Detection and Rational Design of RNA Switches

Sebastian Will

Vienna RNA Meeting 2018
My special perspective (on RNA research):
• What can we learn by applying existing computational tools?
 e.g. exploiting the Vienna RNA package
• Which questions could be answered by novel methods?
 e.g. comparing RNAs in my tool LocARNA

Today: What can Bioinformatics do for RNA switches?
My special perspective (on RNA research):

- **What can we learn** by applying *existing* computational tools?

 e.g. exploiting the Vienna RNA package

- **Which questions could be answered** by *novel* methods?

 e.g. comparing RNAs in my tool LocARNA
My special perspective (on RNA research):

- **What can we learn** by applying *existing* computational tools?

 e.g. exploiting the Vienna RNA package

- **Which questions could be answered** by *novel* methods?

 e.g. comparing RNAs in my tool LocARNA
My special perspective (on RNA research):

- **What can we learn** by applying *existing* computational tools?
 - e.g. exploiting the Vienna RNA package

- **Which questions could be answered** by *novel* methods?
 - e.g. comparing RNAs in my tool LocARNA

Today: What can Bioinformatics do for RNA switches?
Finding Thermoswitches in Y. Pseudotuberculosis

- we screened more than 1,750 RNAs at 25/37/42°C and selected candidates for thermo-responsive folding
- validated thermo-regulatory potential of 16 candidates
Genome-wide structure probing (PARS) at different temperatures

- **bacterial culture** at 37°C
- RNA extraction, rRNA depletion
- RNA refolding
- S1 nuclease (ss-specific)
- V1 RNase (ds-specific)
- 25°C, 37°C, 42°C
- RNA refolding
- Structure-specific nuclease digestion
- Libraries synthesis
- Deep sequencing
- Reads (6 series)

Mapping
Reads
Counting
of read starts
Calculate
log-odd scores
S1 profile
V1 profile
PARS profile
PARS-informed
structure prediction
Thermo-switch
candidates
refined
structures
Detect
structure
changes

(adapted/extended from F. Righetti)
Genome-wide structure probing (PARS) at different temperatures

- RNA extraction, rRNA depletion
- RNA refolding
- V1 RNase (ds-specific)
- S1 nuclease (ss-specific)
- Structure-specific nuclease digestion
- Bacterial culture
- Libraries synthesis
- Deep sequencing
- Reads (6 series)

Reads
Mapping
Counting of read starts
Calculate log-odd scores
PARS profile
V1 profile
PARS profile
Thermo-switch candidates
Detect structure changes

[adapted/extended from F. Righetti]
PARS at SD-region of selected RNA Thermometer candidates

<table>
<thead>
<tr>
<th>Gene name</th>
<th>SD PARS* 25 °C</th>
<th>SD PARS* 37 °C</th>
<th>SD PARS* 42 °C</th>
<th>PARS difference 37–25 °C</th>
<th>PARS difference 42–25 °C</th>
<th>Thermal control†</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnfY</td>
<td>0.18</td>
<td>−0.37</td>
<td>−0.12</td>
<td>−0.55</td>
<td>−0.30</td>
<td>Y</td>
</tr>
<tr>
<td>ailA</td>
<td>0.09</td>
<td>0.61</td>
<td>−0.25</td>
<td>0.52</td>
<td>−0.34</td>
<td>Y</td>
</tr>
<tr>
<td>grxC</td>
<td>0.39</td>
<td>−0.56</td>
<td>−0.50</td>
<td>−0.95</td>
<td>−0.89</td>
<td>N</td>
</tr>
<tr>
<td>trxA</td>
<td>0.32</td>
<td>−0.53</td>
<td>−0.42</td>
<td>−0.85</td>
<td>−0.74</td>
<td>s:Y, l:N</td>
</tr>
<tr>
<td>ahpC</td>
<td>−0.60</td>
<td>−1.23</td>
<td>0.44</td>
<td>−0.63</td>
<td>1.04</td>
<td>N</td>
</tr>
<tr>
<td>katA</td>
<td>0.08</td>
<td>−0.37</td>
<td>−0.02</td>
<td>−0.45</td>
<td>−0.10</td>
<td>Y</td>
</tr>
<tr>
<td>sodB</td>
<td>0.00</td>
<td>−0.22</td>
<td>−0.29</td>
<td>−0.22</td>
<td>−0.29</td>
<td>Y</td>
</tr>
<tr>
<td>sodC</td>
<td>0.14</td>
<td>−0.08</td>
<td>−0.47</td>
<td>−0.22</td>
<td>−0.61</td>
<td>Y</td>
</tr>
<tr>
<td>sodA</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>−0.02</td>
<td>−0.07</td>
<td>N</td>
</tr>
<tr>
<td>oppA</td>
<td>0.64</td>
<td>−0.77</td>
<td>−0.13</td>
<td>−1.41</td>
<td>−0.77</td>
<td>Y</td>
</tr>
<tr>
<td>fdoG-1</td>
<td>0.55</td>
<td>−0.55</td>
<td>0.12</td>
<td>−1.10</td>
<td>−0.43</td>
<td>Y</td>
</tr>
<tr>
<td>pepN</td>
<td>0.36</td>
<td>−0.26</td>
<td>0.05</td>
<td>−0.62</td>
<td>−0.31</td>
<td>Y</td>
</tr>
<tr>
<td>putA</td>
<td>0.48</td>
<td>0.11</td>
<td>−0.05</td>
<td>−0.37</td>
<td>−0.53</td>
<td>Y</td>
</tr>
<tr>
<td>aldB</td>
<td>0.00</td>
<td>−0.27</td>
<td>0.22</td>
<td>−0.27</td>
<td>0.22</td>
<td>N</td>
</tr>
<tr>
<td>yobF</td>
<td>−0.08</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
<td>0.10</td>
<td>Y</td>
</tr>
<tr>
<td>cysK-2</td>
<td>−0.04</td>
<td>0.07</td>
<td>−0.05</td>
<td>0.11</td>
<td>−0.01</td>
<td>Y</td>
</tr>
<tr>
<td>manX</td>
<td>−0.29</td>
<td>−0.11</td>
<td>−0.12</td>
<td>0.18</td>
<td>0.17</td>
<td>s:Y, l:N</td>
</tr>
<tr>
<td>cpoB/lybgF</td>
<td>0.86</td>
<td>−0.33</td>
<td>−0.20</td>
<td>−1.19</td>
<td>−1.06</td>
<td>Y</td>
</tr>
<tr>
<td>iscS-1</td>
<td>0.43</td>
<td>0.16</td>
<td>−0.22</td>
<td>−0.27</td>
<td>−0.65</td>
<td>Y</td>
</tr>
<tr>
<td>dnaJ</td>
<td>0.18</td>
<td>−0.05</td>
<td>−0.10</td>
<td>−0.23</td>
<td>−0.28</td>
<td>Y</td>
</tr>
</tbody>
</table>
Results for RNA thermometer candidate ailA

Two candidates associated with *Y. virulence*: ailA and cnfY.

25°C

37°C

42°C

PARS profiles and PARS-guided predictions; color=entropy
Rational Design of Riboswitches

with G. Domin et al. **Applicability of a computational design approach for synthetic riboswitches.** *Nucleic acids research*, 2017.

Goal: Design Riboswitch-systems to reprogram cells (here *E. coli*) to respond to small molecules (Theophylline, Tetracycline, Streptomycin)
Tetracycline-RS Designs (Activity Tests)
Tetracycline-RS Designs (Activity Tests)
Tandem-RS Designs for AND switch

Goal: Switch ON if Theophylline AND Tetracycline are both present
Bioinformatics challenge: Design candidate Riboswitch constructs “in-silico”

<table>
<thead>
<tr>
<th>Tetracycline Sensor</th>
<th>Spacer</th>
<th>3'-Part Terminator</th>
<th>U Stretch</th>
<th>Energy RS (kcal/mol)</th>
<th>Energy T (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet-RS1</td>
<td></td>
<td></td>
<td></td>
<td>-49.1</td>
<td>-39.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-24.4</td>
<td></td>
</tr>
<tr>
<td>Tet-RS2</td>
<td></td>
<td></td>
<td></td>
<td>-50.1</td>
<td>-40.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-22.7</td>
<td></td>
</tr>
<tr>
<td>Tet-RS3</td>
<td></td>
<td></td>
<td></td>
<td>-53.7</td>
<td>-44.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-24.3</td>
<td></td>
</tr>
<tr>
<td>Tet-RS2-17</td>
<td></td>
<td></td>
<td></td>
<td>-47.5</td>
<td>-32.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-24.7</td>
<td></td>
</tr>
<tr>
<td>Tet-RS2-15</td>
<td></td>
<td></td>
<td></td>
<td>-40.2</td>
<td>-31.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-20.7</td>
<td></td>
</tr>
<tr>
<td>Tet-RS2-13</td>
<td></td>
<td></td>
<td></td>
<td>-37.5</td>
<td>-27.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-23.7</td>
<td></td>
</tr>
<tr>
<td>Tet-RS2-10</td>
<td></td>
<td></td>
<td></td>
<td>-28.1</td>
<td>-20.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-19.7</td>
<td></td>
</tr>
</tbody>
</table>
Novel Method for multi-target design of RNAs

Novel Method for multi-target design of RNAs

with Stefan Hammer, Wei Wang and Yann Ponty.

Fixed-Parameter Tractable Sampling for RNA Design with Multiple Target Structures.

RECOMB, 2018.

Multiple structures *(targets)*

((((((.)).(((..))).)))).

((.))((...))..(((..)))...

....((((((..)))...)))...

....(((((.)))....))....
Novel Method for multi-target design of RNAs

Multiple structures *(targets)*

```
((((((.)).(((..))).)))).
((.))((...))..(((..)))
....((((((..)))...))...)
```

Task: generate seq’s with *specific* properties
- low/specific energy for multiple structures
- specific GC content
- specific energy differences
- specific sequence/structure motifs

Approach:
defined “Boltzmann” sampling of RNA sequences
Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds
Targeted samples: 1000 highly specific sequences; in minutes
Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds
Boltzmann sample: 1000 low energy sequences; generated in seconds
Targeted samples: 1000 highly specific sequences; in minutes
Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds
Targeted samples: 1000 highly specific sequences; in minutes
Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds
Targeted samples: 1000 highly specific sequences; in minutes
Improves quality and feasibility of RNA Design
 e.g. for designing artificial riboswitches

Generic system to extend RNA Design . . .
 by including various desirable properties in the sampling

. . . and develop novel sampling-based tools
 • design RNA alignments (target energies and evo-distances)
 • e.g. use to assess statistical significance
 and support the detection of potential RNA switches
My co-authors / cooperation partners
Francesco Righetti, Aaron M. Nuss, Christian Twittenhoff, Sascha Beele, Kristina Urban, Stephan H. Bernhart, Peter F. Stadler, Petra Dersch, Franz Narberhaus; Gesine Domin, Sven Findeiß, Manja Wachsmuth, Mario Mörl; Stefan Hammer, Wei Wang, Yann Ponty

Team of Ivo Hofacker at Universität Wien