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Abstract

Background: Long non-coding RNAs (lncRNAs) play an important role in regulating gene expression and are thus
important for determining phenotypes. Most attempts to measure selection in lncRNAs have focused on the primary
sequence. The majority of small RNAs and at least some parts of lncRNAs must fold into specific structures to perform
their biological function. Comprehensive assessments of selection acting on RNAs therefore must also encompass
structure. Selection pressures acting on the structure of non-coding genes can be detected within multiple sequence
alignments. Approaches of this type, however, have so far focused on negative selection. Thus, a computational
method for identifying ncRNAs under positive selection is needed.

Results: We introduce the SSS-test (test for Selection on Secondary Structure) to identify positive selection and thus
adaptive evolution. Benchmarks with biological as well as synthetic controls yield coherent signals for both negative
and positive selection, demonstrating the functionality of the test. A survey of a lncRNA collection comprising 15,443
families resulted in 110 candidates that appear to be under positive selection in human. In 26 lncRNAs that have been
associated with psychiatric disorders we identified local structures that have signs of positive selection in the human
lineage.

Conclusions: It is feasible to assay positive selection acting on RNA secondary structures on a genome-wide scale.
The detection of human-specific positive selection in lncRNAs associated with cognitive disorder provides a set of
candidate genes for further experimental testing and may provide insights into the evolution of cognitive abilities in
humans.

Availability: The SSS-test and related software is available at: https://github.com/waltercostamb/SSS-test. The
databases used in this work are available at: http://www.bioinf.uni-leipzig.de/Software/SSS-test/.
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Background
More than a decade of high-throughput transcriptomics
has established wide-spread, pervasive transcription of
mammalian genomes as an indisputable fact [1–5]. How-
ever, less than a quarter of the total RNA (excluding ribo-
somal RNAs) accounts for the about 19 000 protein coding
genes and their isoforms [6]. The majority of the human
transcriptome, in terms of diversity of the products, is
composed of other, non-protein-coding, RNAs. These
include small non-coding RNAs (ncRNAs) accounting
for nearly the same genomic coverage as ORFs [7, 8],
mRNA-like long non-coding RNAs (lncRNAs), as well as
giant macroRNAs [5, 8, 9]. The current rather conser-
vative estimate predicts 40 000 to 50 000 human lncRNA
genes [10].
Although lncRNAs comprise a substantial fraction of

the transcriptome, so far only a small minority of them
has been assigned a functional annotation. The question
thus remains, what fraction of the detectable lncRNAs
actually convey biological functions, as opposed to being
coherently transcribed and processed byproducts without
biological relevance (“junk RNA”). Without experimen-
tal testing this question is currently difficult to answer
because, in contrast to their protein-coding counterparts,
most lncRNAs exhibit only low levels of sequence con-
servation. From a population genetics point of view, this
relatively low level of sequence conservation is interpreted
as lack of functional constraints or negative selection
[11, 12]. However, as a group, lncRNAs do show signs
of negative selection: for example, the cumulative dis-
tributions of substitution and transversion rates shows
significantly suppressed values relative to neutrally evolv-
ing DNA [13], see also [2, 12, 14–17]. Furthermore, while
the overall sequence conservation is low, gene structure
and splice sites often seem to be highly conserved [18, 19],
strongly suggesting that many lncRNAs are evolutionar-
ily old [20–23]. Recent studies also found that lncRNAs
are often located in syntenic positions and display similar
expression patterns across species [24–26].
In this contribution we are concerned with the identi-

fication and quantification of selective pressures on RNA
secondary structures. This is by no means a novel topic.
From a population genetics point of view, two locus mod-
els have been used to study compensatory mutations,
i.e., negative and stabilizing selection on RNA structures
[27–29]. This line of studies showed that tRNAs are
among the molecules with strongest selective pressures
[30] and confirmed the influence of the effective popula-
tion size as a cause of differences in selective constraints
on tRNAs across species [31]. Altogether, thousands of
well-studied small ncRNAs, mostly compiled in the Rfam
[32] and miRBase [33] database, exhibit well-conserved,
often nearly immutable, RNA secondary structures that
are crucial for the function of the RNA molecule.

It is important to distinguish between the presence of
conserved RNA secondary structure and signatures of
selection on secondary structure. A conserved structure
implies that only small deviations around a well-defined
consensus structure are tolerated. In this case one expects
sequence variation to have generated a sufficient number
of compensatory mutations to test directly for the preser-
vation of the consensus structure. R-scape [34] imple-
ments such a method. LncRNAs rarely, if ever, exhibit
evidence for this level of structural conservation [34]. This
seems to be limited to the “classical” families of small,
structured ncRNAs and structured regulatory elements,
i.e., the content of Rfam – and even these RNAs at times
may show extensive structural variation, see e.g. [35, 36]
and the references therein.
Negative selection on secondary structure, on the other

hand, is a much less stringent property, and it suffices to
show that structural variation is more constrained than
what would be expected from the observed, underlying
sequence variation. This idea has been used in a series
of tools including qrna [37], AlifoldZ [38], EvoFold
[39], CMfinder [40], RNAz [41], and SISSIz [42].
Extensive surveys [41, 43–47] of mammalian genomes
already compiled evidence that a sizeable fraction of the
human genome, possibly as much as 10% of the non-
repetitive sequence, is under negative selection on RNA
secondary structures. Intriguingly, these studies show that
the genomic sequence fromwhich a ncRNA is transcribed
often evolves very rapidly, while still showing clear signs of
selective constraints on local RNA secondary structures.
While the majority of the human lncRNA sequences

evolve at average rates close to the unconstrained back-
ground, they show strong evidence for conservation of
their gene structure, i.e., the preservation of splice sites,
across the eutheria or even deeper phylogenetic groups
[22]. It is not surprising therefore, that constrained struc-
tural modules have also been reported for some of the
best studied examples [48–52]. The selective constraints
are not strong enough, however, to enforce large, well-
conserved consensus structures [34]. Further evidence for
the importance of secondary structure features for the
function of lncRNAs comes from disease-related SNPs
[53, 54].
In contrast to negative selection on RNA secondary

structure, very little is known about positive selection in
this context beyond a single, well-studied example that
might have a positively selected structure: Rapid, lineage
specific changes of the sequence have been reported for
the Human Accelerated Region 1 (HAR1). 18 human spe-
cific single-nucleotide substitutions in an element that is
extremely conserved across non-human mammals make
HAR1 the fastest evolving region in the human genome
[55]. Interestingly, the human HAR1 forms a stable struc-
ture, which differs significantly from the chimpanzee
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structure of HAR1 [56–58]. Expression patterns of HAR1
suggest that it is involved in the development of the cortex
[55]. However, real functional data for HAR1 is still miss-
ing. In particular, there is still no direct experimental proof
that the function of HAR1 depends on its secondary struc-
ture. It is conceivable, therefore, that HAR1 acts based on
its sequence, and that this function was human specifically
lost. Nevertheless, examples such as HAR1 suggest that
lncRNAs can potentially play an important role in species
evolution.
To-date, no method is available to detect positive selec-

tion on RNA secondary structure in a systematic man-
ner. It is an open question therefore, whether this is a
rare phenomenon or whether positive selection on RNA
structure is an important contributor to lineage-specific
adaptation. In principle, positive selection can be iden-
tified by comparing the observed divergence with the
expectation for neutral evolution. The Ka/Ks test for cod-
ing sequences may serve as the paradigmatic example.
The ratio of Ka, the number of non-synonymous sub-
stitutions per non-synonymous sites, and Ks, the num-
ber of synonymous substitutions per synonymous sites is
expected to be larger than 1 when positive selection is
acting (see e.g. [59]). This idea, however, does not gen-
eralize to non-coding RNAs since there is no analogous
distinction between synonymous and non-synonymous
substitutions.
An interesting alternative approach is to contrast more

generic parameters of divergence and diversity between a
functional element and a reference locus in its genomic
vicinity. Plausible parameters are e.g. ρ, the fraction of
sites under selection, the polymorphism rate λ, and the
divergence rate η – in each case normalized by the corre-
sponding parameter in the neutral control [60, 61]. These
measures have been applied mostly at the level of groups
of loci, which showed strong evidence that regulatory
elements are influenced by selective pressures [62, 63].
As for any type of test for selection, an estimate of

an effect on the phenotype is desired. As reviewed in
[64], many tools have been developed in the past years
contributing to unravelling the molecular mechanisms
underlying complex phenotypes. Still, the effect of, say
indels (insertions or deletions) and structural variation,
remain elusive. If secondary structure is important for the
function of a ncRNA, a predicted structural change can
be taken as proxy for a phenotypic impact. The accu-
mulation of substitutions that change the structure can
be interpreted as signs of positive selection, or adaptive
evolution.
Several methods have been proposed to quantify the

effect of SNPs on RNA structures [65, 66]. Leveraging
these methods, we propose here to use an excess of struc-
ture changing substitutions as a means of identifying pos-
itive selection. Conversely, an excess of substitutions that

change the structure less than expected supports negative
selection. We use this simple idea, while also accounting
for the structural impact of insertions and deletions, to
develop a statistical test for lineage-specific positive selec-
tion, the SSS-test (“Selection on the Secondary Structure
test”). We then use this approach to identify candidate
lncRNAs that might have been positively selected on
the human lineage relative to their primate background.
Among them are genes linked to psychiatric disorders
(PDs) to provide further candidates that might have been
involved in the evolution of the human brain.

Theory
SSS-test
The basic idea of the SSS-test is to determine whether
selection pressures have changed in a particular lineage.
The starting point for that is a multiple sequence align-
ment A of orthologous sequences of the RNA gene or
element taken from a set of species under consideration.
The SSS-test singles out one species, and hence one focal
sequence x ∈ A, and checks whether there is evidence
of a change in the selection pressures acting on x com-
pared to rest of the alignment A. In order to assess how
x is different, we consider the input alignmentA with the
focal sequence removed. This alignment Ā = A\x, serves
as the background. Since the effect of variations can only
be computed for individual sequences, we will also need
the consensus sequences z of A and z̄ of Ā. Note that
z̄, like Ā, depends on the focal sequence x. We do not
indicate this dependence explicitly in the notation since
it is clear from the context throughout. The idea of the
SSS-test is to determine whether the effect of the indi-
vidual changes leading from the background consensus z̄
to the focal sequence change the secondary structure of z̄
more than expected. To this end, we need to identify those
sequence changes that set the focal sequence x apart from
the background Ā and its consensus z̄.
Since we are interested in testing for lineage-specific

positive selection, we consider only sites (alignment
columns) i that are well-conserved in the background Ā.
In other words, we need to exclude highly variable sites,
because these convey no accessible information on the
differences between background Ā and focal sequence x.
To be considered a well-conserved site, we require that a
majority of the sequences in Ā conform to the consensus
sequence z̄. As a default, we apply the majority rule and
require 60% of the sequences to agree with the consensus.
This threshold can be changed by the user.
Given both x and z̄, we determine the set of sites with

differences between the consensus and the focal sequence
and denote this set of sites by Sz̄→x. For this purpose we
consider gap characters like regular characters, i.e., Sz̄→x
also contains insertions and deletions in x relative to the
consensus z̄. We denote by z̄i the sequence that is equal
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to z̄ except at the single variable site i, where it matches x.
Substitutions and indels are scored separately.
An insertion or deletion is treated as a single event inde-

pendently of its length �. The decision to handle gaps as
a single unit was first based on the assumption that a
unique evolutionary event is more likely to have caused
the indel than two or more events acting on the exact
same region. We tested this assumption, by measuring the
structural impact of deletions of different lengths in bio-
logical RNAs.We found that the length of the deletion did
not matter for the impact, but rather its location, specifi-
cally if it overlaps a paired region or not (more information
in the Additional file 1). This is a consequence of the
Turner model [67]: the energy penalty for the different
loop types (hairpin, bulge, and interior loops) on slowly
changes with the loop length, amounting to only about
1–3 kcal/mol between loop sizes of 3–30 nt.
Compensatory substitutions are those that leave the

secondary structure unchanged by replacing one type of
base pair (GC, AU, or GU) by another one that differs in
one or both paired sites (e.g. AU→GC, or AU→ GU). The
SSS-test by construction considers single sites separately.
Therefore we remove all sites that form compensatory
substitutions. In order to identify these, we first compute
the consensus structure of Ā using RNAalifold [68] and
the structure of sequence x with RNAfold (both tools
from the ViennaRNA package [69]). We then compare
both structures and consider a substitution or pair of sub-
stitutions as compensatory if they form a base pair both in
the focalMFE structure of x and the consensusMFE struc-
ture of the background alignment Ā. All compensatory
sites are removed from Sz̄→x.
All single nucleotide substitutions remaining in Sz̄→x

are scored using RNAsnp [65]. In a nutshell, RNAsnp
quantifies the magnitude of structural change in response
to a substitution relative to the expected change of sec-
ondary structure. The expectation is computed from the
same base exchange in random sequences with the same
length and GC content. For a given SNP, RNAsnp then
returns a p-values for the hypothesis that the structural
change caused by the SNP is larger than expected. Small
RNAsnp p-values therefore indicate unexpectedly large
structural changes in the structure of interest. RNAsnp
is conceptually similar to several other tools to evalu-
ate variation of RNA secondary structure, e.g. corRna
[70], RNAmute [71], RDMAS [72], or SNPfold [73]. We
employed RNAsnp both for its computational efficiency
and several features that make its underlying model more
realistic. The tool evaluates the Boltzmann ensemble
of secondary structures rather than only the minimum
energy structure, which provides more accurate infor-
mation on the structural changes [65]. Instead of using
arbitrary sequence windows or simply the global fold of
the entire RNA, RNAsnp identifies the region of maximal

structural discrepancy and evaluates the changes for this
region. This at least approximates the fact that the struc-
tural impact of SNPs is expected to be localized e.g. due to
proteins bound to a lncRNA.
Since each variation is scored independently, p-values

are corrected for multiple testing using the Benjamini-
Hochberg [74] procedure (with the more conservative
Bonferroni method [75] available as well). The Benjamini-
Hochberg procedure performs well with a larger number
of p-values, which individually are ≥ 0.05, as happens
quite often in our case with RNAsnp-based p-values. For
the correction let p = p1 ≥ p2 ≥ · · · ≥ pn be the col-
lection of p-values. We then update the corrected set of
p-values p̃ using:

p̃1 = min
{

1, p1
}

p̃i = min
{

1, p̃i−1,
n

(n − i + 1)
pi

}

We then use the p̃ to produce the substitution score
s(x) = −

∑

i
log p̃i . (1)

measuring the impact of the observed substitution in the
focal sequence x relative to the expected changes of the
secondary structure.
The RNAsnp tool cannot be used for insertions and

deletions since its internal model for evaluating p-values
is not designed for this type of variations. We therefore
developed a separate model to score indels: for an indel
of length � we construct all sequences zj that carry the
indel after position j of the consensus. Since zj and z̄ dif-
fer in length, they cannot have the same structure. We
therefore compute a modified reference structure ψj by
constraining zj to contain all base pairs of the consensus
sequence z̄ that are not affected by the indel. To this end
we use the option of the ViennaRNA package to fold RNA
sequences with user-defined constraints [76]. For com-
parison we compute the fold φj of zj without constraints.
To determine the structural impact of the indel we com-
pute the structural difference δ(φj,ψj) of φj and ψj using
RNAforester [77].
We then use a combination of rank statistics and relative

structural impact to determine a p-value for the structural
impact of indel j: let r(j) be the rank of indel j w.r.t. the size
of its structural impact in decreasing order. Then prank =
r(j)/n, where n is the number of possible indel ranks. In
addition we score the relative structural impact by pstruc =
(

4l − δ
(

φj,ψj
))

/4l, with l the length of the sequence
and pstruc clamped to 1/4l for extreme δ(·, ·) contribu-
tions. The complete indel p-values (p = prank + pstruc) are
aggregated as described above and yield a corresponding
indel score contribution s′(x).
Finally, substitution (s(x)) and indel (s′(x)) scores are

added to yield the final SSS-score score for the focal
sequence x, using:
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SSS-score(x) = 2s(x) + s′(x) (2)

As discussed in the previous section, both the assess-
ment of nucleotide changes, and the evaluation of inser-
tions and deletions has heuristic elements. Nevertheless,
the nucleotide change model is grounded in a well-
established model. Both s(x) and s′(x) are scores that
convey information on how unexpectedly large the effect
of the observed variations is on the secondary structures.
They do not lend themselves to a direct interpretation e.g.
as probabilities w.r.t. to a particular probabilistic model.
Future versions of the SSS-test thus may well use an
improved scoring model for either contribution. Simi-
larly, the weighting factor of 2 in Eq. 2 was empirically
determined to improve over equal weights. The scores
SSS-score(x) thus serve as test statistics for which rel-
evant cutoffs have to be determined empirically, since a
concise statistical model for them is not available.
Manual analysis of families with different scores rang-

ing from 0.0 to 30.0 showed that SSS-score ≥ 10.0 is a
suitable threshold determining that an element is under
positive selection. For additional details we refer to the
Additional file 1. The choice of the weighting factor in
Eq. 2 as well as the threshold for SSS-score and the
threshold of the family divergence, may vary for different
applications. The values observed in this work are valid
for primates, i.e., a set of phylogenetically very closely
related taxa. For different projects, with more distant or
more closely related species, the threshold may need to
be adapted to best fit the data. In addition, the candidates
should be subjected to functional testing for confirmation
of the predictions.

Implementation
The computation of selection scores is implemented

in an automated pipeline using Perl and bash scripts
(see pseudocode). In our implementation, the test statistic
SSS-score is computed for all focal sequences x ∈ A. If
the input sequences are not aligned, muscle [78] is used
to generate the necessary alignment. Additionally, species
distance scores, ds, are computed for each sequence of
the alignment to indicate the structural distance of the
species to the consensus. The median species distance
score is the family divergence score, d, which indicates
the family’s structural uniformity (more details in the
Additional file 1). However, as for the threshold on the
selection score, the user should decide on a meaningful
cutoff for the investigated data set.
Alternative approaches
We have also considered alternative ways to score the
structural variations. The simplest model classified the
substitutions into disruptive and non-disruptive sites
based on their classification by RNAsnp. Based on this
classification, an equivalent of the Ka/Ks test becomes

Algorithm 1: Summary of the SSS-test workflow

Input : Multiple alignmentA
Output: Selection scores and family’s median

structural distance
if species_number < 3 then

return statement “not enough species” and exit;
end
if unalignedA then

alignA with muscle;
end
forall the focal sequences x ∈ A do

create alignment Ā = A \ x;
compute consensus sequence z̄ and consensus
structure with RNAalifold from Ā;
compute structure for focal sequence x with
RNAfold;
compute compensatory sites of x in relation to z̄;
remove compensatory sites from Sz̄→x;
forall the positions i in Sz̄→x do

compute RNAsnp p-value for z̄i → xi;
end
compute structural distance between x and z̄;
forall the indels k observed between z̄ and x do

create synthetic indel mutated sequences Z̄k ;
calculate structure for each zj ∈ Z̄k and
compare to structure of z̄ with RNAforester
to obtain structural distances;
calculate rank of observed indel k in
comparison to set of indels Z̄k ;
return p-value of observed indel k based on
rank;

end
correct p-values with Benjamini-Hochberg
method;
calculate sum of the logs of the p-values;
add substitution and indel scores, with a weight of
2 for substitutions and 1 for indels;
return selection score;

end
return median structural distance ofA;

applicable (more information on the Additional file 1).
Usually the number of sites is small so that the power
of the test is low, however. In addition, false positive
results were often seen in manually checked families, for
structures that were extremely similar to their orthologs.
This inconsistency most likely came from categoriz-

ing sites only into two categories, either disruptive or
non-disruptive, which is very difficult to do for ncRNA
structures due to their biochemical properties. As an
improvement we also built a statistical model based on
a Poisson distribution of the counts of synonymous and
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non-synonymous sites instead of directly comparing the
substitution counts. Although more robust, inconsisten-
cies remained, most likely due to the same problem of
using only a binary categorization of sites into either syn-
onymous or non-synonymous. This led to the conclusion
that an equivalent of the Ka/Ks test is not appropriate for
ncRNAs.

Family divergence
We were most interested in identifying RNA structures
that were conserved over a long period of time but showed
lineage specific changes. Considering only structures with
such conservation ensures to a large degree that the struc-
ture is biologically relevant. The SSS-test thus measures
the structural divergence within a family of othologs,
denoted as d.
Given the alignment A of a set of species, we denote

by As the basepair probability matrix for the aligned
sequence s ∈ A, and by B the basepair probability matrix
of the alignment Ā itself. Furthermore, Ps is the set of base
pairs in s, while Q is the set of base pairs in the consen-
sus. Then we can calculate the derived sets Ws = Ps ∩ Q
of shared base pairs, Xs = Ps \Q of unique base pairs, and
Ys = Q \ Ps of absent base pairs for each sequence s.
Using these, we can now calculate the divergence of each

sequence s compared to its family:

ds = 100
length(A)

×
⎛

⎝

∑

ij∈Ws

∣

∣As,ij − Bs,ij
∣

∣ +
∑

ij∈Xs

As,ij +
∑

ij∈Ys
Bs,ij

⎞

⎠

(3)

We then calculate the family divergence as the median
over the individual divergence scores d = medians ds.
Manual analysis of families with different d scores (rang-
ing from 0.0 to 65.0) revealed that (d ≤ 10.0) is a suitable
threshold indicating low family divergence (additional
details are provided in the Additional file 1).

Results
Benchmarking
Biological controls: SSS-scores indicating negative selection
for small ncRNAs and positive selection for human HAR1
As a plausibility check for the SSS-test we used collec-
tions of small ncRNAs, which are known to be struc-
turally conserved [14, 61]: miRNAs, snoRNAs, and tRNAs
(family conservation overview can be seen in Additional
file 1: Figures S8 and S9). These collections of ncRNAs
were expected to receive low selection scores, indicating
negative selection. As expected, all three groups showed
strong evidence for negative selection, while pseudo-
tRNAs exhibit the least constraint (Additional file 1:
Figure S10).
Despite the lack of direct experimental evidence for

HAR1 functioning based on its structure, we also applied

our test to HAR1 as the only, at least putative example
of a positively selected structure. We detected a signal for
positive selection that is exclusive to the human HAR1
structure (s = 12.8), while all other seven primate species
in the input set displayed strong negative selection signals
(s = 0.0). This is in agreement with [55].

Synthetic data sets: SSS-test can distinguish between
negative and positive selectionmodels
In addition, we also produced synthetic data sets in order
to evaluate whether our SSS-test test can distinguish
between different degrees of divergence and between pos-
itive and negative selection.
One optimization function simulated negative selection,

in which changes were kept if they maintained the ances-
tral structure. Another simulated loss of selection pressure
(random evolution), in which every change was kept. The
third one simulated positive selection, in which the origin
was a Y-shape and the changes were kept if they caused a
change towards a cloverleaf structure.
We found that the divergence of the ortholog families

under negative selection was distinctly lower than the
divergence of families in the random evolution set (Fig. 1).
This shows that the SSS-test can correctly distinguish
between constrained and highly diverged families.
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Fig. 1 Structural divergence d of synthetic data sets for families
evolved under simulated negative selection pressure (neg) compared
to unconstrained (ran) evolution. Each data set is composed of 100
families, evolved from one ancestral sequence to five extant
sequences, differing by 5 (left) or 10 (right) accepted substitutions
from the ancestor
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We can also detect a clear difference between the set
of families that evolved under negative selection pressure
in comparison with the ones that evolved under posi-
tive selection pressure, with the families under positive
selection having higher scores (Fig 2).

Local structures of lncRNAs are mainly negatively selected
To showcase our SSS-test, we conducted a survey of pos-
itive selection on structural elements of human lncRNAs.
We first computed local structural blocks (conserved local
structures shared between at least three species) and
then applied the SSS-test on them. For the 15 443 pri-
mate lncRNA ortholog families reported in [20], a total
of 10 396 blocks were calculated, with orthologs in at
least three species and with d ≤ 10.0 (Additional file 1:
Table S3).
For this collection of lncRNAs 87 613 local blocks were

calculated initially (Additional file 1: Table S3). On aver-
age, this amounts to 5.7 blocks per lncRNA family. 77 217
of these blocks have orthologs in only one or two species
and/or have a d > 10.0 and thus are excluded from
the analysis. After this filtering step, we retained 0.7
blocks per lncRNA family with at least three species and
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Fig. 2 SSS-score s of synthetic data sets with simulated negative
evolutionary constraints compared to simulated positive selection.
Each data set is composed of 100 sequences, evolved from one
ancestral sequence to one extant sequence, differing by 5 (left) or 10
(right) accepted substitutions from the ancestor

d ≤ 10.0. Since we do not expect local secondary struc-
tures to be functionally important for all RNAs, the
relatively small size of the remaining set is not at all unex-
pected. We note, furthermore, that the data set relies on
coordinates and orthology assignments from ref. [20], so
that a non-negligible part of the excluded blocks is due to
the quality of the primate genome assemblies and align-
ments available at the time. For the retained blocks, we
observed a substantial level of conservation among these
local structures, comparable to the small RNA databases
(Additional file 1: Figures S8, S9 and S10). This con-
firms previous reports that lncRNAs as a group are under
negative selection [10, 15, 21, 22] and that conserved
RNA structures are common throughout the non-protein-
coding parts of the genome [43–45, 79].
The results described in this section were obtained by

applying the SSS-test with the default threshold of at
least 60% of the sequences agreeing with the consensus for
a site to be considered well-conserved (for details we refer
to the Theory section). For this primate dataset, 98.6%
of the sites are well-conserved. By changing the thresh-
old from 0 to 100%, the proportion of well-conserved
sites changes only slightly: from 100% to 87.7% of well-
conserved sites (Additional file 1: Figure S16). This high
value is expected due to the close phylogenetic distances
among the primates.
Using the default parameters of the SSS-test, we

observed that 0.77% of the sites changed human specifi-
cally. 0.74%, 0.98%, 1.57%, and 3.80% of the sites changed
compared to the consensus sequence specifically in pan,
gorilla, orangutan, and rhesus macaque, respectively
(Additional file 1: Table S5). The number of species-
specific substitutions varies slightly if the threshold for
well-conserved site is changed, (see Additional file 1:
Figure S17 for details), however, the overall pattern of
more species specific sites with higher evolutionary dis-
tance from humans stays the same. In addition, compen-
satory sites account for 7-10% of the variation among the
five primates (Additional file 1: Table S6).

Positively selected RNA structures in human lncRNAs
In order to identify candidates for lineage-specific selec-
tion we considered only the subset of 10 396 local blocks
with an overall low structural divergence, i.e., a likely well-
conserved ancestral structure. Using a stringent selection
score cutoff of s ≥ 10.0 (see Methods for details) we
detected 1390 local structures that show signs of posi-
tive selection. More than half of these structures (738)
show significant differences between the rhesus macaque
and the Great Ape lineage (in 716 distinct lncRNAs)
(Table 1). Among the Great Apes, we identified in the
orangutan lineage 315 local structures with high SSS-
score in 312 distinct lncRNAs. In the gorilla lineage we
found 136 structures with signs of positive selection in
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Table 1 Characterization of local structural selection of lncRNAs

Species Local structures Conserved (s ≤ 2) Positive (s ≥ 10)

Human 8934 8179 (91.6%) 111 (1.2%)

Pan 8736 7997 (91.5%) 90 (1.0%)

Gorilla 8080 7199 (89.1%) 136 (1.7%)

Orangutan 6435 4802 (74.6%) 315 (4.9%)

Macaque 5113 2659 (52.0%) 738 (14.4%)

Only the low diverged set was considered in this analysis. Percentages of conserved
and positive structures are relative to each species’ number of representatives

135 distinct lncRNAs. In Pan (chimpazees and bonobos)
90 structures were found as potential positively selected
candidated in 89 lncRNAs. High selection scores were
detected in 111 local structures of 110 human lncRNAs.
The one human lncRNA with two distinct structures
under potential positive selection is ENSG00000246548
(LINC02288). The numbers of candidates under positive
selection seems roughly proportional to the evolution-
ary distance between species, which is not unexpected.
(Table 1).
In order to estimate the FDR of the SSS-test survery, we

used the 8934 alignments of local structures containing a
human sequence and shuffled them with SISSIz [42] as
described in the Methods section. Using the same cutoffs
for ds and SSS− score as for the real data, we obtained 50
predictions, amounting to an FDR of 45%. A closer inspec-
tion shows that the shuffling does not completely destroy
the signal for positive selection in the real data: repeated
shuffling of the positive predictions in the real data shows
that about 18.5% of these shuffled alignments still yield a
positive result with the SSS-test. Hence about 20 of the 50
predictions in the shuffled sets correspond to the predic-
tions on the real data, reducing the estimated FDR to less
then 30%. This is comparable to the FDR of most of the
surveys for negative selection: For instance RNAz 2.0
reported 54% for a human survey [80], a FOLDALIGN-
bases survey on the ENCODE regions obtained about
50% [43]. A hybrid of SISSIz and RNAz achieves 5–22%
[44], and a recent cmfinder-based screen with score
cutoffs depending on GC content estimates a FDR of
14 ± 5% [45].
We separately investigated SRA, Xist, and HOTAIR for

signs of positive selection in humans within the primate
group. No signal of positive selection was detected for
these three well-studied lncRNAs.

Profile of positively selected structures of human lncRNAs
We next investigated how the local structures with signs
of positive selection have been altered. Interestingly, we
detected changes in the form (exemplified in Fig. 3) as
well as changes in the stability (Fig. 4) of the structures.
For instance, local structure 11 of SIX3-AS1 shows little

difference in the minimum free energy structure, but has
considerably gained in stability in humans, as shown by
the increase of the base pair stability in all three inner
stems (Fig. 4). Increase in stability could for instance fine-
tune interactions, having an important impact in function,
as is the case of the human HAR1, which has acquired
higher stability in the human lineage [58].
In our initial analysis we had orthologs of SIX3-AS1 only

in human, pan, and orangutan. To identify the orthologs in
gorilla and rhesus macaque (Additional file 1: Figure S11),
we performed genome-wide scans using Infernal v1.1.1
[32]. First, a covariance model was built and calibrated
for the sequences of human, pan and orangutan and the
consensus structure yielded by RNAalifold [69]. After
building the covariance model, we searched for homol-
ogous structures in gorilla and macaque, obtaining very
likely hits (score of 155.1 and an e-value of 1.5× 10−31 for
gorilla and score of 150.7 and an e-value of 1.7×10−30 for
macaque).
The macaque structure is located in one of the exons

of the lncRNA and the gorilla structure is located close
but not inside the annotated locus (Additional file 1:
Figure S11). The two recovered structures show a similar
structural pattern as pan and orangutan, being also less
stable than the human structure (Fig. 4). When includ-
ing these two sequences into the family and recalculating
the SSS-scores, the signals are maintained (human SSS-
score s = 12.2 and the other four species s = 0.0).
This corroborates our predictions that the human struc-
ture is under positive selection when compared to closely
related species, and has acquired higher stability during
evolution.
In contrast to SIX3-AS1, there is still little or no func-

tional annotation for most candidate lncRNAs. Only 49 of
the 110 lncRNAs have an ENSEMBL Gene ID and only
20 of them have been associated an HGNC gene sym-
bol yet (Table 2). To gain more information about the
110 lncRNAs that have positively selected structures in
the human lineage, we analyzed in which tissues they
are expressed. Based on the expression data reported in
[20] we found that six of the lncRNAs are expressed
in all nine reported tissues (brain, including developing
brain, cerebellum, liver, heart, kidney, placenta, ovary,
testis and stem cells), eight have no detected expres-
sion in humans and 16 are expressed only in one tissue
in humans.
Interestingly, the positively selected lncRNAs tend to be

expressed inmore tissues than lncRNAs in general (Spear-
man’s rank correlation: ρ = 0.78, p = 0.0081, Additional
file 1: Figure S12). While 2% of the lncRNAs expressed in
8 tissues are under positive selection, this is the case for
less than 0.5% of those expressed in a single tissue or not
expressed at all in the data set from [20]. Just as a char-
acterization of this data set, we plotted the distribution of
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a b c

Fig. 3 Local lncRNA structure LINC02217sub5: a human, b pan and c gorilla; Only the human structure obtained an SSS-score indicating positive
selection with s = 16.2, while the data indicates strong negative selection for the other species (s = 0.0). Structures are represented by their
minimum free energy. Base colors are assigned according to their pairing frequency in the structure’s ensemble. Shades of red occur in≥ 90% of the
ensemble, shades of green/yellow denote increasing probabilities from ≥ 50%. For unpaired bases, shades of red denote increasing unpairedness

number of exons, and saw that most lncRNAs have only
one or two exons (Additional file 1: Figure S13).

Evolution of lncRNAs associated with psychiatric disorders
Given that HAR1’s expression is dysregulated in Hunting-
ton’s disease [81, 82] and that two of the lncRNAs with
potentially positively selected structures on the human
lineage (SIX3-AS1 and TRPM2-AS) are antisense to genes
involved in brain disorders [83, 84], we decided to have
a closer look at lncRNAs that have been reported to be
related to psychiatric disorders (PDs). Positive selection in
such lncRNAs might indicate functional changes related
to human brain evolution.
We collected 26 lncRNAs from public databases and

the literature that have been reported to be involved in
PDs (Suppl. Tab. 4). These 26 lncRNAs contain 362 local
blocks consisting of 1331 local structures. 942 of those
had a low family divergence (d ≤ 10.0). From those, 32
have a positive selection score (s ≥ 10.0), with three of
them in the human lineage (Table 3). Considering the

small number of analysed families, secondary structures
could be analysed by manual inspection. We saw that if
the threshold for considering positive selection is relaxed
in this data set from s ≥ 10.0 to s ≥ 4.5, another 11 local
structures in humans can also be considered as candidates
for having evolved under positive selection (Table 3).
Among the positively selected human structures,

MIATsub92 shows the highest selection score (SSS-
score = 21.2). The human structure and its ortholog
in chimpanzees contains a tandem duplication of the
sequence TTTGAACTTGGCTAACACAGG (Fig. 5), with
a substition of a G to A in one of the dupli-
cates (TTTGAACTTG(G/A)CTAACACAGG). Unlike the
chimpanzee ortholog, the human structure contains
another duplication of the TTTGAACTTGGCTAACACAGG
sequence. It seems that this duplication has had an essen-
tial impact on the human MIATsub92 structure and
might have contributed also to an increase in stability
of the human structure compared to its counterparts. It
is worth noting that TTTGAACTTGGCTAACACAGG also

a b c d e

Fig. 4 Local lncRNA structure SIX3-AS1sub11: a human, b pan, c orangutan, d gorilla and emacaque. Only the human structure obtained an
SSS-score indicating positive selection with s = 12.2 while the other species have strong negative selection scores (s = 0.0). Structures are
represented by their minimum free energy. Base colors are assigned according to their pairing frequency in the structure’s ensemble. Shades of red
occur in ≥ 90% of the ensemble, shades of green/yellow denote increasing probabilities from ≥ 50%. For unpaired bases, shades of red denote
increasing unpairedness
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Table 2 Human lncRNA candidates with signs of positive selection in local structures

Gene name Transcription age Sequence age Nb species transcribed Nb species with sequence ENSEMBL gene ID

RRS1-AS1 African apes Great apes 3 4 ENSG00000246145

LINC01939 African apes Great apes 3 4 ENSG00000228799

LINC01839 Primates Primates 4 4 ENSG00000227509

LINC01802 Primates Primates 5 5 ENSG00000225064

LINC01724 Primates Primates 5 5 ENSG00000227421

LINC01693 Primates Primates 5 5 ENSG00000227764

MACC1-AS1 Primates Primates 5 5 ENSG00000228598

TRPM2-AS Primates Primates 5 5 ENSG00000230061

LINC01258 Primates Primates 5 5 ENSG00000249534

PLUT1 Primates Primates 5 5 ENSG00000247381

LINC01345 Primates Primates 5 5 ENSG00000226374

MDC1-AS1 Primates Eutherians 2 6 ENSG00000224328

LINC01790 Therians Therians 3 7 ENSG00000230173

LINC02042 Eutherians Eutherians 5 5 ENSG00000240893

LINC02092 Eutherians Eutherians 5 6 ENSG00000234721

LINC01738 Eutherians Eutherians 6 6 ENSG00000227947

LINC02288 Eutherians Eutherians 6 6 ENSG00000246548

LINC02217 Eutherians Eutherians 6 6 ENSG00000248455

DNMBP-AS1 Mammals Amniotes 6 9 ENSG00000227695

SIX3-AS1 Tetrapods Tetrapods 9 9 ENSG00000236502

The evolutionary age and expression information was taken from [20]. Gene names were retrieved from the ENSEMBL database. Only transcripts that have been assigned an
HGNC ID are shown

Table 3 ENSEMBL IDs and SSS-scores of local structures with
signs of a positive selection/weak positive selection in humans

lncRNA family (block ID) Selection score

MIATsub92 21.2

NEAT1sub2 14.5

LINC00689sub32 11.0

LINC00689sub40 8.9

LINC00689sub38 7.4

MEG3sub15 7.0

H19sub7 6.8

SOX2-OTsub27 5.9

MEG3sub1 5.4

BDNF-ASsub18 5.0

LINC02151sub5 4.9

MIATsub86 4.7

MIATsub31 4.6

NEAT1sub120 4.6

Marked in bold are local structures with SSS-score above 10.0

has a deletion variant in humans with highest popula-
tion frequency of 0.36. This means that some human
individuals still possess the ancestral version of MIAT-
sub92, indicating that this human specific change likely
occurred very recently and is not yet fixed. Although
this deletion variant is not reported to have a pheno-
typic effect, it could lead to destabilization of structure, as
denoted by decreasing base pair probabilities and short-
ening of the lower stem, as seen in the chimpanzee
ortholog (Fig. 5).
Apart from MIATsub92, two other local structures

in MIAT (MIATsub31 and MIATsub86) also show high
structural differences in the human lineage in com-
parison to non-human primates. Greater structural sta-
bility of MIATsub31 in humans is noticeable when
comparing the centroid structures (Additional file 1:
Figures S14 and S15). MIATsub31 contains UACUAAC
repeats, which are known to be important for bind-
ing of splicing factors [85, 86]. Importantly, in both,
humans and non-human primates, these repeats are
always found within unpaired regions, and the red col-
oring of the nucleotides in these internal loops indicates
high probability of unpairedness. It seems as if selec-
tion was driving the evolution of MIATsub31 towards
higher stability in humans, while at the same time it



Costa et al. BMC Bioinformatics          (2019) 20:151 Page 11 of 19

Fig. 5Minimum Free Energy (MFE) structures of MIATsub92 local
structures of Human and Pan. The duplication of a
TTTGAACTTGGCTAACACAGG sequence in the human lineage
might have driven the evolution of the structure towards a more
stable structure. Prevailing red regions exhibit well-defined structures
with probabilities close to 1 for paired and unpaired bases.
Duplicated regions are labeled with horizontal and vertical lines, and
G/A nucleotide substitution is marked with an arrow. Bonobo has the
same sequence as the chimpanzee

was important that UACUAAC remained unpaired. This
suggests that the binding specificity of splicing factors is
dependent on internal loops, and not simply a sequence of
repeats.

Discussion
We have introduced here a statistical test for posi-
tive selection on RNA secondary structure. It focuses
on orthologous structures that are otherwise conserved
across taxa, thereby identifying candidates with species-
specific functional changes in ncRNAs. The SSS-test is
implemented as an easy to use command line tool, that we
expect to be relevant for a number of future genomic and
evolutionary studies. It requires as input a simple FASTA
file, and can be used for any type of ncRNA, including the
yet largely uncharacterised group of lncRNAs.
While the SSS-test was designed primarily to detect

positive selection, it can also be used to identify ncR-
NAs under negative selection. Since genes with very small

scores are candidates for evolving under negative selec-
tion, the SSS-test may be employed to complement other
available methods for assessing structural conservation.
In addition, orthologous groups of local structures with
high divergence scores within the family might indicate
genes that evolve under relaxed selective constraints. For
instance, lncRNAs that contain only local structures with
high family divergence are probably transcripts for which
the secondary structure is not functionally relevant.
In the study reported here we required at least three

orthologs for the analysis. Depending on the system
under consideration, a sufficient number of closely related
species may not always be available, however. In this
case, one could consider a pairwise version of the
SSS-test. While this could easily be implemented, the
interpretation of the results will necessarily be quite
different: In a pairwise setting, it is unknown which
sequence represents the ancestral state, hence one can
only test whether the structures are unexpectedly dif-
ferent. While positive selection in one of the lin-
eages is possible, divergent evolution should also be
considered.
The current version of the SSS-test uses the relatively

simple SSS − score as decision variable. Although it is
based on establishedmeasures of structural variability and
it is empirically capable of distinguishing modes of selec-
tion, it does not derive from a stochastic model of the
evolution of RNA secondary atructure. In particular, the
way in which in/dels are evaluated is rather ad hoc. It will
be of interest for future work to find a parameter with
a better theoretical foundation as a replacement for the
SSS − score. This will likely imply that the covariation of
paired nucleotides will have to be taken into consideration
as well.
Gene duplications are often – but not necessarily –

accompanied by positive selection, leading to functional
changes in one or both duplicates [87, 88], see e.g. [89]
for a case study. In this context, it is imperative to accu-
rately distinguish between (co)orthologs and paralogs. As
any statistical test for positive selection, also our test could
report false positives when inadvertently including par-
alogs. This is a general concern in the analysis of protein-
coding genes and also pertains to many ncRNAs including
miRNAs, snoRNAs, and tRNAs that are frequently dupli-
cated [90–92]. On the other hand, the pairwise version
of our SSS test mentioned above could also be applied
to a pair of duplicated ncRNAs to assess whether they
might evolve under positive selection. In our case study of
local structures of lncRNAs in primates, we found an extra
duplication in the human structure of MIATsub92, which
increases the stability of the local structure and elongates
its lower stem, confering it a signal for positive selec-
tion (Fig. 5). This example suggests that tandem duplica-
tions could greatly impact the evolutionary trajectories of
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lncRNAs, and should therefore be considered in further
studies of ncRNA selection. The contribution of segmen-
tal duplications to lncRNAs appears to be much smaller
than for the families of small RNAs [93], despite some
exceptional cases such as FAM230 [94]. Short local dupli-
cations may cause alignment problems that may translate
into erroneous results of the SSS-test. Thus we strongly
recommend to manually inspect sequence alignments
passed to the SSS-test.
We applied our test to an evolutionary analysis of

primate lncRNAs, identifying 111 local structures with
signs of positive selection on the human lineage. These
comprise 110 lncRNA genes, with one of those con-
taining two local structures with signs of positive selec-
tion. Most of the candidates are unknown, and those
with some description are: PDX1 associated lncRNA
(PLUT1) and another six candidates that overlap pro-
teins that are antisense to them (RRS1, MACC1, TRPM2,
SIX3, DNMBP and MDC1). The power of the test is
inherently limited by the amount of sequence variation
among the lineages considered. Most likely, therefore,
we experience a large false negative rate due to small
divergence between primate genomes. Given that the
power of the test is limited by the moderate sequence
divergence between primates, the lncRNAs identified in
this study are probably only the proverbial tip of the
iceberg.
Of the proteins mentioned above, two have known

important functions in the brain: TRPM2 (Transient
receptor potential melastatin 2) is an ion channel
expressed in the brain. It is essential for cell survival by
modulating mitochondrial responses and has also been
associated with neuroblastoma [83]; The SIX3 protein is
a transcriptional regulator that plays a role in eye devel-
opment and is associated with cephalic disorder [84]. The
SIX3-AS1 lncRNA (also known as SIX3OS) modulates the
SIX3 protein by acting in trans to regulate retinal develop-
ment. SIX3-AS1 has an essential role in regulating retinal
cell specification. Although it is directly antisense to SIX3,
it does not regulate its expression, but is rather acting as
a molecular scaffold directly binding to histone modifi-
cation enzymes directing them to SIX3 target genes [95].
The specifics on the SIX3-AS1 interaction with its partner
proteins still remain unknown, but it seems worthwhile
to study the role of this positively selected structure in
such interactions, and whether the increased stability in
humans changes or fine-tunes interactions, when com-
pared to other primates.
The proteins antisense to the other candidates have

varying functions outside of the brain. MACC1 is an
immunogene [96]. PDX1 is a regulator of pancreas
development and β cell differentiation and its antisense
lncRNA, PLUT1, is potentially associated with diabetes
and affects chromatic structure and the transcription of

PDX1 [97]. RRS1 is involved in ribosome biogenesis [98].
MDC1 has a role in cell cycle and cancer control [99, 100].
And the function of C5orf66 has not been characterised
yet.
While functional annotation of most other candidate

lncRNAs is still pending, it is interesting to note that there
is a tendency for lncRNA that are expressed in many tis-
sues to show more frequently signs of positive selection
than lncRNAs that are expressed in only a few tissues. The
broader tissue expression suggests that structural changes
might often have a ubiquitous effect instead of a very
localized one restricted to a few tissues.
LncRNAs have been strongly associated with brain

development, synaptic plasticity, neural functioning as
well as neurodegenerative and psychiatric disorders
[101–104]. Human evolution has been characterized by
an incease in brain size and complexity, followed by an
improvement of cognitive abilities. Notably, dysfunctions
of cognitive skills are observed in psychiatric patients
[105]. There might be a causal link between human brain
evolution and increased susceptability to PDs, as those
are mostly human specific disorders. Candidates such as
HAR1 and SIX-AS1 prompted us to investigate if also
other lncRNAs associated with PDs have been positively
selected in humans.
We detected at least three lncRNAs with strong signs

of positive selection on the human lineage, MIAT, NEAT,
and LINC00689. Several lines of evidence demonstrate
an important role of MIAT RNA in the development of
schizophrenia [85, 106, 107] and in substance dependence,
as its expression is upregulated in the nucleus accum-
bens of cocaine and heroin abusers [108, 109]. In addition,
aberrant expression of MIAT is observed in neurovas-
cular dysfunction contributing to the pathogenesis of
Alzheimer’s disease [110]. The strongest signal of positive
selection in our data was in the local structure MIAT-
sub92, which contains a human specific duplication that
seems to be very recent and not yet fixed in the human
population. This duplication has an effect on the shape
and stability of the structure. MIAT RNA was shown to
co-localize within a nuclear compartment that is enriched
in splicing factors [111]. Its expression is down-regulated
upon activation of neurons, which allows disassociation
of splicing factors that further mediate splicing of tar-
geted genes [85]. In post-mortem brains of schizophrenic
patients, expression of MIAT is also down-regulated, and
changes in expression level of MIAT result in dysregula-
tion of alternative splicing [85]. MIATsub31, with weak
signs of positive selection in humans, contains repeats that
are important for the interaction of MIAT with the splic-
ing machinery. These repeats have always been observed
with high probability to be located within unpaired parts
of the structure, implying importance of internal loops in
recognition and binding of splicing factors. It is tempting
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to speculate that differences in splicing patterns between
human and non-human primate brains are in part caused
by evolutionary changes in MIAT.

Conclusions
The SSS-test provides an efficient statistical approach to
assess whether small ncRNAs or local structures of lncR-
NAs might evolve under positive selection. Our work
thus complements previous studies on detecting nega-
tive selection of ncRNAs. The SSS-test evaluates whether
ncRNA genes harbour an excess of evolutionary events,
such as substitutions and/or indels, that lead to a rather
large structural change. Therefore, it can also provide
information on whether secondary structure is under neg-
ative selection, and whether relaxed constraints make a
functional role of the RNA structure unlikely. An advan-
tage of our test is that we consider the structure directly
as the phenotype, instead of analyzing the sequence con-
servation to detect positive selection. One has to keep
in mind, however, that RNA secondary structure predic-
tion is not perfect and hence false positive predictions are
unavoidable; additional experimental verification thus is
strongly advised.
We demonstrated that the SSS-test is capable of detect-

ing lineage-specific positive selection on secondary struc-
tures in genome-wide surveys. Given the limited power
of the method, we suspect that the approximately one
hundred candidates in the human lineage are a lower
bound. In addition, the detection of lineage-specific posi-
tive selection in genes associated with cognitive disorders
in humans lends further credibility to our method.

Data andmethods
Evaluation of the SSS-test on small ncRNA databases
We applied the SSS-test to known examples of positive
and negative selection. To the best of our knowledge the
118 nucleotide region of the Human accelerated region
1 [55] is the only available control for positive selec-
tion on non-coding structures to date [58]. It is well
established that HAR1 is stable in humans and differs
from its orthologous structure in chimpanzee and other
non-human primates [56, 57]. It is extremely conserved
across vertebrates but has 18 fixed human changes [55],
which stabilized its structure, likely caused by positive
selection [58].
As negative controls for our test, we used three

databases of structurally conserved small ncRNAs: (i)
miRNAs (miRBase [33], release 21), (ii) CD and HACA
box snoRNAs [90], and (iii) tRNAs (personal commu-
nication). We only selected sequences of the follow-
ing primates from each database: human, chimpanzee,
gorilla, orangutan, and rhesus macaque (with the excep-
tion of the snoRNA database which does not con-
tain orangutan sequences). We analysed 167 microRNA

families, 176 snoRNA families (containing CD and HACA
box snoRNAs) and 511 tRNA families (containing func-
tional tRNAs as well as pseudo tRNAs). Each family of
these databases contained only one sequence per primate
species, to avoid species bias. Only families with low-
divergence (d ≤ 10.0) were retained for further analysis,
resulting in 142 microRNA families, 78 snoRNAs families
and 141 tRNA families for our analysis of selection.

Evaluation of the SSS-test on synthetic data sets
After evaluating the SSS-test using biological RNAs, we
evaluated it using in silico designed sequences. In this
way, it is possible to simulate evolution and keep a tighter
control on the selective pressures and how the families
are constructed. We designed two experiments. The first
is designed to test if the SSS-test can differentiate
between low and high divergence of individual families.
The second experiment tests if the SSS-test can dif-
ferentiate between negative and positive selection within
low-diverged families.
To answer the first question, we simulated evolution

from one origin or ancestral sequence to five extant
branches. This provides us with five evolved sequences
that compose one family, similar to the real biological data
we worked with.
To answer the second question, we simulated evolu-

tion from one origin to one extant branch but kept the
other four branches unchanged compared to the ances-
tral origin. This simulates a case in which the family
is composed of four species that have kept the ances-
tral sequence (due to extreme negative selection) and
one species that changed its sequence due to a different
evolutionary pressure.
The synthetic data sets were created with RNAdesign

[112], with each family starting from a randomly cre-
ated RNA sequence of 150 nt. For each database, 100
families were generated and subjected to the SSS-test.
To simulate evolutionary pressures, the starting sequence
is randomly mutated, whereby a mutation is accepted
or rejected according to the different optimization func-
tions which we detail below. The simulation evolves the
origin until n changes are accepted. We performed two
simulations for each set, with n = 5 and n = 10.
We simulate the following cases:

(i) negative selection (fneg), as a pressure to maintain the
original structure, where deviation from the ancestral
secondary structure is penalized;

(ii) random evolution (frand), with no pressure towards
any goal, with any mutation being accepted; and

(iii) positive selection (fpos), where an ancestral Y-shaped
structure experiences mutations and the
optimization function provides pressure towards a
cloverleaf structure.
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Denote by a be the ancestral sequence and let m be the
current sequence being designed by RNAdesign. Con-
sider ε as a stabilizing parameter that keeps the energy
of the evolved sequence at least at half of the original
sequence to prevent degenerate structures from forming:

ε(a,m) =
(

max 0
(

mfe(m) − mfe(a)
2

))

(4)

As long as the sequence m has a minimum-free energy
at least half of the ancestral sequence, ε(a,m) accepts
the proposal m. Otherwise, the large penalty will make
acceptance extremely improbable.
Similarly, we can constrain both the basepair and shape

distance [113] of a and m. For the basepair distance, the
penalty function reads as in Eq. 5, while the shape distance
is based on a simplified alignment cost of the two shapes.

Δ(a,m) = base pair distance(a,m) (5)

Shapes [113] are coarse-grained representations of
secondary-structures. Each shape represents a wide range
of sequences and their secondary structures that fold into
the same “rough” structure. There are different levels of
shape representations, ranging from 1 to 5, which indicate
the abstraction level. We used the most abstract represen-
tation (level 5), which encompass a wide set of possible
sequences that fold into the same abstract structure.
For case (i) of negative selection, we constrain the base-

pair distance of the centroids of the origin and extant
sequence. Using a very large penalty for a basepair dis-
tance > 0, we prevent structural divergence of the cen-
troid. This penalty is given in addition to the energy
penalty ε discussed above. This results in the following
optimization function

fneg(a,m) = 1000 (Δcentroid(a,m) + ε(a,m)) (6)

In contrast, case (ii), random evolution, has no penal-
ties at all, here the optimization function is constant 0,
independent of the extant sequence:

frand(a,m) = 0 (7)

Finally, for case (iii), positive selection, we compute the
RNA shapes (level 5) of the centroid of themutating extant
sequence. We penalize distance to a cloverleaf-shaped
target (level 5). This simulates the pressure on the new
structure, which is constrained to move from a Y-shaped
origin towards a cloverleaf ([[][][]]) target:

fpos(a,m) = gibbs(m) + 50Δshape:5([[][][]],m)

+ 1000 ε(a,m)

(8)

It is important to notice that these experiments are
intended to provide a control for the SSS-test and its
ability to differentiate between differently constructed
families. The intention is not to provide a full model

of simulated evolution in a biological sense. The latter
is a very difficult problem, and out of scope for this
contribution.

Structural selection of lncRNA local structures
To illustrate an interesting application of the test,
we searched for lncRNA structures that are positively
selected in human using a primate group which includes
human, pan (including both chimpanzee and bonobo),
gorilla, orangutan, and rhesus macaque. The data of [20]
provides coordinates in BED format for 15 443 lncRNA
families, including orthologs of these five primates. We
used an in-house C-program to retrieve the sequence
information from the genomic DNA data based on the
coordinates provided.We used muscle to compute align-
ments of orthologous lncRNAs.
It has been observed that most base-pairing interactions

in longer RNAs occur within a short span of 150-200 bp
[114]. Taking this into consideration, it is also expected
that evolution acts on these smaller modules of lncRNAs
(local folds), rather than on the entire structure. There-
fore, it is more reasonable to search for positive selection
locally than globally in lncRNAs. Local structural ele-
ments were identified separately for each species using
RNALfold, a component of the ViennaRNA package
that computes minimum energy structures with restricted
base pair span [115].
The most energetically stable local structures were cho-

sen for each species in a way that all chosen structures can
co-exist with each other (they do not overlap). Local struc-
tures from different species were considered orthologous
if they overlap at the starting position with regard to the
alignment. To allow for a little bit of freedom, the start-
ing positions could diverge by at most 30% of the length
of the sequences. Only regions containing orthologous
structures from at least three species were considered, and
these are defined as conserved blocks. In total we iden-
tified 19 408 blocks with at least three ortholog species.
Of these 10 396 have low family divergence (d ≤ 10.0)
and were kept for complete selection analysis with the
SSS-test.
Information on the evolutionary age and tissue-specific

expression patterns were extracted from the supplemental
files provided in [20]. This data also includes the number
of species with orthologous sequences in the lncRNAs and
detectable expression.

Estimation of the false discovery rate
The false discovery rate (FDR) is defined as the expected
fraction of false discoveries among all discoveries. It
can be estimated for a given “foreground” data set by
comparing the number F of positive test results in the
“foreground” with the number R of positive test results
a “background” data set of the same size. The latter



Costa et al. BMC Bioinformatics          (2019) 20:151 Page 15 of 19

is conveniently obtained by shuffling each of the “fore-
ground” alignments using SISSIz -s [42]. Since this
shuffling method destroys the correlation of alignment
columns, and hence the secondary structure, we may con-
sider all positive test results on the shuffled alignments
as false positives. If this assumption is violated, and the
shuffled set retains some of the foreground signal, we only
obtain an upper bound, i.e., FDR = R/F .
Empirically we found that our shuffling procedure

indeed does not completely remove the “foreground” sig-
nal. Using SISSIz -s to produce 20 independent ran-
domizations of the “foreground” predictions, we estimate
the fraction of tests f at which the signal is retained. Under
these circumstances, we can refine the estimate of the
FDR and use FDR = (1 − f )R/F .

LncRNAs involved in psychiatric disorders
Candidates of human lncRNAs associated with PDs were
obtained from the lncRNA Disease database [116], a
publicly available database of disease-associated lncRNAs.
In addition, we performed a literature survey to identify
further lncRNAs with PD association that are not listed in
the lncRNA Disease database. In total, 26 human can-
didate lncRNAs were obtained (Additional file 1: Table S4
for IDs).
To annotate the orthologous lncRNAs in the other

primate species, orthologous splice sites were first cal-
culated in bonobo, chimpanzee, orangutan and rhesus
macaque using the SpliceMap tool [22]. In addition to
the splice sites, orthologous start and end sites were
also calculated using both SpliceMap and BLASTN. A
greedy approach was applied to retrieve the full set
of orthologous, transcripts in BED12 format, based on
the positions of starts, ends and splice sites (unpub-
lished). To obtain the FASTA sequences from the BED12
coordinates, an in-house C program was used. Subse-
quently, local structure blocks were calculated, and the
blocks with a d value below the threshold were sub-
mitted to the SSS-test. The same approach was used
to identify the primate orthologs of Xist and HOTAIR.
For SRA, we retrieved the orthologs from ENSEMBL’s
BioMart.

Additional file

Additional file 1: The Supplemental Material contains additional
information onMethods and Data as well as additional Results. (PDF 1517 kb)
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