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Abstract

Discretized models of biopolymer structures can be used not only as approximations
of the actual spatial structures but also as a computationally feasible approach to
the generic features of the sequence-structure relationships. We review the combi-
natorics of nucleic acid secondary structures as well as lattice models of proteins,
and show how properties such as the existence of extended neutral networks or
shape space covering can be explained on this basis.
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1. Introduction

Crystallography has revealed already a great number of biopolymer structures at
full atomic resolution and the productivity of structural biologists is currently in-
creasing at a breath-taking pace. The enormous amounts of data collected in struc-
tural data banks contain a true wealth of information. They are readily used in
discussions of catalytic mechanisms of enzymes and ribozymes and provide the ba-
sis for models of molecular recognition. Many other applications of structural data
in biochemistry and molecular biology, however, require fewer details and thus call
for coarse grained notions of structure. Too many data obscure common structural
features in related biopolymers and impede comparisons which are of fundamen-
tal importance, for example, in molecular evolution. Discretized structure models
are particularly interesting because they do not only meet the need for straighfor-
ward recognition of basic features but by their nature they can be enumerated and
accessed by combinatorial and other rigorous mathematical techniques.

In this contribution we present models of discrete protein and RNA structures
and review a few prominent results derived from them. In section 2 we introduce
three classes of discretized structures: (i) lattice models which retain coarse-grained
information of spatial structures, (ii) contact graphs which reduce spatial informa-
tion to local nearest neighbor interactions, and (iii) hypergraph models being a
multidimensional extension of (ii). Answers to counting problems can often be
given by combinatorics. Examples are presented in section 3: RNA secondary
structure graphs and self-avoiding walks as models for protein structures. Ran-
dom graph theory is used in section 4 to model the mapping of sequences into
structures. The random graph model is then applied to RNA secondary structures
(section 5). The last section finally provides a brief conclusion and an outlook to
further developments.

2. Discretized Structure Models

The fine grained description of a molecular structure is simply the list of three-
dimensional coordinates of each individual atom. This level of detail, however,
is not suitable for all purposes. Indeed, coarse grained representations such as
ribbon diagrams are oftentimes used to interpret and compare protein folds. Ribbon
diagrams are obtained by retaining only the coordinates of the backbone atoms,
which are still represented by 3D vectors. In this section we shall be concerned
with an alternative approach, namely discretized structure models.

We may distinguish two major classes: (i) combinatorial models the encode only
local geometric information, and (ii) models that explicitly retain information about
the global three-dimensional embedding of the structure. Contact graphs and their
hypergraph generalizations fall into the first class, while lattice models (mostly of
proteins) belong to the second class.

In this contribution we shall restrict ourselves to the simplest cases, in which
each monomer is represented by a single point or letter.

2.1. Lattice Proteins. Lattice models [1–12] provide a coarse grained view on
protein structure. The structure is represented by a self-avoiding walk (SAW), i.e., a
path on a lattice that does not visit the same site more than once [13]. SAWs play a
major role in polymer physics, where the main interest centers around equilibrium
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properties such as the number of configurations or the end-to-end distance of a
polymer consisting of a fixed number of monomers n [14, 15].

2.2. Contact Graphs. The three-dimensional structure of a linear biopolymer,
such as RNA, DNA, or a protein can be approximated by their contact structure, i.e.,
by the list of all pairs of monomers that are spatial neighbors. Contact structures
of polypeptides have been introduced by Ken Dill and co-workers in the context
of lattice models of protein folding [16, 17]. The secondary structures of single
stranded RNA and RNA form a special class of contact structures.

We assume that the monomers, aminoacids and nucleotides alike, are numbered
from 1 to n along the backbone. For simplicity we shall write [n] = {1, . . . , n}. The
adjacency matrix of the backbone B has the entries Bi,i+1 = Bi+1,i = 1, i ∈ [n−1].
In a more general context, polymers with cyclic or branched backbones can could
be considered, see e.g. [12].

A contact structure is faithfully represented by the contact matrix C with the
entries Cij = 1 if the monomers i and j are spatial neighbors without being adjacent
along the backbone, and Cij = 0 otherwise. Hence Cij = 0 if |i− j| ≤ 1. Note that
both B and C are symmetric matrices.We define the (contact) diagram ([n],Ω) to
consists of n vertices labeled 1 to n and a set Ω of arcs that connect non-consecutive
vertices. The diagram is simply a graphical representation of the contact matrix.
As an example we show the conventional ribbon diagram of the protein ubiquitin
together with its discretized structure represented by contact matrix and contact
graph in Fig. fig:ubiquitin. A closely related class of diagrams which allow also arcs
between consecutive vertices are the linked diagrams introduced by Touchard [18].
These are studied in some detail in Refs. [19–22].

The contact graph has the adjacency matrix A = B + C. The familiar drawing
of RNA secondary structures are a much used example of biomolecular contact
graphs. The classical definition of a secondary structure [23] requires that each base
pairs with at most one other nucleotide. Thus nucleic acid secondary structures
are special types of 1-diagrams. The second defining condition is that arcs do
not cross. In terms of the contact matrix this means: If Cij = Ckl = 1 and
i < k < j then i < l < j. Secondary structure (contact) graphs are outerplanar,
i.e., they can be drawn in such a way that the backbone forms a circle and all base
pairs are represented by chords that must not cross each other, see the example of
phenylalanyl-tRNA in Fig. 2.

An increasing number of experimental findings, as well as results from compara-
tive sequence analysis, suggest that pseudo-knots are important structural elements
in many RNA molecules [24]. Notably, functional RNAs such as RNAseP RNA [25]
and ribosomal RNA [26] contain pseudo-knots. Almost all known pseudo-knotted
structures, with the notable exception of the E. coli αmRNA [27], belong to the
class of bi-secondary structures [28] that generalizes to notion of secondary struc-
tures to include pseudo-knots without allowing overly involved knotted structures
or nested pseudo-knots. More precisely, a bi-secondary structures can be under-
stood as superpositions of two disjoint secondary structures. Their contact graphs
are still planar, but now the chords may be drawn on the inside and on the outside
of the circle that represents the backbone.

2.3. Hypergraph Models. A hypergraph [29] consists of vertex set V and a set
of subsets of V called hyperedges. A graph is a hence a uniform hypergraph in
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Figure 1. The structure of the ubiquitin molecule, pdb entry 1ubq.
(a) Conventional ribbon diagram, (b) contact matrix, (c) contact graph.
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Figure 2. A few representations of RNA secondary structures. As ex-
ample we show the structure of phenylalanyl-transfer RNA (tRNAphe). The con-
ventional graph representation (left upper part) is equivalent to the cyclic repre-
sentation (right upper part), the mountain representation (middle part) and the

parentheses representation (lower part). The contact matrix of tRNAphe is shown
in Fig. 4. Each representation has a specific advantage: The conventional graph
representation has been used successfully by biochemists in the interpretation of
RNA reactivity, the cyclic representation allows to detect pseuknots as intersect-
ing chords, the mountain representation is particularly useful for the detection
of folding patterns in long RNA stretches, and a distance between structures can
be easily defined in the parentheses representation as the the Hamming distance
between the strings. We remark that graph and cyclic representation are two-
dimensional and thus allow to describe and detect pseudoknots, whereas moun-
tain and parentheses representation are one-dimensional and become ambiguous
in case of pseudoknots.

which all (hyper)edges have order 2. Allowing for larger sets of ‘mutually adja-
cent” monomers we obtain a hypergraph description of the molecular strcture. A
particularly useful approach is based on Delaunay-tesselations [30].
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The Delaunay tesselation is defined as the dual of the more familar Voroni cells:
Given a finite set of points in A ⊆ R

n, the Voronoi cell of x ∈ A is

V(x) =
{

y ∈ R
n|d(x, y) ≤ d(x′, y) ∀x′ ∈ A \ {x}

}

(1)

where d denotes the Euclidean distance in R
n. The nearest neighbor set N(x) of

x ∈ A is the set of points x′ ∈ A \ {x} which are closest to x in Euclidean distance.
For each point u ∈ R

n define nb(A, u) as the set of points x′ ∈ A \ {u}. A point
v ∈ R

n is a Voronoi vertex (corner of the Voronoi cell) if |nb(A, v)| is maximal
over all nearest sets. The Delaunay-cell of v is the convex hull conv

(

nb(S, v)
)

. The
complex (or triangulation) of A is therefore a partition of the convex hull conv(A)
into the Delaunay cells of its Voronoi vertices. The Delaunay complex is dual to the
Voronoi diagram 3.1 in the sense that there is a natural bijection between the two
complexes which reverses the face inclusions. Efficient algorithms for computing
Voronoi cells and Delaunay tessellations of point sets are publicly available; as a
example we mention the qhull package [31]. Apart from degenerate cases, each
Delaunay cell is a tetrahedron with for points of A at its corners. This procedure
therefore defines 4-edges (sets of 4 “mutually adjacent” vertices) in a (protein)
structures in a parameterfree way. The (2-)edges of a contact graph and 3-edges
can of course be derived directly from the tesselation by considering subsets.

Recently Delaunay tesselations of protein structures have been used as the basic
building block for designing knowledge-based potentials for protein threading and
inverse folding [30,32–34]. The secondary structure model of nucleic acids could be
extended to hypergraphs in order to include e.g. base triplets, guanine quartetts or
adenine platforms [35].

3. Combinatorial Considerations

3.1. Secondary Structure Graphs.

3.1.1. Enumeration. A secondary structure on n+ 1 digits may be obtained from
a structure on n digits either by adding a free end at the right hand end or by
inserting a base pair 1 ≡ (k + 2). In the second case the substructure enclosed
by this pair is an arbitrary structure on k digits, and the remaining part of length
n− k − 1 is also an arbitrary valid secondary structure. Therefore, we obtain the
following recursion formula for the number Sn of secondary structures:

Sn+1 = Sn +

n−1
∑

k=m

SkSn−k−1, n ≥ m+ 1

S0 = S1 = · · · = Sm+1 = 1

(2)

Equ.(2) has first been derived by Waterman [23]; m denotes the minimum num-
ber of unpaired digits in a hairpin loop. Note that our definition of Sn differs from
Waterman’s for n < m; he used Sn = 0.

The above recursion can be used to develop an algorithm for generating random
secondary structures with a uniform distribution

Prob{S} = 1/Sn (3)

in the shape space of all secondary structures over a given chain length, see [36].
Related recursions can be obtained for restricted classes of structures, see Table 1
and [37].
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Table 1. Recursions for restricted structures.

Structures with b components:

Jn+1(b) = Jn(b) +
∑n−1

k=m SkJn−k−1(b− 1), b > 0, n ≥ m+ 1
Jn(b) = 0, b > 0, n ≤ m+ 1, Jn(0) = 1, n ≥ 0

Structures with b base pairs (bonds):

Hn+1(b) = Hn(b) +
∑n−1

k=m

∑b−1
`=0 Hk(`)Hn−k−1(b− `− 1), b > 0, n ≥ m+ 1

Hn(b) = 0, b > 0, n ≤ m+ 1, Hn(0) = 1, n ≥ 0

Structures with b stacks:

Nn+1(b) = Nn(b) +
∑n−1
k=m

∑b
`=0 Zk+2(`)Nn−k−1(b− `), b > 0, n ≥ m+ 1

Nn(0) = 1, Nn(b) = 0, b > 0, n ≤ m+ 1
where Zn(b), the number of structures with b stacks
given that the 3′ and 5′ ends are paired, satisfies

Zn(b) = Zn−2(b) +Nn−2(b− 1) − Zn−2(b− 1), Z0(b) = Z1(b) = 0

Structures with exactly b hairpins:

An+1(b) = An(b) +
∑n−1

k=m

[

∑b
`=1Ak(`)An−k−1(b− `) +An−k−1(b− 1)

]

n ≥ m+ 1
An(b) = δ0,b n ≤ m+ 1

The recursion for the number of structures with b base pairs, Hn(b), has also
been considered in ref. [38]. More recently, Schmitt and Waterman [39] obtained the

closed expression Hn(b) = 1
b

(

n−b
b+1

)(

n−b−1
b−1

)

for the special case m = 1. Recursions

for some other types of structures, including the number Ψm,l
n of structures in which

all stacks have predefined minimum length l, can be found in [37].
Most of the published work on the asymptotic behavior of RNA-related counting

series [23,39–44] makes use of a proposition by E.A. Bender [45, Thm 5.], which was
later found to be true only under more restrictive conditions than the published
ones. It follows from the counter-examples discussed in [46] and [47] that Bender’s
result cannot be applied directly to the RNA problem. Starting from a simplified
version of Darboux’ theorem [48], see also [49, p.205], a it is shown in [37] that
the published expressions for the RNA counting series, e.g. [23], are nevertheless
correct.

The series Sn has been extensively studied in [23]. The asympotitics of the more
general series Ψm,l

n is determined in [37, Thm.4.8]:

Ψm,l
n ∼ −g(α)

2
√
π
n−3/2

(

1

α

)n

(4)

where α is the smallest positive solution of

p(x) =
[

(1 − x)(1 − x2 + x2l) + x2ltm(x)
]2 − 4x2l(1 − x2 + x2l) = 0 (5)

that satisfies

g(α) =
−1

x2l

√

− 1

α

dp(x)

dx

∣

∣

∣

∣

α

6= 0. (6)
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With l = 1, the recursions tabulated in Tab. 1 give rise to the asymptotic
expressions

Jn(b)/Sn ∼ α2

(1 − α)3
b

(

1 − 2α

1 − α

)b−1

Hn(b) ∼
1

(b+ 1)!b!
n2b

Nn(b) ∼
Cb

2b(3b)!
· n3b

An(b) ∼ 4

2(3+m)bb!(b− 1)!
n2(b−1)2n

(7)

Here Ck denotes the Catalan numbers.

Table 2. Numerical values of 1/α.
The values for the biophysically most relevant case, l = 2 and m = 3 are marked in bold.

Secondary Bisecondary
l l

m 1 2 3 1 2 3
1 2.618 1.986 1.716 4.42 2.49 2.00
2 2.414 1.899 1.680 4.03 2.43 1.94
3 2.289 1.849 1.652 3.81 2.35 1.89
5 2.147 1.783 1.612 3.44 2.22 1.74

Numerical values of 1/α, which determines the growth of Sn and Ψm,l
n with

sequence length n are tabulated in Tab. 2. For comparison, we also list numerical
estimates for bi-secondary structures [28].

3.1.2. Energy Functions. The standard energy model for RNA and DNA secondary
structures relies on the decomposition of the structure into “loops” (see Figure 3).
As shown in [50], these “loops” coincide with the unique minimal cycle basis. The
most direct approach to the loop-decomposition of a secondary structure uses the
following partial order on the set of bonds (base pairs): A base pair k, l is interior
to the base pair i, j, if i < k < l < j. It is immediately interior if there is no base
pair p, q such that i < p < k < l < q < j. For each base pair i, j the corresponding
loop is defined as consisting of i, j itself, the base pairs immediately interior to i, j
and all unpaired regions connecting these base pairs.

The energy of an RNA secondary structure is assumed to be the sum of the
energy contributions of all loops. The most recent compilation of RNA energy
parameters is [51]. Current folding programs mostly rely on the parameter set
discussed in [52], which extends earlier studies [53–55] by the systematic treatment
of co-axial stacking. Parameters for DNA folding can be found in [56, 57].

3.1.3. The RNA Folding Problem. The additive form of the energy model set the
stage for an efficient solution of the minimum energy folding problem by means
of a dynamic programming scheme similar to sequence alignment. This similarity
was first realized and exploited by Waterman [23], see also [42], the first dynamic
programming solution was proposed by [58], originally for the “maximum matching”
problem of finding the structure with the maximum number of base pairs [59]. Zuker
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Figure 3. RNA secondary structure elements. Any secondary structure can be
uniquely decomposed into these types of loops.

and coworkers [60, 61] formulated the algorithm for the minimum energy problem
using the now standard energy model.

Since then several variations have been developed: Michael Zuker [62] devised
a modified algorithm that generates a subset of suboptimal structures within a
prescribed increment of the minimum energy, see also [63]. The algorithm will find
any structure ψ that is optimal in the sense that there is no other structure ψ′ with
lower energy containing all base pairs that are present in ψ.

John McCaskill [64] noted that the partition function over all secondary struc-
tures

Q =
∑

ψ

exp(−∆G(ψ)/kT ) (8)

can be calculated by dynamic programming as well. In addition his algorithm can
calculate the frequency with which each base pair occurs in the Boltzmann weighted
ensemble of all possible structures, which can be conveniently represented in a “dot-
plot”, see Fig. 4. A related approach can be used to compute the complete density
of states of an RNA sequence at predefined energy resolution [65, 66]. Another
method for calculating the density of states, based on enumeration of structures, was
proposed earlier [67]. However, this algorithm is restricted to subsets of structures
containing no helices shorter than three and uses a simplified energy model.

Most recently, a program has been designed by the Vienna group that can gen-
erate all secondary structures within some interval of the minimum energy based
on dynamic programming and multiple backtracking [68, 69]. In practice, subop-
timal folding can handle millions of structures, corresponding, e.g., to an energy
range of, say, 12 kcal/mol at a chain length of 100 bases. Most of these algo-
rithms are part of the Vienna RNA Package [70], which is freely available from
http://www.tbi.univie.ac.at/.

The assumptions that an RNA molecule folds into its thermodynamic ground
state may well be wrong even for moderately long sequences [71]. Simulations of
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Figure 4. Contact matrix and basepairing probabilities in the secondary

structure of phenylalanyl-tRNA. All non-zero entries are indicated as black squares.
In the lower (left) triangle we show the contact matrix. The matrix elements are 0 or 1
corresponding to empty or full squares, respectively. The upper (right) triangle contains
the partition function. Here the size of the square is representative for the bas pairing
probability.

the folding process itself can be used to avoid this problem. Consequently, sev-
eral groups have designed kinetic folding algorithms for RNA secondary structures,
mostly in an attempt to get more accurate predictions or in order to include pseudo-
knots, see e.g. [72–76]. Only a few papers have attempted to reconstruct folding
pathways [77–79]. A more recent approach resolves the folding process to three el-
ementary steps: base pair formation, base pair cleavage and base pair shift [80,81].
RNA folding is simulated as a stochastic process starting from an initial state (com-
monly the open chain) to the minimum free energy conformation or a long-lived
metastable state which is assumed to be an absorbing barrier. Sampling of suf-
ficiently large numbers of folding trajectories yields probabilities of formation for
different conformations.
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In the case of functional RNAs, and provided a sufficient number of related
sequences is available, the structure can be inferred from co-variations. This phy-
logenetic approach is beyond the scope of this review, but see e.g. [82].

3.2. Self-Avoiding Walks.

3.2.1. Enumeration. Counting the number cN of distinct self-avoiding walks of
given length N = n−1 on a prescibed lattice is a long-standing problem. At present
a complete solution to this problem is unknown. It is easy to show, however, that
for each lattice Λ there is a constant

µ = lim
N→∞

N
√
cN < z − 1 . (9)

where z is the connectivity of the lattice. The exact values of µ, however, are
unknown even for the most simple lattices. Tight analytical bounds on µ have
been obtained for a variety of lattices, see [13]. It is commonly believed that the
asymptotic behavior of cN depends only on the spatial dimension d of the lattice:

cN ∼







BNγ−1µN for d = 2, 3
BµN 4

√
logN for d = 4

BµN for d ≥ 5
(10)

The exponent γ probably depends only on the dimension of the lattice. The loga-
rithmic correction for n = 4 was predicted by a renormalization group analysis, see
e.g., [83]. Estimates for the parameters µ, γ, and B are compiled in Table 3.

Table 3. Combinatorial parameters of SAWs in 2D and 3D.
Lattices in the plane: hexagonal (honey comb) HEX, square SQ, triangular TRI, and

Knight’s move KM; Lattices in three dimensions: diamond (tetrahedral) TET, simple
cubic SC, body centered cubic BCC, face centered cubic FCC, and a three-dimensional
generalization of the Knight’s move lattice TDKM.

d z Lattice µ γ B References
2 3 HEX 1.8477 0.345 1.28 [84, 85]
2 4 SQ 2.6382 0.34275 1.93 [84–88]
2 6 TRI 4.1507 0.343 1.69 [84–86,89]
2 8 KM 6.62 ∼ 0.15 ∼ 1.15
3 4 TET 2.621 1.164 1.48 [85, 88, 90]
3 6 SC 4.6839 1.161 1.39 [85, 91–93]
3 8 BCC 6.5291 1.163 1.25 [83, 85, 92, 94]
3 12 FCC 10.0364 1.162 1.26 [85, 91]
3 24 TDKM 22.66 1.162 ∼ 1.14 [95]

The effective number µ of conformational isomers per amino acid in a protein
structure has been estimated by various authors. For instance [96] reports µ = 3.8,
while µ ≈ 10 is obtained for the free chain in [97].

3.2.2. Energy Functions. In contrast to the rather elaborate standard energy model
for nucleic acids, most lattice protein models use simple contact potentials of the
form

E(x) =
∑

i<j

E(xi, xj)Cij (11)
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that depends only on the amino acids xi, xj that form a contact (i, j). Most studies
distinguish only between two classes of amino acids,

H = {A,C, I, L,M,F,W,Y,V}
P = {R,N,D,E,Q,G,H,K,P, S,T} (12)

(hydrophobic) and P (polar), with E(H,H) = −1 and E( . , . ) = 0 otherwise, see
e.g. [98]. Alternative potentials for 2-letter alphabets are studied systematically
in [9].

These models allow to study the hydrophobic collapse. Furthermore they admit
an intrinsic distinction between folding and non-folding sequences (a sequences folds
into a native structure if the lowest-energy structure is unique); it is not clear how
well this approach will generalize to more complex potential functions and larger
alphabets which will lead to non-degenerate ground states for most sequences [99].

As an example of a more sophisticated contact potential we mention Crippen’s [4]
ansatz

E(xi, xj) =

���������� ���������

−0.008 if |i − j| = 3
0.004 if |i − j| = 4
0.021 if |i − j| = 5, 6, 7���

�
−0.012 −0.074 −0.054 0.123
−0.074 0.123 −0.317 0.156
−0.054 −0.317 −0.263 −0.010
0.123 0.156 −0.010 −0.004

�	��

 if |i − j| ≥ 8

(13)

where the matrix entries correspond to the four amino acid classes

1 = {G,Y,H, S,R,N,E}
2 = {A,V}
3 = {L, I,C,M,F}
4 = {P,W,T,K,D,Q}

(14)

The parameters of such potential functions are extracted from databases of known
protein structures as log-likelihood estimates or by means of the inverse Boltzmann
law as described e.g. in [100–103].

3.2.3. The Lattice Protein Folding Problem. The lattice folding problem consists of
finding, for a prescribed amino acid sequence, a self-avoiding walk on a given lattice
that minimizes energy. This combinatorial problem is NP hard [104–106] even for
simple quadratic and cubic lattices and very simple energy functions, including the
HP model.

For short sequences and lattices with small effective connectivities µ all possible
conformations can be evaluated. In the case of moderate sequences sometimes
strongly constrained subsets of sequences, such as 27-mers that fill a 3 × 3 × 3
cube, are considered, see e.g., [107]. Heuristic algorithms such as CHCC [108] try
to construct good approximations of the ground state using “compactness” as an
additional critierion. Simple chain growth algorithm seem to yield fairly results
on average. A series of fast algorithm with exact performance bounds have been
devised by Sprin Istrail and coworkers [12, 109]. These produce solutions within a
constant factor c < 1 of the maximal number of contacts.
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4. Random Graph Models of Sequence-Structure Maps

4.1. The Random Graph Model. The numbers listed in Tables 2 and 3, to-
gether with the observation that the effective value of z for proteins appears to be
somewhere in the range of z = 3 . . . 12, imply that sequence-structure maps are
many-to-one, i.e. f−1(s) is a large set at least for the more common structures.

This observation poses the question how f−1(s) is embedded in the space of
biopolymer sequences, i.e., what can we say in general about the set of sequences
folding into s. In the absence of further information, we assume that f−1(s) is
uniformly distributed in sequence space. In other words, we assume that the pre-
image of a structure s can be regarded as a suitable random subgraph Γ of the
underlying sequence space. Here we restrict our attention to “host graphs” that
are sequence spaces (Hamming graphs) Qn

a with a fixed alphabet of size a and fixed
sequence length n.

Typically, random graph models assume a fixed vertex set V into which edges
are introduced [110]. The appropriate model for preimages in sequence-structure
maps, however, are the subgraphs ΓX induced by randomly selected vertex sets X
in the underlying sequence space [111,112]:

Definition 1. Let G(Qn
a) be the set of all induced subgraphs of Qn

a and let 0 ≤ λ ≤
1 be a constant. Then we set for Γ ∈ G(Qn

a)

µλ{Γ} = λa
n

(1 − λ)a
n−|Γ| (15)

where |Γ| is the size, i.e., the number of vertices, of the subgraph Γ. The random
subgraph model is the probability space Ωn,λ =

(

G(Qn
a),µλ

)

of subgraphs of Qn
a with

the measure µλ. We shall write Γn for a random graphs drawn from Ωn,λ.

The parameter λ can be interpreted as the fraction of neutral neighbors, i.e.,
(n− 1)aλ is the expected vertex degree of the random induced subgraph Γ.

Let Q be a property of Γn. We say that Γ has property Q asymptotically almost
surely (a.a.s.) if

lim
n→∞

µ{Γn has property Q} = 1 (16)

4.2. Predictions. A subgraph Γ′ is dense in Γ if each vertex of Γ is a vertex of
Γ′ or if it has at least a an adjacent vertex in Γ′. A (sub) graph Γ′ is connected if
there is a path (of edges in Γ′) connecting any two vertices of Γ′.

The parameter

λ∗ = 1 − a−1

√

1

a
(17)

plays a crucial role in the random subgraph model:

Theorem 1. If λ > λ∗ then Γn is connected and dense in Qn
a a.a.s. If λ < λ∗

then Γn is neither connected nor dense in Qn
a a.a.s.

Proof. The proof of this theorem is quite lengthy and technical [112]. Hence we
only give a brief sketch here.
In order to deal with denseness, one consideres the random variable Z(Γn) counting
the vertices of Qn

a that are neither in Γn nor have an adjacent vertex in Γn. Using
the “sieve formula” [110, p.17] it is possible to derive the limit distribution of Z(Γn)
through its factorial moments. One then finds that limn→∞ E[Z(Γn)] is either 0 or
∞ depending on whether λ is larger or smaller than the threshold value λ∗.
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The proof of the connectedness part proceeds via an analysis of the sizes of the
connected components. In the first step one shows that for λ > λ∗ there are
a.a.s. no very small components, while below the threshold there are many of them.
Furthermore, a.a.all vertices of Γn have large degrees above the threshold. The next
step is to show that in this case a.a.all vertices of Qn

a have many adjacent vertices
in Γn. Then one shows that a.a.s. every pair of vertices in Γn with a finite distance
k in Qn

a is connected by a finite path in Γn. Finally, one shows that there are large
enough subsets of vertices with mutually finite distances that can be connected by
such paths.

A related result in the special case of the Boolean hypercube with a different
random graph model based on independently drawing edges instead of vertices with
probability p can be found in [110].

A connected component Γ′ of graph Γ is a giant component if |Γ′| > c|Γ| for
some fixed constant c > 0. It is shown in [112] that Γn a.a.s. has a giant component
for whenever λ > 0 is a constant. For Boolean hypercubes Ajtai et al. [113] proved
in the edge-drawing model that there is a component with size g2n, g > 0, provided
p = c/n and c > 1 .

The component structure of Γn is discussed in some more detail in [111]:

Theorem 2. There is a c > 0 such that, for λn = c ln(n)/n, the largest component
X1 of Γn ⊂ Qn

a , for all ε > 0, satisfies a.a.s.

|X1| ≥ (1 − ε)|Γn| , (18)

The size of second largest component X2 is bounded by |X2| ≤ Cn/ ln(n) where
C > 0 is a constant depending only on a and c.

Application of these ideas to biological speciation are discussed in [114,115].

4.3. Neutral Paths. Neutral walks were used to gain information about the
structure of the (connected components of) neutral networks in a series of com-
puter experiments on RNA folding landscapes [116–118]. In each step we attempt
to find a neutral neighbor such that the distance from the starting point increases.
Therefore neutral walks on Qn

a terminate at the latest after n steps.
The probability a neutral walk with d steps cannot be elongated any further

equals (1− λ)α(d) where α(d) = (a− 1)(n− d) denotes the the number of “forward
steps” increasing the distance to the starting point. The probability that a neutral
walk of a Hamming graph terminates after exactly d steps is therefore [119]:

Prob[L = d] = (1 − λ)α(d) ×
d

∏

d′=1

[

1 − (1 − λ)α(d′−1)
]

. (19)

From equ.(19) one can infer that there are long neutral paths with typical length n
if λn/ lnn → ∞, while the walks are typically short (L/n → 0) for λ < lnn/n. In
the intermediate regime, λ ∼ C lnn/n with C > 1, the typical neutral path length
is proportional to n.
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Table 4. Various strategies applied to study sequence-structure maps of RNA

Method Advantage Disadvantage Ref.

Mathematical Random graph Analytical Limited validity of [112]
model theory expressions model assumptions

Exhaustive Folding algorithm Exact results Limited to short [117,118]
folding and and handling of chains:
enumeration large samples GC, ` ≤ 32

(> 109 objects) AUGC, ` ≤ 16

Statistical Inverse folding or Applicability Limited accuracy [116,120]
evaluation random walks in to longer due to statistics

sequence space sequences

Simulation of Chemical kinetics Evolutionary Restriction to [121–124]
evolutionary of replication relevance small parts of
dynamics and mutation sequence space

5. RNA Secondary Structures and the Random Graph Model

Mappings of RNA sequence space onto shape space, Qn
a → Sn, were studied by

the different approaches summarized in table 4. The random graph approach in-
troduced in section 4.1 yields information on the generic properties of sequence-
structure mappings. Here we are more concerned with the specific features of RNA
mappings, in particular with the consequences of the base pairing logic.

5.1. The Product Space Model. As a consequence of the base pairing logic, not
every sequence is compatible with every structure. While an arbitrary nucleotide
may be located at each unpaired position of a structure φ, base pairing positions
are constrained to AU, UA, GC, CG, GU, or UA. In the following we shall write C(φ)
for the set of all sequences that are compatible with φ. Clearly, only sequence that
are compatible with φ can actually fold into this structure, thus f−1(φ) ⊆ C(φ).

The distinction between paired and unpaired positions in a structure suggest a
factorization of RNA sequence space into a space of unpaired bases and a space of
base pairs: Qn

φ = Qnu
au

×Qnp

an with nu and np being the numbers of unpaired bases
and base pairs, respectively, in the secondary structure φ; hence n = nu + 2np.
For natural RNA molecules we have au = 4 and ap = 6 since six base pairs are
allowed in stacks. The vertex set of Qn

φ is C(φ). Two compatible sequence are
neighbors of each other if they differ either by a point mutation in the unpaired
part, or by the exchange of one type of possible base pair by another one. Note
that two sequences can be neighbors in Qn

φ while their Hamming distance in Qn
4 is

2: assume for instance that a GC pairs is replaced by a UA pair.
The random graph model described in section 4.1 can be customized to fit the

situation in RNA more closely by taking the factorization Qn
φ = Qnu

au
× Qnp

an into

account. Instead of a random subgraph of Qn
α we model the neutral network f−1(φ)

by a random induced subgraph Γ[φ] ⊂ Qn
φ. Two slightly different probability mea-

sures for Γ[φ] are considered in [112] with essentially the same qualitative results:
One may conclude that if the restriction of the random graph Γ[φ] to both factors
Qnu
au

and Qnp

an is dense and connected, then Γ[φ] itself is dense and connected. Hence
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the discussion in section 4.1 remains valid, one just has to take into account that
we have different threshold values for the paired and unpaired factors, respectively.

5.2. Shape Space Covering. The random graph model can also be used to ad-
dress the mutual location of the neutral networks of two different structures φ and
ψ. The basic fact in this context is the so-called Intersection Theorem:

Theorem 3. [112, Thm.5] Let φ and ψ be two secondary structures with the same
length. Then C(φ) ∩ C(ψ) 6= ∅.

The random graph approach then provides the following result:

Theorem 4. [112, Thm.8] Let φ, ψ be two secondary structures with the same
length and suppose the neutral networks Γ[φ] and Γ[ψ] are dense and connected
almost surely. Then

(i) The minimum distance of Γ[φ] and Γ[ψ] in Qnu

4 ×Qnp

6 is a.a.s. at most 2.
(ii) The expected Hamming distance from a randomly chosen sequence to the neu-

tral network is a.a.s. at most

E[r] < (1 − 6/16)np + o(1) (20)

This predicts that the neutral networks of any two secondary structures come
very close together at least somewhere in sequence space. As a consequence, any
two common secondary structures should be accessible from each other. We shall
return to this topic in section 5.3.5. Furthermore, equ.(20) predicts that we can
find sequences that fold into almost all common secondary structures within a ball
of radius E[r] centered at any given point in sequence space. This phenomenon
has been termed shape space covering in [116]. This prediction has been confirmed
in [118].

5.3. Comparison of random graph models with data from RNA.

5.3.1. Exhaustive enumeration. One of the few examples that allow to test the
prediction of random graph models directly is the mapping of RNA sequences into
secondary structures. The most straightforward strategy is exhaustive folding of
complete sequence spaces (Qn

a) and enumeration of results (table 4). Because of
the exponential increase in the number of sequences with chain length n and the
limitation of efficient retrieval of data at sample sizes of a few 109 objects this
strategy is limited to rather small molecules. This implies restriction to chain
lengths n ≤ 16 for AUGC- and n ≤ 32 for AU- or GC-sequences. Table 5 contains a
comparison of selected data on the numbers of minimum free energy RNA structures
from exhaustive folding with the numbers Ψ3,2

n of all secondary structure graph with
minimum stack length l = 2 and minimum length m = 3 of the unpaired stretch in
a hairpin loop. These were chosen according to empirical experience: Very small
hairpin loops, m < 3, and isolated base pairs, l = 1, are highly unstable and occur
only in exceptional cases such as short sequences and sequences with an extremely
biased base composition. The examples shown in table 5 contain only two minimum
free energy structures with isolated base pairs formed by GC-sequences of chain
length n = 12, nine structures for GC-sequences of chain length n = 16, and 51
structures for AUGC-sequences of chain length n = 16.

Depending on the base pairing alphabet only a certain fraction of all structures
will actually appear as most stable conformations. We see also that AUGC-sequences
sustain substantially more minimum free energy structures than GC-sequences. The
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Table 5. Comparison of exhaustively folded sequence spaces [117, 118, 125, 126]. The
values given in parentheses are the counted numbers of actually occurring minimum
free energy structures without isolated base pairs which are directly comparable to the

numbers Ψ3,2
n .

Chain Number of Sequences Number of Structures

Length (n) 2n 4n Ψ3,2
n AUGC GC AU

7 128 4.29 × 109 2 2 1

10 1 024 1.05 × 106 14 11 1

12 4 096 1.68 × 107 37 31 (29) 1

15 3.28 × 104 1.07 × 109 174 116 2

16 6.55 × 104 4.29 × 109 304 274 (223) 195 (186) 4

17 1.31 × 105 1.73 × 1010 530 340 8

20 1.05 × 106 1.10 × 1012 2 741 1 601 35

25 3.36 × 107 1.13 × 1015 44 695 18 590 164

30 1.07 × 109 1.15 × 1018 760 983 218 820 1 064

number of structures formed by AU-sequences is rather small as a result of the
relative weakness of AU base pairing and base pair stacking (in comparison to GC).
In more detail we shall compare two cases with the prediction from random graph
theory: (i) all sequences of chain length n = 16 and (ii) GC-sequences of chain
length n = 30. For longer sequences we have to rely on statistical methods in order
to obtain direct information.

5.3.2. Sequences of chain length n = 16. Structures, αk, in tables 6, 7 and 8 are
ranked according to their probability of formation from random sequences. These
probabilities are simply derived by dividing the size of the preimages in sequence
space by the total number of sequences, p(αk) = |f−1(αk)|/an. Neutral networks
in sequence space, corresponding to the structures αk, are characterized by their
sequence of components which are listings of component sizes. What we expect to
observe are either connected networks above the connectivity threshold or networks
consisting of several components with one largest giant component. We have to
recall, however, that the connectivity phenomenon discussed in section 4.1 is an
asymptotic property and finite size effects may easily override it in case of short
sequences. The most drastic example is the sequence space Q16

AU: 96.8% of the
sequences don’t form a stable secondary structure at all. For GC-sequences the
open chain amounts to 2.2% only and in Q16

AUGC we have 63.1% sequences with a
non-trivial minimum free energy structure.

The first eight most frequent shapes formed by sequences from Q16
GC have a single

connected component. The neutral network of the open chain structure (rank 9),
however, is partitioned into 13 components with a largest one containing 71.2%
of the sequences. Unexpected partitions of neutral networks are found with the
following two structures (ranks 10 and 11): They consist of two components of
almost equal size. Further down in the probabilities of structures we observe many
examples of this kind (ranks 14-20) and eventually structures appear whose netral
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Table 6. Frequent shapes formed by GC-sequences of chain length n = 16 as minimal
free energy structures.

GC-Alphabet

Rank Stucture Number of Number of Sequence

Sequences Components of Components

1 ((((•••))))••••• 2568 1 2568

2 •••••((((•••)))) 2541 1 2541

3 ••••((((••••)))) 1895 1 1895

4 (((((•••)))))••• 1881 1 1881

5 •••(((((•••))))) 1880 1 1880

6 ((((••••))))•••• 1803 1 1803

7 ••(((((••••))))) 1759 1 1759

8 (((((••••)))))•• 1738 1 1738

9 •••••••••••••••• 1427 13 1016 358 16 11 10

4 3 2 2 2 1 1 1

10 ••((((•••))))••• 1316 2 695 621

11 •((((•••))))•••• 1316 2 732 582

12 •••••••(((•••))) 1314 10 1292 5 4 3 3

2 2 1 1 1

13 (((•••)))••••••• 1310 9 1293 4 4 2 2

2 1 1 1

14 ••••((((•••))))• 1293 2 691 602

15 •••((((•••))))•• 1290 2 647 643

16 •••((((•••••)))) 1231 2 658 573

17 ((((•••••))))••• 1205 2 664 541

18 ••((((••••••)))) 1099 2 603 496

19 ((((••••••))))•• 1075 2 560 515

20 •((((•••••••)))) 1064 2 574 490
...

...
...

...
...

39 ••((((•••••))))• 659 4 181 171 157 150

40 •((((•••••))))•• 647 4 174 166 160 147

networks are split even in four equal sized components (ranks 39 and 40). These
clear deviations from the generic properties predicted by random graph theory
found a straightforward biophysical explanation [118]. All structures containing a
stack which cannot be elongated (class I in Fig.5) behave perfectly normal in the
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Table 7. All shapes formed by AU-sequences of chain length n = 16 as minimal free
energy structures.

AU-Alphabet

Rank Stucture Number of Number of

Sequences Components

1 •••••••••••••••• 63 488 1

2 •((((((•••)))))) 1020 1

3 ((((((•••))))))• 1012 1

4 ((((((••••)))))) 16 1

Class  I Class  II Class  III

Figure 5. Three classes of RNA stacks. Stacks are classified with respect to their
compatibility with stack elongation on the two ends. Class I stacks cannot be elongated,
class II stacks are compatible with elongation on one side whereas class III stacks can
add base pairs on both side of the stacks.

sense that the form generic networks. The distribution of sequence belonging to
such a network closely resembles the symmetric binomial distribution which is also
the distribution of random sequences. Structures of class II, however, can form an
additional base pair on one side of the stack and, in general, they will do so when
compementary bases are in the opposing positions. This is most likely the case when
the overall base composition is 50% G and 50% C and hence class II structures are
less likely to be formed by sequences of equal percentage of G and C. The highest
probability to form class II structures is thus expected to lie at a certain distance
displaced from the middle of sequence space. Indeed, the two components of the
class II structures have maxima of the distribution functions at excess G or excess
C ([50+ δ]% G or [50− δ]% G, respectively). The distribution of each component is
close to binomial with equal offset from the center of sequence space (50%G/50%C).
By the same token structuers of class III have two independent possibilities of stack
elongation at both ends and thus the probability of their formation is largest if the
sequences are displaced from the uniform distribution by δ and ε (for the left and
for the right hand end), respectively. Without further information we assume δ = ε.
Independent superposition yields then four components with maximal probability
densities at the following G/C ratios: (50 + 2δ)/(50− 2δ), 50/50, 50/50, and (50−
2δ)/(50 + 2δ). These are precisely the positions of the peaks observed with four
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Table 8. Frequent shapes formed by AUGC-sequences of chain length n = 16 as minimal
free energy structures.

AUGC-Alphabet

Rank Stucture Number of Number and Sequence

Sequences of Components

1 •••••••••••••••• 2 709 560 048 1

2 (((•••)))••••••• 52 505 831 1

3 •••••••(((•••))) 52 376 319 1

4 •••••((((•••)))) 44 544 114 1

5 ((((•••))))••••• 44 273 764 1

6 ••(((•••)))••••• 33 131 192 1

7 •••••(((•••)))•• 32 883 686 1

8 •(((•••)))•••••• 32 878 614 1

9 ••••••(((•••)))• 32 800 711 1

10 •••(((•••)))•••• 31 738 681 1

11 ••••(((•••)))••• 31 720 954 1

12 ••((((•••))))••• 27 886 795 1

13 •((((•••))))•••• 27 835 512 1

14 ••••((((•••))))• 27 791 612 1

15 •••((((•••))))•• 27 778 147 1

...
...

...
...

93 ••••••••((••••)) 2 329 003 2

(2 034 559+294 444)

...
...

...
...

97 ((••••))•••••••• 2 254 841 2

(1 906 756+348 085)

...
...

...
...

174 •(((•(••••)•)))• 87 295 3

(76 755+10 222+318)

component networks. The structural details of neutral networks, we may conclude,
are well described by the random graph model unless special structural features
lead to systematic biasses which can be interpreted straightforwardly.

Minimum free energy structures over the sequence space Q16
AU are little more than

an exercise in finding the most stable hairpin loops with the largest possible number
of base pairs. As said above the shape space is vastly dominated by the open chain
which expresses the overwhelming influence of finite size. Stable structures are the
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Table 9. Structures of GC-sequences of chain length n = 16 with two hairpins.

GC-Alphabet

Rank Stucture Number of Number of Sequence

Sequences Components of Components

78 (((•••)))((•••)) 135 4 132 1 1 1

80 ((•••))(((•••))) 123 3 120 2 1

164 ((•••))••((•••)) 12 4 4 3 3 2

178 ••((•••))((•••)) 4 2 3 1

179 •((•••))•((•••)) 4 3 2 1 1

184 ((•••))•((•••))• 3 2 2 1

195 ((•••••))((•••)) 2 1 2

three hairpin loops with six base pairs, the two triloops (ranks 2 and 3) and the
tetraloop (rank 4). The other structures with less than six base pairs are apparently
unstable.

The essential difference between Q16
GC or Q16

AU and Q16
AUGC lies in the cardinality,

65536 versus 4.29 × 109 sequences. This has to be compared with a rather small
difference in structures, 195 versus 274, and leads to average numbers of 336 and
15.7× 106 sequences per structure, respectively. Distances in sequence space, how-
ever, are the same in Q16

GC and Q16
AUGC and thus we suspect substantial differences

in the sequence of components. Indeed most neutral networks in Q16
AUGC belonging

to frequent structures are connected: The rank of the first network with two com-
ponents is 93 and the two components have a ratio in size of about seven. Smaller
networks have numbers of components up to five, but nowhere we found a situa-
tion of two or four equal sized components as in the Q16

GC case. A straightforward
interpretation is based on the much higher cardinality of neutral networks in the
AUGC case which leads to merging of components compared to networks in Q16

GC.
In summary, the data collected for all AUGC-sequences of the small chain length
of only n = 16 confirm the predictions of random graph theory rather well and
certainly better than GC-sequences.

Finally, we choose a special rare class of stuctures that can be easily counted and
thus allows to compare directly all possible structures with the results derived from
two-letter and four-letter sequences (Tables 10 and 9). These are the structures
with two hairpins (. . . . .) which are hard to form at chain length n = 16.
Two hairpins of minimal size, ((•••)), require 2 × 7 bases and thus only two more
bases remain which could be either a base pair or two unpaired bases. The former
case leads to two structures which are realized as the most common structures of
this class on both sequence spaces Q16

GC (ranks 78 and 80) and Q16
AUGC (ranks 144 and

145). All other 15 two-hairpin structures are readily derived from the short-hand
diagram by inserting the two unpaired bases at all possible positions. It is worth
noticing that all of them are formed by the four-letter sequences whereas only five
of them appear on Q16

GC. Interestingly, the stuctures formed by GC-sequences are in
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Table 10. Structures of AUGC-sequences of chain length n = 16 with two hairpins. For
structures which are formed also by GC-sequences the rank is given in parentheses.

AUGC-Alphabet

Rank Stucture Number of Number of Sequence

Sequences Components of Components

144 (78) (((•••)))((•••)) 257 506 1 257 506

145 (80) ((•••))(((•••))) 254 456 1 254 456

188 (164) ((•••))••((•••)) 57 398 1 57 398

196 (179) •((•••))•((•••)) 32 528 1 32 528

197 (178) ••((•••))((•••)) 31 533 1 31 533

198 (184) ((•••))•((•••))• 31 429 1 31 429

199 ((•••))((•••))•• 30 367 1 30 367

223 (195) ((•••••))((•••)) 15 048 1 15 048

224 ((•••))((•••••)) 14 625 2 13 968 657

225 •((•••))((•••))• 14 497 1 14 497

229 ((•••))•((••••)) 11 518 2 10 226 1292

233 ((••••))•((•••)) 10 762 2 8880 1846

236 ((•••))((••••))• 7318 2 6590 728

238 ((••••))((•••))• 6855 2 5822 1063

239 •((•••))((••••)) 6739 4 6329 217 183 10

241 •((••••))((•••)) 6466 2 5423 1043

270 ((••••))((••••)) 1837 5 1344 245 204 41 3

the same sequeunce (with only one exception) also the most common structures of
AUGC-sequences.

5.3.3. GC-Sequences of chain length n ≤ 30. Data derived from folding all GC-
sequences into secondary structures have been reported in detail [117,118]. We shall
consider here mainly the chain length dependence of the most prominent features
of sequence structue mappings in order to be able to predict the behavior in the
limit of long chains and to elminate thereby the finite size effects. First the fraction
of sequences forming no structure, i.e. the cardinality of the preimage of the open
chain, decreases exponentially with increasing chain length n. It contains already
less than 0.01% on Q16

GC. Second, careful inspection of the fraction of sequences
forming common structures allows to extrapolate to long chains and leads to the
following conjecture: In the limit of long chains almost all sequences fold into
common stuctures which constitute only a minute fraction of all structures or, in
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other words, the fraction of sequences folding into common structures approaches
one in the limn→ ∞ whereas at the same time the fraction of structures fulfilling
the condition of being common goes to zero. The results derived from exhaustive
folding of binary sequences (GC and AU) with n ≤ 30 still show tremendous finite
size effects but the general trends are already clear at the long chain ends of the
diagrams in [117].

5.3.4. Statistical evaluation of sequence spaces with chain lengths n > 30. Ex-
haustive techniques become infeasible when the total number of sequences exceeds
∼ 1010, and one has to resort to sampling techniques [116]. Neutral paths, sec-
tion 4.3, for instance can be used to detect neutral networks. The covering radius,
section 5.2, can be estimated by measuring the minimum distance that is necessary
to find a given structure from a chosen starting sequence, and averaging over the
starting sequences and target structures weighted by their preimage sizes. This
provides an upper bound for the mean covering radius. Extensive computer simu-
lations reported in [70,116,120,127–129] provided strong evidence for the existence
of sequence space percolating neutral networks and shape space covering.

5.3.5. Shape Space Topology. The topological (and possibly metric) properties of
phenotype spaces are still largely uncharted territory. In fact, the description of the
genotype-phenotype maps of RNA so far has made no reference to the structure of
shape space itself beyond a definition of equality of structures.

In order to understand the sequence of phenotypic changes along an evolutionary
trajectory, however, it is necessary to know which phenotypes are accessible from
which genotypes. Accessibility can then be used to define a relation of “nearness”
among phenotypes, independently of their geometric, biophysical, or biological sim-
ilarities [123, 124]. In the simplest case, we might say that ψ is accessible from φ,
if it is possible to jump from f−1(φ) to f−1(ψ) by means of a point mutation.
Shape space covering, section 5.2, suggests that each structure should be accessible
from any other structure. However, sequence space is so large that not all possible
sequences are ever realized in the course of simulation run (or during the history
of evolution). Fontana & Schuster [124] argue that a more restrictive condition
for accessibility is more suitable, for instance a minimum number of sequences in
f−1(ψ) that are neighbors of sequences folding into φ.

Shortening
of stacks

Elongation
of stacks

Opening of
constrained stacks

Closing of
constrained stacks

Figure 6. Structural changes corresponding to continuous evolutionary transitions.
Shorting and elongation of stacks as well as opening of constrained stacks in general
leads to easily accessible structures. Closing a constrained stack, on the other hand,
leads to inaccessible structures and hence corresponds to discontinuous transitions.
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The evolutionary trajectories observed in computer simulations can be regarded
as a sequence (x0, x1, . . . ) of those phenotypes on whose neutral networks the pop-
ulation is concentrated during subsequent diffusion phases. The question hence
becomes whether there is a meaningful way of distinguishing between continu-
ous (smooth, expectable), and discontinuous (surprising) evolutionary transitions.
From a more abstract point of view, continuity is a topological property of a map
from one topological space into another one. Having defined the topology by spec-
ifying a suitable notion of accessibility, it becomes a matter of observation or com-
puter simulation to find out whether “real” evolutionary trajectories are in fact
continuous. We find that most evolutionary transitions are indeed continuous most
of the time. Rare discontinuous transitions are often associated with major struc-
tural transitions [123, 124, 130]. We note, finally, that the topological notion of
continuity might sometimes be too restrictive. Weaker mathematical structures,
such as filter spaces or convergence spaces, as introduced for instance in [131–134],
appear to be promising starting points for a generalization of this approach.

6. Conclusions and Outlook

The lack of complementarity rules in discrete protein models makes the folding
problem much harder than in RNA and less straightforwardly accessible to combi-
natorics. Some results, such as the relatively small extensions and the clustering
of the neutral networks that has been observed in some lattice models [11], are
not very well compatible with the simulations based on knowledge based poten-
tials [135, 136] suggesting that proteins and RNA behave in essentially the same
way. This discrepancy might be explained by the short chains n < 30 and the
two-letter HP alphabet used in the lattice models. While native-like proteins can
be designed from reduced alphabets, recent experiments [137] as well as computer
simulations [135] suggest that two letters are not sufficient.

The notion of neutral networks in RNA sequence space requires modification
when suboptimal conformations or folding behavior of molecules is taken into ac-
count as an additional constraint. The degree of neutrality will certainly be smaller
than in the case of the minimum free energy structures. Whether two folded RNA
molecules are selectively neutral or not, after all, is not only a matter of sequence-
structure mappings. The answer reflects selection constraints and thus requires
detailed information on experimental conditions if one wants to deal with it in
quantitative manner.

Models of discretized RNA structures are inevitably based an the notion of sec-
ondary structure which restricts acceptable contacts by a base pairing rule. Al-
though being a rather crude structural concept it has to highly relevant advan-
tages [35]: (i) for most RNA molecules the secondary structure is a folding in-
termediate which is turned into the 3D by the formation of tertiary contacts, (ii)
the majority of tertiary contacts can be classified by a few simple principles like
pseudoknots, terminal (non-Watson-Crick) base pairs, base tripletts, base quar-
tetts, and coaxial stacks. Making use of algorithms which are not restricted by the
conventional sencondary structure concept like, for example, the kinetic folding al-
gorithm [81], these tertiary interactions can incorporated into structures. Thereby
one would still stay within the realm of discreteness and at the same time approach
a more realistic concept of RNA structures.
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[49] G. Szegö. Orthogonal Polynomials, volume XXIII of Amer. Math. Soc. Coll. Publ. Amer.

Math. Soc., New York, 1959.
[50] J. Leydold and P. F. Stadler. Minimal cycle basis of outerplanar graphs. Elec. J. Comb.,

5:R16, 1998. See http://www.combinatorics.org and Santa Fe Institute Preprint 98-01-011.
[51] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence of

thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol.,
288:911–940, 1999.

[52] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Müller, D. H. Mathews, and M. Zuker.
Co-axial stacking of helixes enhances binding of oligoribonucleotides and improves predicions
of RNA folding. Proc. Natl. Acad. Sci. USA, 91:9218–9222, 1994.

[53] J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of secondary structures for
RNA. Proc. Natl. Acad. Sci., USA, 86:7706–7710, 1989.

[54] L. He, R. Kierzek, J. SantaLucia, A. E. Walter, and D. H. Turner. Nearest-neighbor param-
eters for GU mismatches. Biochemistry, 30, 1991.

[55] A. E. Peritz, R. Kierzek, N. Sugimoto, and D. H. Turner. Thermodynamic study of internal
loops in oligoribonucleotides: Symmetric loops are more stable than asymmetric loops.
Biochemistry, 30:6428–6436, 1991 o+.

[56] J. SantaLucia jr., H. T. Allawi, and P. A. Seneviratne. Improved nearest-neighbor parameters
for predicting DNA duplex stability. Biochemistry, 35:3555–3562, 1996.



Discrete Models of Biopolymers 27

[57] J. SantaLucia jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl. Acad. Sci. USA, 95:1460–1465, 1998.

[58] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proc. Natl. Acad. Sci. USA, 77(11):6309–6313, 1980.

[59] R. Nussinov, G. Piecznik, J. R. Griggs, and D. J. Kleitman. Algorithms for loop matching.
SIAM J. Appl. Math., 35:68–82, 1978.

[60] M. Zuker and P. Stiegler. Optimal computer folding of larger RNA sequences using thermo-
dynamics and auxiliary information. Nucleic Acids Research, 9:133–148, 1981.

[61] M. Zuker and D. Sankoff. RNA secondary structures and their prediction. Bull. Math. Biol.,
46(4):591–621, 1984.

[62] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244:48–52, 1989.
[63] M. Schmitz and G. Steger. Base-pair probability profiles of RNA secondary structures.

Comput. Appl. Biosci., 8:389–399, 1992.
[64] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for

RNA secondary structure. Biopolymers, 29:1105–1119, 1990.
[65] J. Cupal, I. L. Hofacker, and P. F. Stadler. Dynamic programming algorithm for the den-

sity of states of RNA secondary structures. In R. Hofstädt, T. Lengauer, M. Löffler, and
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