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1 Motivation

Goal: comparison of computational results from bioinformatics with
experimental results from life sciences

Task: find relevant literature containing information on conserved
RNA secondary structures in viral genomes for a fixed virus
group

Complications:
• relevant results may be hidden in articles with differing main

topics
• key words may be omitted because context is clear or may be

overloaded (e.g. secondary structure)
• no established nomenclature of RNA features in viruses

⇒ Exploratory Project: assess the feasibility of supporting broad
bibliographic search with automated text categorization
techniques (2PM).
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2 Approach

1. learn relevant literature using training corpus (dedicated to a
specific virus group, e.g. Picornaviridae, Flaviviridae)

2. create test corpus (on some other virus group) by searching
bibliographic database and downloading referenced articles

3. apply trained classifier to test corpus

4. present articles as ranked list

5. manually relabel some test articles and use for retraining
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2.1 Architecture
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3 Data Sets

Corpus Source Size Positive
picorna Pubmed 40 68%

picorna2 Pubmed + Experts 64 58%

flavi Pubmed 153 8%

flavi2 Pubmed + Experts 187 12%

hepadna Pubmed 16 69%
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4 Methods
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4.1 Data Preparation

1. download: Perl wrapper scripts

2. PDF → Text conversion: pdftotext, ps2ascii

3. tokenization and full text index: ConceptComposer

4. term relevance measures: SQL script

• Odds Ratio OR(t, c) =
P (t|c) · (1 − P (t|c))

(1 − P (t|c)) · P (t|c)

• Mutual Information MI(t, c) = log
P (t, c)

P (t) · P (c)

5. vector representation: SQL script, using tfidf term weights

(persistent storage: MySQL relational database)
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4.2 Automated Text Categorization

Prototype: Java application on top of Weka 3 and MySQL. Supports
crossvalidation on training corpus and validation on separate test
corpus. External data download, preparation, and labeling.

Parameters for experiments:

• term relevance measure: {OR, MI}

• dimensionality: {10, 20, ..., 200}

• target recall: {80%}

• classifier type {SMO, J48, N.B.}
(i.e., SVM, C4.5, Naive Bayes)

• classifier-specific parameters
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5 Results
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5.1 Feature Selection

Relevance measure used as classifier. Threshold defined by target
recall 100%. Average precision:

pavg flavi flavi2 picorna picorna2

OR 7.8% 11.8% 67.6% 58.0%

MI 11.2% 20.2% 76.7% 69.3%

⇒ baseline for cross evaluation.
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5.2 Cross Evaluation

Picorna corpora: easy to classify. E.g., SMO with MI on picorna2:
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Flavi corpora: harder to classify. E.g., SMO with MI on flavi2:
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Typically less than 50 features needed for maximum precision.
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5.3 Validation on Separate Test Corpus
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Classifiers trained on Flavi corpora transfer well to Picorna corpora
(e.g., SMO with OR, flavi2 → picorna2)...
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... but not vice versa (e.g., SMO with OR, picorna2 → flavi2)
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Still, even a low precision may save work...
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6 Cost Model

Task: find at least a fraction r of all relevant documents within a
bibliographic search result, i.e., target recall is r.

Goal: minimize fraction q of articles to be inspected manually.

Baseline: random selection with probability r requires qrand = r and
yields recall r.

With classifier: classifier with precision p requires
qauto = min(P (c)r/p, 1) where
P (c) frequency of relevant documents

Work reduction: s = (qrand − qauto)/qrand = 1 − P (c)/p if P (c) ≤ p
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6.1 Work Reduction (Examples)

training test class msr P (c) pmax r s

flavi2 picorna2 SMO MI 58% 83.3% 100.0% 30%

picorna2 flavi2 SMO OR 12% 32.7% 81.8% 63%
flavi2 hepadna SMO OR 69% 90.9% 90.9% 25%

picorna2 hepadna SMO OR 69% 90.0% 81.8% 25%
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7 Conclusions

• classifiers can be transferred among corpora on different virus
groups, at the cost of reduced precision

• low precision can still reduce manual work significantly,
especially with infrequent classes

• work reduction allows to broaden search queries and to increase
overall recall
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8 Future Plans

• experiment with classifiers for partially unlabeled data sets

• complete implementation of litsift tool:

– implement Web interface based on Apache Cocoon

– re-implement download manager in Java, based on Apache
xalan and JaxME.
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