
Dynamic Programming for Set Data Types

Christian Höner zu Siederdissen1, Sonja J. Prohaska2, and Peter F. Stadler2

1 Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, Austria
2 Dept. Computer Science, and Interdisciplinary Center for Bioinformatics, Univ.

Leipzig, Härtelstr. 16-18, Leipzig, Germany

Abstract. We present an efficient generalization of algebraic dynamic
programming (ADP) to unordered data types and a formalism for the
automated derivation of outside grammars from their inside progenitors.
These theoretical contributions are illustrated by ADP-style algorithms
for shortest Hamiltonian path problems. These arise naturally when ask-
ing whether the evolutionary history of an ancient gene cluster can be
explained by a series of local tandem duplications. Our framework makes
it easy to compute Maximum accuracy solutions, which in turn require
the computation of the probabilities of individual edges in the ensemble
of Hamiltonian paths. The expansion of the Hox gene clusters is investi-
gated as a show-case application.
http://www.tbi.univie.ac.at/~choener/setgram/

Key words: formal grammar, outside grammar, dynamic programming,
Haskell, Hamiltonian path problems, tandem duplications, Hox clusters

1 Introduction

Dynamic Programming (DP) over rich index sets provides solutions of a surpris-
ing number of problems in discrete mathematics. Even for NP-hard problems
such as the Travelling Salesman Problem (TSP) exact solutions can be obtained
for moderate size problems of practical interest. The corresponding algorithms,
however, are usually specialized and use specific properties of the problem in an
ad hoc manner that does not generalize particularly well.

Algebraic dynamic programming (ADP) [1] defines a high-level descriptive
domain-specific language for dynamic programs over sequence data. The ADP
framework allows extremely fast development even of quite complex algorithms
by rigorously separating the traversal of the state space (by means of context free
grammars), scoring (in terms of suitable algebras), and selection of desired solu-
tions. The use of CFGs to specify the state space is a particular strength of ADP
since it allows the user to avoid indices and control structures altogether, thereby
bypassing many of the pitfalls (and bugs) of usual implementations. Newer di-
alects of ADP [2, 3] provide implementations with a running time performance
close to what can be achieved by extensively hand-optimized versions, while still
preserving most of the succinctness and high-level benefits of the original ADP
language. A key goal of current developments are frameworks that make it easy

2 Höner zu Siederdissen et al.

to implement complex dynamic programs by combining small, simple compo-
nents. One step in this direction was the introduction of grammar products [4],
which greatly simplifies the specification of algorithms for sequence alignments
and related dynamic programming tasks that take multiple strings as input.

Sequence data is not the only type of data for which grammar-like dynamic
programs are of interest. Inverse coupled rewrite systems (ICOREs) [5] allow
the user to develop algorithms over both, sequence and tree-like data. While no
implementation for these rewrite systems is available yet, they already simplify
the initial development of algorithms. This is important in particular for tree-
like data. Their non-sequential nature considerably complicates these algorithms.
The grammar underlying the alignment of ncRNA family models with CMCompare

[6], which simultaneously recurses over two trees, may serve as an example for the
practical complications. There are compelling reasons to use DP approaches in
particular when more information than just a single optimal solution is of inter-
est. DP over sequences and trees readily allows the enumeration of all optimal
solutions, and it offers generic ways to systematically investigate suboptimal
solutions and to compute the probabilities of certain sub-solutions. Classified
dynamic programming [7], furthermore, enables the simultaneous calculation of
solutions with different class features via the evaluation algebra instead of con-
structing different grammars for each class. Two well-known examples for DP
over sequences in computational biology for which these features are extensively
used in practise are pairwise sequence alignment and RNA folding. Due to the
tight space limits we have we can discuss them only in an Electronic Appendix.

A quite different classical example of DP is the Travelling Salesman Problem
(TSP). It is easily stated as follows: given a set X of cities and a matrix d :
X ×X → R+ of (not necessarily symmetric) distances between them, one looks
for the tour (permutation) π on X that minimizes the tour length f(π) :=

dπ(n),π(1) +
∑n−1
i=1 dπ(i),π(i+1). W.l.o.g., we may set X = {1, . . . , n} and anchor

the starting point of a tour at π(1) = 1. The well-known (exponential-time) DP
solution for the TSP [8, 9] operates on “sets with an interface” [A, i] representing
the set of all tours starting in 1 ∈ A, then visiting all other cities in A exactly
once and ending in i ∈ A. The length of the shortest path of this type is denoted
by f([A, i]). For an optimal tour we have f([X \ {i}, i]) + f(〈i, 1〉)→ min, where
f(〈i, 1〉) = d1,i is the length of the edge from i to 1. The f([A, i]) satisfy the
recursions

f([A, i]) = min
j∈A

f([A \ {i}, j]) + f(〈j, i〉) (1)

since the shortest path through A to i must consist of a shortest path through
A ending in some j ∈ A and a final step from j to i. The fundamental question
that we will address in this contribution is whether we can rephrase this and
similar DP algorithms also in an ADP like manner. In other words: how can
we separate state space traversal and evaluation, even though we do not have a
grammar at hand (because we do not even operate on strings or ordered trees)?

DP on Sets 3

2 ADP over Set-Like Data Types

Generalized Decompositions. The key observation is that we have to gen-
eralize the notion of parsing a string to much more general ways of traversing
the state space. This interpretation of “productions” makes perfect sense for the
paths in the TSP solution. In complete analogy to the RNA example we set

“A→ A′ ++ e” := {[A, i] 7→ [A \ {i}, j] ++〈j, i〉|A ⊆ X, j ∈ A} (2)

The path variables [A, i] highlight a second important ingredient of the formal-
ism. Each object [A, i] consists of an interior part int([A, i]) = A \ {i, 1} and the
interface ∂A = {1, i}. The latter consists of the vertices that need to be known
explicitly for the evaluation: they will appear explicitly in the evaluation algebra.
For fixed A in the production (2), e.g., we have to consider all j ∈ A \ {1} as
possible endpoints of the paths.

The distinction between interior and interface of each objectA := [int(A), ∂A]
allows a more principled way to constructing concrete decompositions:

[int(A), ∂A] 7→ ++
i

[int(Ai), ∂Ai] (3)

with the following properties:

(C1)
⋃
iAi = A, i.e., the parts of A form a covering of A.

(C2) int(Ai)∩ int(Aj) 6= ∅ implies i = j, i.e., the interiors of the parts are disjoint.
(C3) int(Ai) ⊆ int(A), i.e., the interiors behave like isotonic functions.

The intuition behind axiom (C1) is that any decomposition of an object must
eventually evaluate all parts. Condition (C2) and (C3) implies that the interiors
of the parts can be evaluated independently. To allow meaningful evaluation
algebras in the ADP sense we require that concatenation is associative. It may
be tempting to think of ∂ and int in terms of generalized topological functions,
i.e., as boundary and interior operators. This may not need to be the case in full
generality, since we may have situations where A is not just a set.

A terminal is an object for which there is no further concrete decomposition.
In the TSP examples, the terminals are on the one hand the edges 〈j, i〉 that
appear explicitly in the decompositions as well as the path 〈1〉 := [{1}, 1] of
length 0 that appears implicitly as the base case of the concrete decompositions.
The boundary ∂A is not necessarily just an unstructured set. For the asymmetric
TSP, for instance, there is a distinction between the starting point 1 and the
endpoint j of path [A, j].

So far our discussion has been focussed on the decomposition of inputs in
the terms of a grammar. The goal to optimize with an objective function in DP
has only entered in passing, as in the TSP example in equ. (1). For DP to work,
however, more is required. The grammar performs the decomposition of each sub-
input into its constituent elements, or terminal and non-terminal symbols. Each
of the different decompositions is then evaluated using an evaluation algebra that
defines how f(A) depends on the evaluation f(Ai) of the fragments. In general

4 Höner zu Siederdissen et al.

there are multiple alternative decompositions of A. For the TSP for instance,
we have to consider A → A \ {i} for all i ∈ A. It also is the job of the score
algebra to combine the scores over these alternatives. To minimize f , scores are
added over constituents and minimized over alternatives. To compute partition
functions they are multiplied over constituents and added up over alternatives.
Finally Bellman’s principle [8] stipulates that decomposition and scoring play
together in such a way that optimal solutions are always obtained by composing
optimal solutions of smaller problems.
Deriving Outside Algorithms. A key advantage of DP algorithms is the
generic possibility to compute solutions with constraints, such as alignments
that contain a given alignment edge. The basic idea behind this possibility is the
combination of an “inside” with an “outside” solution, i.e., a pair of complemen-
tary partial solutions. Well known examples are pairwise sequence alignments
or RNA folding. In the first example, pairwise alignments of prefixes are the ob-
jects of the forward (or “inside”) recursion, while suffix-alignments are required
as “outside” objects. In the RNA case, this is even more transparent, since “in-
side” runs over secondary structures on intervals, while the outside algorithm
recurses over the complements of the intervals, again proceeding from smaller to
larger outside objects. A good example is McCaskill’s algorithm for computing
the base pairing probabilities in the ensemble of all secondary structures formed
by an input RNA molecule [10]. The construction of the outside traversal is a
difficulty in ADP that has not been fully solved. For CFGs, thesis [11] shows that
a grammar for the outside objects can be derived by doubling the input string
and re-interpreting the region outside of interval [i, j] as the interval [j+1, i′−1]
where i′ is the equivalent position i in the 2nd copy of the input.

To make use of the full potential of dynamic programming it would be highly
desirable to construct suitable outside traversals automatically from a given
inside traversal. In the remainder of this section we discuss some of the general
principles underlying the relationship of inside and outside recursion on a general
level. The key observation is that the distinction of inside and outside comes from
a generic way of splitting solutions so that

[int(X), ∂A]→ [int(A), ∂A] ++[int(A∗), ∂∗A∗] (4)

corresponds to the set of all solutions that are constrained to ∂A = ∂∗A∗,
i.e., that contain the particular feature specified by ∂A. Set-like objects have
a straightforward explicit definition of their outside objects: int(A∗) := X \
(int(A) ∪ ∂A). The notation ∂∗A∗ emphasizes that in the case of structured
interfaces corresponding inside and outside objects must consist of the same
terminals, but possibly in different orderings. In the Electronic Appendix we
illustrate this construction for RNA folding and pairwise alignments.

The straightforward definition of outside objects suggests that it should also
be possible to construct inside-style productions for these outside objects in a
generic, rule-based manner. It turns out that the solution to this long-standing
problem in DP becomes surprisingly simple as soon as we allow ourselves to
“parse” also data structures that are not strings or trees. With each concrete

DP on Sets 5

inside decomposition A 7→ (++iAi) ++ (++j〈tj〉), where the Ai are non-terminals
and the 〈tj〉 are terminals, we associate

A∗k 7→ A∗ ++

(
++
i6=k

Ai

)
++

(
++
j
〈tj〉
)

(5)

For examples and a discussion of start non-terminals and empty terminals we
refer to the Electronic Appendix. The situation is even simpler for the TSP: we
have [A, (1, i)]∗ = [(X \ A) \ {1, i}, (i, 1)]. In particular, [A, (1, i)] ++[A, (1, i)]∗

corresponds to the set of all Hamiltonian paths that run from 1 to i through
A and then from i back to 1 through X \ A. The same idea applies to other
Hamiltonian path problems.

3 Application to Gene Cluster Histories

Local duplication of DNA segments via unequal crossover is the most plausible
mechanism for the emergence and expansions of local clusters of evolutionary
related genes. It remains hard and often impossible to disentangle the history of
ancient gene clusters in detail even though polynomial-time algorithms exist to
reconstruct duplication trees from pairwise evolutionary distance data [12]. The
reason is the limited amount of phylogenetic information in a single gene. The
situation is often aggravated by the extreme time scales leading to a decay of
the phylogenetic signal so that only a few, very well-conserved sequence domains
can be compared. A large number of trees then fits the data almost equally well.
A meaningful analysis thus must resort to some form of summary that is less
detailed than a duplication tree. In the absence of genome rearrangements, and
if duplication events are restricted to copying single genes to adjacent positions,
we expect phylogenetic distance to vary monotonically with genomic distance.
A shortest Hamiltonian path through the phylogenetic distance matrix therefore
should conform to the linear arrangement of the genes on the genome. The same
high noise level that suggests to avoid duplication trees makes us distrust a single
shortest path. Rather, we would like to obtain information on the ensemble of
all Hamiltonian paths.

The shortest Hamiltonian path problem, well known to be NP-complete, is
closely related to the TSP, and admits a similar dynamic programming solution
[8, 9]. We provide here an implementation in our ADP-style framework. Denote
by [i, A, j] with i, j ∈ A the set of all paths starting in i, ending in j, and passing
through all other vertices of A in between. It will be convenient to fix the start
and end points p and q of the paths, i.e., the search space is Xpq := [p,X, q].
With fixed p and q we need not treat the ends p and q as interface points, i.e., we
can write [A, j] for the path sets, where p ∈ A and q /∈ A for all A. As for the TSP
we have [A, j] 7→ [A \ {j}, k] ++〈k, j〉 and [A, j] ++[A, j]∗ = Xpq from which we
obtain the outside objects as the path sets [A, j]∗ = [j,X \A] with endpoint q ∈
X \ A. The corresponding concrete decompositions are [j, B] 7→ 〈j, k〉++[k,B \
{j}] for k ∈ B \ {j}. Partition functions over Hamiltonian paths are computed
using Z(A++B) = Z(A)Z(B), Z([{p}, p]) = Z([q, {q}) = 1, and Z(〈i, j〉) =

6 Höner zu Siederdissen et al.

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

T = 0.033 T = 0.1 T = 0.33 T = 1.0

probability of adjacency 0.01 0.05 0.1 0.2 0.3 0.40 0.5

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 4 5 6 7 9 1
0

1
1

1
3

1 2 3 c b a 8 7 6 59* 1 2 3 c b a 8 7 6 59*

Blossum Hamming Blossum Hamming
Latimeria menadoensis Strongylocentrotus purpuratus

Fig. 1. Posterior probabilities of adjacencies of Hox genes along shortest Hamiltonian
paths w.r.t. to phylogenetic distance. Top: effect of the temperature parameter T for
distances between Latimeria menadoensis homeobox sequences. Below: Comparison
of adjacencies for two different metrics (Hamming distance, and BLOSSUM-45 derived
dissimilarities) in L. menadoensis (left) and S. purpuratus. T = 0.1 to emphasize
the structure of the ambiguities. Note the adjacencies between the block of anterior
Hox genes (1,2,3) and the middle group genes (5,6,7,8), reflecting the break-up and
translocation of anterior genes to a genomic location before the posterior genes.

exp(−dij/kT) is the Boltzmann factor of the distance between two vertices, i.e.,
of the terminals. Our generalized ADP framework takes care of computing all
Z([p,A, i]) = Z([A, i]) and Z([k,B, q]) = Z([k,B]). The a posteriori probability
of observing an adjacency i ∼ j in path with fixed endpoints p and q is
P (i ∼ j|p, q) = Z([p,A, i])Z(〈i, j〉)Z([j,X \ (A ∪ {i}), q])/Z(Xpq).
As usual, this is simply the ratio of restricted and unrestricted partiton functions.
Summing over the possible end points of the paths yields

P (i ∼ j) =
1

Z

∑
p,q

Z([p,A, i])Z(〈i, j〉)Z([j,X \ (A ∪ {i}), q]) , (6)

where Z =
∑
p,q Z(Xpq) is the partition function over all Hamiltonian paths.

We note in passing that Z(Xp,q)/Z is the probability that the path has p and q
as its endpoints.

DP on Sets 7

Hox genes are ancient regulators originating from a single Hox gene in the
metazoan ancestor. Over the course of animal evolution the Hox cluster gradually
expanded to 14 genes in the vertebrate ancestor. Timing and positioning of
Hox gene expression along the body axis of an embryo is co-linear with the
genomic arrangement in most species. Only the 60 amino acids of the so-called
homeodomain can be reliably compared at the extreme evolutionary distances
involved in the evolution of the Hox system. We use either the Hamming distance,
measuring the number of different amino-acids, or the transformation dab =
s(a, a) + s(b, b)− 2s(a, b) of the BLOSSUM45 similarity matrix to quantify the
evolutionary distances of the homeodomain sequences. The Boltzmann constant
k is set to the average pairwise genetic distance so that the pseudo-temperature
T quantifies the expected noise level as a fraction of the phylogenetic signal. For
T → 0 we focus on the (co)optimal paths only, while T →∞ leads to a uniform
distribution of adjacencies.

We analyzed here the Hox A cluster of Latimeria menadoensis (famous as
a particularly slowly evolving “living fossil”), which has sufferered the fewest
gene losses among vertebrates. As a contrast we use the Hox cluster of the
sea urchin Strongylocentrus purpuratus, which has undergone comparably recent
rearrangement of its gene order [13]. Fig. 1 shows the posterior probabilities of
adjacencies. Both examples reflect the well-known clustering into anterior (Hox1-
4), middle group genes (Hox4-8), and posterior ones (Hox9-13). The shortest
Hamiltonian paths in L. menadoensis connect the Hox genes in their genomic
order. In the sea urchin, however, we see adjacencies connecting the anterior
subcluster (Hox1-3) with the genomic end of the cluster, i.e., the middle group
genes (Hox8-Hox5).

4 Discussion

We have taken here the first step towards extending algebraic dynamic pro-
gramming (ADP) beyond the realm of string-like data structures. Our focus is
an efficient, yet notationally friendly way to treat DP on unordered sets. Our
extension of ADP builds on the same foundation (namely ADPfusion [2]) as our
grammar product formalism [14, 4]. Our formalism explicitly redefines the rules
of parsing to match the natural subdivisions of the data type in question. In
the case of sets, these are bipartitions and the splitting of individual elements,
rather than the subdivision of an interval or the removal of a boundary element
that are at the heart of string grammars. As a showcase example we considered
in detail the shortest Hamiltonian path problem, which arises e.g. in the context
of the evolution of ancient gene clusters. In this context we are interested in par-
ticular in probabilities and hence in restricted partition functions. An ADP-style
implementation and a principled approach to constructing outside algorithms is
of particular practical relevance here.

Our current framework still lacks generality and completeness in several re-
spects. The theoretical foundations for the automated calculation of outside
grammars for, basically, traversals of arbitrary data types is our most immedi-

8 Höner zu Siederdissen et al.

ate concern. In this context McBride’s notion of a derivative operator acting on
data types [15] is highly relevant, even though it does not seem to be directly
applicable. Even more generally, it might be possible to generate decomposition
schemes, i.e. “grammar rules”, from an analysis of the data structure itself.

Acknowledgements. This work was funded, in part, by the Austrian FWF,
project “SFB F43 RNA regulation of the transcriptome”, the Templeton Founda-
tion, grant # 24332 “Origins and Evolution of Regulation in Biological Systems”,
and the DFG project “MI439/14-1”.

References

1. Giegerich, R., Meyer, C.: Algebraic dynamic programming. In Kirchner, H.,
Ringeissen, C., eds.: Algebraic Methodology And Software Technology. Volume
2422 of Lect. Notes Comp. Sci. Springer, Berlin, Heidelberg (2002) 349–364

2. Höner zu Siederdissen, C.: Sneaking around concatMap: efficient combinators for
dynamic programming. In: Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming. ICFP ’12, ACM (2012) 215–226

3. Sauthoff, G., Janssen, S., Giegerich, R.: Bellman’s GAP - A Declarative Lan-
guage for Dynamic Programming. In: Proceedings of the 13th international ACM
SIGPLAN symposium on Principles and practices of declarative programming.
PPDP’11, ACM (2011) 29–40

4. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: Product Grammars for
Alignment and Folding. IEEE/ACM Trans. Comp. Biol. Bioinf. 99 (2014)

5. Giegerich, R., Touzet, H.: Modeling Dynamic Programming Problems over Se-
quences and Trees with Inverse Coupled Rewrite Systems. Algorithms (2014)
62–144

6. Höner zu Siederdissen, C., Hofacker, I.L.: Discriminatory power of RNA family
models. Bioinformatics 26(18) (2010) 453–459

7. Voß, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA
shapes. BMC biology 4(1) (2006) 5

8. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM 9 (1962) 61–63

9. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. SIAM 10 (1962) 196–201

10. McCaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29 (1990) 1105–1119

11. Janssen, S.: Kisses, ambivalent models and more: Contributions to the analysis of
RNA secondary structure. PhD thesis, Univ. Bielefeld (2014)

12. Elemento, O., Gascuel, O.: An efficient and accurate distance based algorithm to
reconstruct tandem duplication trees. Bioinformatics 8 Suppl. 2 (2002) S92S99

13. Cameron, R.A., Rowen, L., Nesbitt, R., Bloom, S., Rast, J.P., Berney, K., Arenas-
Mena, C., Martinez, P., Lucas, S., Richardson, P.M., Davidson, E.H., Peterson,
K.J., Hood, L.: Unusual gene order and organization of the sea urchin Hox cluster.
J Exp Zoolog B Mol Dev Evol 306 (2006) 45–58

14. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: How to Multiply Dynamic
Programming Algorithms. In: Brazilian Symposium on Bioinformatics (BSB 2013).
Volume 8213 of Lect. Notes Bioinf., Springer, Heidelberg (2013) 82–93

15. McBride, C.: Clowns to the left of me, jokers to the right (pearl): dissecting data
structures. In: ACM SIGPLAN Notices. Volume 43., ACM (2008) 287–295

DP on Sets i

Illustrative Examples

The material in this appendix will be provided as an Electronic Supplement. It
it is intended to illustrate the rather dense theoretical development of the main
text, where a detailed discussion of examples had to be omitted due to the tight
space restrictions.

DP for RNA Folding

A good example for Dynamic Programming over sequences is RNA folding. We
consider here only a minimal example based on the grammar with non-terminals
S and B denoting arbitrary structures and secondary structures enclosed by a
base pair respectively. We write terminals in the usual shorthand notation as
• for an unpaired base, while (and) denotes a base pair. There are just five
productions in the usual RNA CFG

S → B
∣∣ •S ∣∣ BS ∣∣ • B → (S) (7)

The corresponding evaluation algebra that counts base pairs amounts to addi-
tion, with the terminals • and (. . .) evaluating to 0 and 1, resp.

The productions of the RNA folding grammar, equ. (7), can be viewed as a
set of concrete decompositions for a given input. For instance,

“S → BS” := {Sij 7→ BikSk+1,j |1 ≤ i ≤ k < j ≤ n}
“B → (S)” := Bij 7→ 〈i, j〉++Si+1,j−1

(8)

Similar expressions can immediately be written down for “S → •S” and “S →
B”. These sets depend explicitly on the input since n is the length of the input
sequence. This is not unexpected since the search space of course depends on
the input.

In the RNA case, all relevant sets are intervals. The unconstrained structures
have empty interfaces. We have S := [S,∅] and hence S∗ = [X \ S,∅] where
X = [1, . . . , n] is the set of sequence positions. The B-objects have the endpoints
as interfaces B := [B \ {i, j}, 〈i, j〉]. Thus B∗ := [(X \B) \ {i, j}, 〈j, i〉]. Thus

“X → S++ S∗” := {Sij ++Ti−1,j+1|1 ≤ i ≤ j ≤ n} (9)

consists of all possible decompositions of X into “inside” secondary structure
Sij and “outside” structures Ti−1,j+1. These outside objects correspond to all
secondary structures on the union of [1, i − 1] and [j + 1, n]. Similarly B++B∗

lists all secondary structures with given base pair 〈i, j〉.

DP for Pairwise Sequence Alignments

Pairwise sequence alignment with affine gap costs is solved by Gotoh’s well-
known algorithm. The corresponding context free grammar has three non-terminals
M , D, I, depending on whether the right end of the alignment is a match state,

ii Höner zu Siederdissen et al.

...

...

...

...

M M

M

M

D

D

D

D

D D

I

I

I

I I

D*

D*

D*

D*

I

M M* M M*

D* D*

M* M*

M*

M*

I* I*

I*

I*

I*

I*

Fig. 2. Derivation of the outside algorithm for a Gotoh-style pairwise sequence align-
ment. Top: graphical notation for the productions. Non-terminals are alignments end-
ing in a (mis)match, insertion, or deletion, terminals are (mismatches), and single base
insertions and deletions. For each non-terminal, the interior and the interface is indi-
cated. Middle: definition of outside objects by complementing to a full alignment and
constraining on the interface. Bottom: The grammar derived for the outside elements
coincides with the suffix version of Gotoh’s algorithm.

a gap in the first sequence, or a gap in the second sequence. Note that this CFG
operates on two rather than a single input string. The productions are of the
form

M → M(uv)
∣∣ D(uv)

∣∣ I(uv)
∣∣ (εε)

D →M(u−)
∣∣ D(u.)

∣∣ I(u−)

I →M(−v)
∣∣ D(−v)

∣∣ I(.v) (10)

where u and v denote terminal symbols. ’−’ corresponds to gap opening, while
’.’ denotes the (differently scored, cf. colored terminals in Fig. 2) gap extension.

Outside Objects

Let us apply the construction of equ. (5). In linear grammars, such as the pairwise
sequence alignment problem, this is particularly simple. We first note that the
“last column”, i.e., whether an alignment of prefixes ends in a (mis)match, an
insertion, or a deletion forms the interface of the partial solution. Then we see
that M∗ij is simply the set of alignments of suffixes, again with the terminal

(
i
j

)
at its left end. int(M∗ij) is an alignment of the suffixes starting at i + 1 and
j + 1. The complete situation is summarized in Figure 2. The recursions for the
outside objects are readily derived. For instance, there are three decompositions
resulting in an M -object: Mij 7→ Mi−1,j−1 ++ (••), Dij 7→ Mi−1,j ++ (•−), and
Iij 7→Mi,j−1 ++ (−•). The corresponding outside decompositions are M∗i−1,j−1 7→

DP on Sets iii

(••) ++M∗ij , M
∗
i−1,j 7→ (•−) ++D∗ij , M

∗
i,j−1 7→ (−•) ++ I∗ij . Renaming the indices

to i and j on the l.h.s. of each decomposition yields M∗i,j 7→ (••)M
∗
i+1,j+1

∣∣
(•−) ++D∗i+1,j

∣∣ (−•) ++ I∗i,j+1. Analogous expressions are obtained forD∗ij and I∗ij .
As a result we therefore obtain the well-known recursions for Gotoh’s algorithm
operating on suffixes instead of prefixes. It is worth noting that in this case
the inside-style decompositions of the outside objects do not involve the inside
objects. This is a general feature of linear grammars, which have only one non-
terminal on the r.h.s. of each production.

In the general case, the outside algorithm mixes inside and outside objects.
This is the case for instance for RNA folding. The outside objects are structures
on the complement of a sequence interval. Since unconstrained structures in
our definition have no interface, the sets of positions of Sij and S∗ij are disjoint.
Using a notation where the indices denote the extremal nucleotides we have S∗ij =
Ti−1,j+1, where the latter denotes the set structures on the disjoint union of the
intervals [1, i−1] and [j+1, n]. On the other hand the structures constrained to be
enclosed by a base pair have that base pair as their interface. Thus B∗ij = Cij ,
where Cij denotes the set of all structures on [1, i]∪̇[j, n] so that (i, j) forms a base
pair. Note that Cij corresponds to Tij with the additional constraint that 〈i, j〉
is a base pair. This definition of the outside objects and the rule for generating
the decompositions of the outside objects leads to the following correspondences:

Sij 7→ Bij yields B∗ij 7→ S∗ij

Sij 7→ 〈i〉++Si+1,j yields S∗i+1,j 7→ 〈i〉++S∗ij

Sij 7→ BikSk+1,j yields B∗ik 7→ S∗ij ++Sk+1,j

and S∗k+1,j 7→ S∗ij ++Bik−1

Bij 7→ Si+1,j−1 ++〈i, j〉 yields S∗i+1,j−1 7→ B∗ij ++〈i, j〉

Substituting the T and C notation and renaming the indices so that the l.h.s.
of the rules always refers to [1, i]∪̇[j, n] leads to the following set of concrete
decompositions for the outside objects:

<i,j><i>

i j i−1 j k jk+1 i i j

i−1 j+1i j i−1 j+1 l l+1

T T
T

B

C

C T

S

T

(11)

The construction (5) implies that the outside grammars also make use of inside
non-terminals, indicated in black in the diagrams in equ. (11), whenever there
is an inside production that contains more than one non-terminal on its r.h.s. In

iv Höner zu Siederdissen et al.

a more conventional notation we may write equ.(11) as follows:

Tij 7→ 〈i〉++Ti−1,j Cij 7→ Ti−1,j+1

Tij 7→ Tk,j ++Bk+1,i Cij 7→ Ti−1,l+1 ++Sj+1,l

Tij 7→ Cij ++〈i, j〉

It is important to note that ++ operator here as a semantics different from just
string concatenation.

Start and Stop Symbols

We have, for brevity of presentation, disregarded the difficulties arising from
start and stop symbols. It is always possible to write the grammar with a dedic-
tated start symbol © that never appears on the r.h.s. of a production. Note that
© designates a completely unspecified solution, i.e., encodes the complete search
space. The corresponding outside object is the empty string ε, referring to an
empty set of solutions. The inside production ©→ S obviously gives rise to the
outside production S∗ → ε. Correspondingly, any rule of the form N → ε recog-
nizing the empty string must have a corresponding outside production ©→ T ∗.
In the RNA example above we have written the grammar without an explicity
ε symbol. This is possible because parsing also stops at any terminal. Hence we
need to deal with all rules of the form N → t. These naturally transform to
© → t++N∗, thus giving rise to the rules for the start symbol of the outside
recursions.

