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A U T H O R - H I G H L I G H T S
� We study the dynamics of histone modification states across multiple cell divisions.

� We developed a flexible stochastic simulation system based on Gillespie's algorithm.
� We use an evolutionary algorithm to find mixtures of enzymes for stable inheritance.
� Easy to evolve a system of enzymes that can stably maintain a particular chromatin state.
� The difficulty of this task depends on multiple previously unanticipated factors.
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a b s t r a c t

Eukaryotic histones carry a diverse set of specific chemical modifications that accumulate over the life-time
of a cell and have a crucial impact on the cell state in general and the transcriptional program in particular.
Replication constitutes a dramatic disruption of the chromatin states that effectively amounts to partial
erasure of stored information. To preserve its epigenetic state the cell reconstructs (at least part of) the
histone modifications by means of processes that are still very poorly understood. A plausible hypothesis is
that the different combinations of reader and writer domains in histone-modifying enzymes implement
local rewriting rules that are capable of “recomputing” the desired parental modification patterns on the
basis of the partial information contained in that half of the nucleosomes that predate replication.

To test whether such a mechanism is theoretically feasible, we have developed a flexible stochastic
simulation system (available at http://www.bioinf.uni-leipzig.de/Software/StoChDyn) for studying the
dynamics of histone modification states. The implementation is based on Gillespie's approach, i.e., it
models the master equation of a detailed chemical model. It is efficient enough to use an evolutionary
algorithm to find patterns across multiple cell divisions with high accuracy.

We found that it is easy to evolve a system of enzymes that can maintain a particular chromatin state
roughly stable, even without explicit boundary elements separating differentially modified chromatin
domains. However, the success of this task depends on several previously unanticipated factors, such as the
length of the initial state, the specific pattern that should be maintained, the time between replications,
and chemical parameters such as enzymatic binding and dissociation rates. All these factors also influence
the accumulation of errors in the wake of cell divisions.

& 2013 Elsevier Ltd. All rights reserved.
ll rights reserved.
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1. Background

Eukaryotic genomes are organized as chromatin in the nucleus
of the cell. With the notable exception of dinoflagellates (Herzog
and Soyer, 1981), the basic structure of chromatin consists of
histones with DNA wrapped around them, together referred to as
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nucleosome. Chromatin controls DNA accessibility and contributes
to the recruitment of transcription factors. Eukaryotes have
evolved a complex system of chemical modifications of histone
proteins, which play an important role in gene regulation and
cellular differentiation. Therefore, chromatin can be seen as an
advanced signaling module (Turner, 2012) that is a critical
responder to external cues such as stress (Smith and Workman,
2012). It also carries a partial “annotation” of genomic features
such as promoters and enhancers (Heintzman et al., 2007), the
exon/intron structure (Andersson et al., 2009; Schwartz et al.,
2009) or the concurrent deposition of characteristic histone
modifications (e.g. H3K4me3 as marker of active transcription
(Young et al., 2011; Tippmann et al., 2012)), altogether keeping
track of ongoing activities.

Mounting evidence suggests that histone modifications co-
occur so that function may be determined by combinatorial
patterns of modifications that form recurrent and spatially coher-
ent combinations (Ernst and Kellis, 2010). While some of these
chromatin states generically mark functional elements like pro-
moters, others are directly associated with cell-type-specific gene
expression programs (Heintzman et al., 2009; Gacek and Strauss,
2012) and other complex processes such as mitosis and meiosis
(Xu et al., 2009), DNA repair (Miller and Jackson, 2012), alternative
splicing (Luco et al., 2011; Ameyar-Zazoua et al., 2012), and pre-
mRNA processing (Brown et al., 2012). The biochemical basis for
the complexity of histone modification patterns (Jenuwein and
Allis, 2001; Gardner et al., 2011) is provided by the large array of
proteins capable of recognizing two or even more histone mod-
ifications (e.g., see Wang and Patel, 2011).

It is now debated whether the term “histone code” is appro-
priate to describe the system of histone modifications (e.g., see
Rando, 2012; Turner, 2012). Clearly, there is no simple set of
rewriting rules that would translate, akin to the genetic code, a
particular modification or a combination of modifications from a
single nucleosome into an immutable, well-defined, and context-
independent biological function. Instead, the “meaning” of histone
modifications appears to be dependent on their context with
emphasis on the enzymatic machinery available to access the
encoded information in a particular cell type and cell state.

The coupling of reading and writing of histone modifications,
which is a common feature of many chromatin-modifying proteins
especially in crown-group Eukaryotes, may have converted chro-
matin into a powerful computational device capable of storing and
processing large amounts of information (Prohaska et al., 2010).
A recent theoretical study showed that a simple model of chro-
matin computation, very similar to that proposed in Prohaska et al.
(2010), is computationally universal and hence conceptually more
powerful than the logic circuits of cis-regulatory networks (Bryant,
2012). Although it is plausible that the computational capacities of
chromatin play a role in the integration of external environmental
signals and internal status information—and hence in cell-fate
decision—these computational aspects have remained largely
unexplored so far. It is thus still unclear to what extent the
potential power of chromatin computation is harnessed in real
biological systems.

The terms “epigenetic inheritance” and “epigenetic memory”
generally designate the capability of cells to transmit alternative
gene expression programs and cellular phenotypes across cell
divisions without altering the underlying DNA sequence. The
carrier of this heritable information is still subject to intense research
(Petruk et al., 2012). The most plausible candidates are DNA
methylation (for which a faithful copying mechanism is known),
histone modifications, histone variants, histone-modifying enzymes,
or the general expression state of the cell. For example, it has been
argued that Trithorax and Polycomb group proteins play a pivotal
role in epigenetic inheritance for certain modifications (e.g., H3K4 or
H3K27 methylation) and may in fact be the true epigenetic carriers
rather than the histone modifications (Petruk et al., 2012). However,
recent work in Drosophila indicates the opposite, namely that H3K27
(and its various modifications, particularly methylation) is indeed the
crucial substrate for heterochromatin formation via Polycomb pro-
teins (Pengelly et al., 2013).

The inheritance of histone modifications is not a trivial achieve-
ment since replication is associated with the partial replacement of
histones and the deposition of newly assembled and hence unmo-
dified histones (Annunziato, 2005; Radman-Livaja et al., 2011).
In other words, replication and the subsequent re-constitution of
chromatin constitutes a dramatic disruption of the chromatin states
that amounts to a partial erasure of the information stored in histone
modifications.

Here, we propose that the reconstitution of local histone
modification patterns is one of the biologically important compu-
tational tasks that is naturally solved by the “chromatin compu-
ter”. The need to propagate epigenetic information to subsequent
generations comes in two variants. The more stringent version
concerns stable heritable bistability in which epigenetic informa-
tion can be transmitted for, in principle, an infinite number of
generations, depending on the strength of the bistability of the
underlying system. As shown by Dodd et al. (2007), this requires
cooperative, positive feedback recruitment reactions as well as
non-local interactions. A recent review of formal modeling
approaches to the dynamics and propagation of histone modifica-
tions has been provided by Rohlf et al. (2012). In contrast, the
maintenance of local patterns of histone modifications over a
limited number of somatic cell divisions can potentially violate the
conditions for long-term stability and tolerate slow accumulation
of errors. In this setting it makes sense, therefore, to dispense with
the stringent requirements outlined by Dodd et al. (2007). Indeed,
it appears that this less stringent version is the relevant mechan-
ism in multi-cellular organisms, as cells only replicate a limited
number of times (the Hayflick limit). Furthermore, it has been
reported repeatedly that particular epigenetic modifications can
be gradually changed over generations through a number of
different settings. In particular, these include the progressive
reduction of higher histone methylation levels to lower methyla-
tion forms (Katan-Khaykovich and Struhl, 2005), epigenetic repro-
gramming (Jeong et al., 2007; Katz et al., 2009), epigenetic
silencing/heterochromatin formation (Mutskov and Felsenfeld,
2003; Millar and Grunstein, 2006), and transcription-coupled
histone modifications (Tippmann et al., 2012). Furthermore, his-
tone modification gradients for a number of different modifica-
tions have been observed along a particular genomic region (for a
review, see Henikoff and Shilatifard, 2011). This effect may also
indirectly result from multiple cell division due to the preferential
retention of parental histones at the 5′ end of genes (Radman-
Livaja et al., 2011). Gradual changes of histone modification levels
have been implicated to play a crucial rule in aging (Przybilla et al.,
2012; De Vos et al., 2011). DNA methylation changes, finally, are
also are intimately linked to histone modifications (Mutskov and
Felsenfeld, 2003), and therefore may be a direct result of the
dilution of one or more histone modifications.

One of the best-studied mechanisms proposed for epigenetic
memory is based on positive feedback loops in nucleosomemodifica-
tion (Grunstein, 1998; Turner, 1998), suggesting that a cluster of
nucleosomes may be able to stably maintain a particular state of
modifications (Dodd et al., 2007; Dodd and Sneppen, 2011).
Although this mechanism is not limited to silencing, histone
modifications that establish and maintain repressive states (such
as H3K9me3) have served as a model for this effect. Mounting
evidence indicates that histone-modifying enzymes can have
higher binding affinities for a particular location if neighboring
nucleosomes carry the same or chemically similar modifications



Fig. 1. Illustration of nucleosomes, their corresponding states and terminology that
will be used throughout this contribution. A genomic region composed of 12
nucleosomes is shown, with H3K9 and H4K20 histone modifications present at
particular nucleosomes. For convenience, a translation table can then be used to
assign combinations of histone modifications (or the lack thereof) to particular
symbols. Each nucleosome can then be assigned one of three distinct states
(chromatin states): 0 (white), 1 (red) or 2 (blue). Homogeneously modified regions
form a chromatin domain that carries a particular signature (0: unmodified H3K9
and H4K20, 1: H3K9me and H4K20me, 2: H3K9ac and H4K20me). Collectively,
these 12 nucleosomes represent the local nucleosome state pattern or, abbreviated,
simply pattern 140424. Such patterns therefore usually consist of multiple distinct
chromatin domains (see Table 3 for examples). The chromatin string uses a
modified version of the Wikimedia Commons file “Nucleosome organization.png”
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(Jacobson et al., 2000; Owen et al., 2000; Schotta et al., 2002;
Margueron et al., 2009; Yun et al., 2011), in particular for
H3K9me3 (Nakayama et al., 2001; Lachner et al., 2001; Bannister
et al., 2001). This may subsequently facilitate localized spreading
in cis and the (re-)establishment of chromatin domains. Further
contributing to the complexity of how an epigenetic memory, long
non-coding RNAs seem to have crucial roles in regulating gene
expression by guiding chromatin-modifying enzyme complexes to
particular genomic loci (Magistri et al., 2012; Lee, 2012; Mondal
et al., 2010; Khalil et al., 2009). An increasing number of other
molecular pathways involving small non-coding RNAs or DNA
methylation in concert with histone modifications have been
described (Moazed, 2011) as well.

The coupled reading, writing, and erasing of histone modifications
is therefore of crucial importance. Given the multiple tasks histone
modifications are involved in, we hereafter focus on whether a simple
“chromatin computer” is capable of solving the pattern completion
problem for a diverse set of chromatin input states, despite the highly
disruptive nature of frequent cell divisions. More to the point, we ask
whether it is feasible to find combinations of reader/writer enzymes
that are capable of propagating, with high accuracy, pre-set chromatin
states across several cell divisions. To answer this question we
implement a generic stochastic simulation of rule-based chromatin
modifications as a model of the “chromatin computer”. We then
employ an evolutionary algorithm to evolve “programs” representing
mixtures of rewriting rules to solve various pattern reconstruc-
tion tasks.
(licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
2. Methods

2.1. A coarse-grained chemical model of chromatin computation

We begin by introducing our model of chromatin as a compu-
tational device. Computation abstractly consists of a system of
states and transitions between them. Our intention is to stay close
to a physical model of chromatin. Similar to much of the literature,
we define a chromatin state as the set of chemical modifications of
histone molecules (or their absence) located at specific genomic
positions. Although this is a simplified view, the full biological
complexity of the components that make up a particular chroma-
tin state cannot be integrated at this time given that the exact
underlying mechanisms are incompletely understood. Therefore,
we disregard effects such as changes in nucleosome occupancy
that can have an impact on gene expression (Tillo et al., 2010;
Wang et al., 2011), the presence of histone variants, the effects of
the three-dimensional structure of chromatin and nucleosomes
(e.g. Andrews and Luger, 2011), chromatin remodeling events that
increase the dynamic nature of chromatin (histone turnover,
histone tail clipping, histone passback; see Santos-Rosa et al.,
2008; Radman-Livaja et al., 2011), and DNA methylation as an
epigenetic mechanism that is known to at least partly interact
with histone modifications. We suggest that these details of the
underlying “hardware” are not required for the investigation of the
capabilities of the computational paradigm of the “chromatin
computer” as a stochastic rewriting system.

These simplifications allow us to view chromatin as a linear
sequence of nn nucleosomes, analogous to the well-known “beads-
on-a-string” picture of chromatin. Consequently, each nucleosome
(except the two boundary nucleosomes) has two immediate
adjacent neighboring nucleosomes or abbreviated simply “neigh-
bors” (see also Fig. 1). As each nucleosome is completely specified
by the collection of histone modifications that it carries, it can be
represented by a single character a∈A that encodes its modifica-
tion state (nucleosome or chromatin state). The symbol 0 is
reserved for the unmodified state. As a technical simplification
to save memory and to expedite the recognition of patterns in
practical simulations, we use a single character instead of a string
to represent the state of the more than 130 known human histone
modifications that have been observed (Tan et al., 2011). We define
a chromatin domain as a set of adjacent nucleosomes that are in
the same modification state ai∈A. Each chromatin domain has a
particular characteristic signature (e.g., methylated H4K20 and
acetylated H3K9 residues) and length l and therefore can be
represented by a sequence of nucleosome states al. We call this a
local nucleosome state pattern (or simply pattern) to emphasize
that the chromatin state is solely determined by the nucleosome
state. Naturally, such patterns may also be composed of multiple
adjacent distinct chromatin domains (e.g., see Fig. 1 and Table 3).

Transitions between chromatin states are mediated by histone-
modifying enzymes. These enzymes catalyze the writing or erasing
of histone modifications in a context-dependent manner. There-
fore, they are implemented as string rewriting rules acting on
the nucleosome state pattern (Fig. 2A). They recognize parts of the
(local) nucleosome state patterns and cause a change in the
modification state of one or more nucleosomes. These rewriting
rules are described in detail in the following section.

Not all chromatin-modifying enzymes are present in the cell at
the same time or in same concentrations, and they may differ
substantially in their affinity to their target patterns or in their
catalytic efficiency. Furthermore, different enzymes may compete
for the same chromatin locations and, vice versa, different chro-
matin positions may compete for low abundance enzymes
(Fig. 2C). We therefore model the dynamics of the “rewriting
reactions” in a way that follows the mass action kinetics of
chemical reaction systems, distinguishing, for each enzyme and
each chromatin position, their elementary reactions (Fig. 2B):
1.
 Binding of an enzyme to a specific locus (i.e., one or more
nucleosomes). We assume that enzymes only bind to nucleo-
somes on the chromatin string that match the pre-condition of



Fig. 2. Basic ingredients of the chromatin model. In A–D, different aspects of the model are illustrated. An example of a genomic region is shown where nucleosomes can
either be in state 0 (white), 1 (red) or 2 (blue). (A) Enzymes and rewriting rules. A total of seven enzymes are defined that can be broadly divided into the following four well-
known classes (for illustration purposes): histone methyltransferases (HMT), histone demethylases (HDM), histone acetyltransferases (HAT), and histone deacetylases
(HDAC). Each enzyme recognizes and binds to a particular, local nucleosome state pattern (embraced by square brackets in the rewriting rules) and thereby blocks
accessibility of these nucleosomes for other enzymes. Such recognition patterns may be dependent or independent of neighboring nucleosome states and can be represented
as rewriting rules. They may proceed at different rates and change the state of at least one nucleosome. (B) Enzymes and their reactions. Binding of an enzyme to one or more
nucleosomes and the corresponding dissociation at a later time are modeled as separate reaction steps in our model. First, enzymes may bind to one or more nucleosomes as
described by their rewriting rules. They then remain bound until the corresponding dissociation reaction is selected in the stochastic simulation. When the enzyme
dissociates, the bound nucleosome(s) change their state(s), as specified by the corresponding rewriting rule(s). (C) Enzyme competition and reaction dynamics. All eight
possible reactions that can occur for various enzymes and their corresponding concentrations are shown (see legend), as well as an exemplary genomic region with seven
nucleosomes. Each arrow indicates a possible reaction that may take place at this particular time point. If enzymes are bound to particular positions (e.g., HAT), they block
the accessibility of other enzymes at bound nucleosomes. Note that particular enzymes can be present multiple times (e.g., HDM2) and that they may be able to bind to the
same nucleosome (e.g., HMT1 and HMT2), resulting in competition for nucleosome binding. Other enzymes may not be able to perform any reaction due to the
inapplicability of their rewriting rules given the current state of the nucleosomes (e.g., HDAC1 and one of the two HAT molecules). (D) Replication and nucleosome
segregation. The random distribution model of chromatin replication is shown. In this model, for each of the two strands and nucleosomal positions, the probability that the
parental nucleosome is retained or re-incorporated, resulting in the preservation of the parental modification pattern, is 50%. The remaining 50% are filled with newly
assembled, unmodified nucleosomes (random model). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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the rewriting rule that they embody. Also, enzymes cannot bind
if any of the nucleosomes that are decisive for the applicability
of the rewriting rule are bound by other enzymes, thereby
blocking the accessibility.
2.
 Dissociation of an enzyme and the application of a rewriting
rule (i.e., writing or erasing of one or multiple histone mod-
ifications). After dissociating, the enzyme is again available for
new reactions.

Contrary to most previous work and simulation systems for
chromatin state dynamics, the computational paradigm used here
for the enzyme kinetics is a stochastic one. We argue that this level
of chemical realism is crucial, since concentrations of regulatory
molecules, rather than their mere presence or absence, are very
well known to be of crucial importance in the regulation of gene
expression. Indeed, few regulatory events are qualitative—typically
changes in expression levels of regulators are gradual and rarely
exceeding a few-fold increases or decreases.

Chromatin state dynamics are thus dependent on enzyme abun-
dances, the availability of local patterns on which they can act, the
current state of the system, and the rate constants for each chemical
reaction (which generally quantify the speed of a chemical reaction
and may differ substantially among different enzymes) (Fig. 2C).

Histone modifications have strikingly different lifetimes and are
deposited at different rates. Acetylation events are measured in the
order of minutes, while methylation events are stable for days (Barth
and Imhof, 2010). These rate differences are determined by the
enzymes that catalyze the corresponding reactions (Hathaway et al.,
2012). A givenmark can be removed either by specific de-modification
enzymes or through chromatin remodeling (e.g., histone turnover or
histone tail clipping). Since chromatin remodeling phenomena are at
present not explicitly included in our model, different life-times can be
modelled by neighbor-independent rewriting rules with different rate
constants. To our knowledge, spontaneous (i.e., enzyme-independent)
decay has not yet been described for histone modifications, although it
cannot be excluded that some of the more exotic or yet undescribed
modifications may not require an enzyme for de-modification.

For simplicity, we use a single reaction rate parameter for the
binding of histone-modifying enzymes or enzyme complexes,
although mechanistically, this may require multiple steps (e.g.,
binding, recruitment of other factors and oligomerization). The
propensity for a particular binding reaction is computed as the
product of its reaction rate and the number of free (i.e., not bound)



Fig. 3. Illustration of the phases concept. An example with four different enzymes
(each of which has a particular concentration) and three phases is represented.
After each replication, these phases periodically follow each other in sequential
order. Formally, each phase i is described by a tupel ðLi ; τiÞ. Each phase i can be
described by (i) a particular combination Li of enzymes that are available in that
particular phase (along with their individual fixed concentrations), and (ii) its
duration τi40. Although replication is not strictly considered as a phase, it can
similarly be represented by ðLr ; τrÞ with Lr ¼∅ and τr ¼ 0, as each replication is
modeled as an instantaneous event where enzymes cannot perform any of their
reactions.

Table 1
Example of different valid nucleosome state rewriting rules for a chromatin-based
system with three possible nucleosome states A¼ f0;1;2g. The symbol “n” in the
left part of the rewriting rule is a wildcard matching any nucleosome state, while
“.” on the right part of a rewriting rule means that the nucleosome state is left
unchanged. The nucleosomes bound and rewritten by the corresponding enzyme
are embraced by square brackets.

Rewriting
rule

Matching patterns for the rewriting
rule

Neighbor-
dependent

½1�-r1 ½0� ½1�-r1 ½0� No

½ð1j2Þ�-r2 ½0� ½1�-r2 ½0�, ½2�-r2 ½0� No

1½1�-r3 1½0� 1½1�-r3 1½0� Yes

1½1�n0-r4 1½0�:0 1½1�00-r4 1½0�00, 1½1�10-r4 1½0�10,
1½1�20-r4 1½0�20

Yes

½11�-r5 ½01� ½11�-r5 ½01� No

1½11�0-r6 1½10�0 1½11�0-r6 1½10�0 Yes
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molecules for that enzyme, while for any dissociation reaction, the
propensity equals its reaction rate and is therefore independent of
the number of free molecules.

The time course of the simulation between replications can be
subdivided into discrete “phases” (Fig. 3) that can have varying
durations. For each phase, enzymes can be arbitrarily set to be
present or absent (which we will subsequently call enzyme
availability) (Fig. 3). However, enzyme concentrations either have
a constant value as specified by the “chromatin computer's”
programming (present), or a value of 0 (absent). If an enzyme is
still bound at the transition from one phase to the next, it
dissociates without performing a state change at the nucleosome
it binds to. Collectively, these phases abstract the cell's gene
expression program. We may interpret them for instance as the
G1, S, and G2 phase of the cell cycle. Alternatively, phases may be
used to model distinct developmental stages.

We also include replication in our model. At regular time
intervals, a replication takes place and the parental histones are
distributed between the two daughter strands. Several models for
histone segregation and depositioning have been proposed in the
last years, and due to the crucial importance of replication for any
chromatin-based inheritance, a few of them will be presented in
some detail in the following. The random or conservative model
assumes that parental histones are deposited randomly between
both strands while the gaps are filled with newly assembled and
unmodified nucleosomes (Jackson and Chalkley, 1985; Corpet and
Almouzni, 2009; Hansen et al., 2008). Thus, at any position in each
of the strands, the probability that parental histones are incorpo-
rated is 50% (Fig. 2D). Alternatively, a semi-conservative replica-
tion mechanism in which parental nucleosomes are split into
halves and distributed equally is theoretically possible (Margueron
and Reinberg, 2010). Furthermore, asymmetric models suggest a
non-random distribution of parental histones (e.g., to one parti-
cular strand only). Lastly, based on findings in Drosophila, Petruk
et al. (2012) proposed a model in which only newly assembled
histones are incorporated, but histone-modifying enzymes remain
bound during replication or quickly rebind to restore the parental
modification pattern.

The model with the best experimental support is a randommodel
in which nucleosomes disassemble into one (H3–H4)2 tetramer and
two H2A–H2B dimers that are randomly deposited (Annunziato,
2005; Zhu and Reinberg, 2011; Radman-Livaja et al., 2011). All other
models are either purely hypothetical or only weakly supported. For
example, a truly semi-conservative replication would require that,
within one nucleosome, histones of the same type carry identical
histone modifications, a condition that however is not always
fulfilled (Voigt et al., 2012; Tran et al., 2012).

For the purpose of the present study, we therefore adopted a
random model (Fig. 2). We treat nucleosomes as indivisible units,
which however is only a simplification if multiple histone mod-
ifications from different histones are modeled. We note, however,
that the simulation environment can easily be extended to other
replication models if the need arises. Again, we argue that this
additional level of biological realism is irrelevant for the questions
addressed in this contribution. We also assume that parental
histones are re-deposited at their pre-replication locus, which is
consistent with the finding that most parental histones in budding
yeast are re-incorporated in close vicinity, i.e. within 400 bp, of
their original locus (Radman-Livaja et al., 2011). Lastly, analogous
to the phase change transitions, enzymes that are still bound at
the time of replication dissociate without performing any reaction.

2.2. Chromatin enzymes as rewriting rules

In the simplest case, the enzymes evaluate the state of the
nucleosome that they modify. The model of Dodd et al. (2007), for
example, considers three distinct states: unmodified (0), methy-
lated (M), and acetylated (A). Each state can be interconverted by
the catalytic actions of histone acetyltransferases (HATs), histone
deacetylases (HDACs), histone methyltransferases (HMTs), and
histone demethylases (HDMs). The corresponding set of rewriting
rules is

HAT : 0-A

HDAC : A-0

HMT : 0-M

HDM : M-0 ð1Þ
As opposed to these simple, neighbor-independent rewriting rules,
more complex ones, such as the ones considered in Sneppen and
Dodd (2012) or Bryant (2012), also depend on the neighboring
nucleosomes (neighbor-dependent rewriting rules). In our imple-
mentation, arbitrarily complex rewriting rules can be specified
(see Table 1 and Fig. 2 for a few examples). For convenience, we
allow wildcards in the definition of the rewriting rule and the state
of the neighboring nucleosomes can be incorporated as well. Rules
are interpreted as symmetric with respect to their left and right
neighbors as it is not possible for the enzyme complexes to
determine directionality (e.g. towards the centromere) from the
local chromatin structure. In reality, it appears that asymmetries
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are induced locally and thus are oriented relative to features such
as promotors, insulators, or transcription factor binding sites
(Kundaje et al., 2012).

Such complex rewriting rules indeed seem to be common for
eukaryotic systems, as histone-modifying enzymes are often part
of large enzyme complexes with multiple protein domains, each of
which having a particular function such as DNA sequence recogni-
tion or histone binding. Individual histone modifications in the
vicinity of the binding may substantially alter the binding affinity
of the enzyme complex or its formation. This crosstalk has been
repeatedly demonstrated within histones, among histones of the
same nucleosome (Wang and Patel, 2011; Lindroth et al., 2004;
Fuchs et al., 2011; Ruthenburg et al., 2011), and among histones of
neighboring nucleosomes (for an overview, see Musselman et al.,
2012). Even for single domain proteins, the presence of multiple
modifications may be required for binding (Morinière et al., 2009).

We represent these complex rules as follows: Each rule is
specified by a pair of strings, the left part is the template that must
be matched to the local nucleosome state pattern. This precondi-
tion must be met so that the rewriting rule can be applied to the
matched string. Once a match is found, the left string is replaced
by the right string. In our implementation, both strings consist of
up to three parts: (i) a string of length l1≥0 for the required state
(s) of the neighboring nucleosome(s) left of the actual binding site
of the corresponding enzyme; (ii) a string of length l240 for the
required state(s) of the nucleosome(s) that the enzyme binds to;
(iii) a string of length l3≥0 for the required state(s) of the
neighboring nucleosome(s) right of the binding site. Only the
nucleosomes of the binding part may be subject to change in the
right part of the rewriting rule (as indicated by an in the equation
below). Thus, rules are not reversible per se; instead, reversible
reactions must be formulated as separate forward and backward
reaction. Furthermore, each rewriting rule is associated with a rate
constant. In summary, it is formally specified in the following
form:

a1…al1 ½al1þ1…al1þl2 �al1þl2þ1…al1þl2þl3-
rate

a1…al1 ½an

l1þ1…an

l1þl2
�al1þl2þ1…al1þl2þl3 ð2Þ

where each ai∈A denotes a particular nucleosome state. Table 4
compiles the rewriting rules with l1; l2; l3≤1 that are used through-
out this contribution.

The nucleosome string can be either linear or circular. For the
former, rewriting rules that require the state of both neighboring
nucleosomes cannot match the two boundary nucleosomes. This
entails that they keep their parental status unless replication
Table 2
Summary of the most relevant parameters that we used

Par. Value Description

Specific to the evolutionary algorithm
ni 1000 Stop criterion
ns 10 No. of independent start
np 1–4 No. of phases

Specific to the biology and the stochastic simulation
nr 50 No. of replications
nn 30–150 Total no. of nucleosome
c Circular Nucleosome organizatio
tr 20 Time between two repli
ng 20 No. of independent Gille
na 5 or 10 Maximal no. of distinct
nb 1–5 No. of distinct chromatin
k 30 Chromatin domain lengt
nm 10 No. of enzymes in the ce
ne nb � nm Total no. of enzymes in
rb 1 Binding reaction rate co
rd 5 Dissociation reaction rat
replaces them with unmodified nucleosomes, after which their
original state is lost permanently (see Fig. 5). In the latter case,
the two boundary nucleosomes are directly connected, and rewrit-
ing rules may match.

2.3. Stochastic simulation using the Gillespie algorithm

Chromatin state dynamics are modeled using Gillespie's well-
established stochastic simulation algorithm (SSA) (Gillespie, 1976,
1977). This approach reproduces the master equation of the
underlying stochastic model with a discrete number of objects
and continuous time. The algorithm is rejection-less and hence
efficient in terms of the simulation, but it requires that possible
“reaction channels” (i.e., the transitions between two particular
states) are enumerated and finite. Each reaction channel is
weighted with its reaction rate, which is crucial for exactness.
In essence, given an initial time t0 and population state vectors
(here: enzyme concentrations), the algorithm works as follows:
In each iteration, two random numbers r1 and r2 are drawn from
the uniform distribution in the unit interval, which are subse-
quently used to determine the value of the time increment τ and
to select a reaction channel, respectively. Importantly, time incre-
ments are not fixed but are of variable length, depending on the
current state of the system. The selected reaction channel is then
executed and the state of the system changes accordingly. This
process is repeated until a stop criterion has been reached (e.g., a
specified simulation time). As this algorithm is well established,
we refer to Gillespie (1976, 1977) for more details.

Each replication event occurs periodically after a fixed time
interval tr. Similarly, each phase pi has a defined duration and stops
after a particular time tn. This requires a correction for the last
reaction event in each period—i.e., the one for which t þ τ4tr and
t þ τ4tn, respectively. Here, we draw a random number r3 and
accept the reaction if r34 ðtr�tÞ=τ and r34 ðtn�tÞ=τ, respectively.

Since the set of available reaction channels and their weights are,
in general, dependent on the current state of the system, the “book-
keeping” of all reaction channels and their status is an important
issue for the practical implementation of the Gillespie algorithm. This
is particularly relevant for models with large numbers of different
molecules and reactions. We next describe the peculiarities and
design decisions that are specific to our chromatin-based model.
To do so, we make use of abbreviations for relevant parameters that
are summarized in Table 2. Consider a system with ne enzymes, each
of which has a particular number of rewriting rules. The sum of all
rewriting rules is then nrules ¼∑ne

k ¼ 1jekj, where jekj denotes the
number of rewriting rules that are defined for that particular
for the evolutionary algorithm. See text for details.

ing points/runs

s
n
cations
spie realizations
active enzymes (pattern-dependent) (see Table 4)
domains per pattern (see Table 3 and Fig. 1)

h (in nucleosomes)
ll (per chromatin domain)
the cell (all chromatin domains)
nstant
e constant



Table 3
Summary of the start patterns used for the fitness evaluations. State 0 designates
an unmodified nucleosome, whereas states 1 and 2 designate two distinct modified
states of a particular histone modification. The parameter k (here set to 30) is the
length of each individual chromatin domain in each pattern, see Table 2 and Fig. 1
for details.

Pattern summary Pattern length (nn) Pattern abbreviation

Elementary patterns

1k 30 1

0k1k 60 01

1k2k 60 12

Composite patterns

1k2k1k 90 121

1k2k2k 90 122

1k2k1k2k 120 1212

1k2k2k2k 120 1222

0k1k0k 90 010

0k1k1k 90 011

1k0k1k 90 101

0k1k0k1k 120 0101

1k0k1k1k 120 1011

1k0k2k 90 102

1k2k0k 90 120

1k2k0k0k 120 1200

1k2k0k2k1k 150 12021
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enzyme. In our system, each rewriting rule adds a total of 2nn

reaction channels (one corresponding to the binding and one to the
dissociation for each of the nn nucleosomes). Thus, the total number
of reaction channels is 2nn � nrules. Equivalently, each of the nn
nucleosomes has 2nrules different reaction channels).

Internally, each rewriting rule is associated with a state change
vector, which describes how the concentrations of the available nl
enzymes are affected upon execution of the reaction that specifies
the rewriting rule. For example, any binding reaction decreases the
concentration of the corresponding enzyme by 1, whereas any
dissociation reaction frees the enzyme and thereby increases its
concentration by 1.

To save computing time, only the propensities of the reactions
in the vicinity of the nucleosome(s) subject to the last reaction are
re-computed. A recomputation of the reaction propensities is also
necessary after each replication and phase transition.

2.4. Evolutionary optimization of the rewriting rule sets

Our “chromatin computer” may operate with rather complex
instructions that correspond to a particular gene expression
pattern. More formally, an instruction consists of a list L of
rewriting rules and associated enzyme concentrations (see
Fig. 3). This is similar to the computational model of Bryant
(2012), except that we have incorporated a concentration asso-
ciated with each rewriting rule that modulates the probability
with which it is applied. If the time course of the simulation is
divided into np phases, more complex programs can be imple-
mented as sequences ðLi; τiÞ; i¼ 1;…;np of instructions that are
valid for a prescribed time period τi (i.e., a “phase”) before being
supplanted by the next instruction. Thus, if a particular rewriting
rule rk∈Li, the enzyme performing this reaction is available in
phase i.

Following previous studies that used evolutionary optimiza-
tion, we define mutation and recombination operators for the
individual instructions as follows:
�
 The concentration of a random enzyme can be decreased by up
to two molecules. The concentration of a different random
enzyme is correspondingly increased to keep the total number
of enzymes constant.
�
 We can replace up to two enzymes and their corresponding
rewriting rules by randomly picked different enzymes. The
concentration variables and rate constants remain unchanged.
�
 In principle, the rate constants can be changed. However, this
option has been disabled in the simulations, as discussed below.
�
 The recombination (cross-over) operator builds a convex com-
bination of two instructions L1 and L2 using the formula ξL1 þ
ð1�ξÞL2 with a randomly drawn weight ξ∈½0;1�.
�
 A second cross-over operator may similarly construct a combi-
nation of two already present enzymes and their associated
rules, therefore adding a new enzyme in a non-random fashion.
Due to the relative simplicity of the rules used in simulations,
however, such operators have not been used here.
�
 If multiple instructions are used, their individual durations τi
can be changed. For this, two randomly picked phases increase
and decrease their individual durations by 10%, respectively
(with respect to the time tr between two replications). In
addition, independently for each phase, enzyme availabilities
(presence or absence, see Fig. 3) of up to two random enzymes
can be inverted.

The fitness of an instruction (or a schedule of instructions) is
evaluated by comparing the patterns immediately before each
of the cell divisions to the start pattern using the normalized
Hamming distance. The initial patterns used here are compiled in
Table 3. This yields r þ 1 distance values d(i). For each start pattern
and ni independent starting point, we run the Gillespie simulation
ng times with different random number seeds. Then, we average
the distance values over the Gillespie realizations, obtaining
1�〈dðiÞ〉 as the autocorrelation function of the pattern. The fitness
value is next computed as the sum of this autocorrelation function
over the nr cell divisions. It turns out that a simple hill-climbing
approach is sufficient to obtain good solutions. Hence, a proposed
mutation of the instruction (or schedule of instructions) is
accepted if the estimated fitness increases. We stop the search if
the best solution among all runs does not improve for ni iterations.

2.5. Simulations

For all patterns, we generated ns initial instructions by ran-
domly selecting nl out of a total of 28 rewriting rules (i.e., the
enzymes that implement them) as listed in Table 4. The individual
concentrations of these nl enzymes were also assigned randomly
so that the total number of molecules equaled nm. All other
parameters were kept constant between the independent runs.
Table 2 summarizes the parameters that were used for the
evolutionary algorithm and the individual stochastic simulations
required for the fitness evaluation.

We simulated local chromatin state dynamics for a genomic
region of 12 kb to 30 kb (depending on the pattern), a range that
was also used in previous approaches (Dodd et al., 2007) and that
provides a good balance between computational speed and
biological verisimilitude. We used a value of 50 for nr, as this
reflects the Hayflick limit for how many times a cell can divide.
Also, we used a circular nucleosome organization throughout the
simulations to avoid artifacts for the boundary nucleosomes due to
the rewriting rules and their neighbor-dependence. For a suitable
number of enzymes available for the modeled chromatin region,
we chose a value of 10 per chromatin domain (parameter nm).
Dependence on the number of chromatin domains is necessary to
ensure comparability among patterns with varying length due to the
concentration dependence of the enzyme reactions in the Gillespie
algorithm. For the elementary patterns, up to five different enzymes
may be selected, whereas we increased na to 10 for composite



Table 5
Summary of the results from the evolutionary algorithm. For each pattern, the
number of iterations nit after which the evolutionary algorithm finished is given, as
well as the score of the best solution, the number of phases np that solution
consisted of, and the number of distinct enzymes that were selected (na). For more
details on the composition of the solutions, see Table 6.

Pattern np nit na Best score

Elementary patterns
1 1 1001 4 51
12 1 1180 5 45.6
01 1 4083 5 35.1

2 5360 3 36.6
3 2259 5 35.5
4 4823 5 35.6

Composite patterns
121 1 2717 4 47.8
122 1 1346 6 44.7
1212 1 1367 4 45.0
1222 1 3595 4 48.4
010 2 5229 7 43.2
011 2 6574 6 36.6
101 2 5834 5 35.0
0101 2 5106 6 35.9
1011 2 1002 5 38.4
102 2 5116 5 33.4
120 2 3840 6 33.2
1200 2 5231 6 34.4
12021 2 3429 7 39.1

Table 6
Summary of the best simulation for each of the elementary patterns. The second
column presents the number of phases np that compose the solution. The third
column summarizes the best solution and lists the enzymes active in a particular
phase, together with their abundance (in brackets). For the patterns 1 and 01 with
a single phase, many distinct optimal solutions have been found (see text), and only
one representative is included here. For the pattern 01, multiple independent
evolutionary optimizations with a different number of phases have been performed
(see text). If multiple phases were set, the individual phase durations are also
presented (in percent).

Pattern np Best solution ðτiÞ : Li

1 1 L1 : α3ð3Þ, α5ð4Þ, α7ð1Þ, δ2ð2Þ
12 1 L1 : α3ð3Þ, α5ð5Þ, β4ð3Þ, β6ð5Þ, γ7ð4Þ
01 1 L1 : α3ð2Þ, α5ð8Þ, α7ð2Þ, δ4ð4Þ

2 τ1ð17:8%Þ, L1 : α3ð6Þ, α5ð1Þ, δ5ð13Þ
τ2ð82:2%Þ, L2 : α3ð6Þ

3 τ1(45.5%), L1: see phase 3, + α5ð7Þ
τ2(31.8%), L2: see phase 1
τ3(22.8%), L3 : α3ð4Þ, α6ð4Þ, α7ð3Þ, δ4ð2Þ

4 τ1(35%), L1 : α5ð7Þ, α7ð4Þ, β5ð4Þ
τ2(35%), L2 : α5ð7Þ, α7ð4Þ, δ4ð3Þ
τ3(15%), L3 : α5ð7Þ, α7ð4Þ, β5ð4Þ, δ4ð3Þ
τ4(15%), L4 : α3ð2Þ, α7ð4Þ, δ4ð3Þ

Table 4
Summary of the 28 rewriting rules with patterns on A¼ f0;1;2g used in this
contribution. For rewriting rules that are not intrinsically symmetric we also list
their mirror image. The position in brackets is bound and modified, the two
flanking positions remain invariant. The second column gives a rewriting rule
abbreviation that will be used hereafter.

Rewriting rules realizing 0-1 reactions α

½0�-½1� α1
0½0�0-0½1�0 α2
1½0�1-1½1�1 α3
2½0�2-2½1�2 α4
0½0�1-0½1�1 or 1½0�0-1½1�0 α5
0½0�2-0½1�2 or 2½0�0-2½1�0 α6
1½0�2-1½1�2 or 2½0�1-2½1�1 α7

Rewriting rules realizing 0-2 reactions β

½0�-½2� β1
0½0�0-0½2�0 β2
1½0�1-1½2�1 β3
2½0�2-2½2�2 β4
0½0�1-0½2�1 or 1½0�0-1½2�0 β5
0½0�2-0½2�2 or 2½0�0-2½2�0 β6
2½0�1-2½2�1 or 1½0�2-1½2�2 β7

Rewriting rules realizing 1-0 reactions γ

½1�-½0� γ1
0½1�0-0½0�0 γ2
1½1�1-1½0�1 γ3
2½1�2-2½0�2 γ4
0½1�1-0½0�1 or 1½1�0-1½0�0 γ5
0½1�2-0½0�2 or 2½1�0-2½0�0 γ6
2½1�1-2½0�1 or 1½1�2-1½0�2 γ7

Rewriting rules realizing 2-0 reactions δ

½2�-½0� δ1
0½2�0-0½0�0 δ2
2½2�2-2½0�2 δ3
1½2�1-1½0�1 δ4
0½2�2-0½0�2 or 2½2�0-2½0�0 δ5
0½2�1-0½0�1 or 1½2�0-1½0�0 δ6
1½2�2-1½0�2 or 2½2�1-2½0�1 δ7
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patterns. We found these values to be sufficient to obtain good
solutions in our simulations. The values for tr, rb, and rd were chosen
so that (i) enough reactions can take place between two subsequent
replications, and (ii) the system tends to have free molecules available
rather than a condition where all molecules are bound.

The unmodified state behaves differently from modifications
since it is not distinguishable from erased information after
replication. It may be helpful to allow more than one phase to
obtain good solutions. Coordinated, phase-dependent enzyme
availabilities may make it easier to systematically recompute the
parental modification state. To identify the optimal number of
phases np, we first ran the evolutionary algorithm for the pattern
01 for solutions with one, two, three, and four phases and
identified the solution with the highest score. We then ran all
composite patterns that contain the unmodified state with only np
phases (instead of variants with one, two, three, or four phases,
respectively).
3. Results

Using the flexible software system that we developed (see end of
results for details) to study the dynamics of histone modification
states, the difficulty of pattern reconstruction problem depends on
the structure of the start pattern. Therefore, we initially summarize
the observations for simple, elementary start patterns (see Tables 5,
6 and Fig. 4). Stable solutions for constant patterns and patterns
that consist of only modified nucleosomes were achieved with
relative ease. Neighbor-independent rewriting rules were only
rarely selected (or only in low concentrations), as they easily
introduce noise to the system. Similar to the results of Dodd and
Sneppen (2011) and Hodges and Crabtree (2012), we found that
chromatin domains can transiently multifurcate to form multiple
smaller domains that remain stable for a particular amount of time,
which was particularly pronounced for patterns that contain
patches of unmodified nucleosomes (Fig. 5). Noteworthy, we some-
times observed a gradual accumulation of errors during the lifetime
of a cell (e.g., see the least stable solution for pattern 12 in Fig. 4).

Constant patterns: As expected, it is trivial to find optimal
solutions for the constant pattern 1 as the only rewriting rules
required to recompute the parental pattern are either α1 (½0�-½1�)
or α5 (0½0�1-0½1�1 or 1½0�0-1½1�0). These must be present in
higher concentrations than rewriting rules that change 1 to 0
(class γ). Consequently, a large number of simulations achieved the
optimal score. Also, contrary to other patterns, the inclusion of
neighbor-independent rewriting rules, such as α1, pose no dis-
advantage to the system.



Fig. 4. Results from the evolutionary algorithm for the three elementary patterns (top: 1, middle: 12, bottom: 01, 2 phases). The leftmost figure in each row shows the
evolution of the best score (separately for each of the ns independent starting points). The second leftmost figure shows the evolution of the score of the solution that was
proposed in each particular iteration. The two rightmost figures in each row display the stochasticity of the best solution among all ng independent stochastic simulations
(left: most stable (highest score), right: least stable (lowest score)). For each visualization, the state of the system is shown directly before each replication (with the initial
state at the top, and the state after the last replication at the bottom). The coloring of the different nucleosome states is analogous to the previous Figures (0: white, 1:
red, 2: blue). For pattern 1, no variation was detectable between the best and the worst performing run when states were only compared directly before each replication
event. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Pattern 12. We also found that it is relatively easy to evolve a
system that can stably maintain patterns when the parental nucleo-
some state consists of several chromatin domains of modified nucleo-
somes, as exemplified by patterns 12 and 121. Four rewriting rules
with approximately equal concentrations were sufficient for stable
inheritance over 50 generations: α3 (1½0�1-1½1�1), α5 (0½0�1-0½1�1
or 1½0�0-1½1�0), β4 (2½0�2- 2½2�2), and β6 (0½0�2- 0½2�2 or
2½0�0-2½2�0). Notably, the boundary between differentially modified
regions was subject to stochastic fluctuation given that it was
controlled solely by the available rewriting rules (Fig. 4).

Pattern 01. It is substantially more difficult to find good
solutions for patterns that contain a mixture of modified nucleo-
somes and unmodified nucleosomes such as 01, 101, or 102. The
intuitive reason is that the 0-state in the target pattern is
indistinguishable from the information lost during the replication
event. Thus, the chromatin computer's programs lack means to
determine where states need to be regenerated and where the
target state has already been reached. No good solutions seem to
exist for this problem when only a single phase is allowed
between replication events. To illustrate this, consider the pattern
0k1k. Rewriting rules are needed to re-establish the right part of
the pattern that contains the nucleosomes in state 1 after each cell
division. These can principally be constructed in two ways: (i) The
rewriting rule α3 (1½0�1-1½1�1) ensures that it can only be applied
in the right part. However, having only this rewriting rule is too
strict, as patterns such as 01001 cannot be repaired otherwise.
This would be possible with (ii) α5 (0½0�1-0½1�1 or 1½0�0-1½1�0),
however this is also applicable at the boundary of the 0 and 1
region and can therefore slowly spread into the 0-region, leading
to gradual loss of the ancestral signal. Rewriting rules that do not
incorporate the state of neighboring nucleosomes (e.g., α1
(½0�-½1�)) are also not helpful in this regard, since they introduce
additional noise to the system.

Admitting more phases, i.e., variation of the gene expression
program through the cell cycle, can mitigate this difficulty. Different
phases can then serve a particular purpose and, collectively, they
aim at restoring the parental pattern. In practice, we found that
solutions with more than one phase become only marginally better
with two or more phases, possibly due to the greatly expanded
parameter space of the solution (Table 5). It may therefore be
necessary to run the evolutionary algorithm for a substantially
longer time to obtain good solutions that consist of more than one
phase. Nevertheless, the stability of the best solutions we found
(independent of the number of phases) is not comparable to
solutions for patterns 1 and 12. This is indicated by both the
attainable scores and by the time course visualization of the patterns
in Fig. 4.

Composite patterns: For the composite patterns, the results were
as follows: Patterns that are combinations of all three elementary
patterns (i.e., with 0–1, 0–2, and 1–2 chromatin domain transitions)
produced the lowest scores, despite allowing the evolutionary
algorithm to increase the maximal number of active enzymes
(see below). The best scores were produced by variations of the
pattern 12. For the pattern 12021 and 1011, the 0 patch in the
middle of the patterns was consistently lost, even in the best
solutions.
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We also found that solutions for the three elementary patterns
can be used with comparable quality for repetitions of elementary
patterns. A good example is the pattern 12, where all of the
variations tested produced scores that differed by less than 10%
from the original score. This occurred even though the patterns
were either more complex (121, 1212) or contained chromatin
domains of unequal length (122, 1222). For the pattern 01, we
observed a similar result with the patterns 010, 011, 101, 0101,
and 1011, although the scores were up to 20% smaller (data not
shown). In all cases, the score may be improved by adjusting
enzyme concentrations and phase durations, particularly for
patterns with a different length than the original pattern.

However, we found that individual solutions from elementary
patterns cannot merely be combined for a more complex pattern,
particularly with multiple phases. For example, the combination of
the individual solutions for the patterns 01, 02, and 12 does not
produce a good result for patterns that contain all these three
types of transitions such as 102. The combination of different
solutions—i.e. the simultaneous presence of more enzymes—
apparently interferes with the “strategy” of the partial solutions:
The additional enzymes act at the newly produced modifications
and obliterate the nascent pattern.

We also investigated whether the performance could be
improved by optimizing the rate constants for binding and/or
dissociation rates, along with the rewriting rules themselves.
Although the scores were comparable, we obtained solutions that
are much more tailored towards the reconstruction of a particular
initial pattern length (data not shown). This is because the
reaction rate constants also control how many reactions may take
place during a particular time in the stochastic simulation. By
allowing them to vary, the enzymes and the corresponding
reaction rates become tailored to the specific pattern length.
Neighbor-independent enzymes were then also more frequently
selected, because their frequency of selection can be controlled by
the reaction rates.

Finally, we examined to what extent the parameter na, which
limits the maximal number of active enzymes, has an influence on
the quality of the solutions. We found that selection sometimes
tends to increase the number of enzymes by including rewriting
rules that are rarely applicable. This was particularly true for the
pattern 01, where the score for the best solution with one phase
was increased to that of solutions with multiple phases using the
original value of na (data not shown). This appears to be a means of
adjusting reaction rates to decrease the number of reactions that
take place between replications.

To verify that the best solutions for the different patterns are
not specific to the parameterization of the model and the specific
pattern length, we also tested the sensitivity to parameter
variations (Table 7). Specifically, we tested the effect of a linear
nucleosome string rather than a circular one, the time between
two replications, the number of nucleosomes and replications, and
Table 7
Summary of the robustness analyses for the best solution for each elementary pattern. T
(with one changed parameter) achieved more than 90% of the score of the original best s
varied, we calculated the ratio of the score and the corresponding maximal possible score
has a direct influence on the maximal possible score.

Parameter Original value New, varied va

Nucleosome organization (c) Circular Linear
Number of nucleosomes (nn) 60 10–200
Number of replications (nr) 50 5–100
Time between replications (tr) 20 0.5–40
Dissociation rate (rd) 5 0.05–100
the dissociation rate of all enzymes. In summary, we found that
the solutions produce very similar scores in most of the parameter
space for the patterns 1 and 12, while for the pattern 01 and its
compositions, the best solutions strongly depend on the kinetic
parameters. We also found that the number of nucleosomes must
not be too low (a value around 40 was sufficient for robustness).
Otherwise, stochastic effects may irreversibly destroy the parental
signal. Similarly, the time tr between two replications must be long
enough to allow for recomputation of the parental pattern. Some
noteworthy effects that we observed while varying the parameters
are summarized in Fig. 5.

The source code of a C implementation of our software system
can be obtained under the GNU Public License from http://www.
bioinf.uni-leipzig.de/Software/StoChDyn and consists of two sepa-
rate programs: the stochastic simulation of histone modification
dynamics using Gillespie's approach (StoChDyn) and the evolu-
tionary algorithm (Evo-ES) that uses StoChDyn to evaluate its
solutions.
4. Discussion

In this work, we have queried whether the propagation of
histone modification patterns across cell divisions can be seen as a
computational problem and if so, whether chromatin is organized
in a way that is amenable to the solution of this problem. Our
answer is twice affirmative. We demonstrated that the faithful
propagation of patterns of histone modification can be interpreted
as a computational problem that is achievable through a small
collection of rewriting rules. These rewriting rules are abstractions
of a well-described class of enzymes and enzyme complexes
combining reader, writer, and eraser domains for specific histone
modifications. For the best solutions, the evolutionary algorithm
selected almost exclusively enzymes that are dependent on the states
of neighboring nucleosomes (except for the trivial pattern 01). This
highlights that context-dependency is crucial for such inheritance
systems, as context-independent enzymes easily introduce too much
noise to the system that further complicate the recomputation of
parental state patterns after cell division. Indeed, for many histone-
modifying enzymes, it is well-known that their binding affinities are
highly influenced by the presence or absence of particular histone
modifications or other signals nearby.

This modification process is intrinsically stochastic and crucially
depends on concentrations of the available enzymes and histone
modifications. Hence, we propose a cellular automata-like 1-D string
as the computational paradigm for a chromatin computer, on which
sets of local rewriting rules are applied asynchronously with time-
dependent probabilities. As a practical implementation, we employ a
detailed stochastic simulation of chromatin state dynamics to
approximate the physico-chemical constraints of our approach.
he table lists the parameter value intervals when the score of the modified solution
olution. The variable s denotes the step size. When the number of replication nr was
and compared the two ratios using the 90% threshold for better comparability, as nr

lues Pattern

1 12 01

All All All
(s¼10) All 440 60–90,140
(s¼5) All All o55
(s variable) 45 41 19–20
(s variable) 40:5 40:15 4

http://www.bioinf.uni-leipzig.de/Software/StoChDyn
http://www.bioinf.uni-leipzig.de/Software/StoChDyn


Fig. 5. Visualizations from selected simulations for pattern 12 of the robustness analysis. One distinct parameter is fluctuated in each row (A–E, as indicated on the left) as
compared to the best solution for this pattern, and two exemplary runs of the same simulation (except for E) are shown that highlight some noteworthy effects that were
observed. The coloring is analogous to Fig. 4. (A) Variations in the chromatin organization at the boundaries (here: linear instead of circular chromatin string). (B) Variations
in the number of nucleosomes (here: 20 instead of 60), illustrating that reducing the number of nucleosomes increases the likelihood that the signal is lost due to
stochasticity. (C) Variations in the number of replications (here: 100 instead of 50), showing that chromatin domains can gradually disappear (left) or change their exact
location due to stochasticity (right). (D) Variations in the time between replications (here: 0.5 instead of 20), highlighting that the original signal may gradually get lost
(either fully or partly) if the cell has not enough time to recompute the parental pattern. (E) Variations in the dissociation rate of the enzymes (here: 0.05 (left) and 0.15
(right), respectively, instead of 1), illustrating that the enzyme kinetics may also have a large effect on pattern stability. The binding rate constants were unmodified;
however, the dissociation rate constants have been reduced, which means that enzymes need more time to perform their designated reaction. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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Here, the probability for applying rewriting rules is modeled expli-
citly in reaction rates for binding and dissociation following the laws
of mass action. The “software” for this type of chromatin computer is
thus a sequence of sets of rewriting rules and concentrations that can
be directly interpreted as part of the cell's gene expression program.

We have shown that stable propagation of complex patterns
without the need for explicit boundary elements is possible in our
model, although not for all types of patterns. This is consistent
with the findings of Hodges and Crabtree (2012), who recently
proposed that explicit boundary elements may not be required for
H3K9me3 domains, as their size and propagation may be naturally
limited by chromatin remodeling processes. Nevertheless, the
maintenance of (approximate) boundaries between differentially
modified chromatin domains is a main challenge of any epigenetic
inheritance mechanism. In practice, additional security measures
that prevent spreading may furthermore be required for faithful
long-term inheritance. Indeed, several mechanisms that prevent
spreading may trivially solve the problem of restoring the parental
modification pattern when exact boundaries are important. Exam-
ples include nucleosome-depleted regions (see, for example, Jiang
and Pugh, 2009; Mavrich et al., 2008; Yadon et al., 2010), bound
proteins (e.g., CTCF) or histone variants (e.g., H2A.Z) in the vicinity
of positions that border the different chromatin domains, or the
marking with a particular histone modification directly after
replication due to other signalling factors.

In our model, long-range interactions are not necessarily
required for stability, which contrasts to what is argued by Dodd
et al. (2007). However, the presence or absence of long-range
interactions has no impact on the computational power of the
chromatin computer or our conclusions with respect to epigenetic
inheritance. Generally, epigenetic inheritance should be seen as an
ensemble of different strategies that collectively aim to transmit a
particular chromatin state throughout cell division. Histone mod-
ification patterns fit this bill. The propagation of one out of several
alternative modified states provides the required memory across
divisions. Nevertheless, only a few primary histone modifications
that typically form large and homogeneous chromatin domains
(e.g., H3K9me3) may be copied in a self-propagating manner as
described here. The transmission or recomputation of other, more
secondary histone modifications, however, likely depends on other
factors (Sarkies and Sale, 2011). On the other hand, the inheritance
of promoter-specific modifications (which typically cover only a
few nucleosomes) is likely implemented in a different way than
the propagation of large homogeneous chromatin domains,
because short domains are much more difficult to inherit due to
pure stochasticity (e.g., see Fig. 5B).

Pattern stability is influenced by a number of factors, such as
dynamic chromatin remodeling events, the up- and downregula-
tion of genes that code for or regulate the corresponding histone-
modifying enzymes, pattern complexity (Sneppen and Dodd,
2012), or the length of the state to be maintained. In summary,
histone modification patterns are often an ongoing enzymatic
competition between their placement and removal. Altering this
steady-state balance pushes either towards the accumulation of
the mark or its erasure (Hodges and Crabtree, 2012). This has been
described most clearly in embryonic reprogramming (Katz et al.,
2009; VerMilyea et al., 2009).

Our finding that patterns containing patches of unmodified
nucleosomes are more difficult to inherit than modified ones
(irrespective of the number of phases) due to the ambiguity of
the unmodified state raises the question of biologically relevance.
Due to the sheer complexity of histone modifications, the vast
majority of nucleosomes may carry at least one modification,
which could facilitate recomputation of the parental patterns
and resolve the difficulty of stably inheriting such domains.
Additionally, other chemical signals within the vicinity of a
nucleosome such as DNA methylation, the presence of histone
variants or spatial contacts with genomic loci or protein complexes
that are themselves retained through cell division may be speci-
fically used to backup the information of nucleosome left unmo-
dified intentionally.

We emphasize that the focus of this contribution is on the
computational task of re-constructing a complex histone modifi-
cation pattern typical for somatic cells. We do not claim that
epigenetic inheritance across the germ line follows the same
paradigm.

Information inherited through the germline for an effectively
infinite number of generations is subject to Eigen's error threshold
(Eigen, 1971), which links the amount of stably inheritable informa-
tion to the accuracy of information propagation. While effective
proofreading mechanisms limit replication errors to a single muta-
tion per round of replication for genomic DNA, no mechanism is
conceivable that would achieve a similar accuracy for histone
modifications. As a consequence, the amount of stably inheritable
epigenetic information is severely limited. Consistent with this
theory, most, if not all, of the extraneous epigenetic information is
erased during spermatogenesis and oogenesis. The resulting toti-
potent state (Hackett et al., 2012) is characterized by global erasure
of DNA methylation, chromatin reorganization, differential regula-
tion of histone-modifying enzymes (e.g., the tendency for the
upregulation of histone de-modifying and downregulation of
histone-modifying enzymes). The initial stages of embryogenesis
are governed by a gene regulatory network dominated by tran-
scription factors (e.g., reviewed in Adachi and Schöler, 2012), partial
ejection of nucleosomes (Watanabe et al., 2013) and therefore a
reduction in the availability of a major epigenetic information
carrier. Indeed, it seems that only few epigenetic modifications
are part of the epigenomic basal state (e.g., strong heterochromatin
formation of genes linked to differentiation (Watanabe et al., 2013)
or imprinting and poised promoters). In contrast, the error thresh-
old does not preclude inheritance of complex patterns of histone
marks in somatic cell lines because the number of generations is
limited, and usually small. Here, the degradation of the epigenetic
information is acceptable for a while, but inevitably leads to
daughter cells whose epigenetic patterns are damaged beyond
repair. This effect may thus constitute an epigenetic version of
aging. Indeed, major changes to the epigenetic information can
result in “chromatin diseases” such as cancer (Timp and Feinberg,
2013), for example.

Whether histone modifications and the presence of histone
variants are a cause or consequence of the transcriptional status
(Henikoff and Shilatifard, 2011; Rando, 2012) is still hotly debated.
Here, we are completely agnostic about this issue since it has no
impact on our conclusions. The programs that run on the chro-
matin computer (i.e., the schedules and concentrations of
re-writing enzymes) are externally specified in our model. In
particular, we make no statement in regards to whether the gene
expression program is a direct consequence of, or at least domi-
nated by, the chromatin state, or whether it is entirely determined
by classical transcription factor networks that are largely or even
completely independent of the chromatin state. In computer
science terms, we employ a model of computation that strictly
distinguishes between (gene expression) programs and (histone
modification) data.

It appears natural, in a next step, to remove this distinction and
to ask if chromatin itself can “learn” to re-program itself, by
making the gene expression programs an intrinsic function of
the histone modification data. While this may be an extreme
model that implicitly views transcription factors as being enslaved
by histone modification states at their gene loci, it is an important
limiting case given that gene expression is clearly not independent
of chromatin state.
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