
How to Multiply Dynamic Programming
Algorithms

Christian Höner zu Siederdissen1, Ivo L. Hofacker1−3, and Peter F.
Stadler4,1,3,5−7

1 Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, Austria
2 Bioinformatics and Computational Biology research group, University of Vienna,

A-1090 Währingerstraße 17, Vienna, Austria
3 RTH, Univ. Copenhagen, Grønneg̊ardsvej 3, Frederiksberg C, Denmark

4 Dept. Computer Science, and Interdisciplinary Center for Bioinformatics, Univ.
Leipzig, Härtelstr. 16-18, Leipzig, Germany

5 MPI Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany
6 FHI Cell Therapy and Immunology, Perlickstr. 1, Leipzig, Germany

7 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, USAx

Abstract. We develop a theory of algebraic operations over linear gram-
mars that makes it possible to combine simple “atomic” grammars op-
erating on single sequences into complex, multi-dimensional grammars.
We demonstrate the utility of this framework by constructing the search
spaces of complex alignment problems on multiple input sequences ex-
plicitly as algebraic expressions of very simple 1-dimensional grammars.

The compiler accompanying our theory makes it easy to experiment with
the combination of multiple grammars and different operations. Com-
posite grammars can be written out in LATEX for documentation and
as a guide to implementation of dynamic programming algorithms. An
embedding in Haskell as a domain-specific language makes the theory
directly accessible to writing and using grammar products without the
detour of an external compiler.
http://www.bioinf.uni-leipzig.de/Software/gramprod/

Key words: linear grammar, context free grammar, product structure,
multiple alignment, Haskell

1 Introduction

The well-known dynamic programming algorithms for the simultaneous align-
ment of n sequences [1] have a structure that is reminiscent of topological prod-
uct structures. This is expressed e.g. by the fact that intermediary tables are
n-dimensional. Here we explore if and how this intuition can be made precise
and operational. To this end we build on the conceptual framework of Algebraic
Dynamic Programming (ADP) [2, 3]. In this setting a dynamic programming
(DP) algorithm is separated into a context-free grammar (CFG) that generates
the search space and an evaluation algebra. In this contribution we will mainly

2 Höner zu Siederdissen et al.

be concerned with a notion of product grammars to facilitate the construction
of the search space.

Before we delve into a more formal presentation, consider the context-free
grammar for pairwise sequence alignment with affine gap costs as an example.
Gotoh’s algorithm [4] uses three non-terminals M , D, I, depending on whether
the right end of the alignment is a match state, a gap in the first sequence, or a
gap in the second sequence. The corresponding productions are of the form

M → M(uv)
∣∣ D(uv)

∣∣ I(uv)
∣∣ (εε)

D →M(u−)
∣∣ D(u.)

∣∣ I(u−)

I →M(−v)
∣∣ D(−v)

∣∣ I(.v) (1)

where u and v denote terminal symbols, ’−’ corresponds to gap opening, while
’.’ denotes the (differently scored) gap extension. The ε here takes the role of the
“sentinel character”, i.e., matches the end of the input. Each of the non-terminals
reads simultaneously from two separate input tapes. To make this property more
transparent in the notation, we write M (XX), D (XY), and I (YX). This
yields productions such as

(XX)→ (XX)(uv) ' (XuXv) or (YX)→ (XY)(−v) '
(
X−
Y v

)
(2)

Apart from the conspicous absence of (YY), i.e., alignments ending in an all-gap
column, to which we will return later, this notation strongly suggests to consider
the 1-dimensional projections of the 2-dimensional productions of Equ. (2), which
obviously have the form

X → Xu
∣∣ Y u ∣∣ ε and Y → Y.

∣∣ X− (3)

This simple grammar either reads a symbol (non-terminal X) or it ignores it
(non-terminal Y). Each copy of the “step grammar” (3) operates on its own input
tape. The basic idea in this contribution is to consider the dynamic programming
algorithms for n-way alignments as an n-fold product of the simple step grammar
with itself. To this end we need to solve two problems: First, we need to clarify
the precise meaning of the product of CFGs. Since alignment algorithms are
naturally expressed as left-linear CFGs we will be content with this special case
here. Second, we need to develop a theory for the construction of the evaluation
algebra for a product grammar.

We note that full-fledged n-way DP alignments have exponential running
time and hence are of little practical use for large n. Although elaborate divide
& conquer strategies have been proposed to prune the search space, see e.g.
[1], heuristic approaches that combine pairwise alignments are much more com-
mon. Three-way alignments nevertheless are employed in practise in particular
when high accuracy is crucial, see e.g. [5–8]. Four-way alignments were recently
explored for aligning short words from human language data [9].

2 Algebraic Operations on Grammars

2.1 Notation

A CFG G = (N,T, P, s) consists of a finite set N of non-terminals, a finite set
T of terminals so that N ∩ T = ∅, a set P of productions x → α where x ∈ N

Multiplication of Dynamic Programming Algorithms 3

and α ∈ (T ∪N)∗, and a start symbol s ∈ N . Furthermore, we need the special
symbol ε denoting the empty string and an “empty production” ∅. Throughout
the body of this contribution we will consider in particular left-linear grammars,
i.e., those for which all productions are of the form A→ Bx with A,B ∈ N and
x ∈ T .

The example of Gotoh’s algorithm in the introductory section motivates us
to introduce algebraic operations on grammars in a more systematic way. As
a running example, we will use one of the simplest alignment algorithms. The
Needleman-Wunsch algorithm [10] aligns two sequences x1...n and y1...m so that
the sum of match and in/del scores is maximized. The basic recursion over the
memoization table T reads

Tij = max
{
Ti+1,j + d, Ti,j+1 + d, Ti+1,j+1 +m(xi, yj), 0i=n,j=m,−∞

}
(4)

In the recursive scheme, the base case is given by the alignment of two empty
substrings “on the right”, while the other cases extend the already aligned part of
the strings to the left. This slightly unusual variant of the algorithm was chosen
to be identical to the grammatical description that follows. The first two cases
denote an in/del operation with cost d, while m(. , .) scores the (mis)match xi
with yj .

A two-tape grammar equivalent to the recursion in Equ. (4) is

(XY)→ (XY)(aε)
∣∣ (XY)(εa)

∣∣ (XY)(aa)
∣∣ (εε) (5)

There are several differences between the formulation in Equ. (4) and Equ. (5).
The recursive formulation working on the memoization table T does not store
the alignment directly but rather the score of each partial, optimal alignment.
The grammatical description, on the other hand, describes the search space of
all possible alignments without any notation of scoring. In addition, recursive
descriptions usually include explicit annotations for base cases, here the empty
alignment. The production rule (XY) → (εε) has this role in our example. In
general, grammatical descriptions abstract away certain implementation details.
Some of these will, however, become important when constructing more complex
grammars from simpler ones, as we shall see below.

Our task will be to construct the Equ. (5) from even simpler, “atomic” con-
stituents. These grammars are

S =({X}, {a}, {X → Xa
∣∣ X}, X) (6)

N =({X}, {ε}, {X → ε}, X) (7)

L =({X}, {}, {X → X}, X) (8)

The grammar S in Equ. (6) performs a “step”. It either reads a single character
on the right and recurses on the left, or simply recurses. Note that by itself the
rules do not terminate. The grammar N , Equ. (7), matches the empty input
(or any empty substring of the input) and immediately terminates. Finally, L
Equ. (8) reproduces the non-terminating loop case already seen in Equ. (6).

Intuitively, we can combine these three components on a single tape as

S +N −L = ({X}, {a, ε}, {X → Xa
∣∣ ε}, X) (9)

4 Höner zu Siederdissen et al.

In order to make this intuition precise we need to give a precise meaning to
algebraic operations on grammars. In the following we will do this for linear
grammars, however with an extension to general CFGs in mind.

Each operator introduced below primarily acts on sets of production rules.
They implicitly carry over to the involved sets of terminals and non-terminals in
an obvious manner. Two production rules are equivalent if they are isomorphic
as in Equ. (13). This is of relevance insofar that it leads to idempotency in one
of the operators below, but does not otherwise interfere with parsing8. In the
following we use the notation Pn to emphasize that the productions operate on
n tapes. We will refer to dimG = n as the dimension of the grammar.

2.2 Algebraic Operations on Grammars

The + monoid. The + operator is defined as the union of all production rules
of the two grammars:

Pn1 + Pn2 = Pn1 ∪ Pn2 (10)

We enforce explicitly that the + operator requires that the two operand gram-
mars have the same dimensionality. The + operation forms a monoid over the
set of production rules. Since the production rules form a set, isomorphic rules
collapse to a single rule. The empty set Pn = {} is a neutral element and
Pn + Pn = Pn, i.e., the + monoid is idempotent. Isomorphism on production
rules is also symbolic, that is, X → X is isomorphic to X → X but not to
{X → Y, Y → X}, even though the latter set of two rules reduces to the first.
For our example, we have (X → Xa

∣∣ X) + (X → ε) = (X → Xa
∣∣ X ∣∣ ε).

The − operator. While the + operator unifies two sets of production rules,
the − operator acts as a set difference operator

Pn1 − Pn2 = {p ∈ Pn1 |p /∈ Pn2 } (11)

As for +, it requires operands of the same dimensionality. By construction, −
is not associative. Thus does not form a semigroup but merely a magma. The
empty set of production rules acts as the neutral element on the right. This
operator is important to explictly remove production rules that yield infinite
derivations. In our example, we need to remove {X → X}. With the help of −
we can write (X → Xa

∣∣ X)− (X → X) = (X → Xa). We shall see that it is
often convenient to “temporarily” introduce productions that later on need to
be excluded from the final algorithm.
The ⊗ monoid. The definition of a direct product of left linear grammars lies
at the heart of this contribution.

Definition 1. Let G1 = (N1, T1, P1, s1) and G2 = (N2, T2, P2, s2) be left-linear
CFGs, i.e., all productions are of the form A → Bx or A → y. Their direct
product G1 ⊗ G2 is the grammar G = (N,T, P, s) with non-terminals N = N1 ×
8 This is not completely true in the context of stochastic linear grammars: replication

of a rule in an SCFG that already has duplicated rules requires that we sum over
the probabilities for isomorphic rules.

Multiplication of Dynamic Programming Algorithms 5

N2∪N1×{ε}∪{ε}×N2, terminals T = T1×T2∪T1×{ε}∪{ε}×T2, the start symbol
of the product is s = (s1s2). The productions are of the forms

(
A1

A2

)
→

(
B1

B2

)
(x1
x2

),(
A1

A2

)
→ (B1

ε)(x1
y2),

(
A1

A2

)
→ (ε

B2
)(y1x2

),
(
A1

A2

)
→ (y1y2), (A1

ε) → (B1
ε)(x1

ε), (ε
A2

) →
(ε
B2

)(ε
x2

), (A1
ε) → (y1ε), and (ε

A2
) → (ε

y2) iff A1 → B1x1 and A1 → y1, are
productions in P1 and A2 → B2x2, A2 → y2 are productions in P2, respectively.

By construction G is again a left-linear CFG that now operates on two bands.
It will be convenient to abuse the notation and write productions of the form
Ai → yi as Ai → εyi. Hence all productions in the product grammar can be
written as

(
A1

A2

)
→

(
B1

B2

)
(x1
x2

) with Ai, Bi ∈ Ni ∪ {ε}, xi ∈ Ti ∪ {ε} subject to the

following conditions: Ai = ε implies Bi = xi = ε,
(
A1

A2

)
6= (εε), and (εε) on the

r.h.s. is omitted. We will also make use of notation (A1 → B1y1)⊗ (A2 → B2y2)
for the product of two individual productions. By construction, we have

dim(G1 ⊗ G2) = dimG1 + dimG2 (12)

We note finally, that the empty string ε appearing in the 2-dimensional terminals
and non-terminals is not necessarily associated with terminating the reading
from the input band(s).

To see that ⊗ is associative we need to demonstrate that the productions on
(G1 ⊗ G2)⊗ G3 and G1 ⊗ (G2 ⊗ G3) are isomorphic, i.e.,(

(x1
x2

)
x3

)
→

(
(α1
α2

)
α3

)
'

(x1

(x2
x3

)

)
→

(α1

(α2
α3

)

)
(13)

This is most easily seen in the notation with the extra ε since in this case the αi
are strings of length 2 that are simply decomposed columnwisely. Hence multiple
products are well-defined. Furthermore, permutations of rows are isomorphisms.
Thus G1 ⊗ G2 ' G2 ⊗ G1, i.e. exchanging the order of factors affects the order of
the coordinates only. Due to the associativity of ⊗, we can safely extend these
constructions to more than two factors.

The canonical projection πi : G1 ⊗ G2 → Gi is obtained by formally iso-
lating the i-th coordinate and contracting the empty strings ε and the empty
productions ∅ = (ε → ε). Clearly we have πi(T) = Ti, πi(N) = Ni, πi(s) = si,
and πi(P) = Pi. The grammar product ⊗ thus has the basic properties of a
well-defined product.

Let lan(G) denote the language generated by G. Note that a “string” in
lan(G) is, by construction, a sequence of terminals, each of which is either of
the form (x1

x2
) with x1 ∈ T1 and x2 ∈ T2, or of the form (x1

ε) with x1 ∈ T1, or
of the form (ε

x2
). Thus lan(G1 ⊗ G2) consists of alignments of strings αi ∈ Gi.

To see this, note that each string αi ∈ Gi is generated from si using a finite
sequence ℘i = (p1i , p

2
i , . . .) of productions. Any partial matching of the ℘1 and

℘2 that preserves the sequential order of the two input sequences gives rise to a
sequence of productions ℘ ∈ P ∗ by matching all unmatched pki with the dummy
production ∅. By construction πi(℘) = ℘i, i.e., ℘ derived an alignment of the
input strings β1 and β2. Conversely, given a sequence ℘ of productions of the
product grammar, we know that πi(℘) is a sequence of productions of Gi; hence
it constructs strings in lan(Gi). It follows that the product language satisfies

πi(lan(G1 ⊗ G2)) = lan(Gi) (14)

6 Höner zu Siederdissen et al.

Similarly, we find that parse trees have a natural alignment structure. Let τ
be a parse tree for an input β ∈ lan(G1 × G2). Its interior nodes are labeled by
the productions, i.e., pairs of the form

(
A1→B1x1

A2→B2x2

)
,
(
A1→B1x1

∅
)
, or

(∅
A2→B2x2

)
.

The projections πi(τ) are explained by retaining only the i-th coordinate of the
vertex label and contracting all vertices labeled by ∅ in πi(τ) yields a valid parse
tree for πi(β) w.r.t. Gi. Thus τ is a tree alignment of the parse trees for the two
input strings.

The direct product ⊗ forms a monoid on grammars with arbitrary dimensions
since

Pm1 ⊗ Pn2 = {(p1 ⊗ p2)m+n|pm1 ∈ Pm1 , pn2 ∈ Pn2 } , (15)

where p1⊗ p2 is explained in Def. 1. The neutral element of the ⊗ monoid is the
zero-dimensional grammar which has one production rule ε0 → ε0 that neither
reads nor writes anything as it does not operate on a tape. Albeit rather artificial
at first glance, it is useful to have a neutral element available. For our example,
we have

(X → Xa|X)⊗ (X → Xa|X)

= (XX)→ (XX)(aa)
∣∣ (XX)(aε)

∣∣ (XX)(εa)
∣∣ (XX)

(16)

This grammar contains the 2-dimensional loop rule (XX) → (XX), derived from
(X → X) ⊗ (X → X) that eventually needs to be eliminated. To this end, it
will be convenient to consider yet another operation on productions.
The structure-preserving power ∗ For any k-dimensional grammar G and
any natural number n ∈ Z, G ∗ n denotes the k × n-dimensional grammar with
the same structure. Each k-dimensional (terminal or non-terminal) symbol (s1sk)

is transformed to an k×n-dimensional symbol
 (s1sk)

(s1sk)

. Note that for a grammar

with a single production rule we have G⊗G ≡ G ∗ 2.
For our example grammar, this operation is useful as short-hand for both

Equ. 7 and Equ. 8. In the case of linear grammars, the ∗ operator is mostly
useful as shorthand to expand singleton grammars. It is worth noting, however,
that a number of algorithms, notably [11], in computational biology work on
multiple tapes with a grammar structure equal to their one-dimensional cousins.
In particular, the Sankoff algorithm [11] is a variant of the Nussinov algorithm
extended to two tapes.

We can now construct the full Needleman-Wunsch alignment grammar from
the much simpler 1-dimensional constituents of Eqns.(6–8) in the following way:

NW = G ⊗ G +N ∗ 2− L ∗ 2 , (17)

Written in terms of the productions only, this can be rephrased as

(X → Xa|X)⊗ (X → Xa|X) + (X → ε) ∗ 2− (X → X) ∗ 2

= (XX)→ (XX)(aa)
∣∣ (XX)(aε)

∣∣ (XX)(εa)
∣∣ (εε)

(18)

Note that we have used here a distinct symbol ε to highlight the termination case
deriving from N . Since our construction of the Needleman-Wunsch grammar is

Multiplication of Dynamic Programming Algorithms 7

based on well-defined algebraic operations we can readily use the same approach
to construct much more complex alignment algorithms. Before we proceed, how-
ever, we need to address the technical issue of loop rules.

2.3 Grammars with Loops

In Equ. (17) we explicitly added a terminating base case X → ε and removed a
production rule with infinite derivationsX → X. Why do we insist on performing
this operation explicitly instead of modifying the definition of the direct product
⊗ accordingly?

The main reason lies in performance considerations. An “intelligent” product
operator would first need to determine which rules have infinite derivations. For
linear grammars with only one non-terminal a rule is not infinite if a single
terminal (except ε) is present. ε rules are also fine, as long as only the empty
word case X → ε is present. Productions of the form {X → Y, Y → X}, however
need to be followed up to a depth of the number of production rules present. For
context-free grammars, the complexity will increase further, as now multiple non-
terminals may exist on the right-hand side. For both convenience and efficiency
(by a constant factor), it does not seem to be desirable to transform the grammar
into Chomsky normal form. The second problem is the need for rewriting. In the
case of {X → Y, Y → X}, rewriting yields X → X by inserting the rules for
Y wherever Y is used. More complicated grammars might quite easily require
major rewrites before all loop cases can be removed.

Finally, using looping productions can be conceptually useful during con-
struction. In case of Equ. 6, we either want to read a character in a “step”
X → Xa or perform an in/del with a “stand” X → X. The direct product of
Equ. (6) then yields all possibilities of stepping or standing on two (or more)
tapes. Of these cases we only want to remove the case where all tapes “stand”.
This case is quite easily determined as Equ. 8 and just needs to be scaled (with
∗) to the correct dimension and subtracted from the complete grammar.

2.4 Implementation

We have implemented a small compiler for our grammar product formalism with
three output targets. First, we generate LATEX output. This supports researchers
in the development of complex, multiple dimensional linear grammars, facili-
tates the comparison with the intended model for an elaborate alignment-like
algorithm. It assists implementation of the grammar in the users’ programming
language of choice as the mathematical description of the recurrences reduces
the chance that a production rule or recursion is simply forgotten.

In addition, we directly target the functional programming language Haskell
[12]. It is possible to emit a Haskell module prototype which then needs to be
extended with user-defined evaluation (scoring) algebras. This mode mirrors the
LATEX output. Advanced users may make use of TemplateHaskell [13] to directly
embed our domain-specific language as a proper extension of Haskell itself. Both
Haskell-based approaches ultimately make use of stream fusion optimizations

8 Höner zu Siederdissen et al.

[14] by way of the ADPfusion [15] framework that produces efficient code for
dynamic programming algorithms.

Currently, the emitted Haskell code for non-trivial applications is slower than
optimized C by a factor of two [15]. Recent additions to the compiler infras-
tructure [16], which provide instruction-level parallelism, will reduce this factor
further. As ADPfusion is built on top of the Repa [17] library for CPU-level
parallelism, we can expect improvements in this regard to be available for our
dynamic programming algorithms in the near future.

3 Applications

Grammar: DNA

F{i} -> stay <<< F{i} c c c

F{i} -> rf1 <<< F{i+1} c c

F{i} -> rf2 <<< F{i+2} c

F{i} -> del <<< F{i}

//

Grammar: DNAdone

F{i} -> nil <<< empty

//

Grammar: DNAstand

F{i} -> del <<< F{i}

//

Grammar: PRO

P -> amino <<< P a

P -> del <<< P

//

Grammar: PROdone

P -> nil <<< empty

//

Grammar: PROstand

P -> del <<< P

//

Product: DnaPro

DNA >< PRO

+ DNAdone >< PROdone

- DNAstand >< PROstand

//

Fig. 1. Atomic grammars for the DNA-Protein alignment example. (I) Nucleotides are
read in triplets (three nucleotides each). The DNA grammar switches between reading
frames. DNAdone and DNAstand handle the termining and looping case. (II) The PROtein
grammar works similarly, but reads only a single amino acid at a time. The expansion of
the DNA grammar is more complicated, as the indexed non-terminal symbol F expands
to three different non-terminals corresponding to the three possible reading frames.
(III) The grammar product of DNA and PROtein without the looping case “stand” and
with the terminating case “done”. In code, >< represents the direct product (⊗). The
resulting 24-production rule grammar is shown in the Supplemental Material together
with an extended description.

In this section we discuss one elaborate and practically relevant example
where a grammar product of two simple grammars yields a complex result gram-
mar. The alignment of two sequences of the same type is typically simplified due
to mirrored operations. Recalling the alignment grammar from above, we speak
of in/del operations as an insertion in one sequence may just as well be described
as a deletion in the other sequence. In addition, it does not matter which se-
quence is bound to which input tape.

The alignment of a protein sequence to a DNA sequence is, however, more
involved. In Fig. 1 we summarize this more elaborate example. The DNA se-
quence is read in one of three reading frames (RFs), and a deletion or insertion

Multiplication of Dynamic Programming Algorithms 9

does not yield a “simple” in/del but also a frame shift. This more advanced
treatment of DNA characters in triplets is due to the translation of DNA into
protein in steps of three nucleotides, the “codons” of the genetic code. In Fig. 1
frame shifts (with scoring functions rf1, rf2) are allowed only at high cost as
they change the transcription of following protein characters completely. Staying
within a frame is very cheap, even if this involves the deletion of three characters
(del).

The protein grammar, on the other hand, has the same simple structure as
our previous atomic components of the alignment grammar. Here, we indeed
only read a single amino acid, or handle a deletion.

The complexity of the DNA-protein alignment stems from the fact that we
need to “align” the different frame shifting possibilities in the DNA input while
matching zero to three nucleotides to zero or one amino acid in the protein
input. In addition, once a frame shift has occurred all following alignments of
three nucleotides against one amino acid are scored in the new reading frame
until another frame shift occurs or the alignment is completed.

Our framework simplifies the complexity of designing this algorithm consid-
erably. While the combined grammar is highly complex, the individual grammars
are rather simple. As already mentioned, the protein “stepping grammar” is one
of the simplest possible ones. The DNA grammar is more complex as we need
to handle stepping and frame shifts in all three reading frames. But considering
that we allow indexed non-terminals and calculations on these indices (modulo
3 in the frame shift case), even the frame shift grammar has only four rules, just
twice as much as the simplest stepping grammar.

The resulting 24-production rule grammar is easily calculated in our frame
work. We emphasize that it is very easily extend this grammar to allow for, say,
an alignment of two DNA sequences with two protein sequences. This grammar
can be calculated at basically no additional cost but would pose a daunting task
if implemented by hand. An extended description of this grammar, together
with a depiction of the 24 production rules can be found in the Supplemental
Material9.

4 Discussion

Summary We have presented a formal, abstract algebra on linear grammars.
This algebra provides operations to create complex, multi-tape grammars from
simple, single-tape atomic ones. More informally, we have created a method
and implementation to “multiply” dynamic programming algorithms. We also
provide a compiler framework that makes the grammars readily available for
actual deployment with good performance of the resulting code.

The products of linear grammars, despite the simplicity of individual gram-
mars, give rise to many often-used and powerful algorithms where word-like
objects are aligned with each other. We have restricted ourselves to a problem

9 url:where

10 Höner zu Siederdissen et al.

from the realm of computational biology, as the alignment of DNA and protein
sequences provides a good example of the emerging complexity of algorithmic
alignment, especially when the words to be aligned have differing internal struc-
ture – in the example case the possibility of a frame shift in the DNA sequence.

Future Work This work also leads to a number of questions to be answered
in the future. We should investigate the actual performance of our automati-
cally generated grammar implementations versus hand-written code, but this is
mostly a question delegated to the underlying ADPfusion framework. We prefer
a separation of concerns: grammar products emphasize algebraic operations, the
user need not be concerned with low-level implementation details.

We have restricted ourselves to linear grammars, as the next class of formal
grammars, context-free grammars, requires us to give a good definition of the
direct product on production rules with more than one non-terminal symbols.

The direct product implicitly introduces dependencies that couple the input
bands. Consider the product of productions (X → Xa) ⊗ (X → X). There are
two possibilities how the right-hand side can be interpreted:

(XX)→ (XX)(aε) (19)

(XX)→ (Xε)(aX) (20)

Aligning the two non-terminals to form a new non-terminal as in Equ. (19)
is equivalent to a dependence statement. All possible derivations of (XX) are
considered and both tapes are coupled.

The situation is quite different for the production rule given in Equ. (20).
Since (Xε) aligns a substring with the empty string, we basically decouple the
two tapes. Furthermore, we formally have constructed a non-terminal (aX) that
“mixes” non-terminals and terminals on different tapes. In Definition 1 we have
avoided this complication by restricting ourselves to linear grammars, where
constructions akin to Equ. (20) can always be avoided. When attempting to
generalize the framework to arbitrary CFGs, however, this is not possible any-
more.

Consider, for example the CFG A = {{S}, {x}, {S → Sx
∣∣ SS}, S}. Even if

we give precendence to matching up non-terminals, A ⊗ A has productions of
the form

(SS)→ (SSSx) ' (SS)(Sx) (21)

where (Sx) is neither a terminal nor a non-terminal according to Def. 1. One
possibility to deal with this issue is to expand the set of non-terminals to N =
(N1×N2)∪ (N1×T2)∪ (T1×N2) and to add productions of the form (xA)→ (xα)
if x ∈ T1 and A → α ∈ P2 as well as (Ax) → (αx) if x ∈ T2 and A → α ∈ P1.
The intuition here is that we can have a terminal produced in one factor, while
the other factor still presents a non-terminal. Further derivations then can affect
only the factor with the non-terminal, while the terminal in the other factor
must remain untouched.

Multiplication of Dynamic Programming Algorithms 11

A second complication arises e.g. in the following example: B = {{S}, {x}, {S →
x
∣∣ SS}, S}. In B × B we now obtain productions of the form (SS) → (SSx). A

useful resolution in this case is to re-interpret these as

(SS)→ (SSx) ' (Sε)(Sx)
∣∣ (Sx)(Sε) (22)

i.e., to allow for all alignments of the r.h.s. in the productions. The explicit use
of ε suggests an alternative extension of terminal and non-terminal symbols sets,
respectively. Setting N = N1×N2 ∪N1×{ε}∪{ε}×N2 and T = T1×T2 ∪T1×
{ε}∪{ε}×T2. In this setting, we would re-interpret the production of Equ. (21)
in the following way:

(SS)→ (SSSx) ' (SS)(Sε)(εx)
∣∣ (SS)(εx)(Sε) (23)

Apart from questions on how to extend algebraic operations on grammars
from linear to context-free grammars, we also need to consider scoring algebras
for such products. We anticipate that in many cases, a scoring algebra can be
expressed as a form of product itself where the two scoring functions (one for each
grammar) are themselves combined in some well-defined form. One possibility
is the use of a folding operation to combine scores for subsets of the individual
dimensions. It then follows that given two algebras AG1

and AG2
for grammars

G1 and G2 we should be able to define an operation AG1
⊗τAG2

which generates
appropriate algebras from algebras for atomic grammars. As long as τ has some
structure similar to a fold or another operation on subsets of the dimensions (of
the grammars) involved, appropriate products can be automatically defined. This
becomes especially useful as we want to define ADP-like [18] grammar-products
as well, to explore the rich space of combined algebras on grammars constructed
from algebraic operations on atomic grammars.

Another avenue of future research is the question of semantic ambiguity of
the resulting grammars. Simple products of the same grammar yield ambiguous
alignments on sequences of in-dels. This problem is typically dealt with a good
grammar design that explicitly allows only one order of successive insertions and
deletions on multiple tapes. Automatic dis-ambiguiation is probably complicated
but would further simplify the creation of complex multi-tape grammars.

Acknowledgements.
This work was funded, in part, by the Austrian FWF, project “SFB F43

RNA regulation of the transcriptome”. CHzS thanks Jing, Katja, Lydia, and
Nancy (and gin, as well as a mad man in a box).

References

1. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence align-
ment. Proc. Natl. Acad. Sci. USA 86(12) (1989) 4412–4415

2. Giegerich, R., Meyer, C.: Algebraic Dynamic Programming. In: Lecture Notes In
Computer Science. Volume 2422. Springer-Verlag (2002) 349–364

12 Höner zu Siederdissen et al.

3. Giegerich, R., Meyer, C., Steffen, P.: A Discipline of Dynamic Programming over
Sequence Data. Science of Computer Programming 51(3) (2004) 215–263

4. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162 (1982) 705–708

5. Gotoh, O.: Alignment of three biological sequences with an efficient traceback
procedure. J. theor. Biol. 121 (1986) 327–337

6. Dewey, T.G.: A sequence alignment algorithm with an arbitrary gap penalty func-
tion. J. Comp. Biol. 8 (2001) 177–190

7. Konagurthu, A.S., Whisstock, J., Stuckey, P.J.: Progressive multiple alignment
using sequence triplet optimization and three-residue exchange costs. J. Bioinf.
and Comp. Biol. 2 (2004) 719–745

8. Kruspe, M., Stadler, P.F.: Progressive multiple sequence alignments from triplets.
BMC Bioinformatics 8 (2007) 254

9. Steiner, L., Stadler, P.F., Cysouw, M.: A pipeline for computational historical
linguistics. Language Dynamics & Change 1 (2011) 89–127

10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology
48(3) (1970) 443–453

11. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-
quence problems. SIAM Journal on Applied Mathematics (1985) 810–825

12. The GHC Team: The Glasgow Haskell Compiler (GHC). http://www.haskell.

org/ghc/ (1989–2013)
13. Sheard, T., Jones, S.P.: Template Meta-programming for Haskell. In: Proceedings

of the 2002 ACM SIGPLAN workshop on Haskell, ACM (2002) 1–16
14. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream Fusion: From Lists to Streams

to Nothing at All. In: Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming. ICFP’07, ACM (2007) 315–326

15. Höner zu Siederdissen, C.: Sneaking around concatMap: efficient combinators for
dynamic programming. In: Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming. ICFP ’12, New York, NY, USA, ACM
(2012) 215–226

16. Mainland, G., Leshchinskiy, R., Jones, S.P., Marlow, S.: Exploiting vector instruc-
tions with generalized stream fusion. In: Proceedings of the 17th ACM SIGPLAN
international conference on Functional programming (accepted). (2013)

17. Keller, G., Chakravarty, M.M., Leshchinskiy, R., Peyton Jones, S., Lippmeier, B.:
Regular, Shape-polymorphic, Parallel Arrays in Haskell. In: Proceedings of the 15th
ACM SIGPLAN international conference on Functional programming. ICFP’10,
ACM (2010) 261–272

18. Steffen, P., Giegerich, R.: Versatile and declarative dynamic programming using
pair algebras. BMC bioinformatics 6(1) (2005) 224

