
ADP on Trees and Forests

General Reforestation: Parsing Trees and Forests
Efficient Dynamic Programming on Tree-like Data Structures with ADPfusion

Sarah J. Berkemer
Max Planck Institute for Mathematics in the Sciences

bsarah@bioinf.uni-leipzig.de

Peter F. Stadler and Christian Höner zu
Siederdissen

Dept. of Computer Science, Univ. Leipzig
{studla,choener}@bioinf.uni-leipzig.de

Abstract
Where string grammars describe how to generate and parse strings,
tree grammars describe how to generate and parse trees. We show
how to extend generalized algebraic dynamic programming to tree
grammars. The resulting dynamic programming algorithms are effi-
cient and provide the complete feature set available to string gram-
mars, including automatic generation of outside parsers, algebra
products for efficient backtracking, and abstract algebra on gram-
mars for simplified design of grammars via product structures.

The complete parsing infrastructure is available as an embedded
domain-specific language in Haskell.

In addition to the formal framework, we provide implementa-
tions for both, tree alignment and tree editing. Both algorithms are
in active use in, among others, the area of bioinformatics, where
optimization problems on trees are of considerable practical im-
portance.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; I.2.8 [Problem
Solving, Control Methods, and Search]: Dynamic programming

Keywords algebraic dynamic programming, program fusion,
functional programming, tree editing, tree alignment

1. Introduction
Consider two versions of the source of your favorite program: an
older working version, and one with new features and bugs. The
venerable diff tool gives the difference between the two files
but makes it very hard to track large-scale changes. One solution
is to track changes not (only) in the textual representation but to
compare the actual abstract syntax trees (Fluri et al. 2007).

Alignment and editing of trees as well as combinatorial opti-
mization problems on trees appear in diverse areas of computer sci-
ence and its applications, from software engineering, to image anal-
ysis, machine translation, and bioinformatics. Tracking source code
changes is a direct application of edit operations on ordered trees.
The same problem arises for the comparison of RNA secondary
structures in computational biology (Höchsmann 2005; Jiang et al.
2002), which have a natural representation as trees. Analogous edit-

[Copyright notice will appear here once ’preprint’ option is removed.]

ing problems for unordered trees arise in image analysis (Xiao et al.
2011; Zieliński and Iwanowski 2013) and phylogenetics.

Exact solution of the (ordered) tree editing problem is an early
application of dynamic programming (Tai 1979; Jiang et al. 1995)
alongside with optimization problems defined on a single given
tree such as the “small parsimony problem” (Fitch 1971; Hartigan
1973). The only conceptual difference between these tree problems
and the more familiar problems of string editing is the input data
structure.

Our main motivation is that algebraic dynamic programming
(ADP) separates the complex tasks of specifying the search space
via grammar design, and modelling optimizing evaluation strate-
gies via algebra construction. However, ADP was originally con-
ceived as a framework for developing dynamic programming algo-
rithms on strings (Giegerich and Meyer 2002; Höner zu Siederdis-
sen 2012) only. In this paper, we therefore extend the notion of
parsing to tree and forest inputs and thus make the framework of
generalized algebraic dynamic programming amenable to the di-
verse universe of tree problems. Our main contributions are the fol-
lowing:

• A formal notion of parsing for forests that remains close to
known notions of parsing for strings. The formal symbols in-
troduced in Sec. 3 are syntactic sugar to disambiguate pattern
matching within forests.

• Simplified parsing for linear grammars on forests. We draw our
worked examples from the set of linear grammars, and show
how parsing can be non-ambiguous even without additional
symbols.

• We extend the generalized algebraic dynamic programming
framework to tree inputs. The extension allows us to work with
grammar products, and automatic outside grammar construc-
tions immediately.

• The embedding in Haskell provides parsing combinators that
allow for stream fusion to happen. A grammar written in our
framework will have competitive performance compared to
hand-written designs.

To set the stage we begin with a small introduction to algebraic
dynamic programming (Sec. 2), generalize the notation of parsing
(Sec. 3), and discuss a number of introductory algorithms on trees
(Sec. 4).

The notion of an alignment, as explored in Sec. 5, of two or
more inputs requires considerably more care (despite the fact that
the Needleman-Wunsch algorithm (Needleman and Wunsch 1970)
is one of the most simple dynamic programming algorithms). We
have selected tree alignment with linear and affine grammars, as
well as tree editing as our fully worked examples. These algorithms
are advantageous as examples. They are (i) possibly the most sim-

ADP on Trees and Forests 1 2016/3/22

ple two-input tree algorithms, (ii) can be described with linear tree
grammars (instead of context-free grammars), (iii) have been de-
scribed in detail, (iv) are useful in practice, and (v) are non-trivial
to implement (especially once inside-outside and affine extensions
need to be considered).

We complete the treatment of languages on trees with the intro-
duction of a grammar product for linear tree languages (Sec. 6), the
affine cost model for tree alignment (Sec. 7), and automatic deriva-
tion of inside-outside grammar combinations for tree languages
(Sec. 8).

With the complete theory laid out, we detail the implementation
in Haskell in Sec. 9. In Sec. 10 we take a look at other relevant
work and sketch directions for future research, followed by a short
conclusion (Sec. 11).

2. Algebraic Dynamic Programming
Assuming that a parser describes a problem that has both, optimal
substructure and overlapping subproblems, dynamic programming
is used according to Bellmans principle. This is the principle we
make use of in this work as well.

Algebraic dynamic programming (ADP) (Giegerich et al. 2004)
is designed around the idea of higher order programming and starts
from the realization that a dynamic programming algorithm can be
separated into four parts: (i) signature, (ii) grammar, (iii) algebra,
and (iv) memoization. These four components are devised and
written separately and combined to form the solution.

One advantage of ADP is that the decoupling of the individual
problems makes each individual part much easier to design and
implement. Another advantage is that different parts can be re-used
easily. This is in particular true for the grammar, which defines
the search space. Hence it needs to be specified only once, even
though one is typically interested in diverse answers for a given DP
problem, say, the optimal solution, all sub-optimal solutions within
a range, a count of all possible (sub-)optimal solutions, and many
more. These variants are entirely taken care of by the algebra.

The signature in ADP provides a set of function symbols that
provide the glue between the grammar and the algebra. More for-
mally, we have a finite alphabet A of symbols over which finite
inputs, including the empty input can be formed. For ADP as de-
signed by Giegerich and colleagues (Giegerich and Meyer 2002)
inputs are strings. ADPfusion (Höner zu Siederdissen 2012) was
designed for string inputs as well. With the advent of general-
ized algebraic dynamic programming (Höner zu Siederdissen et al.
2015a,b; Riechert et al. 2016) inputs were generalized to strings
and sets, as well as multiple tapes (or inputs) of those.

Given the finite alphabet A and a sort symbol S, the complete
signature Σ with functions fi ∈ Σ can be defined. Each fi ::
ti1 → . . . tin → S, with tik ∈ {A+, S, $,−} accepts one or
more arguments and produces a result of type S. One additional
function, the choice, takes a list of values of type S and produces
an aggregate, typically again of type S.

A simple left-linear alignment algorithm that solves the inexact
string matching or string edit problem could well have the follow-
ing signature:

match : S → (AA)→ S

indel : S →
(
A
−
)
→ S

delin : S →
(
−
A

)
→ S

empty :
(
$
$

)
→ S

choice : [S]→ S

Given a signature, we may now devise an algebra implementing
the signature. An algebra associates each function symbol in the
signature with a concrete function. In this case, a simple maximiz-

ing scoring system, where we assume that the functions score and
malus are given.

match s (uv) = s+ score(u, v)

indel s
(
u
−
)

= s+ malus(u)

delin s
(
−
v

)
= s+ malus(v)

empty
(
$
$

)
= 0

choice xs = maximum xs

The grammar defines the space of all possible ways how the given
input can be produced. Equivalently, the grammar describes all le-
gal parses of the given input. The formal grammars we are inter-
ested in are inherently ambiguous, which is in marked contrast to
formal grammars for computer languages. The ambiguity we are
interested in is, however, natural. Given our alignment problem on
strings, there is indeed an exponential number of different ways to
align two input strings.

The grammar for aligning two strings can be written thus:

(XX)→ (XX)(aa)︸ ︷︷ ︸
match

∣∣ (XX)
(
a
−
)︸ ︷︷ ︸

indel

∣∣ (XX)
(
−
a

)︸ ︷︷ ︸
delin

∣∣ (
$
$

)︸︷︷︸
empty

(1)

Without an algebra, this potentially exponential search space can
not be constrained but with an optimizing algebra, only the opti-
mal solutions to subproblems need to be retained, of which there
is typically only a polynomial number for string problems. Once
grammar and algebra are amalgamated, we only need to employ a
memoization technique for non-terminals such as (XX) to prevent
repeated re-calculation of subproblems, and are able to extract the
optimal alignment score in polynomial O(nm) time. Backtrack-
ing via algebra products (not detailed here) then provides the co-
optimal alignments themselves.

3. Generalized Parsing
Parsers are usually thought of as algorithms that take a text as input
and convert it into some form of a hierarchical structure, the parse
tree. The task of the parser is essentially to determine if and how
the input can be derived from the start symbol of a given grammar.
Our starting point are context-free languages, i.e., production rules
of the form V → α, where V is a non-terminal and α is some string
of terminals and/or non-terminals. We will think of each production
rule as associated with a specific parser that recognizes exactly the
instantiations of a given production.

There is nothing that prevents us from imagining such parsers
to operate on arbitrary data structures. The r.h.s. of the production,
α, will in general not be a simple string but a complete description
how the data object V is to be divided up into components. In the
case of CFGs, V is decomposed into an ordered set of intervals,
with the understanding that terminals recognize individual input
characters and non-terminals correspond to variable-length inter-
vals. To see how this can be generalized we consider here rooted
ordered trees and rooted ordered forests.

In this context we have several natural decomposition opera-
tions. First, we can decompose a forest F into two or more sub-
forests, i.e., F → F1 ◦ F2, F → F1 ◦ F2 ◦ F3, etc. In case all trees
in F consist of a single node only, we recover strings and concate-
nation. The analog of a single character is the identification of a
non-empty component tree T . A rule of the form F → T ◦ F sep-
arates the leftmost non-empty subtree T from the remainder of the
forest. For the decomposition of a tree, however, we have several
meaningful operations:

T → x the tree consists of single vertex

ADP on Trees and Forests 2 2016/3/22

T → x ↓ F separate the root of T from the forest F consisting of
the children of T .

T → T x x separate the right-most leaf x from the rest of the tree.

T → x y T separate the left-most leaf x from the rest of the tree.

The difference of such rules to CFGs on strings lies in the fact
that we now have different ways of concatenating substructures that
need to be specified more explicitly. Throughout this contribution
we will therefore make the concatenation operators ◦, x, ↓, etc
explicit.

4. DP Algorithms on Trees
Let us use the small parsimony problem as an example. We are
given a rooted tree T annotated with individual characters taken
from a given alphabet A. The task is to find a labeling of interior
nodes of T such that the total number of edges with different la-
bels at the end is minimal. There are two well known dynamic pro-
gramming solutions to this problem, the algorithm of Fitch (Fitch
1971), later generalized to non-binary trees by Hartigan (Hartigan
1973), and Sankoff’s method (Sankoff 1975), which accomodates
arbitrary edit costs.

The Fitch/Hartigan version annotates every node u with a sub-
set Vu ⊆ A of assignable characters and a score su accord-
ing to the following rules: (i) for each leaf l, Vl = {cl}, the
character assigned to it in the input. (ii) For each interior node
u, Vu contains those character(s) that appear with maximum fre-
quency mu in sets of Vv assigned to the children v of u and
the score su =

∑
v∈chd(u)(sv + 1) − mu, where chd(u) yields

the set of children of u. In Sankoff’s version, each node is as-
signed a score su(a) for every letter a ∈ A according to the rule
su(a) =

∑
v∈chd(u) minb∈A(sv(b) + δab), where δab is a user-

defined cost of changing characters a to b.
Both the Fitch/Hartigan and the Sankoff algorithm follow a very

simple traversal rule on the input tree:

T → x ↓ F F → T ◦ F
∣∣ $ (2)

where F → $ terminates at the empty forest. If we know that T is
a binary phylogenetic tree as in the original formulation of Fitch’s
algorithm, then the forest F is either empty or it consists of exactly
two trees. In this case the 2nd production becomes F → T ◦ T

∣∣ $.
Let us take a moment to make the evaluation algebra and the

choice function explicit. The three evaluation functions (from left
to right) and choices are:

tree : Maybe A → S → S

forest : S → S → S

empty : $→ S

choiceF : {S} → S

choiceT : {S} → S

(3)

Here, tree is assumed to have leaves annotated with Just
the character, which is then parsed, while internal nodes have no
annotation (Nothing). The implementation for Fitch is then with

the type of S = (s,V):

tree Nothing s = s

tree (Just a) s = {a}
forest l r = if l ∩ r ≡ ∅ then l ∪ r else l ∩ r
empty $ = {}
choiceF {x} = x

choiceT xs = let frqs = {(a, {x ∈ xs|a ∈ x})|a ∈ A}
m = max{r|(, r) ∈ frqs}

in (
∑
{s|(s,) ∈ xs}+ |xs| −m,⋃
{ys|(a, ys) ∈ frqs, a ≡ m})

(4)

The evaluation algebra for Fitch’s parsimony algorithm requires
some discussion. With each tree T we associate a score sT and a
set VT . On the other hand, each forest comes with the list of the
pairs (sT ′ ,VT ′) of values that belong to its constituent trees. Dif-
ferent types of decompositions, i.e., different concatenation oper-
ators thus also may be associated with different operations of the
evaluation algebra and different choice functions. For ◦, thus, we
simply append the lists of pairs. For ↓, on the other hand, we have
to perform a rather complex operation on this list: First compute,
k(a) := |{T ′|a ∈ VT ′}| for all a ∈ A and s :=

∑
T ′ sT ′ over the

entries in the list of length ` that evaluates F . Set k := maxa k(a).
Finally we set VT ′ = V{x} ∪ {a|k(a) = k} and sT ′ = s+ `− k.
Here V{x} is the label of a leaf x or the empty set for any interior
vertex.

For Sankoff’s parsimony algorithm we have a similar situation.
The forest F collects the scores of its constituent trees for a given
label as a list to which these data are appended stepwise during the
F → T ◦ F rule. The T → x ↓ F rule then combines these values
into a label-dependent score for T .

An interesting example that uses multiple tree-valued non-
terminals is the DP solution to the maximum pairing or phyloge-
netic targeting problem (Maddison 2000; Arnold and Nunn 2010;
Arnold and Stadler 2010). The input is a binary tree T endowed
with a cost matrix Dpq for each pair of leaves. The task is to iden-
tify a collection of edge-disjoint (and therefore in a binary tree
also vertex-disjoint) paths connecting pairs of leaves on T that
minimizes the sum of costs. The key observation for solving this
problem is that there are only two situations for each subtree of T :
either the path system is enclosed within the subtree, or there is
exactly one relevant path leaving the subtree. In the first case we
associate the nonterminal T with the subtree, in the second case a
nonterminal S. Both T - and S-type subtrees may be leaves. Fur-
thermore, for an S-type tree, exactly one of the two children of its
root is also of type S because the path “sticking out from its root”
must connect to a unique leaf, while the other child is necessarily
of type T . Thus we have the following grammar

T → x ↓ (T ◦ T)
∣∣ x ↓ (S ◦ S)

∣∣ x
S → x ↓ (S ◦ T)

∣∣ x ↓ (T ◦ S)
∣∣ x (5)

Here T also serves as start symbol since there cannot be a path
sticking out from the root of the input tree T . While T contains
only enclosed paths, S must carry explicit information about the
leaf in which the unfinished path ends. This can be taken care of
by the evaluation algebra. We assign a value pair (u, s) to each tree
where u is the leaf or ∅ and s is a score. For productions of the form
T → u we use (∅, 0), while S → u yields the initialization (i, 0).
For productions involving the combination of two trees we define
(u′, s′)∗(u′′, s′′) = (u′∗u′′, s′+s′′+φ(u′, u′′)) with u′∗u′′ = ∅
if either both or none of u′ and u′′ is ∅, otherwise u′ ∗u′′ equals the

ADP on Trees and Forests 3 2016/3/22

non-∅ argument. φ(u′, u′′) = Du′,u′′ if both u′ and u′′ are leaves
and φ(u′, u′′) = 0 otherwise.

5. Multi-Tape DP for Trees
Pairwise alignment algorithms are conveniently represented in
terms of grammars that operate simultaneously on two tapes. The
classical Needleman-Wunsch alignment algorithm (Needleman
and Wunsch 1970), for instance, has the underlying 2-tape regu-
lar language (Höner zu Siederdissen et al. 2015a) that we already
encountered in equ.(1). Here we distinguish the termination symbol
$ from the “none”-symbol −. Like $, it emits nothing. As a pars-
ing symbol, however, it succeeds always, while $ only succeeds
on empty substrings. The non-terminal (XX) refers to an alignment
of prefixes of the input string, while the terminals (aa),

(
a
−
)
, and(

−
a

)
correspond to (mis)matches, insertions, and deletions of sin-

gle characters.
Let us now turn to the analogous problem for forests. There

are, in fact, two variants: tree alignment and tree editing. Like
string alignments, these problems are based on the three simple
edit operations: substitution, insertion, and deletion:

relabel y x

relabel x y

delete
x

z

insert z

z
xy

(6)

Naturally, a cost γxy , γ∅
z , or γz∅, resp., is associated with each edit

operation.

5.1 Tree Editing
A mapping (Bille 2005) between two ordered forests F1 to F2 is a
binary relation M ∈ V (F1) × V (F2) between the vertex sets of
the two forests such that for pairs (x, y), (x′, y′) ∈M holds

1. x = x′ if and only if y = y′. (one-to-one condition)

2. x is an ancestor of x′ if and only if y is an ancestor of y′.
(ancestor condition)

3. x is to the left of x′ if and only if y is to the left of y′. (sibling
condition)

The one-to-one condition implies that for each x ∈ F1 there is a
unique “partner” y ∈ F2, i.e., (x, y) ∈ M , or x has no matching
partner at all. With each mapping we can associate the cost

γ(M) =
∑

(x,y)∈M

γxy +
∑

y:(x,y)/∈M

γ∅
y +

∑
x:(x,y)/∈M

γx∅ (7)

Individual edit operations correspond to “elementary maps”. Maps
can be composed in a natural manner. Thus every edit script corre-
sponds to a map. Conversely every map can be composed of ele-
mentary maps, and thus corresponds to an edit script. Furthermore,
the cost of maps is subadditive under composition. As a conse-
quence, minimum cost mappings are equivalent to the minimum
cost edit scripts (Tai 1979).

The problem of minimizing γ(M) has a rather obvious dynamic
programming solution. For a given forest F we note by F − x the
forest obtained by deleting x and F \ T (x) is forest obtained from
F by deleting with x all descendants of x. Note that T (x) − x is
the forest consisting of all trees whose roots are the children of x.

D(F1, F2) = min

D(F1 − v1, F2) + γv1∅
D(F1, F2 − v2) + γ∅

v2

D(T (v1)− v1, T (v2)− v2) + γv1v2
+D(F1 − T (v1), F2 − T (v2))

(8)

(b,b) (c,−) (−,c) (d,d)

a

fdelete e insert f

π
1 2

π

(e,−)

(a,a)

(−,f)

e

b c d b c d b c d

a

a

Figure 1: Alignment of two forests F1 and F2 and a mapping from
F1 to F2 that cannot be derived from an alignment.

with D(∅, ∅) = 0 for two empty forests. A key issue is to imple-
ment this algorithm in such a way that only certain classes of sub-
forests need to be evaluated. The corresponding tree editing gram-
mar E reads

(TT) → (nn) ↓ (FF)

(FF) → (FF) ◦ (TT)
∣∣ (FF) x

(
x
−
) ∣∣ (FF) x

(
−
x

) ∣∣ (
$
$

) (9)

Note that the empty symbol “−” acts as neutral element for the
concatentation operators, which we take to act component-wise.
The grammar is based on the tree editing algorithm of Zhang and
Shasha (1989), for which several more efficient implementations
exist, see (Dulucq and Tichit 2003) for a detailed analysis of the
Zhang-Shasha algorithm.

5.2 Tree Alignments
An alternative way of defining the difference of two forests are tree
alignments (Jiang et al. 1995). Consider a forest G with vertex
labels taken from (A ∪ {−}) × (A ∪ {−}). Then we obtain
restrictions π1(G) and π2(G) by considering only the first or the
second coordinate of the labels, respectively, and by then deleting
all nodes that are labeled with the gap character − instead of ∅,
see Fig. 1. G is an alignment of the two forests F1 and F2 if
F1 = π1(G) and F2 = π2(G). The cost of the alignment G is
the sum of the costs of the label pairs:

γ(G) =
∑

(v1,v2)∈G

γv1v2 (10)

Every alignment defines a unique mapping, but the converse is not
true. The minimum cost alignment is in general more costly than
the minimum cost edit script.

We will need a bit of notation. Let F be an ordered forest. By
i : F we denote the subforest consisting of the first i trees, while
F : j denotes the subforest starting with the j+1-th tree. By F ↓ we
denote the forest consisting of the children-trees of the root v = rF
of the first tree in F . F→ = F : 1 is the forest of the right sibling
trees of F .

Now consider an alignment A of two forests F1 and F2. Let
a = rA be the root of its first tree. We have either:

1. a = (v1, v2). Then v1 = rF1 and v2 = rF2 ;A↓ is an alignment
of F ↓1 and F ↓2 ; A→ is an alignment of F→1 and F→2 .

2. a = (v1,−). Then v1 = rF1 ; for some k, A↓ is an alignment
of F ↓1 and k : F2 and A→ is an alignment of F→1 with F2 : k.

3. a = (−, v2). Then v2 = rF2 ; for some k, A↓ is an alignment
of k : F1 and F ↓2 and A→ is an alignment of F1 : k with F→2 .

ADP on Trees and Forests 4 2016/3/22

These three cases imply the following dynamic programming re-
cursion:

S(F1, F2) = min

S(F ↓1 , F

↓
2) + S(F→1 , F→2) + γv1v2

mink S(F ↓1 , k : F2) + S(F→1 , F2 : k) + γ
rF1
∅

mink S(k : F1, F
↓
2) + S(F1 : k, F→2) + γ∅

rF2

(11)
with initial condition S(∅, ∅) = 0. The formal grammar underlying
this recursion is

(FF) → (TT) ◦ (FF)
∣∣ (

$
$

)
(TT) → (nn) ↓ (FF)

∣∣ (
−
n

)
↓ (FF)

∣∣ (
n
−
)
↓ (FF)

(12)

It is worth noting that single tape projections of the form T → −↓F
make perfect sense. Since − is a parser that always matches and
returns an empty string, which in turn is the neutral element of the
concatenator ↓, this formal production is equivalent to T → F , i.e.,
it produces a forest F that happens to consist just of a single tree
T .

Höchsmann (2005) describes an efficient variant that makes use
of a number of facts that turn this problem into the equivalent of
a linear grammar on trees. Trees are separated from their forests
from left to right, and forests are always right-maximal. Given a
local root node for the tree, and a ternary identifier ({T,F,E}), each
forest, tree, and empty forest can be uniquely identified. Trees by
the local root, forests by the local root of their left-most tree, and
empty forests by the leaves “above” them.

It follows that given a tree with n nodes, one needs no more than
3n indices to uniquely identify each substructure. Each production
rule gives rise to at most a constant number of parses since the
only rule involving more than one non-terminal (F → T ◦ F
for each tape) will remove at most a single tree. The asymptotic
running time and space complexity for trees with m and n nodes
respectively is then O(mn).

If the nodes of the tree are labelled in pre-order fashion several
operations on the forest can be implemented more efficiently by
a constant factor. We finally, consider a variant of equ. (12) that
distinguishes the match rule (TT) → (nn)(FF) with a unique non-
terminal (TT) on the left-hand side. This rule, which corresponds
to the matching of the roots of two substrees, is critical for the
calculation of match probabilities and will play a major role in
Sec. 8. The non-terminals (TZ) and (ZT) designate insertion and
deletion states, respectively.

(FF) → (TT) ◦ (FF)
∣∣ (ZT) ◦ (FF)

∣∣ (TZ) ◦ (FF)
∣∣ (

$
$

)
(TT) → (nn) ↓ (FF)

(TZ) →
(
n
−
)
↓ (FF)

(ZT) →
(
−
n

)
↓ (FF)

(13)

6. Tree Alignment and Editing as Products
Multi-tape grammars such as equ. (1) are reminiscent of direct
products. This idea has been made precise by Höner zu Siederdis-
sen et al. (2015a) for grammars on strings. In a nutshell, for two
sets of productions, the Cartesian set product is formed, and its el-
ements, which are of the form (A→ α,B → β) are re-interpreted
as 2-tape productions of the form (AB) →

(
α
β

)
. For general gram-

mars, the interpretation of the right hand side
(
α
β

)
is not clear. For

left linear grammars, α and β are of the formCx,C, or x, whereC
is a non-terminal and x is terminal. This can always be brought to
the form C′x′ where C′ is either C or − and similarly x′ is either
x or −. Thus

(
α
β

)
is of the general form

(
C1
C2

)(
x1
x2

)
, where some

of the symbols Ci and xi may equal −. This ⊗-product is associa-

tive and hence the construction generalizes to arbitrary multi-tape
grammars.

Furthermore, one can ask whether a given 2-tape grammar such
as equ. (1) can be represented as a product of 1-tape grammars. This
is not quite the case. In general it is necessary to add and/or remove
certain production rules. To this end, + and − operations that act
as union and difference operators on the set of production rules,
resp., were introduced by Höner zu Siederdissen et al. (2015a).
In general, multitape grammars have the structure S + N − L,
where S includes the main rules of the grammar (such aligning
terminals and non-terminals), N comprises rules dealing with an
empty input, and L describes the loops, i.e., the non-productive
formal productions that need to be eliminated.

Product Representation for Tree Alignment. The extended tree
alignment grammar I of equ. (13) suggests to consider the follow-
ing simple operations on a single tape: (F → T ◦ F

∣∣ Z ◦ F ∣∣ $),
(T → n ↓ F), and (Z → F). Since the tree alignment grammar is
left-linear on both tapes (dimensions), it can be written as a gram-
mar product in the following way (with R ⊗ R = R2 for a set of
rules R):

I = (F → T ◦ F
∣∣ Z ◦ F)2 − (F → Z ◦ F)2

+ (T → n ↓ F ;Z → F)2 − (Z → F)2
(14)

Here we have used (i) that− is a neutral element for all concatena-
tion operators, and (ii) that the ⊗ product is properly defined only
for a given concatenation operator. That is we have no idea how a
term like (AB)→ (C◦Dx↓F) should be interpreted.

Product Representation for Tree Editing. The single tape rules
appearing in the tree edit grammar E , equ. (9) are (F → F ◦ T

∣∣
F x x

∣∣ F ∣∣ $) and (T → n ↓ F). The key observation is that
the tree decomposition operators traverse the tree in two different
directions: while ◦ and x proceed to siblings, ↓ moves down, con-
tinuing with the children of the current node. The grammar of the
tree editing algorithm is therefore linear only if both directions are
considered independently. A product representation that treats the
different types of concatenations separately can nevertheless be ob-
tained (again with R⊗R = R2):

E =(F → F ◦ T)2 + (F → F x x
∣∣ F)2

+ (T → n ↓ F)2 − (F → F)2 + (F → $)2
(15)

7. The Affine Gap Cost Model for Alignments
The simple linear scoring of gaps in alignments as in the origi-
nal formulation by Needleman and Wunsch (1970) is often a poor
model in computational biology. Instead, one typically uses affine
gap cost with a large constribution for opening a gap and small con-
tributions for extending the gaps. The sequence alignment problem
with affine gap costs was solved by Gotoh (1982). The correspond-
ing formal grammar, in the version used by Höner zu Siederdissen
et al. (2015a) reads

M → M(uv)
∣∣ D(uv)

∣∣ I(uv)
∣∣ (

$
$

)
D → M(u-)

∣∣ D(u.)
∣∣ I(u-)

I → M(-
v)

∣∣ D(-
v)

∣∣ I(.
v)

(16)

where u and v are terminal symbols, ’-’ denotes the opening of a
gap, and ’.’ denotes the extension of gap, typically scored differ-
ently. Considering only one tape or input dimension, a deletion is
denoted by a leading ’-’ followed by a number of ’.’ characters,
e.g. a sequence ’-....’.

For trees, the situation is more complicted. A node in a tree may
have siblings as well as children. Once a node has been aligned to
an initial gap symbol (′−′) both its siblings and its children are

ADP on Trees and Forests 5 2016/3/22

extending the initial gap. Compared to the three rules for matching,
deletion and insertion, we now have to deal with seven different
cases. In addition, we explicitly write each non-terminal in such a
way as to show the state of each tape. In (Schirmer 2011; Schirmer
and Giegerich 2011) seven rules for affine gap costs in forests
are formulated based on different modes of scoring: no-gap mode,
parent-gap mode and sibling-gap mode. Parent and sibling mode
indicate that the preceding node (either parent or sibling node) was
considered a deletion. Correspondingly, the non-terminal symbol
F denotes a no-gap state, P denotes a parent gap, and G denotes a
sibling gap. This means that in P mode a gap was introduced in a
node further toward the root, while inGmode a gap was introduced
in a sibling. In both modes, an unbroken chain of deletions then
follows on that tape.

(FF) → (TT) ◦ (FF)
∣∣ (TZ) ◦ (FG)

∣∣ (ZT) ◦ (GF)
∣∣ (

$
$

)
(PF) → (TT) ◦ (PF)

∣∣ (TZ) ◦ (PG)
∣∣ (

Z̃
T

)
◦ (PF)

∣∣ (
$
$

)
(FP) → (TT) ◦ (FP)

∣∣ (
T
Z̃

)
◦ (FP)

∣∣ (ZT) ◦ (GP)
∣∣ (

$
$

)
(GF) → (TT) ◦ (FF)

∣∣ (TZ) ◦ (PG)
∣∣ (

Z̃
T

)
◦ (GF)

∣∣ (
$
$

)
(FG) → (TT) ◦ (FF)

∣∣ (
T
Z̃

)
◦ (FG)

∣∣ (ZT) ◦ (GP)
∣∣ (

$
$

)
(PG) → (TT) ◦ (PF)

∣∣ (
T
Z̃

)
◦ (PG)

∣∣ (
Z̃
T

)
◦ (PF)

(GP) → (TT) ◦ (FP)
∣∣ (

T
Z̃

)
◦ (FP)

∣∣ (
Z̃
T

)
◦ (GP)

(TT) → (nn) ↓ (FF)

(TZ) →
(
n
−
)
↓ (FP)

(ZT) →
(
−
n

)
↓ (PF)

(17)

(
T
Z̃

)
→ (n.) ↓ (FP)(

Z̃
T

)
→ (.n) ↓ (PF)

(18)

This grammar supports different scoring functions for parent and
sibling gaps. Gap opening and gap extension can be distinguished
explicitly by including the two additional rules given in equ. (18).
They are useful in particular to produce a more expressive output
in the backtracing step.

In most applications, however, there is little reason to distin-
guish the parent and sibling mode gaps in the scoring function.
Omitting also the explicit rules for gap extension, the grammar can
be simplified considerably, see also Schirmer (2011); Schirmer and
Giegerich (2011). Here, (FF) denotes the non-gap mode, whereas
the gap-mode is represented by mixed terms. In particular, (TZ) and
(ZT) open gaps, while the remaining mixed terms refer to gap ex-
tensions.

(FF) → (TT) ◦ (FF)
∣∣ (TZ) ◦ (FG)

∣∣ (ZT) ◦ (GF)
∣∣ (

$
$

)
(PF) → (TT) ◦ (PF)

∣∣ (TZ) ◦ (PF)
∣∣ (ZT) ◦ (PF)

∣∣ (
$
$

)
(FP) → (TT) ◦ (FP)

∣∣ (TZ) ◦ (FP)
∣∣ (ZT) ◦ (FP)

∣∣ (
$
$

)
(GF) → (TT) ◦ (FF)

∣∣ (TZ) ◦ (FG)
∣∣ (ZT) ◦ (GF)

∣∣ (
$
$

)
(FG) → (TT) ◦ (FF)

∣∣ (TZ) ◦ (FG)
∣∣ (ZT) ◦ (GF)

∣∣ (
$
$

)
(TT) → (nn) ↓ (FF)

(TZ) →
(
n
−
)
↓ (FP)

(ZT) →
(
−
n

)
↓ (PF)

(19)

The rules for (FF), (GF), and (FG) produce the same cases on
their right hand sides. The difference are the l.h.s. cases, which
distinguish between no-gap mode and gap mode, thus between
affine extension cost and gap opening cost. Additionally, the rules
expressing parent gap modes (PF) and (FP) are recursively calling
themselves. Following these observations, the grammar can be

further simplified by summarizing several rules and making gap
opening and gap extension costs implicit.

To this end we write F for the non-gap mode, R for the parent-
gap mode and Q for sibling-gap mode. Instead of adding the gap
costs in the explicit cases for gaps, e.g. (TZ) and (ZT), affine gap
costs are now added in the rules (R → T ◦ R

∣∣ Z ◦ R) and
(Q → T ◦ Q

∣∣ Z ◦ Q) whereas gap opening costs are applied for
(F → Z ◦Q). No costs are added for the rule (Q→ T ◦F). As the
algorithm applies the scoring for each rule on both tapes at the same
time, distinguishing between different tapes is not needed anymore
as soon as the cases appear on both tapes symmetrically. Thus, the
grammar can be simplified and scoring is applied implicitly such
that we only distinguish between no-gap mode, gap-opening mode
and gap extension:

(FF) → (TT) ◦ (FF)
∣∣ (TZ) ◦

(
Q
Q

) ∣∣ (ZT) ◦
(
Q
Q

) ∣∣ (
$
$

)
(
Q
Q

)
→ (TT) ◦ (FF)

∣∣ (TZ) ◦
(
Q
Q

) ∣∣ (ZT) ◦
(
Q
Q

) ∣∣ (
$
$

)
(RR) → (TT) ◦ (RR)

∣∣ (TZ) ◦ (RR)
∣∣ (ZT) ◦ (RR)

∣∣ (
$
$

)
(TT) → (nn) ↓ (FF)

(TZ) →
(
n
−
)
↓ (RR)

(ZT) →
(
−
n

)
↓ (RR)

(20)

8. Inside and Outside Grammars
An inside parser will readily produce two kinds of results. Of
course a globally optimal solution, say the alignment distance be-
tween two trees, can be obtained. Alternatively, the partition func-
tionZ =

∑
ω e

s(ω)/T can be computed. Here, the sum runs over all
configurations ω, s(ω) is the score of ω and T is a scaling temper-
ature. For T → 0, Z just counts the number of optimal solutions,
for T → ∞, all conformations are treated equally. The partition
function Z thus provides access to a probabilistic model. This view
plays a key role in practical applications.

While we typically cannot enumerate all possible states because
of the exponentially large size of the search space, it is often pos-
sible to describe a polynomial number of subproblems that provide
salient information about the solutions. For instance, consider the
alignment of the two trees in Fig. 2. Here we can ask for the proba-
bility of two nodes being matched with each other over all possible
alignments. To do this, we would need to know the partition func-
tion Z′ of the alignment problem restricted to a single prescribed
match; the desired probability is then simply Z′/Z. The tool by
which we can make such statements in a principled manner is the
combination of the Inside grammar together with an Outside gram-
mar. Conceptually Outside grammars describe decompositions, i.e.,
parses of the complements of Inside objects. Restricted problems
thus are specified by fixed subdivision of the input into a part that
is treated by the Inside and the complementary part that is treated
by the Outside part.

Outside grammars are typically more complex, having both
more rules and a more complex index space, which makes them
a bit of a challenge to construct by hand. Because they operate
on suitably defined complements of the inside objects, however,
there is a completely generic construction of outside grammars
(Höner zu Siederdissen et al. 2015b). It suffices to write down
the rules for index space transformation once for each symbol.
The machinery then constructs the correct algorithm. The use of
automatic construction has the added benefit that the evaluation
algebra used for the inside case can be re-used for the outside case,
as both grammars share the same signature. Hence they have not
only completely isomorphic types, but also the same semantics of
the functions is used for evaluation of each parse.

ADP on Trees and Forests 6 2016/3/22

i
o

oo

o

a f a e f

o o

a f g h
T1

i
oo

hg

oo

fedcba
T2

Linear Gap Costs Affine Gap Costs

hgofaoofeaofaooi
h

g
o
f

e
d

o
c
b

a
o
o
i

hgofaoofeaofaooi
h

g
o
f

e
d

o
c
b

a
o
o
i

T = 1 strict

hgofaoofeaofaooi
h

g
o
f

e
d

o
c
b

a
o
o
i

hgofaoofeaofaooi
h

g
o
f

e
d

o
c
b

a
o
o
i

T = 10 loose

Figure 2: Match probabilities for alignments of the trees T1 and T2. The inner vertices are denoted by o, the root is i, and all leaves are
labeled by different letters. Results are compared for linear (l.h.s. column) and affine gaps costs (r.h.s. column), and for two different choices
of the scaling temperature T . The size of the squares scales logarithmically with the probability as 1/(1− log p).

Below, we give the outside grammar (with start symbol
(
F∗

F∗

)
,

and outside “epsilon” symbols σ – given that σ in an outside
grammar terminates with full input, not the empty input) for the
simple linear-cost tree alignment problem (Eq. 13) and combine
inside and outside grammar to yield match probabilities.(
F∗

F∗

)
→ (nn) ↓

(
T∗

T∗

) ∣∣ (
n
−
)
↓
(
T∗

Z∗

) ∣∣ (
−
n

)
↓
(
Z∗

T∗

)∣∣ (TT) ◦
(
F∗

F∗

) ∣∣ (TZ) ◦
(
F∗

F∗

) ∣∣ (ZT) ◦
(
F∗

F∗

)∣∣ (σσ)(
T∗

T∗

)
→

(
F∗

F∗

)
◦ (FF)(

T∗

Z∗

)
→

(
F∗

F∗

)
◦ (FF)(

Z∗

T∗

)
→

(
F∗

F∗

)
◦ (FF)

(21)

The probability that nodes i in T1 and j in T2 are matched in any
given alignment is now simply

(TT)
ij

(
T∗

T∗

)
ij
/(FF)

0,0

which again can be expressed as a grammar: P →p (TT)
(
T∗

T∗

)
with

evaluation function p = λi.λo → io/z, with z = (FF)
0,0

. This
is why we separated out (TT) in the construction of the alignment
grammar, as (TT) holds the total accumulated inside weight with
a match (i, j), while

(
T∗

T∗

)
holds the total accumulated outside

weight where the next match will be at (i, j).

Inside-Outside for Affine Gap Costs. The combined Inside-
Outside algorithm with an affine gap cost model can be imple-
mented in complete analogy to the linear model. One designs the

inside grammar and the outside grammar is constructed automati-
cally. This yields an algorithm that computes the match probabilites
using the affine gap cost model. The example in Fig. 2 shows the
effect of the scaling temperature T .

Due to the small size of the inputs, alignment with linear and
affine gap costs produces similar results. Depending on the temper-
ature, the alignment with the single highest probability mass will
dominate (T small) or many sub-optimal solutions will show up
with significant probability (T large). For higher temperatures, the
cost of opening a gap becomes less pronounced yielding a much
less constrained probability space than for low temperatures – or
the linear model at high temperatures.

9. Implementation
Now that all required theory is in place, we turn toward imple-
mentation. During the exposition we make several simplifications
that are not present in the actual implementation. Several type
class names have been shortened to fit the double-column lay-
out. The new names have been selected to be easily recognized in
the actual code, such as class Elem instead of class Element.
We also removed all references to monadic parametrization. The
whole framework works for any monad, giving a type class class
(Monad m) => MkStream m x i below. While this is power-
ful in practice, it is not required in the exposition. As such, the
MkStream type class will be presented as MkStream x i.

We represent an ordered forest as a set of vectors:

data TreeOrder = Pre | Post

ADP on Trees and Forests 7 2016/3/22

data Forest (p :: TreeOrder) a where
Forest

{ label :: Vector a
, parent :: Vector Int
, children :: Vector (UVector Int)
, lsib :: Vector Int
, rsib :: Vector Int
, roots :: Vector Int
} -> Forest p a

Each node has a unique index in the range 0 . . . |label| − 1, and
is associated with a label of type a, a parent, a vector of children,
and its left and right sibling. In addition, we store a vector of roots
for our forest. The Vector data type is assumed to have an index
operator (!) with constant time random access.

Forests are also typed as either being in pre-order or post-order
sorting of the nodes. The linear grammars presented beforehand
make direct use of the given ordering and we can easily guarantee
that only inputs of the correct type are being handled. The underly-
ing machinery for tree alignments is somewhat more complex and
our choice for an example implementation in this paper. The imple-
mentation for tree edit grammars is available in the sources.

Tree Alignment. The tree alignment grammar is a right-linear
tree grammar which admits a running time and space optimization
to linear complexity for each tape. The grammar itself has been
presented in Sec. 5.2. Here, we discriminate between three types of
sub-structures within a forest
data TF = T | F | E

deriving (Enum,Bounded)
A forest can be empty (E) at any node k, be a single tree T with
local root k, or be the subforest F starting with the left-most tree
rooted at k and be right-maximal. We can thus uniquely identify
sub-structures with the index structure
data TreeIxR a t = TreeIxR (Forest Pre a) Int TF
for right-linear tree indices, including the above-mentioned Forest
structure. The phantom type t allows us to tag the index structure
as being used in an inside (I) or outside (O) context.

Since the Forest structure is static and not modified by each
parsing symbol, it is beneficial to separate out the static parts.
ADPfusion provides a data family for running indices RunIx i
to this end. With a new structure,
data instance RunIx (TreeIxR (Forest Pre a) I) = Ix Int TF

we capture the variable parts for inside grammars.
Not only do we not have to rely on the compiler to lift the static
Forest Pre a out of the loops but we also can implement a vari-
ant for outside indices.
data instance RunIx (TreeIxR (Forest Pre a) O)

= Ix Int TF Int TF

Outside index structures need to carry around a pair of indices.
One (Int,TF) pair captures index movement for inside tables and
terminal symbols in the outside grammar, the other pair captures
index movement for outside tables.

Regular shape-polymorphic arrays in Haskell (Keller et al.
2010) provide inductive tuples. An inductive tuple (Z:.Int:.Int)
is isomorphic to an index in Z2, with Z representing dimension 0,
and (:.) constructs inductive tuples. A type class Shape provides,
among others, a function toIndex of the index type to a linear in-
dex in Z. We make use of an analogous type class (whose full defi-
nition we elude) that requires us to implement both a linearIndex
and a size function. The linear index with largest (u, v) and cur-
rent (k, t) index into the forest

linearIndex (TreeIxR _ u v) (TreeIxR _ k t)
= (fromEnum v + 1) * k + fromEnum t

and size function
size (TreeIxR _ u v) = (fromEnum v + 1) * (u+1)
together allow us to define inductive tuples with our specialized

index structures as well. linearIndex and size are defined for
the tuple constructor (a :. b) and combine both functions for a
and b in such a way as to allow us to write grammars for any fixed
dimension.

Parsing with Terminal Symbols. In a production rule L → tR,
terminal symbols, denoted t perform the actual parsing, while non-
terminals (L, R) provide recursion points (and memoization of
intermediate results).

For tree grammars, three terminal symbols are required. The
$-parser is successful only on empty substructures, the deletion
symbol (−) performs no parse on the given tape, while only the
Node parser performs actual work. The first two parsers can be
constructed easily, given a node parser. Hence, we give only its
construction here.

First, we need a data constructor

data Node r x where
Node (Vector x -> Int -> r) (Vector x) -> Node r x

that allows us to define a function from an input vector with
elements of type x to parses of type r, and the actual input vector
of type x. While quite often x ∼ r, this generalization allows
to provide additional context for the element at a given index if
necessary.

We can now bind the labels for all nodes of given input forest f
to a node terminal:
let node frst = Node (!) (label frst)
where (!) is the index operator into the label vector.

Construction of a Parser for a Terminal Symbol. Before we can
construct a parser for a rule like L → tR we require a bit of
machinery in place. First, we decorate the rule with an evaluation
function (f) from the interface (see Sec. 2), thus turning the rule
into L →f tR. The left-hand side will not play a role in the
construction of the parser as it will only be bound to the result of
the parse.

For the right-hand side we need to be able to create a stream
of parses. Streams enable us to use the powerful stream-fusion
framework (Coutts et al. 2007). We will denote streams with angled
brackets <x> akin to the usual list notation of [x] in Haskell.

The elements x of our parse streams are somewhat complicated.
The element type class

class Elem x i where
data Elm x i :: *
type Arg x :: *
getArg :: Elm x i -> Arg x
getIdx :: Elm x i -> RunIx i

allows us to capture the important structure for each symbol in
a parse. For the above terminal symbol Node we have

instance (Elem ls i) => Elem (ls , Node r x) i where
data Elm (ls,Node r x) i = ENd r (RunIx i) (Elm ls i)
type Arg (ls,Node r x) = (Arg ls , r)
getArg (ENd x _ ls) = (getArg ls , r)
getIdx (ENd _ i _) = i

Each Elem instance is defined with variable left partial parses
(ls) and variable index (i) as all index-specific information is
encoded in RunIx instances.

Given a partial parse of all elements to the left of the node sym-
bol in ls, we extend the Elm structure for ls inductively with
the structure for a Node. The Haskell compiler is able to take a
stream of Elm structures, i.e. <Elm x> and erase all type construc-
tors during optimization. In particular, the data family constructors
like ENd are erased, as well as the running index constructors, say
Ix Int TF. This means that

Elm (ls, Node r x)
(RunIx (TreeIxR (Forest Pre a) t))

ADP on Trees and Forests 8 2016/3/22

has a run time representation in a stream fusion stream that is
isomorphic to
(r,(Int,TF),ls)
and can be further unboxed, leading to efficient, tight loops. In case
forest labels are unboxable r will be unboxed as well. The recursive
content in ls receives the same treatment, leading to total erasure
of all constructors.

The MkStream type class does the actual work of turning a
right-hand side into a stream of elements. Its definition is simple
enough:

class MkStream x i where
mkStream :: x -> StaticVar -> i -> <Elm x i>

Streams are to be generated for symbols x and some index
structure i. Depending on the position of x in a production rule, it
might be considered static – having no right neighbor, or variable.
In L→ D ◦R we have D in variable and R in static position.
data StaticVar = Static | Var
takes care of this below.

We distinguish two types of elements x for which we need to
construct streams. Non-terminals always produce a single value for
an index i, independent of the the dimensionality of i. Terminal
symbols need to deconstruct the dimension of i and produce inde-
pendent values (or parses) for each dimension or input tape.
Multi-tape Terminal Symbols. For terminal symbols, we intro-
duce yet another inductive tuple, (:|) with zero-dimensional sym-
bol M. We can now construct a terminal that parses a node on each
tape via
M:|Node (!) i1:|Node (!) i2.
The corresponding MkStream instance hands of work to another
type class TermStream for tape-wise handling of each terminal:

instance (TermStream (ts:|t) => MkStream (ls , ts:|t) i
where mkStream (ls , ts:|t) c i

= fromTermStream
. termStream (ts:|t) c i
. prepareTermStream
$ mkStream ls i

The required packing and unpacking is done by fromTermStream
and prepareTermStream, and the actual handling is done via
TermStream with the help of a type family to capture each parse
result.

type family TArg x :: *
type instance TArg M = Z
type instance TArg (ts:|t) = TermArg ts :. TermArg t

class TermStream t s i where
termStream :: t -> StaticVar -> i

-> <(s,Z,Z)> -> <(s,i,(TArg t))>

Now, we can actually implement the functionality for a stream
of Node parses on any given tape for an inside (I) tree grammar:

instance TermStream (ts :| Node r x) s (is:.TreeIxR a I)
where

termStream (ts:|Node f xs) (_both) (is:.TreeIxR frst i tfe)
= map (\(s, ii, ee) ->

let Ix l _ = getIndex s P
P = Proxy :: Proxy (RunIx (is:.TreeIxR a I))
l’ = l+1
ltf’ = if null (children frst ! l) then E else F

in (s, (ii:.Ix l’ ltf’) (ee:.f xs l)))
. termStream ts is
. staticCheck (tfe == T)

We are given the current partial multi-tape terminal state
(s,ii,ee) from the left symbol (s), partial tape index for di-
mensions 0 to the current dimension k − 1 (ii), and parses from
dimension 0 up to k − 1 (ee).

Then we extract the node index l via getIndex. getIndex
makes use of the inductive type-level structure of the index
(is:.TreeIxR a I) to extract exactly the right index for the cur-
rent tape. Since all computations inside getIndex are done on
the type level, we have two benefits: (i) it is incredibly hard to
confuse two different tapes because we never match explicitly on
the structure is of the inductive index structure for the previous
k − 1 dimensions. (ii) the recursive traversal of the index structure
(is:.TreeIxR a I) is a type-level operation. The runtime repre-
sentation is just a set of unboxed parameters of the loop functions.
This means that getIndex is a runtime “no-op” since there is no
structure to traverse.

For a forest in pre-order, the first child of the current node l is
just l + 1. In case of a node without children, we set this to be
empty (E), and otherwise we have a forest starting at l+ 1. We then
extend the partial index ii to include the index for this tape, and
analogously extend the partial parse ee with this parse.

Non-Terminals. Streams are generated differently for non-terminals.
A non-terminal captures the parsing state for a complete (multi-
dimensional) index, not for individual tapes. The ITbl i x data
type captures memoizing behaviour for indices of type i, and mem-
oized elements of type x. One may consider this data type to be-
have essentially like a memoizing function of type i → x. We can
capture this behaviour thus:

instance (Elem ls i) => Elem (ls, ITbl i x) i where
data Elm (ls, ITbl i x) i = EIt x (RunIx i) (Elm ls i)
type Arg (ls, ITbl i x) = (Arg ls, r)
getArg (EIt x _ ls) = (getArg ls, r)
getIdx (EIt _ i _) = i

instance MkStream (ls, ITbl (is:.i) x) (is:.i) where
mkStream (ls, ITbl t f) ix

= map ((s,tt,ii) -> ElmITbl (t!tt) ii s)
. addIndexDense ix
$ mkStream ls ix

Again, we require the use of an additional type class capturing
addIndexDense. In this case, this makes it possible to provide n
different ways on how to memoize (via ITbl for dense structures,
IRec if no memoization is needed, etc) with m different index
types using just n+m instances instead of n×m.

class AddIndexDense i where
addIndexDense :: i -> <s Z> -> <s i>

Indexing into non-terminals can be quite involved however, and
tree structures are no exception. A production rule L → D ◦ R
splits a forest into the tree-like element D that is explored further
downwards from its local root, and the remaining right forest R.
Both D and R can be in various states. These states are

data TFsize s = EpsFull TF s | FullEps s | OneRem s
| OneEps s | Finis

In the implementation below, the optimizer makes use of con-
structor specialization (Peyton Jones 2007) to erase the TFsize
constructors, while they allow us to provide certain guarantees of
having captured all possible ways on how to partition a forest.

Excluding Finis, which denotes that no more parses are possi-
ble, we consider four major split operations:

EpsFull denotes an empty tree D meaning that the “left-most”
element to be aligned to another subforest will actually be empty.
This will later on induce a deletion on the current tape, if an empty
D needs to be aligned to a non-empty structure.

FullEps will assign the complete remaining subforest to D,
which will (obviously) not be a tree but a forest. While no tree (on
another tape) can be aligned to a forest, the subforest below a tree
on another tape can be aligned to this forest.

ADP on Trees and Forests 9 2016/3/22

OneRem splits off the left-most tree to be bound to D, with the
remaining siblings (the tail) being bound to R.

Finally, OneEps takes care of single trees masquerading as
forests during a sequence of deletions on another tape.

All the logic of fixing the indices happens in the variable case
for the D non-terminal. The static case for R just needs to extract
the index and disallow further nont-terminals from accessing any
subforest as all subforests are right-maximal.

instance AddIndexDense (is:.TreeIxR a I) where
addIndexDense (vs:.Static) (is:.TreeIxR _ _ _)
= map go . addIndexDense vs is where

go (s,tt,ii) =
let t = getIndex s P

P = Proxy :: Proxy (RunIx (is:.TreeIxR a))
in (s, tt:.t, ii:.Ix maxBound E)

-- continued below

In the variable case, we need to take care of all possible varia-
tions. The use of flatten to implement “nested loops” in Haskell
follows in the same way as in (Höner zu Siederdissen 2012). Done
and Yield are stream fusion step constructors (Coutts et al. 2007)
that are explicit only in flatten.

-- continued
addIndexDense (vs:.Variable) (is:.TreeIxR f j tj)
= flatten mk step . addIndexDense vs is where
mk = return . EpsFull jj
-- forests
step (EpsFull E (s,t,i))

= Yield (s, t:.TreeIxR f j E, i:.Ix j E) Finis
step (EpsFull F (s,t,i))

= let Ix k _ = getIndex s P
P = Proxy :: Proxy (RunIx (is:.TreeIxR a))

in Yield (s, t:.TreeIxR f k E, i:.Ix k F) (FullEps (s,t,i))
step (FullEps (s,t,i))

= let Ix k _ = getIndex s P
P = Proxy :: Proxy (RunIx (is:.TreeIxR a))
u = maxBound

in Yield (s, t:.TreeIxR f k F, i:.Ix u E) (OneRem (s,t,i))
step (OneRem (s,t,i))

= let Ix k _ = getIndex P
l = rightSibling f k
P = Proxy :: Proxy (RunIx (is:.TreeIxR a))

in Yield (s, t:.TreeIxR f k T, i:.Ix l F) Finis
-- trees
step (EpsFull T (s,t,i))

= let Ix k _ = getIndex P
P = Proxy :: Proxy (RunIx (is:.TreeIxR a))

in Yield (s,tt:.TreeIxR f k E,ii:.Ix k T) (OneEps (s,t,i))
step (OneEps (s,t,i))

= let Ix k _ = getIndex P
P = Proxy :: Proxy (RunIx (is:.TreeIxR a))

in Yield (s,tt:.TreeIxR f k T,ii:.Ix k E) Finis

rightSibling :: Forest -> Int -> Int
rightSibling f k = rsib f ! k

This finally concludes the machinery necessary to extend
ADPfusion to parse forest structures. The full implementation in-
cludes an extension to Outside grammars as well, in order to im-
plement the algorithms as described in Sec. 8. We will not describe
the full implementation for outside-style algorithms here as they
require some effort. The source library 1 has extensive annotations
in the comments that describe all cases that need to be considered.

The entire low-level implementation given above can remain
transparent to a user who just wants to implement grammars on tree
and forest structures since the implementation works seamlessly
together with the embedded domain-specific languages ADPfusion

1 ADPfusionForest.tgz (post-review: full url)

(Höner zu Siederdissen 2012) and its abstraction that uses a quasi-
quotation (Mainland 2007) mechanism to hide most of this more
intermediate-level library.

10. Related and further work
Here we discuss a small set of related ideas and how they intersect
with our work. Due to the diversity of uses for trees, we necessarily
have to be quite brief.

ICOREs. Giegerich and Touzet (2014) developed a system of in-
verse coupled rewrite systems (ICOREs) which unify dynamic pro-
gramming on sequences and trees. Rules written in this system bear
a certain semblance to our system. As of early 2016, we are not
aware of an implementation, which makes comparisons beyond the
formalism somewhat difficult. Given that with the present work we
introduce not only a formal definition of parsing on tree-like struc-
tures but also working machinery with a thin layer on top that rep-
resents the domain-specific language, we point out the possibility
of using this exact machinery to actually implement ICOREs.

Performance Improvements and Code Simplification. Library
writers who want to extend this framework to new types of algo-
rithms (say for unordered trees) have to deal with stream fusion
primitives. Most of these are benign, but the flatten function,
which provides the crucial possibility of fusion for concatMap-
like behaviour and thus nested looping, breaks the stream fusion
abstractions. One seemingly has to decide between readable code
(concatMap) or performance (flatten). Farmer et al. (2014) pro-
posed a mechanism to translate calls to concatMap into calls to
flatten. The introduction of reliable rewrite rules into the GHC
Haskell compiler would ameliorate this problem for basically all
problems that involve nested loops and apply stream fusion.

Sparsification. The editing algorithm as proposed by Zhang and
Shasha (1989) allows for a simple sparsification scheme, presented
in the paper as operating only on certain key roots. Sparsification
here prunes from the search space only illegal computations, and is
not a heuristic. With a suitable index structure, the only change
required for users of this framework would be an exchange of
the imported module (for said index structure) while grammar and
algebra remain the same.

These problems do, in general, also admit different decompo-
sition strategies (Demaine et al. 2007) that positively influence the
asymptotics, while still being optimal.

These approaches for running time and space improvements are
only some of the possible sparsifying schemes. They prune impos-
sible structures and do do not modify the candidate space since im-
possible structures lead to no parses. For string-based problems, a
number of schemes exist which prune the actual candidate space
and remove those candidates which are in some sense subopti-
mal. This approach tends to be successful for more complex prob-
lems, like the simultaneous alignment and folding of nucleotide
sequences (Sankoff 1985) which has O(n3m3) running time and
O(n2m2) space requirements. Good sparsification schemes (Will
et al. 2015) can be very successful in reducing these asymptotics
(here to a quadratic running time).

Generic approaches to sparsification would be very much ap-
preciated to allow running more complex tree algorithms on large
data.

Refinement Types and Dependent Types. Languages on strings
are inherently “one”-dimensional. A string allows removing char-
acters from the left or right end or splitting in two substrings. Gram-
mars on trees on the other hand have depth, or a second dimension.
This increased complexity is currently being countered by reliance
on the strong type system in Haskell (cf. Sec. 9). With the move

ADP on Trees and Forests 10 2016/3/22

towards grammars on more complex data types (and index types) it
will become necessary to provide even stronger guarantees on the
type level.

Two recent developments will be helpful in this regard. Liquid
Haskell (Vazou et al. 2014) provides refinement types which allow
checking additional constraints on the indices as they are being
manipulated. This should allow us to check conditions such as rules
that loop during parsing, or create index out of bounds conditions.

The second development is the continued addition of fea-
tures usually found in dependently typed programming languages
(Weirich et al. 2013). Again, the goal is to check index manipu-
lations during compilation. Given the inherent non-linearity of the
underlying index structure, it should prove interesting to consider if
there is way to encode the required index changes with a tree-type
analogue of type-level integral numbers (which would be sufficient
for string grammars).

Machine Translation. Parse trees of sentences in human languages
are hugely important in machine translation. The combination of
the Inside-Outside algorithm with statistical learning (for exam-
ple the EM algorithm (Dempster et al. 1977)) provides the basis
for efficient parameter estimation and many variants exist (Gildea
2003; Eisner 2003; Och et al. 2004). One should note that the
Inside-Outside algorithm as seen in the context of expectation-
maximization is used to calculate the required rule probabilities,
and thereby part of EM. The work by (Höner zu Siederdissen et al.
2015b) takes a somewhat more generic view of the derivation of
outside rules that happens to coincide with what is required for EM.

Computational Linguistics. Current machine translation sys-
tems internally use trees to translate sentences of different lan-
guages (Eisner 2003). Within the SMULTRON project (Volk et al.
2015), phrases of the book Sophie’s world in English, German and
Swedish were parsed and mutually aligned using tree alignments.
Fig. 3 (center) shows one of the phrases for English and German.
Using our tree alignment algorithm including the outside grammar,
our system is able to align syntax trees of different languages.

One difficulty here is the calculation of word similarity in a
meaningful way before tree alignment is performed. This is out-
side the score of the current paper and for reasons of simplicity we
have labelled two leaves with the same symbol if the corresponding
words have the same meaning, cf. Fig. 3 (left). The match proba-
bilities for the alignment of the English and German sentence are
shown on the right of Fig. 3. As the structure and composition of
sentences differ in both languages, only certain parts align well.
Nevertheless feasible alternative matchings have a much higher
probability than the background, e.g. the three inner nodes labeled
with V P in the English sentence each have significant probabil-
ity to match with the one inner V P -labeled node in the German
phrase.

Even though phrase productions differ for different languages,
the probability mass assigned to the correct nodes is significant.
This could be further improved by the introduction of dynamic pro-
gramming algorithms over unordered trees. We simulate the effect
by manually reordering the parse tree for the German sentence to
more closely match the sentence in English. The result is given in
the rightmost plot of Fig. 3. The two leaves labelled c can now
be aligned together with the other highly probable matches, which
is not possible given the ordered trees. The resulting maximum a-
posteriori alignment carries an even higher total probability mass
than the direct alignment made possible.

Multiple Context-Free Languages. The small example given
above gives clear evidence that alignments (or edit maps for that
matter) between ordered trees are not sufficient for all problems.
One solution is the introduction of the class of unordered trees. The
resulting search space is, however, much larger than for ordered

trees. A more modest extension still provides for polynomial-time
algorithms, but is more expressive. Multiple context-free languages
(MCFGs) (Seki et al. 1991) allow crossings to occur in the deriva-
tion tree which is not possible for context-free grammars. An ex-
tension of ADPfusion for MCFGs has recently been developed
(Riechert et al. 2016).

11. Conclusion
We provide sound theoretical foundations for generalized parsing
beyond strings. This theoretical foundation forms a natural exten-
sion of abstract algebras on grammars. Together, this extended the-
ory simplifies the design of advanced dynamic programming so-
lutions. The theoretical foundations are accompanied by a prac-
tical and efficient implementation for parsing forest structures in
the generalized ADPfusion framework. We provide implementa-
tions of two foundational algorithms, namely tree editing and tree
alignment, that may serve as a guide on how to use and extend this
library.

We point out that our extension of ADPfusion is assuming an
“open world”. It is possible to further extend both the underlying
machinery to accommodate novel input data structures, and to
and to design algorithms on top of this library. In addition, the
whole system is completely embedded in Haskell so that the whole
language is available for use at any time.

Acknowledgments
SJB thanks Nancy Retzlaff for an introductory lesson into compu-
tational linguistics and available data sets.

References
C. Arnold and C. L. Nunn. Phylogenetic targeting of research effort in

evolutionary biology. Amer. Nat., 176:601–612, 2010.
C. Arnold and P. F. Stadler. Polynomial algorithms for the maximal pairing

problem: efficient phylogenetic targeting on arbitrary trees. Alg. Mol.
Biol., 5:25, 2010.

P. Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337:217–239, 2005.

D. Coutts, R. Leshchinskiy, and D. Stewart. Stream Fusion: From Lists to
Streams to Nothing at All. In Proceedings of the 12th ACM SIGPLAN
international conference on Functional programming, ICFP’07, pages
315–326. ACM, 2007.

E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal
decomposition algorithm for tree edit distance. In Automata, languages
and programming, pages 146–157. Springer, 2007.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38, 1977.

S. Dulucq and L. Tichit. RNA secondary structure comparison: exact
analysis of the Zhang-Shasha tree edit algorithm. Theoretical Computer
Science, 306(1):471–484, 2003.

J. Eisner. Learning non-isomorphic tree mappings for machine translation.
In Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 2, pages 205–208. Association for Computa-
tional Linguistics, 2003.

A. Farmer, C. Höner zu Siederdissen, and A. Gill. The HERMIT in the
stream: fusing stream fusion’s concatMap. In Proceedings of the ACM
SIGPLAN 2014 workshop on Partial evaluation and program manipula-
tion, pages 97–108. ACM, 2014. doi: 10.1145/2543728.2543736. URL
http://hackage.haskell.org/package/hermit.

W. M. Fitch. Towards defining the course of evolution: minimum change
for a specific tree topology. Syst Zool, 20:406–416, 1971.

B. Fluri, M. Würsch, M. PInzger, and H. C. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. Software
Engineering, IEEE Transactions on, 33(11):725–743, 2007.

ADP on Trees and Forests 11 2016/3/22

german english
a Sie They
b hatten had
c unterhalten discussing
d Roboter robots
e über -
x - been
y sich -

S

NP

VP

They had discussing

VP

VP

been NP

robots

S

NP

VP

Sie hatten

NP

sich

PP

unterhaltenüber NP

Roboter

english german aNPbyNPedNPPPcVPS

a
NP

b

x
c
d

NP

VP

VP

VP

S

aNPbcyNPedNPPPVPS

a
NP

b

x
c
d

NP

VP

VP

VP

S

direct alignment simulated unordered trees

Figure 3: Parse trees for the sentence “They had been discussing robots” from Sophie’s world in English and German. Left: Assignment of
words to identifiers. Since the phrase productions differ, some words do not have an expression in the other language. Center: Parse trees
for the English and German sentence based on the tree parse of the SMULTRON project. Inner nodes denote types of phrase productions.
Right: alignment probabilities using tree alignment for the two parse trees. The direct alignment plot is the result of aligning the two ordered
trees. If unordered trees are simulated via explicit movement of the bottom c node, the alignment quality is improved.

R. Giegerich and C. Meyer. Algebraic Dynamic Programming. In Algebraic
Methodology And Software Technology, volume 2422, pages 243–257.
Springer, 2002.

R. Giegerich and H. Touzet. Modeling Dynamic Programming Problems
over Sequences and Trees with Inverse Coupled Rewrite Systems. Algo-
rithms, pages 62–144, 2014.

R. Giegerich, C. Meyer, and P. Steffen. A Discipline of Dynamic Program-
ming over Sequence Data. Science of Computer Programming, 51(3):
215–263, 2004.

D. Gildea. Loosely tree-based alignment for machine translation. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 80–87. Association for Computational Lin-
guistics, 2003.

O. Gotoh. An improved algorithm for matching biological sequences. J.
Mol. Biol., 162:705–708, 1982.

J. A. Hartigan. Minimum mutation fits to a given tree. Biometrics, 29:
53–65, 1973.

M. Höchsmann. The tree alignment model: algorithms, implementations
and applications for the analysis of RNA secondary structures. PhD
thesis, Technische Fakultät, Universität Bielefeld, 2005.

C. Höner zu Siederdissen. Sneaking around concatMap: efficient combina-
tors for dynamic programming. In Proceedings of the 17th ACM SIG-
PLAN international conference on Functional programming ICFP’12,
volume 47 (9) of ACM SIGPLAN Notices, pages 215–226, New York,
NY, 2012. ACM. doi: 10.1145/2364527.2364559.

C. Höner zu Siederdissen, I. L. Hofacker, and P. F. Stadler. Product Gram-
mars for Alignment and Folding. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 12(3):507–519, 2015a. ISSN 1545-
5963. doi: 10.1109/TCBB.2014.2326155. URL http://www.bioinf.
uni-leipzig.de/Software/gADP/.

C. Höner zu Siederdissen, S. J. Prohaska, and P. F. Stadler. Algebraic dy-
namic programming over general data structures. BMC Bioinformatics,
16, 2015b. doi: 10.1186/1471-2105-16-S19-S2.

T. Jiang, L. Wang, and K. Zhang. Alignment of treesan alternative to tree
edit. Theoretical Computer Science, 143(1):137–148, 1995.

T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between
RNA structures. Journal of computational biology, 9(2):371–388, 2002.

G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, Shape-polymorphic, Parallel Arrays in Haskell.
In Proceedings of the 15th ACM SIGPLAN international conference on
Functional programming, ICFP’10, pages 261–272. ACM, 2010.

W. P. Maddison. Testing character correlation using pairwise comparisons
on a phylogeny. J. Theor. Biol., 202:195–204, 2000.

G. Mainland. Why It’s Nice to be Quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
pages 73–82. ACM, 2007.

S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453, 1970.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. M. Fraser,
S. Kumar, L. Shen, D. Smith, K. Eng, et al. A smorgasbord of features
for statistical machine translation. In HLT-NAACL, pages 161–168,
2004.

S. Peyton Jones. Call-pattern Specialisation for Haskell Programs. In
Proceedings of the 12th ACM SIGPLAN international conference on
Functional programming, ICFP’07, pages 327–337. ACM, 2007.

M. Riechert, C. Höner zu Siederdissen, and P. F. Stadler. Algebraic dynamic
programming for multiple context-free languages. submitted, 2016.

D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl Math., 28:
35–42, 1975.

D. Sankoff. Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM Journal on Applied Mathematics, pages
810–825, 1985.

S. Schirmer. Comparing forests. PhD thesis, Bielefeld University, 2011.
S. Schirmer and R. Giegerich. Forest alignment with affine gaps and

anchors. In Combinatorial Pattern Matching, pages 104–117. Springer,
2011.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context free
grammars. Theor. Comp. Sci., 88:191–229, 1991.

K. Tai. The tree-to-tree correction problem. J. ACM, 26:422–433, 1979.
N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refine-

ment types for Haskell. In M. W. Bailey, R. Balasubramonian, A. Davis,
and S. Adve, editors, ICFP’14, volume 49 (9) of ACM SIGPLAN No-
tices, pages 269–282, New York, NY, 2014. ACM.

M. Volk, A. Ghring, A. Rios, T. Marek, and Y. Samuelsson. SMULTRON
(version 4.0) The Stockholm MULtilingual parallel TReebank, 2015.

S. Weirich, J. Hsu, and R. A. Eisenberg. Towards dependently typed
haskell: System fc with kind equality. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming, ICFP,
volume 13. Citeseer, 2013.

S. Will, C. Otto, M. Miladi, M. Möhl, and R. Backofen. Sparse: Quadratic
time simultaneous alignment and folding of rnas without sequence-based
heuristics. Bioinformatics, 31(15):2489–2496, 2015.

H. Xiao, M. Zhang, A. Mosig, and H. W. Leong. Dynamic programming
algorithms for efficiently computing cosegmentations between biologi-
cal images. In T. M. Przytycka and M.-F. Sagot, editors, Algorithms in
Bioinformatics WABI’11, volume 6833 of Lect. Notes Comp. Sci., pages
339–350, New York, 2011. Springer.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J Computing, 18:1245–1262,
1989.

B. Zieliński and M. Iwanowski. Binary image comparison with use of
tree-based approach. In R. S. Choraś, editor, Image Processing and
Communications Challenges 4, volume 184 of Adv. Intelligent Systems
Comput., pages 171–177, New York, 2013. Springer.

ADP on Trees and Forests 12 2016/3/22

