different minimal s-t-cuts, so it finds and returns a min-cut of G.

4.4.3 Complexity

The introduced min-cut algorithm calls MinimumCutPhase until |V | = 1. Since the
called function reduces |V | by one as it merges exactly two nodes, this results in
|V | − 1 calls. The weight of the returned min-cut is calculated during the function
call and can be stored, so the complexity is in O(|V | · f), where f is the complexity
of the called function.
MinimumCutPhase appends all nodes to the list A, which means |V | constant

operations. However, the most tightly connected vertex has to be computed. This
is done with a priority queue that sorts all vertices v ∈ V \ A according to w(A, v).
Extracting the maxium is a log |V | operation. Every time a vertex v is removed from
the queue and added to A, for each edge incident to a v it has to be checked whether
the other node incident to the edge is in the queue, and its weight has to be updated,
which are constant operations in an appropriate data structure. Since each edge is
incident to exactly two nodes, this results in a time requirement of 2|E|. Since w(A, t)
has already been computed for the last node t of A, it can be returned with all edges
incident to t, so the overall complexity of this function is in O(|E|+ |V | log |V |).
The authors suggest Fibonacci heaps [FT87] as data structure for the priority

queue.

4.5 SplitDist

The tool SplitDist [Mai] computes the split distance (see section 3.2.3) for two
trees sharing the same leaf set:

sdist --print-norm <tree1> <tree2>

The input trees have to be specified in Newick notation. –print-norm prints the
normalized split distances for <tree1> and <tree2> as well as for <tree2> and
<tree1>, since the split distance is not symmetric.

This tool is used here to compare cotrees of the true cograph and the edited
cograph generated by the heuristic solution that will be described later in this work.
Note again that using the split distance for this task has some disadvantages as
described in section 3.2.3.

33

4.6 CographCompletion.jar

The algorithm described in section 3.3.9 has been implemented as a Java application
by Sebastian Siemoleit. As described in section 4.1, coedit gives up on prime modules
that need more than k edition operations. And since k must be set to a value such
that multiple prime modules can be edited in a short amount of time, choosing it too
large will make the computation infeasible. In such cases, an alternative approach to
prime module editing is required. The original idea was to use a min-cut to split up
the prime module along low weight edges, however it turned out that due to their
structure, which is close to that of a complete graph, this will not produce good
results. The cograph completion is a more sensible solution since it tries to create a
cograph, too, and its performance is good enough to apply it even to bigger graphs.
Yet, one big disadvantage arises when using CographCompletion.jar: since it does
not know anything about the semantics of orthology, it also connects genes from
the same species, thus labeling them as orthologs which is obviously wrong. This
shortcoming could be corrected in future work.

34

5 Heuristic for Editing Cographs Based on Orthology
Data

The primary goal of this work is to develop a heuristic for the cograph editing problem
on graphs generated from orthology data.

For a set of genes X, each belonging to exactly one species, the tool POFF is used to
compute all pairs of orthologous genes. The input graph G = (X,E) then represents
the orthology relation, where E contains an edge connecting each ortholog pair. POFF
runs the sequence comparison tool blast to compute a bitscore for each pair of genes
(x, y). These are not symmetric, and therefore the mean value of the bitscores of
(x, y) and (y, x) is used as weight w({x, y}) for each edge {x, y}.

According to the results of section 3.3.1, G should be a co-graph, however, due to
the inevitable false positive and false negative detections during the reconstruction
of the orthology relation, this is not the case. Therefore, G shall be modified by
adding or deleting edges such that it becomes a cograph. This cograph then allows
the reconstruction of the gene tree. Since cograph editing in general is NP-complete
[Liu+11], a heuristic approach based on local editing and bitscores will be used to
iteratively eliminate the P4s in G, generating a cograph from it.

5.1 Outline of orthoDeprime

The tool that iteratively modifies an input graph, representing an estimated orthology
relation, until it is a cograph is called orthoDeprime. The algorithmic outline is
shown in listing 2. A more graphical overview is given in figure 12.
The algorithm consists of a loop that is repeated until there are no more prime

modules found in the input graph, i. e. it is a cograph. In this loop, at first the prime
modules are computed. Then, coedit is called for each prime module and the “best”
of the resulting edition operation sets is applied to the input graph. If for a certain
prime module no edition set can be found, an inclusion minimal cograph completion
set is computed instead. Should this attempt fail, too, an edge cut set is computed
and applied as a last resort to be able to continue the computation.

5.2 Identifying and Eliminating the Prime Modules
orthoDeprime uses the function getPrimeModules() to find the prime modules in the
input graph. It checks whether the graph is disconnected, and if it is, it continues re-
cursively on each component, else the complement of the graph is tested. If it is
connected, too, a prime module has been found.
As described in section 3.3, cographs can be decomposed into parallel and series

modules. They do not contain any prime modules. But since the input graph is
based on an estimation of the orthology relation, it is most likely not a cograph.
However, since orthology detection tools like POFF produce good results, it can be
assumed that the deviation from the cograph structure is not too high. Indeed, most

35

input
Graph G

next prime module

found any?

output
Cograph Ĝ

coedit
sucessful?

Cograph Completion
sucessful?MinCut

get

no

no

yes
no

yes

yes

yes

Figure 12: A schematic overview of orthoDeprime. One after the other, the al-
gorithms for cograph editing, cograph completion and the min-cut are
applied to each prime module in the graph. If any of them succeeds,
the resulting edition set is applied to the current prime module and the
next module is processed.

of the prime modules found in the orthology graphs constructed with the output
of POFF usually have a size of ten to 20 vertices, see figure 17 for an analysis of the
prime module sizes of a sample dataset. This is very low compared to the size of
the graphs containing them. The prime modules are those parts of the graph that
contain the induced P4s, which are forbidden subgraphs for cographs. The idea is
that editing them locally will also reduce the number of P4s globally, though new
P4s could arise in the graph by editing the prime modules locally.

Once all prime modules in the graph are identified, the tool coedit (see section 4.1)
is used on each of them to find an edge edition set, i. e. a set of edges to be removed
or added from the graph, such that after applying it the prime module is converted
to a cograph. The search for such an edition set, however, is not always successful,
as described in the next section.

36

Algorithm 2: orthoDeprime()
Input: Input graph G
Output: Edited cograph Ĝ
repeat

primes ← G.getPrimeModules();
foreach prime in primes do

run coedit on prime to compute cograph edition sets;
eliminate edition sets connecting nodes belonging to the same species;
bestSet ← choose edition set maximizing the average edge weight;
if no edition set found then

bestSet ← compute inclusion min cograph completion set for prime;
if no cograph completion set found then

bestSet ← compute a minimal edge cut set of prime;

apply bestSet to G;

until no more edition operations have been applied;
return G;

5.3 Non-editable Prime Modules
Due to the exponential time complexity of the algorithm used by coedit, prime
modules of a certain size exceed the computational limits and an edition set cannot
be computed for them. In coedit, the maximal size of an edition set is bounded
by a constant k which limits the complexity to polynomial time, and orthoDeprime
uses a default value of k ≤ 6.

If coedit should fail to find a valid edition set, orthoDeprime tries to compute an
inclusion minimal cograph completion set using the tool CographCompletion.jar
(see section 4.6). The algorithm used has a better time complexity and should be
able to cope with the most prime modules in the input data even if they have a
size of 30 to 40 vertices. This tool has one huge disadvantage though. Since it does
not interpret the nodes as genes, it cannot distinguish different gene families and
adds edges between genes from the same family, though by definition they cannot
be orthologous. Adding this functionality to the cograph completion is a promising
approach for future improvements of orthoDeprime.
To be able to continue processing the input graph if no edition set is found,

the prime module is decomposed into two disjoint components by computing and
applying a minimal cut set, i. e. a set of edges of minimal weight such that removing
them disconnects the prime module into two components. This cut set is computed
using the algorithm described in section 4.4 [SW97], which has a much lower time
complexity than coedit. Once the prime module has been split into two components,
each will be decomposed further in the next iteration or, if necessary, cut again until

37

Function getPrimeModules
Input: called on a graph G
Output: list of prime modules in graph G
primes← ∅;
if |V (G)| < 4 then graph cannot contain a P4

return primes;

else if G is disconnected then
foreach component comp in G do

primes.append(comp.getPrimeModules());

else if G is disconnected then
foreach component comp in G do

primes.append(comp.getPrimeModules());

else
primes.append(G);

return primes;

an edition set can be computed.

5.4 Choosing the Best Edition Set
Since coedit computes all possible edition sets with k or less edition operations,
there in general multiple edition sets available for each prime module, from which one
needs to be chosen. orthoDeprime chooses the set that, when applied to the prime
module, maximizes its average edge weight. This ensures that, on the one hand,
preferably edges with a high weight are added, but not more than necessary, and on
the other hand, preferably edges with low weights are removed from the graph.
The MinCut algorithm chooses the minimal cut based on the lowest sum of edge

weights, so it will also preferably remove edges with low weight, i. e. those with low
confidence, from the graph.

Since the weights of edges which are not present in the input graph are unknown,
orthoDeprime requires a resource to look them up. Therefore, for each run a subfolder
./blast/ containing all vs all comparisons and bitscores for any two genes from
different species, is necessary. POFF already computes them using blast, and these
results can be stored by adding the -storebla parameter (-keep in newer versions
of Proteinortho):

poff.pl -project=<projectName> -storebla=1 <fastaFiles>

The parameter -project is a prefix POFF adds to the output files.

38

5.5 Implementation and Usage
orthoDeprime is implemented in C++. When running it, the definition files for the
forbidden subgraphs for P4-sparse graphs which are required by coedit need to reside
in the same folder as the executable. Additionally, the tool CographCompletion.jar
must be added to the PATH variable such that the operating system can locate it
when it is called. Since CographCompletion.jar is written in Java, a Java Runtime
Environment needs to be installed. The usage of orthoDeprime itself is explained in
section 6.6.

5.6 A Small Example
In this section, a small example demonstrating the functionality of orthoDeprime is
provided.

5.6.1 The Input Data

The graph from figure 13 serves as input data. It consists of three connected
components: a 5-clique, i. e. a maximal complete subgraph with five vertices, a
large prime module consisting of 24 nodes and 167 edges, and a small prime module
consisting of just five vertices and six edges. The components were extracted from
a larger data set called 20_20 that is described in more detail in section 6.2. The
labels of the nodes contain both the species name (before the underscore) and the
gene name (after the underscore) of the gene each node represents. All edges are
weighted with the blast bitscores resulting from an all versus all comparison of the
genes, however, for a cleaner visualization, the edge weights are omitted in the figure.

5.6.2 Locating the Prime Modules

Running orthoDeprime on the described dataset, it will begin by applying a modular
decomposition to the graph, but only keep the found prime modules. In this case,
there are two prime modules, while the clique is a cograph since it does not contain
an induced P4. Then, the two prime modules are processed.

5.6.3 Processing the Small Prime Module

Assume that the small prime module is edited first. orthoDeprime calls coedit on
this module. The parameter k of coedit, defining the maximal number of edges in
the edition set, is initialized with two as default value. If no edition set of size two
was found, it would be incremented by one and another attempt would be made to
find a solution. This process is iterated up to a maximal value of five per default
since higher values require too much computation time.

However, in this case, 13 edition sets with just one or two operation can be found.
Since in the small module all genes are from different species (see the labels in
figure 13), no edition sets are removed. Now, the set maximizing the average edge

39

J_621 L_621

S_13

J_623N1_13

M_621

G1_313

F1_313

N1_313

I1_313

U_313

L1_13

G1_13

M1_13

O_13

N_650

U_929C_13

H1_13 I1_13

N_657

L_623

E_13B1_13

F1_13

N_622

A1_13

E1_13

M_623

G1_967

E1_967

F1_967

B1_967

A1_967

Figure 13: The input dataset, consisting of three components. Two of them are
prime modules while the third one, located on the left, is a complete
graph and therefore a cograph.

weight is determined. The weight of non-edges to be inserted is extracted from the
blast results stored in the directory ./blast/, if this is possible. The best edition
set found is E+ = {{N1_313, U_313}, {F1_313, I1_313}} and E− = ∅. It is then
applied to the input graph.

5.6.4 Processing the Large Prime Module

The large prime module is treated like the small one, however, this time coedit fails
to find any edition sets even for k = 5. Therefore, an alternative strategy has to be
used: the tool CographCompletion.jar is called. Since it is a probabilistic algorithm,
it will return different results every time it is used, but it could for instance return
a cograph completion consisting of 148 edges. Since this prime module originally
has 24 nodes and 167 edges, and a complete graph of this size has

(
24
2

)
= 276 edges,

adding 148 edges results in an “almost” complete graph with 167 + 78 = 245 edges.

5.6.5 Finishing

After all prime modules have been processed, orthoDeprime checks again whether
there are any prime modules in the graph. Since none are found, it writes the edited
graph to the output file and terminates. Figure 14 shows the result.

40

U_929

N_650

M_623
N1_313

I1_313

G1_313

U_313

J_621

F1_313

C_135

G1_13

H1_13

N_657

E_13

J_623
I1_13

E1_13

B1_13

L1_13
C_13

L_623

O_13

M_621

M1_13

L_621

N1_13

F1_13

E1_967

G1_967

S_13

A1_13

F1_967

B1_967

N_622A1_967

Figure 14: The edited output graph, which is now a cograph.

41

6 Results and Evaluation
In this section the results of applying orthoDeprime to two sample datasets will be
shown. The goal is to find out whether the heuristic is capable of processing real
world problem sizes and to compare the output to the input generated by POFF and
the true orthology graph.

6.1 A Pipeline for Phylogenetic Tree Inference
Using the tools of other authors along with the programs developed in this work it
is possible to construct a software pipeline that can infer a phylogenetic tree for a
number of species from a given set of sequences of their genes or proteins, as shown in
figure 15. Therefore, POFF is applied to the input sequences to estimate the orthology
relation of the genes. The result is a list of weighted edges, which is converted to
an adjacency list using the script poffToAdjb. Then, orthoDeprime can be used
to restore the cograph property of the estimated orthology graph. The result is a
cograph from which the cotree in Newick notation can easily be generated by the
tool cographToNewickCotree. This tree is a labeled gene tree and a species tree can
now be inferred [HR+12].

Sequence Data

(fasta Files)
Proteinortho/POFF

Orthology Estimation

Estimated

Orthology Graph

(Edge List)

blast Files

poffToAdjb Weighted

Adjacency List

orthoDeprime

use as non-edge weights

Edited

Cograph
cographToNewickCotree

Modular Decomposition

Labeled

Gene Tree

Estimated Phylogenetic Tree

Figure 15: Overview over a possible pipeline for the prediction of phylogenetic trees.
In this work, the inference of phylogenetic trees from gene trees was not
explained, but there exist methods to solve this task [HR+12]

.

6.2 Tested Datasets
The tool orthoDeprime described in section 5 was tested mainly on two sets of
computationally generated sequences: 20_20 and 20_100, each consisting of 20
respectively 100 gene families in 20 distinct species. They are the result of a

43

simulated evolutionary scenario considering gene duplication, gene cluster duplication
and gene loss as possible events. The set 20_20 represents 1,565 genes featuring
65,644 orthologous pairs, while 20_100 represents 27,258 genes featuring 411,471
orthologous pairs. Those datasets were generated by the authors of POFF [LHR+13]
and can be obtained on its homepage. Figure 16 shows a visualization of the smaller
20_20 dataset generated using a force-based layout algorithm.

Figure 16: A visualization of the smaller 20_20 dataset generated using a force-
based layout algorithm.

As described in [LHR+13], the datasets were simulated using the Age Model
proposed by Keller-Schmidt et al. in 2010. This model relies on an initial species
tree where the paths from the root to any leaf have length 1. Then, for the species
tree, gene trees are simulated by using certain rules which independently modify the
edges with a constant rate. Initially, an order list of ancestral genes is added to the
root of the tree. From each gene, one gene family will evolve during the simulation.
The user can decide on the number gene families. Then, the gene list is copied to
both children of any internal node. Now, a Poisson Process is used to decide which
and how many events, i. e. gene duplication, cluster duplication, genome duplication
or gene loss, each havin a fixed probability of occurrence, are applied to the gene list.
Multiple copies of a gene increase the chance that a copy of that gene is lost. Finally,
a number of genes, sampled from a uniform distribution, are rearranged or inverted.

Additionally to the sequences, each dataset 20_<x> contains a file (m20_<x>) with
orthology matrices for each gene family, where a 1 in row i and column j means
that the genes i and j are orthologs. From this file, the adjacency list of a graph

44

20_<x>.adj containing all genes and all orthology relations of each dataset is then
constructed using the Perl script extractGraphFromMatrix:

extractGraphFromMatrix m20_<x> 20_<x>_true.adj

This graph is used to evaluate how good POFF predicts the true orthology relation
based on the sequences and how the quality is affected by orthoDeprime. Note that,
since m20_<x> truly represents an orthology relation, the resulting graph is a cograph
(section 3.3.1), and therefore its gene tree can be obtained easily by applying modular
decomposition (section 3.3.3).

The reason that simulated data was used for testing is that POFF requires synteny
information for the input sequences to predict the orthology relation, and reliable
biological data meeting this requirement is not available [LHR+13]. Another aspect
is that for simulated data the true orthology relation is known with certainty. The
downside is that one cannot be sure that the generated sequences are representative
for true biological data.

6.3 Estimation of the Orthology Relation
The next step is to analyze the sequences from the given datasets and identify
orthologous genes. As explained before, this is done by using POFF (see section 4.3).
The latest version of Proteinortho (see section 4.2) integrates the functionality of
POFF which is the reason why the most up-to-date version of Proteinortho with the
-synteny switch is used for the orthology detection:

proteinortho5.pl -project=20_<x> -synteny -sim=<y>
-keep ./seq/*.faa

This command instructs Proteinortho to detect all orthologous genes from the
sequences stored in ./seq/. A similarity threshold of <y> for the reciprocal best
hit heuristic is used and the result is stored in a file prefixed by the string following
the -project switch. The option -keep will make the tool store the pairwise blast
results. They should be moved to a directory called ./blast/ since orthoDeprime
will look for them there to get a weight information for non-edges.

For this evaluation, all similarity thresholds y ∈ {0.25, 0.5, 0.75, 0.85, 0.95} have
been used.

6.4 Construction of the Input Graph
Before using the heuristic algorithm, an appropriate input graph needs to be con-
structed. From sequence data stored in multifasta files and synteny information (gff
file), POFF generates a syngraph file, listing on each line an edge and its bitscores. Us-
ing the Perl script poffToAdjb (based on a script from Maribel Hernandez-Rosales),
an adjacency list with bitscores as weights is generated from the syngraph file:

poffToAdjb -i <inputFile.syngraph> -o <outputFile.adjb>

45

The adjacency list has an easy syntax:

node1 | [adjacentNode1:edgeWeight adjacentNode2:edgeweight ...]
node2 | [adjacentNode3:edgeWeight adjacentNode4:edgeweight ...]
...

where square brackets mark optional elements.

6.5 Prime Modules in the Datasets
Since the success of the edition process heavily depends on the quality of the input
datasets, it is interesting to study their prime modules as an indicator for the distance
of the input data to the true orthology relation. The figures 17 and 18 show the
number of vertices per prime module for the graphs generated from the datasets
20_20 and 20_100, respectively. It is obvious that the number of vertices per prime
module is constantly low, rarely exceeding 20 nodes per prime module with only few
outliers. If the prime modules were much bigger, the approach used in this work
could not succeed.

6.6 Running orthoDeprime

Running orthoDeprime is straightforward:

orthoDeprime <infile> [<outfile> -w -v]

The above command runs the tool with the adjacency list <infile> of an estimated
orthology graph, usually the result of running POFF. The result is stored to the file
<outfile> or, if not supplied, to the file <infile>.edt. The switch -w is used for
weighted input graphs. The input graphs are usually weighted since, when using
the script poffToAdjb, the bitscores are extracted and added to the graph as edge
weights. They are important for choosing an optimal edition set. The -v switch
turns on the verbose mode and prints out any applied edition operation.

6.7 A Distance Measure for Graphs
In the course of this work, graphs will be generated and modified. It is therefore
interesting to quantify how different two graphs G and H are. For this purpose a
symmetric, normalized distance measure d is used, defined as

d(G,H) = |(E(G)4E(H)|
|E(G) ∪ E(H)| =

∣∣∣(E(G) \ E(H)
)
∪
(
E(H) \ E(G)

)∣∣∣
|E(G) ∪ E(H)| ,

i. e. the distance of G and H is the number of edges that are either in E(G) or
in E(H) (but not in both), divided by the total number of edges. Obviously, this
quotient is zero if E(G) = E(H), one if E(G) ∩ E(H) = ∅ or somewhere in between
in other cases. Thus, d is normalized. Also, d(G,H) = d(H,G) holds since the union

46

●

●

●

●●●

●

●

●

●

●

●

●

10
20

30
40

Similarity Thresholds

N
um

be
r

of
 V

er
tic

es
 in

 a
ll

P
rim

e
M

od
ul

es

0.
25 0.

5
0.

75
0.

85
0.

95

Figure 17: Boxplot of the number of nodes per prime module in each of the graphs
constructed from data set 20_20 with the similarity threshold shown on
the x-axis.

operation is commutative, so d is symmetric. Note that d does not take into account
the number of vertices missing in G with respect to H or vice versa, but since in
orthology graphs the edges carry the information, and since the input graphs used
here do not contain isolated vertices (i. e. vertices that are not incident to any edge),
it suffices to consider differences in the edge sets of G and H. Deleting a vertex in a
graph that does not contain isolated vertices will always delete its incident edges and
thus increase the distance anyway.

6.8 Evaluation of the Output
For the simulated datasets the true orthology graph G∗ and an associated gene tree
T ∗ which is identical to its cotree (see section 3.3.1) is known. Therefore, the output
of orthoDeprime, the cograph Ĝ+, can be compared to those and a distance score
can be computed.

In an earlier attempt in the development of orthoDeprime, the cograph completion

47

●●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

5
10

15
20

25
30

Similarity Thresholds

N
um

be
r

of
 V

er
tic

es
 in

 a
ll

P
rim

e
M

od
ul

es

0.
25 0.

5
0.

75
0.

85
0.

95

Figure 18: Boxplot of the number of nodes per prime module in each of the graphs
constructed from data set 20_100 with the similarity threshold shown
on the x-axis.

was not yet integrated. In this build, orthoDeprime applied coedit and, in case
of failure, immediately used the min-cut procedure to decompose the graph. The
resulting cograph Ĝ has also been compared to the true graph, however, it could not
improve the prediction of the orthology relation.

All stats and measures have been computed for both datasets, 20_20 and 20_100,
and for all graphs generated from them by varying the symmetry threshold of POFF.
The results can be found in table 1 and table 2.

6.8.1 Number of Edges, Vertices and Prime Modules

Not surprisingly, the number of edges in the graphs decreases with an increasing
similarity threshold for POFFs reciprocal best hit heuristic. For the default value
-sim=0.95, G has only about as half as many vertices as the true graph G∗, and
only about a tenth of the edges of the latter. Since POFF removes isolated nodes,
the decreasing number of nodes is a logical consequence of the loss of edges. The

48

Table 1: Results of orthoDeprime for the dataset 20_20. The input graph G of each
column was obtained by running Proteinortho v5c with POFF enabled
and the similarity parameter specified in the column header. Ĝ is the
edited graph, G∗ is the true orthology graph, #primes(G) is the number of
prime modules in G, dgr(G,H) is the normalized symmetric graph distance
of G and H, G∗pr is the true graph G∗ pruned to the vertex set of the input
graph G, dsp(T1, T2) is the normalized split distance of the (co)trees T1 and
T2, Ĝ+ is the graph processed with cograph completion enabled editing.

graph G: G∗ sim=0.25 sim=0.5 sim=0.75 sim=0.85 sim=0.95
|V (G)| 1,565 1,219 1,151 960 870 742
|E(G)| 65,644 5,046 5,031 4,886 4,842 4,753
#primes(G) 0 73 63 54 41 23
|E(Ĝ)| 65,644 3,980 4,256 3,989 4,203 4,202
|E(Ĝ+)| 65,644 5,883 5,613 5,338 5,302 5,048
dgr(G, Ĝ) 0 0.2395 0.1854 0.2034 0.1545 0.1406
dgr(G, Ĝ+) 0 0.1561 0.1158 0.1010 0.0957 0.0607
dgr(G,G∗) 0 0.9353 0.9312 0.9307 0.9281 0.9285
|E(G∗pr)| 65,644 47,296 40,654 20,206 14,115 8,492
dgr(G,G∗pr) 0 0.9105 0.8894 0.7774 0.6679 0.4505
dgr(Ĝ, G∗pr) 0 0.9264 0.9051 0.8133 0.7111 0.5150
dgr(Ĝ+, G∗pr) 0 0.9048 0.8829 0.7658 0.6396 0.4204
dsp(T̂ , T ∗pr) 0 0.3042 0.3107 0.2650 0.2526 0.2124
dsp(T ∗pr, T̂) 0 0.0634 0.0669 0.0772 0.0834 0.0934
dsp(T̂+, T ∗pr) 0 0.3128 0.3203 0.2784 0.2648 0.2150
dsp(T ∗pr, T̂

+) 0 0.0604 0.0645 0.0734 0.0792 0.0897

number of prime modules is an indicator for how close the structure of a graph is to
the structure of a cograph. The tool findPrimeModules isolates and counts prime
modules:

findPrimeModules <infile> [<outdir> -w]

The prime modules found in the graph <infile> are written to the directory
<outdir>. As it can be observed in both datasets, increasing the similarity pa-
rameter results in a graph containing less prime modules (table 1 and table 2). An
increased similarity threshold will cause only orthologs with a high sequence identity
to be reported, thus recovering only parts of the true orthology graphs, however
it seems in those highly conserved parts the cograph structure is preserved as well.
This complies with the theoretical result that any induced subgraph of a cograph is
again a cograph.

49

Table 2: Results of orthoDeprime for the dataset 20_100. The input graph G
of each column was obtained by running Proteinortho v5c with POFF
enabled and the similarity parameter specified in the column header. Ĝ is
the edited graph, G∗ is the true orthology graph, #primes(G) is the number
of prime modules in G, dgr(G,H) is the normalized symmetric graph
distance of G and H, G∗pr is the true graph G∗ pruned to the vertex set of
the input graph G, Ĝ+ is the graph processed with cograph completion
enabled editing. dsp(T̂ , T ∗pr) could not be computed because the memory
demand of the computation of the cograph representation exceeded the
available capacity.

graph G: G∗ sim=0.25 sim=0.5 sim=0.75 sim=0.85 sim=0.95
|V (G)| 27,258 17,115 16,672 16,026 15,860 15,327
|E(G)| 411,471 40,351 40,739 42,973 46,615 42,979
#primes(G) 0 1,333 1,405 1,127 913 742
|E(Ĝ)| 411,471 38,663 37,583 38,740 40,725 42,020
|E(Ĝ+)| 411,471 43,967 45,683 50,213 55,906 45,355
dgr(G, Ĝ) 0 0.1180 0.1506 0.1634 0.1811 0.0664
dgr(G, Ĝ+) 0 0.1240 0.1527 0.1726 0.1807 0.0690
dgr(G,G∗) 0 0.9395 0.9371 0.9236 0.9130 0.9056
|E(G∗pr)| 411,471 247,791 240,911 230,153 226,993 217,985
dgr(G,G∗pr) 0 0.9017 0.8950 0.8661 0.8453 0.8233
dgr(Ĝ, G∗pr) 0 0.9048 0.9006 0.8730 0.8544 0.8249
dgr(Ĝ+, G∗pr) 0 0.9012 0.8946 0.8660 0.8442 0.8208

6.8.2 Distance between the Input and Output Graphs

Comparing the input graph G generated from the orthology prediction of POFF
with the output graphs Ĝ (not using cograph completion) and Ĝ+ (using cograph
completion) of orthoDeprime by using the symmetric, normalized graph distance
dgr (see section 6.7) tells how much G needs to be changed to transform it to the
output graphs.
Increasing the similarity threshold for POFF strongly decreases dgr(G, Ĝ) in the

dataset 20_20. The distance reaches a maximal value of 24% for 25% similarity and
is lowest with 14% for 95% similarity. In the 20_100 dataset the effect is different;
here a higher similarity increases the distance up to a peak value of 18% at 85% of
similarity, just to reach its minimal level with only 7% distance for 95% of similarity.
This odd behavior does not seem to be significant since for Ĝ+ the distance to G is
constantly decreasing from 16% to 6% with increasing similarity. That is the expected
behavior since for a higher similarity parameter, only highly conserved orthologs
which are closer to the true graph are reported, making less editions necessary.

50

6.8.3 Distances and Edge Counts of the Pruned Graphs

In a next step, the graph distance of the output graph G of POFF to the true graph G∗
is computed as well as the distances of the edited graphs Ĝ and Ĝ+ to G∗. However,
this comparison is unfair since orthology detection tools like POFF are usually designed
to report only candidates with high confidence to achieve a low false discovery rate,
(i. e. maximize the number of true positives among all reported candidates), accepting
that this results in a high number of false negative decisions.
To account for this problem, it is sensible to only consider the distance of that

parts of the true graph G∗ which have actually been reported by POFF. This can be
achieved by pruning G∗ to the vertex set of G.
The pruning is done with the tool pruneGraph:

pruneGraph <graph-to-prune> <pruneSetGraph>
[<outfile> -wl -ws -cotlbl]

This tool extracts the vertex set V of the prune set graph. Then it prunes the
graph-to-prune by removing any vertex that is not contained in V and all edges
incident to one of those. The result is written to <outfile>. pruneGraph is applied
to prune G∗ with respect to Ĝ to obtain the pruned graph G∗pr. It can now be
compared to G, Ĝ and Ĝ+.

The distances to the pruned graph G∗pr are still very high. The modifications the old
version of orthoDeprime performs on G∗ result in a slightly higher distance (less than
1% more distant). This was a somewhat disappointing result since reconstructing the
cograph structure was supposed to make the predictions of POFF more precise. The
reason of this loss of similarity is probably that for a lot of larger prime modules, an
adequate cograph edition set cannot be found due to computational limitations. In
such cases the old build of orthoDeprime uses the min-cut algorithm to be able to
continue the processing at all. Since many of the prime modules are, however, very
dense and close to being a complete graph, the min-cut will likely remove only one
vertex in each iteration until the size of the prime module is small enough to allow
for an exact edition set to be found. This will cause many truly significant edges to
be removed from Ĝ.
To fix this issue, orthoDeprime was updated to use the cograph completion

algorithm on a non-editable prime module before it uses the min-cut. Since many
prime modules are almost complete graphs, the cograph completion only adds a few
edges and the result Ĝ+ is closer to the true graph than the original prediction of
POFF, though the improvements are very small in both datasets. Figure 19 visualized
the distance of the edited graphs to the original one with respect to the chosen
similarity threshold.

6.8.4 Computation of the Split Distances of the Cotrees

It is also interesting to analyze how different the gene trees T̂ and T̂+ associated with
the output graphs Ĝ and Ĝ+, respectively, are with respect to the true gene tree T ∗.

51

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
5

0.
6

0.
7

0.
8

0.
9

POFF Similarity Parameter

D
is

ta
nc

e
to

 T
ru

e
G

ra
ph

Figure 19: A visualization of the distances of the edited graphs Ĝ (red and blue)
and Ĝ+ (green and orange) to the original one with respect to the chosen
similarity threshold. The continuous lines mark the 20_20 dataset and
the dashed ones the 20_100 dataset.

To do this, the gene trees belonging to Ĝ and Ĝ+ need to be constructed. As
shown in section 3.3.1, those are exactly the cotrees of these graphs. How these can
be computed is now shown for Ĝ, for Ĝ+ the steps are analogous.
First, the tool cographToNewickCotree is used on Ĝ to construct its cotree T̂

and store it in Newick notation (see section 3.2.2). The cotree is obtained by using
modular decomposition (see section 3.3.3). The syntax is as follows:

cographToNewickCotree <infile.adjb> [<outfile.tree> -w -cotlbl]

52

The parameter -w is used for weighted input graphs as in this case, and -cotlbl
enables the labeling of the internal nodes of the tree with 1 and 0 for series and
parallel modules, respectively, marking as orthologous (paralogous, respectively) any
two genes that have this internal node as their least common ancestor.

Now, the idea is to compare T̂ to T ∗ using the tree split distance (see section 3.2.3).
The tool SplitDist (section 4.5) is used to compute them. However, to compute the
distance, T̂ and T ∗ need to have the same set of leaves. Since POFF removes isolated
vertices, correct edges not included in Ĝ (false negatives) can lead to missing nodes
and T̂ has a smaller leaf set than T∗. The higher the -sim parameter is set for POFF,
the more leaves will be missing, see e. g. table 1 for an overview of the number of
leaves in the pruned graph for different similarity parameter choices.
The pruning is performed by applying pruneGraph to G∗ with respect to Ĝ to

obtain the pruned graph G∗pr, which is a cograph since G∗ is a cograph and any
induced subgraph of a cograph is again a cograph. Then cographToNewickCotree
is used to generate its cotree T ∗pr and finally SplitDist can be used to compute the
normalized split distances dsp(T ∗pr, T̂) and dsp(T̂ , T ∗pr). Refer to section 4.5 for a usage
description. Since Ĝ and Ĝ+ share the same vertex set, the cotree T̂+ can also be
compared to T ∗pr, and the distances dsp(T ∗pr, T̂

+) and dsp(T̂+, T ∗pr) can be computed.

6.8.5 Evaluating the Split Distances of the Cotrees

The results of the comparisons described above are listed in table 1 for the 20_20
dataset. Compared to the graph distance measure, the split distances are rather small.
Interestingly, there are many splits in T̂ that are not in T ∗pr (distance ranges from 21%
to 30%), while the inverse is not true (distance ranges from 6% to 9%). Additionally,
dsp(T̂ , T ∗pr) is decreasing with an increasing similarity threshold since less erroneous
edges are added to Ĝ by POFF, while dsp(T ∗pr, T̂) increases with increasing similarity
due to the increasing amount of gene pairs rejected as orthologs.

For T̂+, there are slightly more splits in T̂+ that are not in T ∗pr than in in the tree
generated without cograph completion, while there are slightly less splits in T ∗pr that
are not in T̂+. Again, the differences of about 1% are quite small.
Using the split distance, it was not possible to evaluate the 20_100 dataset since

the construction of the cograph failed due to an insufficient memory capacity. This
is caused by the huge edge count of the complemented subgraphs of the sparse
input graph which are explicitly computed in the implementation used here. A
more sophisticated implementation that is able to work without explicit computation
of complements could solve this issue, but since the symmetric, normalized graph
distance is available as an alternative measure this step was skipped in this work.

6.8.6 Consequences

In both datasets, the default symmetry parameter of 95% yields the best results both
for the output of POFF and the edited graphs. A higher similarity also reduces the

53

number of prime modules and thereby speeds up the processing by orthoDeprime,
so the default value is a good choice.
orthoDeprime has shown to slightly increase the accuracy of the orthology detection

while at the same time reconstructing the cograph structure of the input graph. This
is useful not only for the inference of gene trees or species trees, but also allows to
use cograph-based algorithms for several common problems that are NP -hard on
general graphs, but polynomial-time bounded on cographs, e. g. counting the number
of cliques, computing the chromatic number or computing a generating formula for
the set of cliques [CLB81].

54

7 Conclusion

This section concludes the results and achievements of this work. Additionally, it
lists current limitations of the provided solution and gives an outlook on how these
could be overcome in future approaches. Finally, it gives details on how the results
of this work will be published.

7.1 Conclusion of the Results

In this work a heuristic approach to cograph editing on orthology graphs has been de-
veloped. The C++ implementation of the described algorithm is called orthoDeprime
and has been tested with two simulated datasets to evaluate its quality. It has been
shown that the edited graph is slightly less distant to the true graph than the original
output of POFF, which means that the application of orthoDeprime improves the
quality of the orthology prediction. At the same, the cograph property is restored
such that existing tools can be used to infer a phylogenetic tree from the cotree of
the edited graph, which is a labeled gene tree of the genes in that graph.

7.2 Limitations and Perspectives for Future Work

The idea of orthoDeprime is to iteratively apply edition operations to the input
graph until it is a cograph. This is done by isolating prime modules in the graph
and editing them locally. However, by successfully editing a prime module locally,
new prime modules can arise on a global scale. Therefore there is no guaranty that
this procedure will eventually terminate and output a cograph.
Another problem is that CographCompletion.jar possibly adds edges between

genes from the same gene family, which is obviously wrong since those genes cannot
be orthologous. A possible workaround would be to run the algorithm multiple times
and hope that, due to its probabilistic character, it outputs a valid solution after a
few tries. A better a approach would be to adapt the computation such that it never
adds illegal edges in the first way. Fixing this issue is a promising way to achieve
better results with orthoDeprime.
To which extend the problems mentioned above will arise strongly depends on

the input data. If the input graph is “almost” a cograph, the processing will likely
succeed with good results. In the context of orthology graphs, this means that a
(at least partially) good estimation of the orthology relation, featuring a low false
discovery rate, is required. This means that only orthologs with a high sequence
identity can be detected, and thus the inferred gene tree will be incomplete. However,
Proteinortho with the POFF extension has shown to be a reliable source of input
data appropriate for orthoDeprime.

55

7.2.1 Publication of this Work

This thesis will be published via the document server1 of the Faculty of Mathematics
and Computer Science of the University of Leipzig.
All tools, their source code and the data files will be made publicly available on

the homepage2 of the Bioinformatics Group of the Institute of Computer Science,
University of Leipzig. For questions, suggestions or bug reports, please contact the
author3.

1http://lips.informatik.uni-leipzig.de/
2http://www.bioinf.uni-leipzig.de/
3felix@bioinf.uni-leipzig.de

56

http://lips.informatik.uni-leipzig.de/
http://www.bioinf.uni-leipzig.de/
mailto:felix@bioinf.uni-leipzig.de

References
[Ber12] Sarah Berkemer. Cograph Editing: An Approach to Adjust the Orthology

Relation for the Reconstruction of Phylogenetic Trees (Bachelor’s Thesis).
Feb. 2012.

[CLB81] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. “Complement
reducible graphs”. In: Discrete Applied Mathematics 3.3 (1981), pp. 163–
174. issn: 0166-218X. doi: 10.1016/0166-218X(81)90013-5.

[Cor06] Denis Cornaz. “A linear programming formulation for the maximum
complete multipartite subgraph problem”. English. In: Mathematical
Programming 105.2-3 (2006), pp. 329–344. issn: 0025-5610. doi: 10.
1007/s10107- 005- 0656- 6. url: http://dx.doi.org/10.1007/
s10107-005-0656-6.

[DTS12] Daniel Doerr, Annelyse Thévenin, and Jens Stoye. “Gene family assign-
ment-free comparative genomics”. In: vol. 13. Proceedings of the Tenth
Annual Research in Computational Molecular Biology (RECOMB) Satel-
lite Workshop on Comparative Genomics. Niteroi, Brazil, 2012.

[FT87] M. L. Fredmanm and R. E. Tarjan. “Fibonacci heaps and their uses in
improved network optimization algorithms”. In: Journal of the ACM
35.3 (July 1987), pp. 596–615.

[GM95] S Guattery and GL Miller. “On the performance of spectral graph
partitioning methods”. In: Proceedings of the sixth annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics. Philadelphia, PA, 1995, pp. 233–242.

[Hae66] Ernst Haeckel. Generelle Morphologie der Organismen. 1866.
[Hel+13] Marc Hellmuth et al. “Orthology relations, symbolic ultrametrics, and

cographs”. English. In: Journal of Mathematical Biology 66.1-2 (2013),
pp. 399–420. issn: 0303-6812. doi: 10.1007/s00285-012-0525-x. url:
http://dx.doi.org/10.1007/s00285-012-0525-x.

[HR+12] Maribel Hernandez-Rosales et al. “From event-labeled gene trees to
species trees”. In: BMC Bioinformatics 13.Suppl 19 (2012), S6. issn:
1471-2105. doi: 10.1186/1471-2105-13-S19-S6. url: http://www.
biomedcentral.com/1471-2105/13/S19/S6.

[Lec+11] Marcus Lechner et al. “Proteinortho: Detection of (Co-)orthologs in
large-scale analysis”. In: BMC Bioinformatics (2011).

[LHR+13] Marcus Lechner, Maribel Hernandez-Rosales, et al. “Orthology Detection
Combining Clustering and Synteny for Very Large Data Sets”. 2013.

[Liu+11] Yunlong Liu et al. “Cograph Editing: Complexity and Parameterized
Algorithms”. In: COCOON 2011. Ed. by B. Fu and D.-Z. Du. LNCS
6842. Heidelberg: Springer Berlin, 2011, pp. 110–121.

i

http://dx.doi.org/10.1016/0166-218X(81)90013-5
http://dx.doi.org/10.1007/s10107-005-0656-6
http://dx.doi.org/10.1007/s10107-005-0656-6
http://dx.doi.org/10.1007/s10107-005-0656-6
http://dx.doi.org/10.1007/s10107-005-0656-6
http://dx.doi.org/10.1007/s00285-012-0525-x
http://dx.doi.org/10.1007/s00285-012-0525-x
http://dx.doi.org/10.1186/1471-2105-13-S19-S6
http://www.biomedcentral.com/1471-2105/13/S19/S6
http://www.biomedcentral.com/1471-2105/13/S19/S6

[LMP08] Daniel Lokshtanov, Federico Mancini, and Charis Papadopoulos. “Char-
acterizing and Computing Minimal Cograph Completions”. In: Frontiers
in Algorithmics. Ed. by FrancoP. Preparata, Xiaodong Wu, and Jianping
Yin. Vol. 5059. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2008, pp. 147–158. isbn: 978-3-540-69310-9. doi: 10.1007/978-
3-540-69311-6_17. url: http://dx.doi.org/10.1007/978-3-540-
69311-6_17.

[Mai] Thomas Mailund. SplitDist – Calculating Split-Distances for Sets of
Trees. University of Aarhus.

[Mou14] Mouagip. genetic_code.svg. Feb. 2014. url: http://commons.wikimedia.
org/wiki/File:Aminoacids_table.svg.

[SW97] Mechthild Stoer and Frank Wagner. “A Simple Min-Cut Algorithm”. In:
Journal of the ACM 44.4 (July 1997), pp. 585–591.

[WS08] Kimitsuna Watanabe and Tsutomu Suzuki. “Universal Genetic Code
and its Natural Variations”. In: eLS (Mar. 2008).

[Fak14] Prüfungsamt Fakultät für Mathemtik und Informatik. Hinweise zum An-
fertigen der Diplomarbeit (Bachelorarbeit, Masterarbeit). http://www.in
formatik.uni-leipzig.de/ifi/fileadmin/documents/studium/pruefamt/HIN
WEISE_Dipl_BSc_MSc_Arbeit_.pdf, Feb. 2014.

[The+12] The Encode Project Consortium et al. “An integrated encyclopedia of
DNA elements in the human genome”. In: Nature 489 (Sept. 2012),
pp. 57–74.

ii

http://dx.doi.org/10.1007/978-3-540-69311-6_17
http://dx.doi.org/10.1007/978-3-540-69311-6_17
http://dx.doi.org/10.1007/978-3-540-69311-6_17
http://dx.doi.org/10.1007/978-3-540-69311-6_17
http://commons.wikimedia.org/wiki/File:Aminoacids_table.svg
http://commons.wikimedia.org/wiki/File:Aminoacids_table.svg

	Introduction
	Biological Background
	DNA and the Genetic Code
	The Genome and Single Genes
	The Evolution of Life
	Homology of Genes

	Mathematical Preliminaries
	Undirected and Directed Graphs
	Complements, Paths and Connected Components of Graphs
	Multipartite graphs
	Representations of Graphs

	Trees
	Gene trees
	Newick Notation
	Split Distance

	Cographs
	Cographs and the Orthology Relation
	Equivalence to P4-free Graphs
	Modular Decomposition
	Cotrees
	Reconstructing Cographs from their Cotrees
	Cotrees are Gene Trees
	Cograph Editing
	Cograph Editing of Orthology Graphs
	Cograph Completion

	Third Party Tools and Algorithms
	coedit
	Proteinortho
	Constructing a Graph
	A Relaxed Reciprocal Best Alignment Heuristic
	Extracting Groups of Co-orthologs

	POFF
	Extracting Synteny Information
	Incorporate Synteny Information into Orthology Detection

	Min-Cut Algorithm
	Description
	Correctness
	Complexity

	SplitDist
	CographCompletion.jar

	Heuristic for Editing Cographs Based on Orthology Data
	Outline of orthoDeprime
	Identifying and Eliminating the Prime Modules
	Non-editable Prime Modules
	Choosing the Best Edition Set
	Implementation and Usage
	A Small Example
	The Input Data
	Locating the Prime Modules
	Processing the Small Prime Module
	Processing the Large Prime Module
	Finishing

	Results and Evaluation
	A Pipeline for Phylogenetic Tree Inference
	Tested Datasets
	Estimation of the Orthology Relation
	Construction of the Input Graph
	Prime Modules in the Datasets
	Running orthoDeprime
	A Distance Measure for Graphs
	Evaluation of the Output
	Number of Edges, Vertices and Prime Modules
	Distance between the Input and Output Graphs
	Distances and Edge Counts of the Pruned Graphs
	Computation of the Split Distances of the Cotrees
	Evaluating the Split Distances of the Cotrees
	Consequences

	Conclusion
	Conclusion of the Results
	Limitations and Perspectives for Future Work
	Publication of this Work

	References

