Spectral Landscape Theory

Peter F. Stadler
Institut fir Theoretische Chemie, Universitat Wien
Wabhringerstrasse 17, A-1090 Wien, Austria

The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501

The notion of an adaptive landscape has proved to be a valuable con-
cept in theoretical investigations of evolutionary change, combinato-
rial optimization, and the physics of disordered systems. Landscape
theory has emerged as an attempt to devise suitable mathematical
structures for describing the “static” properties of landscapes as well
as their influence on the dynamics of adaptation. Here we focus on
the connections of landscape theory and algebraic combinatorics that
form the basis of spectral approach to understanding landscape struc-
ture.

1 INTRODUCTION

Evolutionary change is caused by the spontaneously generated genetic varia-
tion and its subsequent fixation by drift and/or selection. Consequently, the
main focus of evolutionary theory has been to understand the genetic structure
and dynamics of populations, see e.g. [101]. In recent years, however, alter-
native approaches have gained increasing prominence in evolutionary theory.
This development has been stimulated to some extent by the application of
evolutionary models to designing evolutionary algorithms such as Genetic Al-
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gorithms, Evolution Strategies, and Genetic Programming, as well as by the
theory of Complex Adaptive Systems [69, 79, 38].
The generic structure of an evolutionary model is

z' =8 (z,w)oT (z,t), (1)

where z is e.g. the vector of haplotype frequencies, and S(z,w) is a term
describing the selection forces acting on z. The parameters w form the so-
called fitness function, since they can be regarded as a mapping from the
set of types into the real numbers. The second term, T'(z,t), describes the
transmission processes by determining the probability of transforming one
type into another one by mutation and/or recombination [3]. Hence, evolution
models can be seen as dynamical systems of genotype frequencies which live
on an algebraic structure [96] that is determined by genetic processes such as
mutation and recombination.

Metaphorically, the dynamics of evolutionary adaptation therefore can be
seen as a walk on a landscape, where uphill moves are preferred. The real-
ization that the topological features of fitness landscapes crucially influence
the time-course of natural and simulated evolution led to what is now called
landscape theory. It has several roots: In evolutionary theory it can be traced
back to Wright’s ideas about adaptive landscapes, see [114, pp. 304-317], and
became important in theories of molecular evolution and the origin of life
[31, 33, 42, 48, 75, 80, 110, 126, 127] and in evolutionary computer science
[76, 77]. Similar developments exist in physics [44], where free energy land-
scapes of disordered systems such as spin glasses are considered [98], and in
search theory [109]. The main challenge to landscape theory is to determine
which features of the fitness landscape determine the evolvability of the sys-
tems on the landscape.

From the mathematical point of view, a landscape consists of three in-
gredients: (i) a set V of “configurations” which we shall assume to be finite
but very large, (ii) a cost or fitness function f : V' — R that evaluates the
configurations, and (iii) some sort of additional geometrical, topological, or
algebraic structure X on V' that allows us to define notions of closeness, simi-
larity, or dissimilarity among the configurations. The structure X', which turns
the set V into the configuration space (V, X), is determined by the particular
application, e.g. a heuristic search procedure for a combinatorial optimization
problem, or by the mechanisms of mutation and recombination in biological
evolution.

A very promising approach in landscape theory is the decomposition of
the fitness function f : V' — R is terms of a basis (of the vector space R")
that is induced in some natural way by X. In other words, we search for
a suitable spectral theory of the combinatorial space (V, X'), which we then
use to “Fourier transform” f with respect to a suitable set eigenfunctions
of (V,X). The resulting “Fourier coefficients”, so one hopes, will reveal the
important features of the landscape much more readily than f itself.
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2 CONFIGURATION SPACES

2.1 GRAPHS, HYPERGRAPHS, P-STRUCTURES, AND FINITE
TOPOLOGIES

We have argued in the introduction that the “additional structure” X makes
the boring “bag of numbers” f : V — R a landscape — and an interesting
mathematical object. The structure of the set V is oftentimes related to, or
derived from, the internal structure of the objects z € V. In this section
we shall explore a few possibilities of imposing structure onto the set V of
configurations.

2.1.1 Graphs. The simplest case is based on the notion of a move set. For
each z € V we define as set N(z) of “neighbors” of z. The elements of
N (z) are those configurations that can be reached in a single step starting
form z. It will be convenient to assume z ¢ N (z) for all z and to define
N(z) = N(z) U{z}. This definition allows us to regard the set

E={(z,y)|zreV,yeN(z)} (2)

as the edge set of a directed graph with vertex set V. Equivalently, £ is a
neighborhood relation on V', that is, a relation satisfying (z,z) ¢ &£ for all
xeV.

In many cases one is interested in symmetric neighborhood relations, i.e.,
in move sets in which each step is “reversible” and (z,y) € £ implies (y,z) € £.
We may then regard V' as an undirected graph with edges {z,y} € E iff
(z,y) € €. The undirected graph case is by far the best studied one.

The tours of a traveling salesman problem, for example, can be encoded
as the list of cities in the order in which they are visited. In other words, a
particular tour is a permutation 7 of the cities {1,...,n}. It seems natural to
make use of the fact that these permutations form the symmetric group Sj:
choose a move set 2 C S,, and define that y is a neighbor if z if y is obtained
from z by multiplication with an element of ¢t € Q, y = xt. Of course, we
require that © does not contain the group identity 2. Thus (z,y) € £ if and
only if 7'y € €. The resulting graph is a so-called Cayley digraph of the
S,.. In most cases one assumes that ¢t € Q implies t ! € Q, in which case
the neighborhood relation is symmetric and the Cayley graph has undirected
edges.

In molecular biology, we may for instance consider sequences as config-
urations and mutation as the move set. We have to distinguish two types
of mutation: point mutations change a letter in a sequence without affect-
ing its length. Insertions and deletions, on the other hand, change the length
of a sequence. Editing operations such insertions and deletions are used for
example in sequence alignment algorithms and can be generalized to trees
[103, 146, 66]. Tree editing also provides a suitable analogue for mutation in
Genetic Programming, see [106, 105]. Tree editing procedures are furthermore
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FIGURE 1 String Recombination. The children z and z are obtained by a multi-
point crossover between the parents y and z. The bar on the top marks the positions
that are transmitted together from a parent to an offspring in black and white,
respectively.

used in phylogenetic reconstruction [35]. Editing operations related to sorting
are used to deal with with genomic rearrangements [81].

2.1.2 Recombination, P-Structures, and Hypergraphs. Recombination, or cross-
over, is another way of imposing a sense of closeness on V. For strings, the
meaning of cross-over is easily defined.

A cross-over operator is amap x : V xV — V x V with the following
property: Suppose x (¥, 2) = (u,v). Then for each k either y = uy A 2 = vg, or
2r = ug A yr = vg. By abuse of notation we write z € x(y,2) if x = uorz = v,
i.e., if z is an offspring of (y,z). As an immediate consequence we see that
x(z,z) = (z,z). We follow here the spirit of [77] when we regard a crossover
operator as producing pairs of sequences rather than a single sequence from
a pair of “ancestors”.

We write x = {k|zr = ur A yr, = v} and x = {k|lyr = ur A 2 = vi} for
the two subsets of loci (sequence positions) that are separated by the cross-
over operator x. There is of course a one-to-one correspondence between a
cross-over operator x : V xV — V x V and the associated set x C {1,...,n}:
the set lists exactly those loci that are inherited from the first parent z by the
first child u, see Figure 1. Analogously, x is the list of loci that the first child
u inherits from the second parent y. Of course, x = {1,...,n} \ x.

Note that ancestors and offsprings have the same length. More general
types of recombination, often called unequal crossover, do not adhere to this
restriction: here recombination evens may occur between independent posi-
tions in the two sequences whence the chain lengths of the recombinants vary
[130]. Crossover operators may also be defined for trees and permutations,
with applications in genetic programming [88] and GAs for the traveling sales-
man problem [159], respectively.

A recombination operator (in the sense of much of the GA literature) is
a family F of cross-over operators that act on V' x V with probabilities m(x).
In the following we restrict ourselves to equal-length crossover on strings. The
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two most important recombination operators are uniform recombination [0o],
consisting of all 2™ possible crossover operators, and 1-point recombination
[1], which contains all cross-over operators x for which the characteristic set
is of the form x = {1,...,k}.

Let V be a finite set with power set P(V). A P-structure [143] is a pair
(V,R) where R : V x V — P(V). We say that the P-structure is symmetric
if R(z,y) = R(y,z) for all z,y € V. In a weighted P-structure we attach a
positive weight H, (, ) to each triple (z,y, z) for which z € R(y, z) and we set
H, (y,-) = 0if 2z ¢ R(y, 2). We call H the incidence matrix of the P-structure.

In particular, there is a weighted P-structure associated in a natural way
with each cross-over operator x:

RX(y,2) ={z € V|z € x(y,2)}

2 if z=y==2 (3)
x =<1 if z€x(y,2) and y # 2
z,(y,2) .

0 otherwise.

We observe that H;‘,(y,z) > 0 if and only if z is an offspring of (y,2). The

doubled weight in the “diagonal”, H;‘,(m,x) = 2, is mostly a technical conve-
nience: It implies immediately ), H, (,,.) = 2, since any crossover operator
produces exactly two offsprings from a pair of parents. If y = z, we simply
count the offspring y = 2z twice. The weighted P-structure associated with a

recombination operator F is then

H=) n(y)H
xXEF (4)
R(y,z) = U RX(y,2) ={z € V|EIX eF:zex(y2)}
XEF

The interpretation of this definition is straight forward: H, (, ,) is the
chance that z is an offspring of the parents y and z under F-recombination
[153].

The recombination hypergraph imagR has vertex set V' and hyper-edges
R(y,z), y,2 € V. A spectral theory of hypergraphs is described in [123].
Gitchoff and Wagner [49] introduced a set axioms to describe the action of
recombination in terms of what we call here P-structures. In [143, Lemma C2]
we showed that any recombination operator forms a recombination structure
if and only if the identity map on V x V is a member of the family F of
crossover operators.

2.1.3 Finite Topological Spaces. The shape space of RNA secondary struc-
ture has been treated as a finite metric space, with a distance measure that is
based on “structure editing” [39, 74]. It has become apparent, however, that
distance measures of this type are not useful for explaining the features of evo-
lutionary trajectories [40, 41]. In these contributions, a notion of “continuity”
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is introduced and the evolutionary transitions are classified as continuous or
discontinuous based on how easily one shape can be accessed from a previous
one. Continuity is a topological property. Taking this idea serious one may
regard shape space as (finite) topological space assuming that the “natural”
topology is obtained by declaring the sets A'(z) of structures that are acces-
sible from z as open sets. This approach will be pursued elsewhere [20]. We
just mention here that finite topological spaces have a unique non-redundant
basis consisting of the sets

Bz)= (] N (5)

y:z€N(y)

which may be translated into the directed graph Y with vertex set V and
edges B(z) \ {z}, z € V. Topological properties such as separation properties
can be then expressed as graph-theoretical properties of Y, and we are back
to the graph case.

2.2 MATRIX REPRESENTATIONS

2.2.1 Markov Chains. Not surprisingly we shall encounter a close relationship
between spectral graph theory [12, 22, 21, 23] and landscapes on graphs in
the course of this survey. A graph is faithfully represented by its adjacency
matrix A which has the entries

1 if (z,y) €&
A“’_{O it (z,y)¢¢& 6)

Of course, A is symmetric if and only if the graph is undirected.

The most straight forward way of search on a possibly weighted (di)graph
is a random walk, that is a Markov process with state space V. The most
natural transition matrix is

Prob(y — z) = S,y = Awy/ Z A, (7

z€V

Such a random walk is usually called simple since each edge leaving y is chosen
with the same probability. The denominator in equ.(7) is the out-degree of
vertex . The matrix S is the transition matrix of the random walk. Note that
this is the transpose of the convention in most of the literature on Markov
chains, see e.g. [11, 95]. The most important feature of random walks is the
existence of a stationary distribution p such that p = Sgp to which all initial
distributions converge under fairly general conditions.

A Markov process is called reversible if its stationary distribution g sat-
isfies the balance equation Sgyp(y) = p(x)Szy. In particular, a simple ran-
dom walk on an undirected graph is reversible. Let P be the diagonal ma-
trix with diagonal . If S is the transition matrix of a reversible chain then
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T = P~1/2SP'/? is a bistochastic symmetric matrix. The “regularized” tran-
sition matrix T still essentially describes the graph I' since T, > 0 if and
only if (z,y) is an edge of I'. Since T is a symmetric non-negative matrix it
serves as the starting point for the spectral theory of Markov processes [11].

Let us briefly consider the case of Hamming graphs in its most general
setting. The configuration space consists of “genomes” with n loci (or posi-
tions) k = 1,...,n. The are oy alleles (or letters) at each position, which we
denote by z, € A, = {0,1,...,ar — 1}. With z;, € Aj we associate the root
of unity

Tk = exp(2m zp [au) (8)

Furthermore, for I € [], Ay, set I = {k|I # 0}. For each “index” I we define
the generalized Walsh function

Er: H.Ak—HC EI Hi’ikZ AIk (9)

kel

We remark that {e/| € V} is the standard Fourier basis of the Abelian
group [] Za,, , see section 2.3.6 below. These functions are eigenvectors of the
adjacency matrix of the Hamming graphs [[ Qa,, i-e., the graphs obtained by
considering point-mutations; see e.g. [135]. Note that the formal association
of the index sets I with the vertices in V' is a mere book-keeping device. If
the number of alleles is the same for all loci, ay = «, then the eigenvalue of
S associated with er is Ay =1 — ﬁlfl/n

Useful Markov processes on V' can be defined, however, without any refer-
ence to a graph structure. The string recombination structures introduced in
section 2.1.2 may serve as an example: A cross-over walk [70, 71] on V is the
Markov process based on the following rule: The “father” y is mated with a
randomly chosen “mother” z. The offsprings are the “son” z and the “daugh-
ter” Z. The “son” x becomes the “father” of the next mating. We regard the
sequence of “fathers” as a random walk on V. It is straightforward to derive
the transition matrix of this Markov process:

1
S:cy = ) Z Hw,(y,z)p(z) (10)

z€eV

The factor 1/2 stems from the fact that the offspring x is the “son” and
not the “daughter” of the parents y and z with probability 1/2. By p(z)
we denote the probability that z is the “mother” of the mating, i.e., p(2) is
the frequency of genotype z in the population o under random mating. The
uniform population case p(z) = 1/|V|, which is discussed in [143, 153], is
generalized to the Wright manifold W = {go|go(z) = [1,, pr(2k) }, where py(a)
denotes the frequency of allele a at locus k, in [142]. It is not hard to verify
that that linkage equilibrium is maintained under recombination, i.e., that
any p € W is a stationary distribution of S as defined in equ.(10). This fact
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was first proven for two alleles and arbitrary number of loci by Robbins [121]
and for multiple alleles by Bennett [9].
The “population-weighted” Walsh functions

6@ = %k (11)

- Pk
kel

are defined for all p € W. For a uniform population they coincide with the
generalized Walsh functions introduced in equ.(9). In [142] we show that the
population weighted generalized Walsh function 9% is a left eigenvector of
SXx:# with eigenvalue

1 if I=0
N=q1/2 if 0#ICxor0#ICx (12)
0 otherwise

This observation not only sets that stage for a spectral analysis of recombi-
nation landscapes, it also shows that recombination and mutation on strings
are compatible operations that can therefore be compared directly in a mean-
ingful way. The close relation between Hamming graphs and recombination
spaces was noted with different methods by various groups, e.g. [19, 49, 93],
see also appendix A.

2.2.2 Schrodinger Operators and Graph Laplacians. Let I' be a simple graph
(without loops and multiple edges), and let a be a weight function on the edges
of T, conveniently defined as a: V' x V — R such that a(z,y) = a(y,z) >0
if {z,y} € E and a(z,y) = 0 otherwise. We say that I' is unweighted if
a(z,y) € {0,1}, i.e., iff a(z,y) = Asy. Furthermore, let v : V. — R be an
arbitrary potential. The linear operator H defined by the action

Hf(e) =) alz,y) [f(2) = f(y)] +v(z)f(2) (13)

y~z

is a discrete Schrodinger operator associated with I' [24]. This definition in-
cludes the transition matrices of random walks on graph discussed in the
previous section. The quantity

deg(z) = — Z H.,

y{z,y}€E

is the (generalized) degree of a vertex x € V. The degree matrix D is the
diagonal matrix of the vertex degrees.

We call —A = D — A the Laplacian of the edge-weighted graph T [99,
100]. A slightly different definition is explored in [17]. Hence any Schriodinger
operator is of the form H = —A + diag(v(z)). The Laplacian is therefore a
Schrédinger operator without potential.
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The analogy between discrete and continuous Schrédinger operators is
a close one because the discrete Laplacian —A resembles the Laplacian dif-
ferential operator A is many ways. To see this, one introduces an arbitrary
orientation on T by choose one of the two vertices u or v of the edgeh = {v, w}
as the “positive end” and the other one as the “negative end”. The matrix

++/a(z,y) if z is the positive end of h = {z,y}
Vi =< —V/a(z,y) if z is the negative end of h = {z,y} (14)
0 otherwise

is called the (weighed) incidence matriz of T'. The choice of the symbol V is
intentional. In fact, let f: V' — R be an arbitrary function. Then (V f)(h) =
Va,w)[f(v) — f(w)] where h is the edge {v,w}, and v is the positive end
of the edge h. This is as close to a first derivative as one can get on a graph.
Note that 1/1/a(v,w) takes the role of the distance between the vertices v
and w.

The discrete Laplacian —A is symmetric, non-negative definite, and sin-
gular. The eigenvector (1,...,1) belongs to the eigenvalue Ag = 0. Ay has
multiplicity 1 if and only if ' is connected. A few simple computations verify
that A = —V*1V and hence corresponds to “second derivatives” on T'. Let
(.,.) denote the standard scalar product on RIV! and let f,gV — R be
arbitrary landscapes. Then Green’s formula holds in the following form:

Graph Laplacians appear in very diverse fields of pure and applied mathemat-
ics. Their earliest use goes back to Kirchhoff’s theory of electrical networks
[84], see, e.g., [12, Chap.5].

2.2.3 Courant's Nodal Domain Theorem. A well-known feature of Schrédinger
operators on Riemannian manifolds is that the nodal domains, that is, the
connected components of M \ 9~1(0), of their eigenfunctions are severely
constrained. In order to formulate Courant’s theorem for graphs, we define for
any function f : V= R on I': supp, (f) = {z € V|f(x) > 0}, supp_(f) =
{z € V|f(@) > 0}, zero(f) = {z € V|f(@) > 0}, suppl.(f) = supp,(f) U
zero(f), and supp® (f) = supp_(f) U zero(f). A (strong) nodal domain of f
is a maximal connected component of either supp, (f) or supp_(f). A weak
nodal domain is a maximal connected component of supp, (f) U zero(f) or
supp_ (f) U zero(f), respectively.

Let Ay < A2 < --- < Ajy| be the eigenvalues of a Schrédinger operator
on I' with corresponding eigenvectors ;. Define M (i) = max{k|Ar = A;} and
m(i) = min{k: Ay = A;}. Hence, m(i) <4 < M%), M (i) = m(i)+mult();)—1,
and m(i) = M (i) =1 if and only if )\; is a simple eigenvalue of H.

The main result on discrete Schrédinger operators is the following version
of Courant’s Nodal Domain Theorem, which motivates why the eigenfunctions
of a Laplacian form particularly interesting basis sets for our purposes:
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Let 1; be an eigenvector of H with eigenvalue \;. Then:

(i) There are at most M (i) (strong) nodal domains of .

(ii) There are at most m(i) weak nodal domains of .

(iii) If ¢; has m(i) + k, k > 0, (strong) nodal domains, then no two of them
meet at a non-vertex point of the geometric representation of the graph T,
and every vertex meets at least k + 1 (strong) nodal domains.

The proofs of these results were obtained independently by different au-
thors [45, 24, 149], beginning with Fiedler [36] who showed that the number
of components of supp (¢;) is at most M (¢). Some closely related results on
the component structure of supp, (¢;) U supp_(;) can be found in [112].

2.3 SYMMETRIES, PARTITIONS, AND MATRIX ALGEBRAS

In many cases of practical interest there is a substantial amount of symme-
try in the ways by which the set of configurations is constructed. Below we
shall briefly explore a few approaches which haven been used to exploit these
regularities in search of a workable spectral theory.

2.3.1 Relations and Automorphisms. A relation g on V is simply a subset
p C V x V. The adjacency relation of a graph I' may serve as an example.
An automorphism of p is a permutation g € S|y | such that (z,y) € u if and
only if (g(x),g(y)) € p. The automorphisms of u for the (permutation) group
Aut[u], the automorphism group of . The automorphism group of a set R of
relations on V is

Aut[R] = ﬂ Aut[y] (16)

HLER

To each relation p on V' there is an associated characteristic |V| x |V | matrix
R with entries RY") = 1if (z,y) € p and RY) = 0if (z,9) ¢ p.

Let G be an arbitrary permutation group acting on V. By 2orb(G,V)
we denote the set of orbits of G acting on V x V. Of course the 2orb(G, V)
corresponds to a partition of V' x V, and each element of 2orb may be regarded
as a relation on V. These relation encapsulate the information about the
symmetries that are most relevant for us.

A matriz representation of a finite group G is a map p from G into
the group of d x d invertible matrices with complex coefficients such that
p(gh) = p(g)p(h) for all g, h in G. The permutation representation G of (G, V)
consists of the |V| x |V| permutation matrices G(g) whose non-zero entries
are G,y (g) = 1 if and only if x = g(y).

A permutation group G on V is intimately connected with its centralizer
algebra

B =Bc(G,V)={MeCV*IVl|vg e G: MG(g) = G(g)M} (17)

The set U is closed w.r.t. addition and multiplication of matrices and w.r.t.
multiplication with scalars from the underlying field C. Its dimension (as vec-
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tor space) equals the rank of its permutation group, dim() = rank(G, V).
The characteristic matrices R(#) of the orbits s € 20rb(G, V) form the stan-
dard basis of the vector space 8. From R o RW = 0u,vR* we see that U
is also closed under component-wise (Schur or Hadamard) multiplication. Fi-
nally, 9 is closed under transposition since the transpose ut = {(z,9)|(y, ) €
u} of an orbit is again an orbit.

2.3.2 Coherent Algebras. A set of complex matrices that is closed under (i)
scalar multiplication with complex numbers, (ii) component-wise addition,
(iii) ordinary matrix multiplication, (iv) component-wise multiplication, and
(v) transposition is called a coherent algebra or cellular algebra. Equivalently, a
matrix algebra 20 C C!VI1*IV1 is coherent if and only if it satisfies the following
axioms:

(i) As a linear space over C, 20 has a basis of {R(1), ... R} of 0-1 matrices.
(i) Y7, R = J, the all-1 matrix.

(iii) For every i € {1,...,7} there an i’ such that R®T = R,

(iv) I € 20.

Sometimes coherent algebras without unity are considered, i.e., axiom (iv) is
disregarded. The centralizer algebras of permutation groups form the most
prominent class of coherent algebras (with identity).

Axiom (ii) above implies that the relations associated with the basis ma-
trices R\ form a partition of V x V. Such partitions are known as coherent
configurations [63, 64, 65]. Table 1 gives an overview of various properties of
partitions of V' x V that are of interest in the context of landscapes. For details
see e.g. [135, 136].

For each collection M = {My,..., My} of |V| x |V| matrices there is a
smallest coherent algebra (M) which is the defined as the intersection of all
coherent algebras that contain {My, ..., M}. Since the centralizer algebra is
coherent we have

(M) € Be(Aut[M], V) (18)

Equality hold if and only if there is a permutation group that has {(M)) as its
centralizer algebra [87]. The coherent algebra (M) can therefore be regarded
as a “combinatorial approximation” of the centralizer algebra [34, 85]. This is
of particular importance in the graph case: given the adjacency matrix A of
T, there is polynomial time algorithm that determines the coherent algebra
W(T) = (A)), see [157, 7, 6].

Let R = {RM, ..., R} be the standard basis of a coherent algebra 20.
We have RWR®) = pﬁ,,,R(") where intersection numbers

pZ7V=|{z€V|(a:,z)€,u/\(z,y)ey}| eNo (19)

are the same for all pairs (z,y) € k. The r x r matrices R* with entries
f{,(;',l = pj; , generate a matrix algebra 2 that is isomorphic to 20 [63]. This
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TABLE 1 Regularity properties of partitions.

i |uNZT#0 = pCZforanyp€R

i TER

ii | {z|FyeV:i(z,y) eut={yl3z eV :(x,y) ep}t=Viorallue R
iv |peR = pter

v |p=pTforallpeR

vi |{y eV|(z,y) € u}| and |{y € V|(y,z) € p}| depend only on y € R
but not on z € V

vii | The numbers p;; , = |{z eV | (z,2) € pA(z,y) € 1/}|

are the same for all pairs (z,y) € k

viii | The matrices R* and R) commute for all y,v € R

Property i ivovovi vil viil
homogeneous

transitive

precoherent configuration
symmetric .
class degree regular

homogeneous class deg. regular
coherent

homogeneous coherent configuration
class degree regular cc

association scheme

symmetric association scheme

O @ O+~
o

® ¢ ¢ O o o
O O O e
0O O O ©o

O e e o o
O O e ©O

o o6 o o o

Z = {(z,z)|z € V}is called the diagonal of V x V. The symbol e indicates properties
that are used for definition, while o marks additional properties that are implied by
the definition.

observation makes coherent algebras appealing objects for our purposes be-
cause 2 is small enough in many cases to allows for explicit computations.

The action of a permutation group (G, V) is transitive if for all z,y € V
there is g € G such that y = g(z). If g € G can be chosen such that y = g(x)
and z = g(y) then (G, V) is generously transitive. Generously transitive per-
mutations groups have symmetric (and therefore commutative) centralizer
algebras see [63] and [160, Thm. 29.3]. The group case is summarized in Ta-
ble 2.

2.3.3 Association Schemes. If the coherent algebra 20 with standard basis
R = {RM, ... R(M} is commutative, we obtain a symmetric association
scheme 207 by taking as basis elements R® if y = p" and R® + R+
if 1 # pu', respectively. In particular, if a graph has a generously transitive
or at least multiplicity-free group of automorphisms then 20(T') = (A)) is a
(symmetric) association scheme.
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TABLE 2 Permutation Groups and Their Centralizer Algebras

G Ve(G, V)
transitive <=  homogeneous
multiplicity free <= commutative
generously transitive <=  symmetric

The situation becomes particularly simple in this case. Since 2J is a
commutative algebra of symmetric matrices, a so-called Bose-Mesner alge-
bra [14, 25], there is a common basis @ = {p; : V = C, i = 1,...,|V|} of
eigenvectors of all matrices M € 20.

The following observation is also of interest in this context [136, Lemma 9]:
The coherent algebra 20[I'] of a graph is always a refinement of the distance
partition of I' which has the classes 8 = {(z,y) € V|d(z,y) = d}, ie,
A ¢ (A), where A(@ is the characteristic matrix of 4. The class of dis-
tance regular graphs, which contains important examples such as the Hamming
graphs Q7 and the Johnson graphs, is characterized by the fact that the dis-
tance partition forms a (symmetric) association scheme. These graphs have
received considerable attention, see e.g. [16].

2.3.4 Adjacency Algebra and Hoffman Algebras The adjacency algebra of a
graph I' is the matrix algebra generated by the adjacency matrix, A[I'] = (A).
Clearly, [['] C 20[I']. Higman [64] showed that A[I'] = 20[T'] if and only if
W(T] is commutative, i.e., an association scheme. It is interesting to note
in this context that a homogeneous coherent algebra with rank r < 5 is
always commutative [64]. So-called “orbit-polynomial graphs” characterized
by 2A[['] = B[Aut[I'], V] are considered in [8].

A Hoffman algebra is matrix algebra $ C CIVI*IVI such that (i) there is
a basis consisting of non-negative integer matrices and (ii) J € $ [86]. This
notion is of interest as a generalization of coherent algebras and since 2[I'] is
a Hoffman algebra, i.e., J € [T if and only if T is a connected regular graph
[67].

2.3.5 Equitable Partitions. Consider the set R of relations associated with the
coherent algebra 20[I'] of a graph I'. Fix 2o € V and define

plzo] = {y € V|(z,20) € n} (20)

Clearly, II(zo) = {u[zo]|pr € R} is a partition of V. If 20 is homogeneous,
then p[zg] is non-empty for all u € R, see Table 1, i.e., R and II[zg] have the
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same number of classes for all o € V. In [64] it is shown that

RY) =pf, = Z R  for eachz € K[x(] (21)

zE€V[z0)

Noting that the adjacency matrix A of I' is a sum of R(*)-matrices, it is shown

in [136] that
Z Awy = Aplzo],v[zo] = Z pu, = A (22)
zEplzo] KCE

holds for any y € v[zo]. Partitions of V that satisfy the first equality in
equation (22) are called equitable. Equitable partitions have been introduced
by Schwenk [128]; more recently they have been used by Powers and coworkers
as “colorations”, see, e.g., [113, 111]. In [22, Chap.4] they appear as “divisors”
of graphs.

The most important property of an equitable partition II is that all eigen-
values of the collapsed adjacency matrix A are also eigenvalues of A. If II
contains a class that consists of single vertex, then the minimal polynomials
of A and A are the same [13, Thm.8.6], i.e., the relevant spectral information
is already contained in A. More information about equitable partitions can
be found in [50, 51, 52].

2.3.6 Fourier Transform on Finite Groups and Cayley Graphs. Let G be a finite
group and let f : G — C. Let p be matrix representation of G. Then

f(p) ﬁG > fee (23)
| g€eG
is called the Fourier transform' of f at p. The Fourier transform on a com-

plete set R of irreducible representations is inverted by

ZdlmpTr[ (p)p(g~ )] (24)

pE’R

Fast Fourier Transform algorithms are known for a variety of finite groups.
For a recent overview see e.g. [97, 122].

It is not surprising that the spectral properties of Cayley graphs are inti-
mately related to the Fourier transform on the underlying group. The crucial
observation is the following. Let dq be the characteristic function of the set of
generators 2. Then \/mdg(preg), the Fourier transform of dq at the regular
representation of G equals the adjacency matrix of I'(G, Q) up to a reordering
of the group elements. Its spectrum is therefore the union of the spectra of
V/|G|da(p;) where p; are the irreducible representations of G. If Q is a union
of conjugacy classes of G the situation simplifies further [29].

—1/2

'In most of the literature the normalization factor |G| is omitted
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The irreducible representations are all 1-dimensional if G commutative.
Since G can be written as a direct product of cyclic groups, G = [[,-; Cn,»
the characters are

Xg(x) = exp <2m' i %) (25)

n
=1 'k

where we use the additive representation of C,, as {0,1,...,n; — 1} with
addition modulo n. It is not hard to verify that the characters x; are eigen-
vectors of the adjacency matrix of each Cayley graph of G. The corresponding
eigenvalue are ) o xg(x), see e.g. [94]. The Fourier transform on C% is also
known as the Walsh-Hadamard transform. Note the that the Boolean hyper-
cube can be regarded as a Cayley graph on this group. An FFT algorithm for
this case is due to Yates [163]. Further material about the Cayley graphs on
commutative groups can be found in [1].

3 LANDSCAPES

3.1 FOURIER DECOMPOSITION AND ELEMENTARY LANDSCAPES

Having derived a set of basis functions {¢x|V — C} from the structure of a
configuration space (V, X') by means of one of the approaches outlines in the
previous section, it is natural to expand the fitness function f in terms of this
basis:

fl@) =" arpr(x) (26)
k

We shall use the following convention: (i) The index 0 is reserved for the
“ground state”. If the basis is derived from a Laplacian, for instance, then ¢q
is constant, the associated eigenvalue is zero, and

a0 =Y po@)f(@) = VI 3 f(a) (27)

zeV

Similarly, the index 0 will refer to the stationary distribution in the case of a
Markov chain on V. (ii) The distinct eigenvalues of —A will be denoted by
A,, in the Markov chain case we write Ap,. It will be convenient to define the
index sets J, = {k| — Ay = Appr} that collect all eigenfunctions belonging
to the same (Laplacian) eigenvalue. (iii) We write f(z) = f(x) — ao. If o is
constant, this is the “non-flat” part of fitness function.

Lov Grover and others [18, 57, 136] observed that f is in many cases an
eigenfunction of the graph Laplacian —A, see Table 3 for a list of examples.
We say that f is elementary wr.t. —A if f is an eigenfunction of —A with
an eigenvalue A, < 1. In [142] this notion is extended to calling f elementary
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TABLE 3 Elementary Landscapes

Problem Graph D A State
p-spin glass Q3 n 2p P
NAES® o n 4 2
Weight Partitioning Q3 n 4 2
Graph a-Coloring o3 (a—1)/n 20 2
XY-spin glass o)4 (a—1)/n 2
for a > 2: Ca 2 2
TSP symmetric (S, T) n(n —1)/2 2(n—1) 2
I'(8.,J) n(n —1)/2 n 2
I'(An,Cs3) | n(n—1)(n—2)/6 | (n—1)(n—2) ?
antisymmetric (8., T) n(n —1)/2 2n 3
'(Sn,J) n(n—1)/2 n(n+1)/2 O(n)
Graph Matching I'(S»,T) n(n —1)/2 2(n—1) 2
Graph Bipartitioning | J(n,n/2) n>/4 2(n—1) 2

w.r.t. a random walk transition operator iff Sf = Ap f with an eigenvalue
Ap < L.

If f is elementary, then f satisfies the conditions of Courant’s nodal do-
main theorem, see 2.2.3. Elementary landscapes thus can be expected to have
few nodal domains if they belong to a small Laplacian eigenvalue (or to an
eigenvalue of Markov transition matrix close to 1), while landscapes that are
far away from the ground state will in general have many nodal domains. Such
landscapes will appear “rugged”. Grover [57] showed that

f(:i'min) <ag < f(imax) (28)

where Zmin and ZTmax are arbitrary local minima and maxima, respectively.
This mazimum principle shows that elementary landscapes are well-behaved:
There are no local optima with worse than average fitness. We shall return to
local optima as a measure of ruggedness in section 4.4.

In section 2.2.1 we have seen that p-spin (or Walsh-) functions are the
eigenfunctions not only of mutation operators but also of recombination op-
erators. Indeed, there is an intriguing relationship between elementary land-
scapes for string recombination and schemata sensu Holland [2, 10, 68, 69],
see also Appendix A. Each recombination-elementary landscape corresponds
to a partitioning of the set of strings. Each equivalence class in this parti-
tioning is a schema in the sense of Holland and all the schema which make
up this partitioning have the same positions fixed. An elementary landscape
in this context is a landscape which assumes that only the fixed positions in
the schema actually influence fitness. This was first noted by Weinberger in
his seminal paper on Fourier and Taylor series of fitness landscapes [155]. In
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[143, 153] it is shown rigorously that this is a legitimate way of decomposing
the configuration space of string recombination.

3.2 CORRELATION MEASURES

3.2.1 Random Walk Autocorrelation Functions The ruggedness of a landscape
is most easily quantified by measuring the correlation of fitness values in
“neighboring” positions. Weinberger [154, 155] suggested the following pro-
cedure. Given a Markov process on V', we sample the fitness values f (a:(t)),
interpret them as a time series, and compute the autocorrelation function of
this time series. Let T be the transition matrix of a such reversible Markov
process with stationary distribution ¢o. We define the scalar product

(f:9)p0 = D [@)po(@)g"(x) (29)

zeV

where a* denotes the complex conjugate of a. The (expected) autocorrelation
function along a T-random walk on V is then

B g1 )
r(t) = (Z |f2(37)|800($)> S F@)(T)ay F*)poly) = L0 (30)
zeV yev <fa f)wo
Expanding f w.r.t. eigenvectors of T it can be shown [136] that
. e, lail®
=) B\ h B,=—=—2%2—.
=2 BN it By P o

Thus a landscape f is elementary w.r.t. a transition operator T if and only if
the “random walk” autocorrelation function is exponential, r(t) = AL. In this
case the the order p indicates to which eigenvalue (not counting multiplici-
ties) f belongs. On a Boolean hypercube 0?2 we have eigenfunctions of the
form };ar[[,cr2x where p = |I| is constant. These are exactly Derrida’s
[26] p-spin models. The order of the elementary landscape thus equals the
“interaction order” of the underlying spin glass model.

3.2.2 Amplitude Spectra Equ.(31) decomposes non-elementary landscapes in
a natural way into a superposition of elementary ones. The amplitudes B,
measure the relative variance contributions of the different eigenspaces (or
“modes”). Instead of the random walk correlation function r(t) we can there-
fore use the amplitude spectrum By, p > 1, as a measure for the ruggedness of
a landscape. In many cases it is much easier to interpret than the correlation
function, see e.g. [136, 46, 72]. This technique was applied successfully to re-
alistic landscapes such as those arising from RNA folding, see Figure 2 for an
example. The RNA secondary structure folding model is described in detail
in Peter Schuster’s contribution to this book.
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FIGURE 2 The estimated amplitude spectrum for a GC landscape with n = 100
under mutation [72]. The configuration space is the Hamming graph Q3% of se-
quences taken from the 2-letter alphabet {G,C}.

The most striking feature of the amplitude spectrum of RNA landscapes is a strong
difference between even and odd modes. This can easily be explained in terms of
the physics underlying RNA folding: The major contribution of the folding energy
comes from stacking of base pairs. Hence the major changes in free energy caused
by a point mutation will arise from these contributions. Since stacking energies are
influenced by even number of nucleotides depending on the location of the affected
base pair within a stack. A recent comparison of amplitude spectra for different
landscapes based on folding short RNA chains indicates that the amplitude spectra
of the free energy landscapes are typical [137].

3.2.3 Distance Correlation Functions Most “early” work on RNA landscapes,
e.g. [42, 145] uses a different type of correlation measure based on the Ham-
ming distance. In [136, 139] a more general version starting with a collection
of relations on V is introduced. Let u be a relation on V. Then we set

2 VP S/ @) = DU =
=TS, e G@ —DUw) — 1)

where f = |V|713", f(z). Thus o(u) is the variation of points of vertices
within a relation g compared to the variance of f over all configurations
z € V. On Hamming graphs, for instance, it is natural to consider the dis-
tance classes, i.e., (z,y) € pq if and only if dg(z,y) = d, a predefined value.
Such distance-dependent correlation functions have been considered also for
some combinatorial optimization problems [4, 5, 131, 138]. Given a partition
of V x V, we may of course regard g as a function of the classes of this parti-

(32)
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tion. Furthermore, if this partition is sufficiently “nice”, then the correlation
function p itself also has useful algebraic properties. The main result of [134],
for instance, is the following theorem: Let f be landscape on a regular graph
T that has a homogeneous coherent algebra 20[T']. Then 7(s) is exponential if
and only if p is a left eigenvector of the collapsed adjacency matrix A.

4 RANDOM LANDSCAPES

4.1 BASIC DEFINITIONS

In many cases, for instance in applications to spin glasses, the definition of
the landscape contains a number random parameters. We therefore define
random landscapes as elements of an appropriate probability space, following
the presentation in [118].

Let V be a finite set and let W be a predicate of landscapes f : V — R.
A random W -landscape over V is the probability space

Q=({f:V > R| fhas property W}, A, u) , (33)

where A is a o-field and p : A — [0,1] a measure. Let £ : @ — R be an Q-
random variable; we denote expectation value and variance of £ by E[¢] and
V[€], respectively. In particular, we shall write E[f(z)] for the expected value
of f(x), i-e., of E[f] evaluated at z € V.

The covariance matriz C of the random landscape €2, is given component-
wise by

Coy = Elf (2) 1 (y)] — E[f ()|E[f (y)] (34)

Clearly, C is a symmetric non-negative definite |V| x |V| matrix. Taking the
set of all maps, {f : V — R}, as basis space of the probability space Q, a
basis is formed by a set of orthonormal eigenvectors {;} of the covariance
matrix C. An expansion of the form

F@)=" bipi(x) (35)
P

is know as Karhunen-Loéve series or principal component decomposition. The
symbol = denotes equality almost surely. The importance of equ.(35) comes
from the following classical result [73]: Then the coefficients {by} in equ.(35)
are uncorrelated random variables satisfying

Cov[bk7bj] = 0k6kj7 1<k, |V| ) (36)

where 8 = V[by] is the eigenvalue of C belonging to the eigenvector .
A random landscape is elementary if E[r(¢)] = A5 or, equivalently, if
E[B,] > 0 only for a single mode p > 0. While Ising spin glasses, TSPs with
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random coefficients and other random parameter variants of combinatorial
optimization problems are elementary, this is not true for Kauffman’s Nk
models [139]. As a consequence, there are many landscapes that cannot be
constructed as a superposition of Nk-models, for instance the Sherrington-
Kirkpatrick spin glass [129], see [135, 60, 61] for a detailed discussion of the
amplitude spectrum E[B,] of Nk models.

A random landscape is pseudo-isotropic [139)] if there are constants ag, v,
and w such that for all z € V holds (i) E[f(z)] = ao, (i) V[f(x)] = v?, and
(iii) [V]~1 >_yev Cay = w. Pseudo-isotropy is a fairly weak regularity property
that is satisfied by many random landscape models of practical importance,
see Table 4.

4.2 ADDITIVE RANDOM LANDSCAPES

Many important random landscapes can be written as a sum of components
with random coefficients. More precisely, let M be finite index set, let ¢;, j €
M be independent, real valued random variables over appropriate probability
spaces 2; = (R, Aj,p;), and let © = {9, : V= R|j € M} be a family of real
valued functions on V. An additive random landscape (arl) is the probability
space (Qv, ®;A;, ®;, 1;) with

M
Qv={f:V—>R|f(w)='ZCﬂ9j(x)}- (37)

In other words, the random landscape is constructed as a linear combination
of non-random landscapes ; with independent random coefficients c;.

In particular, any Gaussian random landscape is additive: Using the Kar-
hunen-Loéve decomposition, equ.(35), any random landscape can be writ-
ten as linear combination with uncorrelated random coefficients; uncorrelated
Gaussian random variables are independent.

The most important additive random landscapes exhibit further regular-
ities: An arl is uniform if and only if (i) the random variables ¢;, ¢ € M, are
i.i.d. and (ii) there exist constants a,b € R such that ) __ ¥;(z) = |V'|a and
Y ey ¥:(x) = |V|b. A uniform random landscape is strictly uniform if there
exist constants d,e € R such that ), 9;(z) = d and }_; 97 (2) = e. In [11§]
we show that a uniform random landscape is pseudo-isotropic if and only if at
least one of the following two conditions is satisfied: (i) F is strictly uniform,
or (ii) a = 0, E[¢;] = 0, and there is a constant e € R such Y, ¥?(z) = e for
allz e V.

4.3 ISOTROPY AS A MAXIMUM ENTROPY CONDITION

Uniformity and pseudo-isotropy are still rather weak properties. In [135, 139)
the notion of an isotropic random landscape was introduced as a “statistically
symmetric model”, that is, as a random landscape with a covariance matrix
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TABLE 4 Examples of Additive Random Landscapes.

The component landscapes 95 and the index set M, equ.(37), are listed together with
information whether the models are uniform (U), strictly uniform (S), or pseudo-
isotropic (P). As in Table 1, properties that are implied by stronger ones are shown
as o.

Model Component Landscapes and Index set U|S|P

Ising spin glass 91(x) = [Tpes ox IC{1,...,n} . .

SK model as above with |I| = 2 . .

Nk Landscapes see [118] o | e | o
- e 1 if {i,j AB . .

Graph Bipartitioning | ¥;;([A4, B]) = {0 Otilel.?v]\;ii 1<j|o|e]|o

Asymmetric TSP V(1) = D7, Ok,7(5)01,r(i—1) k#1 o | e | o

that shares the symmetries of the underlying configuration space. More pre-
cisely, a random landscape is isotropic w.r.t. a partition R of V x V if there
are constants ag and s and a function ¢ : R — R such that (i) E[f](z) = ag
and V[f](z) = s> for all z € V, and (ii) Cypy = c(u) for all (z,y) € p, i.e., the
covariance matrix C is constant on the classes u € R.

The notion of isotropy for random landscapes is the analogue of station-
arity for stochastic processes. Following the conventions of Karlin and Taylor
[78] our notion of isotropy would be called “covariance isotropic”, “weakly
isotropic”, or “wide sense isotropic”. For a Gaussian random landscape the
notions of (weak) isotropy and strict isotropy coincide of course.

Not surprisingly, a useful theory does not arise by considering arbitrary
partitions R, see Table 1. Isotropy is a stronger concept than pseudo-isotropy
only if R is sufficiently regular. Transitivity, for instance, ensures that the
classes of R are large enough to be interesting. In [139, thm.4] the following
result is proved: Let F be isotropic w.r.t. a homogeneous class degree regular
partition R of V x V. Then F is pseudo-isotropic. Furthermore, suppose
E[f(z)] = ao for all z € V. Then the random landscape is isotropic w.r.t. a
homogeneous coherent configuration if and only if C € {R)) [139].

If A is the adjacency matrix of an undirected graph (or more generally,
the a symmetric transition matrix of a Markov process on V then we say
that a random landscape is *-isotropic w.r.t. A if E[f(z)] = ap and C € (A).
For association schemes (such as those arising from distance regular graphs
including the hypercube) isotropy and *-isotropy equivalent. In [139] we show
that a random landscape is *-isotropic if and only the Fourier coefficients
(w.r.t. an orthonormal basis of eigenvectors of A) satisfy: (i) E[ax] = 0 for
k # 0, (ii) Cov|ak,a;] = 0x;V[ax], and (iil) V]ax] = V[a,] if k,j € Jp. These
conditions mean that the Fourier coefficients are uncorrelated and that they
have the same mean and variance whenever they belong to the same mode
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(eigenspace of A). Hence Fourier and Karhunen-Loeve series coincide for *-
isotropic landscapes.
For a random landscape with measure y we define the entropy

S=— / u(f) In u(f)df (38)

In appendix B we review some well-known properties of the entropy functional.
In particular, S can be decomposed into a “homogeneous” part S,z that only
depends on o2 = TrC, the total variance of landscape, a terms Sc that
depends only on the variations among the eigenvalues of C, and a third term
that measures the effect of deviations from the normal distribution given a
fixed covariance matrix C. Given C, a random landscape maximizes entropy
if and only if its Gaussian.

In the following we assume a Gaussian random landscape. Now suppose
the values 8, = 3, Vlax] are prescribed, too. It follows from the discussion
in Appendix B that the entropy is maximized if and only if the covariance
matrix restricted to Jj is a multiple of the identity, i.e., iff V[a,] if constant on
Jp. Given its amplitude spectrum, a random landscape therefore maximized
entropy if and only if it is Gaussian and *-isotropic. This is of practical interest
since the class *-isotropic models (on their natural configuration spaces) in-
cludes among others Derrida’s p-spin Hamiltonians, the graph-bipartitioning
problem, and the TSP.

Most variants of Kauffman’s Nk-model, the XY-Hamiltonians, short-range
Ising models, or the Graph-Matching Problem are not isotropic. This has
important implications for the structure of these landscapes, as we shall see
below.

4.4 LOCAL OPTIMA

Palmer [108] used the existence of a large number of local optima to define
ruggedness. We say that x € V is a local minimum of the landscape f if
f(z) < f(y) for all neighbors y of . The use of < instead of < is conventional
[82, 124]; it does not make a significant difference for spin glass models. Local
maxima are defined analogously. The number A of local optima of a landscape,
however, is much harder to determine than its autocorrelation function r(s)
or its correlation length

L= Zr(s) = Z 1 fp/\p (39)

k=0 p#0

As it appears that A/ and £ are two sides of the same coin we search for a
connection between the two quantities. In a random landscape setting it is
customary to determine E[ln N]. The only known case in which E[ln N] #
InE[N] is the linear spin chain [27].
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For the case of short range spin glasses, in which only a small number 2
of coupling constants J;; are non-zero for any given spin i, a slightly larger
number of local optima has been found [15, 147] than for the long-range
Sherrington-Kirkpatrick model [129]. Since all Ising models have the same
correlation length £ = n/4 [156, 133] but somewhat different values of N, we
cannot hope for a general, exact formula relating E[ln N] and E[/].

From the maximum entropy interpretation of isotropy, however, we know
that the expected density of meta-stable states in an isotropic Gaussian ran-
dom landscape is determined completely by the expected correlation function
E|r(s)] because such a model simply does not contain any further informa-
tion. In the case of an elementary isotropic random landscape the correlation
length ¢ already determines r(s) and hence there must be a direct relation-
ship between E[/] and the expected number of meta-stable states E[ln N]. Its
functional form will of course depend on the geometric properties of T'.

Stadler and Schnabl [141] conjectured that E[ln A'] can be estimated as
follows: For a typical elementary landscape we expect that the correlation
length £ gives a good description of its structure because the landscape does
not have any other distinctive features. By construction £ determines the size
of the mountains and valleys. As there are many directions available at each
configuration we expect there are only very few meta-stable states besides the
summit of each of these /-sized mountains — almost all of the configurations
will be saddle points with at least a few superior neighbors. We measure ¢
along a random walk but the radius R(¢) of a mountain is more conveniently
described in terms of the distance between vertices on I'. Here R(¥) is the
average distance that is reached by the random walk in £ steps. With the
notation B(R) for the number of vertices contained in a ball of radius R in T'
we expect approximately |V'|/B(R(£)) local optima.

As an example we consider a comparison of the correlation length con-
jecture with an exact computation based on the TAP equations [148] for
Derrida’s p-spin Hamiltonian [26]. The TAP approach yields [56, 120]:

lim. % INEN] = a(0) = In2 — 2(‘5%321) +In®(3(p))  with

®(z) = (1 +erf(5(p)/v2)) /2 (40)
_ p—1exp(=i(p)?/2)

W= 6w

The last equation must be solved numerically for (p).

An explicit evaluation of the correlation length conjecture for the p-spin
Hamiltonian [140] yields

a0)=In2+(1-¢n(1-¢) +¢In¢ where
1 _1/p (41)
=5 (1-e).
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FIGURE 3 Comparison of eqns.(40) and (41) for small (Lh.s) and large (r.h.s.)
values of p.

Equ.(41) compares very will with data numerical simulations forp = 2,3,...,6
[140]. Figure 3 shows that equ.(41) is in excellent agreement with the TAP
result in equ.(40). It is interesting to note that even for very large p there is
a good qualitative agreement between the value of a* =In2 — «(0) obtained
by the two methods. We find ajyp ~ p~'Inp and o, ~ (1/2p)Inp.

The correlation length conjecture works very well for isotropic random
landscapes on various other configuration space besides Boolean hypercubes
[141, 89]. On the other hand, the correlation length conjecture yields some-
times very poor estimates if the landscapes deviate significantly from isotropy
[46].

4.5 NEUTRALITY

We say two configurations z,y € V are neutral if f(z) = f(y). We colloquially
refer to a landscape as “neutral” if a substantial fraction of adjacent pairs
of configurations are neutral. This should not be confused with the flat land-
scape, in which f is constant. Extensive computer simulations, based on RNA
secondary structures [125, 58, 59], have revealed that neutrality plays an im-
portant role in understanding the dynamics of RNA evolution [75, 119, 117].

Kimura proposed a theory of biological evolution that focuses exclusively
on the aspects of neutrality [83] by assuming a flat fitness landscape. Very
recently, landscapes with a large degree of neutrality have also been described
in computational models such as cellular automata [71], for the mapping of
sequences in combinatorial random structures [116], and in the context of
sequential dynamical systems [90].

Neutral landscapes are discussed in more detail in Christian Reidys’ con-
tribution to this book. Here we restrict ourselves to indicating how a rigorous
investigation of neutrality can be linked to the techniques described above. In
the case of additive random landscapes, a promising starting point is provided
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by the random variables Xy, ,3(f) which take the value 1 if f(z) = f(y) and
0 otherwise.
The number of neutral neighbors of a configuration z € V is then

va(f)= Y Xgyay(f) (42)

YEN ()

The following parameters have turned out to be particularly important for
understanding the neutrality in an additive random landscape:

ca(y) = {5 € M |9;(x) # 9;(y)}|
wa(y',y") = |{7 € M | 9;(z) # 9;(y") A (w) #9; (")}

where z € V is an arbitrary vertex and y,3',y"” € N(z). Note that c,(y) and
! n :
wy(y',y") only depend on the properties of the component landscapes Jy but
not on the distribution of the coefficients ¢;.
In [118] explicit expressions for the mean and variance of neutrality are
derived for the simplest possible case, namely for a distribution of the coeffi-
cients c; satisfying

(43)

o >0 ifE=0

. (44)
0 otherwise

ple; =& = {

For any additive random landscape with coefficients ¢; satistying equ.(44) we
obtain

Ev.]= Y, ng®
yeN ()

V[Vw] — Z /J/(C)m(y )+c=(y"") I:/J/(;wm(y W' _ 1
Y,y eN(x)

(45)

More explicitly, the expected nurlnber of neutral neighbors of a p-spin land-
scape is therefore E[v] = n ,u(()”‘l). Depending on pg, the expected fraction
of vanishing interaction coefficients, the fraction of neutral mutations E[v]/n
may take any value between 0 and 1. This fact is independent of the order
p of the spin glass. Thus ruggedness (as measured by p) and neutrality (as
measured by pg are independent properties of (random) landscapes.

In many spin glass models the spins are arranged on a finite-dimensional
lattice. Hence each spin has only a finite number of other spins to which it
is couples in such a short range spin glass. All but O(n) coefficients therefore
vanish and we have pg ~ 1 — z/nP~ !, where 2z > 0 is a parameter determined
by the connectivity of the lattice. The fraction of neutral spin flips is constant
in such systems, E[v]/n ~ e~ %, see [118] for more details. We remark further
that the fraction of neutral mutations is the crucial input parameter for ran-
dom graph models of neutral landscapes [47, 115, 119], see also Chr. Reidy’s
contribution to this book.
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The study of neutrality in more general classes of random landscapes
requires the determination of the distributions of the random variables

d(z,z') = Z ¢i [Vi(x) — 9i(2")] (46)

i 19,' (z).76191 (m’)
Since the ¢; are by definition independent in an additive landscape, we have
to compute the convolutions

9a,0(6) = i(ci/[0i(x) — Yi(a")]) (47)

*
i:ﬂi(w):,éﬂi(z’)p
where +; denotes convolution of all functions indexed by j, g, (d) is the
density of the values of §(x,z'), and p;(.) is the density function of ¢;, which
in this case has to be evaluated with the argument ¢;/[¥;(z) # ¥;(z')]. Then
we have

€

Prob[X, (z) = 1] =lim | g4, (6)dd . (48)

e—0 —e

If {i|%:i(z) # ¥i(2')} = @, x and 2’ are neutral for any distribution of the ¢;.
This is observed for instance in the graph matching problem [132].

We conclude from equ.(48) that a continuous density g, ./, which nec-
essarily arises if the individual densities p; are continuous, does not lead to
neutrality. Neutrality hence depends on a “discrete” contribution to the prob-
ability densities of the coefficients ¢, k € M. Indeed, only these discrete
components influence neutrality. In practice, evaluation of the convolution
(47) therefore boils down to a combinatorial exercise, as for instance in the
case of the integer-valued NK model proposed by Newman and Engelhardt
[102].

Finally we remark that g(.) would also be the appropriate starting point
for a theory of nearly neutral landscapes [104], in which the condition such as
|f(z) — f(z'")| < € for some finite € > 0 could replace the condition f(z) =

!

f@").

5 DISCUSSION

The exposition above has been focussed almost entirely on the “static” proper-
ties of a landscape. A mathematical language has been introduced that allows
us to view a cost or fitness function as it is seen by a search operator. This
formalism lends a precise meaning to notions such as ruggedness, neutrality,
or isotropy. Intuitively, the dynamics of (evolutionary) adaptation and the
performance of optimization heuristics should be determined by exactly these
properties.

The spectral approach described here has been useful in distinguishing
different types of landscapes. RNA folding landscapes, for instance, are very
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different from spin glasses in both ruggedness and neutrality. A more detailed
analysis of the distribution of the Fourier coefficients that belong to a particu-
lar mode might help to understand and quantify the structure of anisotropies.

Dynamics on landscapes, unfortunately, is much less understood at present.
Apart from a few global results such as the “No Free Lunch Theorem” [162]
and detailed studies on very simple landscapes such as [150], very few exact
results are known. Various dynamical phenomena have been described for spe-
cial classes of landscapes. There is an error-threshold limiting the mutation
rate in biological evolution [32] which is well understood at least on landscapes
with a few peaks. A tunnel effect was described between two separated peaks
[30]. On the other hand, a diffusion-like process is observed on landscapes with
a high degree of neutrality [75, 117] similar to the situation in a flat landscape
[28]. A theory that could treat all these aspects within a common formalism,
however, is still missing.
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APPENDIX

A  SCHEMATA AND DECEPTIVENESS

A.1 Introduction. Walsh functions and “schemata” have been used exten-
sively in the analysis of GA behavior, see e.g. [53, 54, 55, 92, 107, 37, 151, 152].
A schema is simply a hyperplane in sequence space. It is defined by the set H
of “fixed” bits and their values h;, i € H. In symbols

H:H[h]:{.TGVlVZEH[L'Z:hz} (49)

For a discussion of the Schema Theorem and the Building Block Hypothesis
we refer to the literature [2, 10, 68, 43, 69, 144]. Instead, we briefly consider
a few properties of landscapes that a naturally defined in terms of schemata.
For simplicity we restrict ourselves to landscapes on the set of binary strings
of length n. Notion such as “local optimum” in the following subsections con-
sequently refer to the graph structure of the Boolean hypergraph. Schemata
and Walsh functions are linked by means of

f(H) = Z are(h) and var(H) = Z z axaxnr ¢ €r(h)  (50)

ICH ICH | K¢H
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where IAJ denotes the symmetric difference of the sets I and J. Note that
these quantities are superpositions of Walsh functions with index set I C H
evaluated at the fixed bits of the schema. It is interesting that f(#) depends
only on Fourier coefficients ar with I € H, while var(#) depends only on
coefficients with 7 ¢ H.

Let @ be any property of a landscape f on V. We say that f is robustly
Q, if there is an € > 0 such that any landscape g satisfying |f(z) — g(z)| < €
for all z € V also has property Q. The condition |f(z) — g(z)| < € may be
replaced by |ap — ai| < € for the Fourier coefficients of f and g, respectively.
The results in following sections have not been published before; nevertheless
we omit their (rather simple) proofs in this survey.

A.2 Funnels A landscape is called a funnel if there is a string h* such that
H C H' implies f(H[h*]) < f(H'[h*]) for all H C {1,...,n}. If f is a funnel
with peak h* then (i) f(h*) > f and (i) h* is a local maximum on QF.
It is not hard to construct simple examples of funnels with just n = 3 bits
showing that the peak of a funnel need not be globally optimal, and that
there may be multiple local optima. With some more work it is also possible
to show that a landscape is a robust funnel if and only if H C H' implies
f(H[W*]) < f(H'[h*]) for all H. The peak h* of a robust funnel is unique.

A.3 GA-Easy Functions Let us call a function GA-easy if there is a global
optimum z* such that f(H[z*]) > f(H]z]) for all z € V and all H C [n]. In
the GA literature a more common definition of easy is what we call robustly
GA-easy, namely a function f with a global optimum z* satisfying f(H[z*]) >
f(H[z]) for all z € V and all H C [n] for which H[z*] # H|[z]. By setting
H ={1,...,n} we see that the global optimum of a robustly GA-easy function
is unique. Robustly GA-easy is called “fully easy” in [91]. We prefer to say
that f is fully GA-easy if for each global optimum z*, for each H C [n], and for
each z € V holds f(H[z*]) > f(H][z]). Naturally, a fully GA-easy function is
GA-easy, but the converse is not true. Note also that “robustly fully GA-easy”
is the same as robustly GA-easy. A short computation shows that a (robustly)
GA-easy function with global optimum z* is a (robust) funnel with peak x*.

Linear functions f are of course GA-easy. However, linear functions do not
form a generic class of landscapes in the sense that linearity is not a robust
property. Wilson [161] introduced a slightly larger class of landscapes: Given
a string € V let & be a string satisfying &, = xy if f(z) > f(z®) and
#r = @ if f(z) < f(z™®). That is, & is obtained from z by keeping the best
bit among all 1-error mutants in each position. A function f on V is bit setting
optimizable (b.s.o.) if £ is a global optimum for each z € V. Of course linear
functions are b.s.o., and the set of robustly bso functions is nonempty: all
sufficiently small perturbations of linear functions are b.s.o. It can be shown
that a (robustly) b.s.o. function is (robustly) GA-easy. It is shown in [161]
that the converse is not true for all n > 3.
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A.4 Deceptive Functions The literature on deceptive functions uses a variety
of slightly different notions of deceptiveness (and sometimes does not even
precisely define the notion at all). In a deceptive landscape an optimal schema
of some size is “contradicted” by one of its sub-schemata. Intuitively, this is
just the converse of GA-easy. Following Whitley [158] we use the following
formal definition: A landscape f is deceptive if there are vertices z,y € V and
index sets H C K C {1,...,n} with the following properties: (i) K[z] # K]y],
(i) f(H[z]) > f(H[?]) for all z € V with H[z] # H[z], and (iii) f(K][y]) >
f(K[z]) for all z € V with K[y] # K[2]. As expected, it can be shown that
a GA-easy function f is not deceptive. However, the converse it not true
since a “symmetric function”, i.e., a function fulfilling f(z) = f(Z) where Z is
the complement of z is never deceptive according to Whitley’s definition. An
example of a symmetric function that is not not GA-easy can be constructed
e.g. on Q3. We will say that f is GA-hard if it is not GA easy.

We say that f is weakly deceptive if there are vertices z,y € V' and index
sets H C K such that (i) f(H[z]) > f(H][z]) for all z € V and f(H[z]) >
F(H[)), and (i) F(K[y]) > f(K[2]) for all z € V and f(K]y]) > F(K[2]). A
deceptive landscape is of course weakly deceptive. Since symmetric functions
can be weakly deceptive, the converse is not true in general.

Let © denote the set of global optima. For each z* € Q and each index
set H we define the set of vertices that belong to a H-schema that is superior
to H[z*]:

V(e H) = {y| f(Hly]) > f(H[z") andV 2 : f(H[y]) > f(H[2])}. (51)
Clearly z* ¢ ¥(z*, H). The following propositions are easily verified:

(i) f is GA-hard iff for each z* € 2 there is an index set H such that ¥(z*, H)
is non-empty.

(ii) f is not fully GA-easy iff there is a z* € 2 and an index set H such that
¥(z*, H) is non-empty.

(iii) f is weakly deceptive iff there is a z* € Q and an index set H such that
¥ (z*, H) \ Q is non-empty.

Both weak deceptiveness and GA-hardness imply that f is not fully GA-
easy. If f has a unique global optimum, however, then “weakly deceptive”,
“GA-hard”, and not “fully GA-easy” are equivalent properties.

B: MAXIMUM ENTROPY CONDITIONS

It is well known the Gaussian distributions maximize entropy. The proof for
the one-dimensional case can be found e.g. in [62, prop. 1.15]. For the conve-
nience of the reader a short proof of the general case is included here as it is
not readily accessible in the literature.

The starting point is the following inequality that holds for arbitrary
probability spaces:

/ p(z) In p(z)de — / p(z)Ing(x)dz > 0 (52)
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Equality holds in equ.(52) holds if and only if p = ¢ almost everywhere.
Let C be the covariance matrix of p. We assume that C is invertible. Without
loosing generality we furthermore assume E[z] = 0. Substituting the Gaussian
distribution

1 1
)= —————F———e€X ——m’C_lm') 53
@)= s (2 )
equ.(52) translates into a general inequality for the the entropy of p:
1 1
S < g In(27) + 2 IndetC + 5/ (zC'z)p(x)dz

The integral is a simple constant independent of p as the following computa-
tion shows

/ > (C Y uzpzip(x)de = Z(C_l)m/ zpzip(r)de =
n kil Rn

k.
Z(C_I)MCM = Z(C_IC)kk =Trl = |V|
kil &

Let {Ag, k = 1,...,]V|} be the eigenvalues of C. Since C is invertible by
assumption we have Ay > 0 for all k. Using 0 = TrC = ), Ay we obtain

1 2 1 A
Sgsc=§|V|1nie+§Zln ’“|2V| (54)
k

V] o
It is easy to verify that S¢ is indeed the entropy of a Gaussian distribution
with covariance matrix C.

The two terms in equ.(54) allow for a direct interpretation. The Gaussian
entropy Sc attains its maximum subject to a given variance o2 if and only if
Ay, = 0?/|V|, in which case the second term vanishes. We may this split the
entropy of a random landscape into three contributions

S = 8,24+ ASc + ASy, (55)

where AS,y =S — Sc is the entropy loss due to deviations from a Gaussian
distribution, S, is the maximal entropy with given variance o2, and ASc,
the second term in equ.(54), measures the entropy loss due to variations in
the spectrum of C. In particular, whenever there are correlations between
different vertices, then C is non-diagonal and hence ASc < 0. More precisely,
ASc = 0 if and only if the corresponding Gaussian random landscape is i.i.d.
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