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Abstract. This technical report summarized facts from the basic theory of filter
convergence spaces and gives detailed proofs for them. Many of the results collected
here are well known for various types of spaces. We have made no attempt to find
the original proofs.

1. Introduction

Mathematical notions such as convergence, continuity, and separation are, at textbook
level, usually associated with topological spaces. It is possible, however, to introduce
them in a much more abstract way, based on axioms for convergence instead of
neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff
[12], Katětov [14], Kent [16], and others. Here we give a brief introduction to this
line of reasoning. While the material is well known to specialists it does not seem to
be easily accessible to non-topologists. In some cases we include proofs of elementary
facts for two reasons: (i) The most basic facts are quoted without proofs in research
papers, and (ii) the proofs may serve as examples to see the rather abstract formalism
at work.

2. Sets and Filters

Let X be a set, P(X) its power set, and H ⊆ P(X). The we define

H∗ = {A ⊆ X|(X \ A) /∈ H}

H# = {A ⊆ X|∀Q ∈ H : A ∩ Q 6= ∅}
(1)

The set systems H∗ and H# are called the conjugate and the grill of H, respectively.
One easily verifies H∗∗ = H.

1
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The set H ⊆ P(X) is isotone if A ∈ H and A ⊆ B ⊆ X implies B ∈ H. If H is
isotone, then H∗ = H#. H∗ is isotone if and only if H is isotone.

Let F ,G ∈ P(X). If F ⊆ G we say that G is finer than F and F is coarser than G.
Note that F ⊆ G implies G∗ ⊆ F∗.

Definition 1. A filter basis on X is a set F ⊆ P(X) satisfying the axioms

(F1) F ∈ F implies F 6= ∅,
(F2) F1, F2 ∈ F implies that there exists F3 ∈ F such that F3 ⊆ F1 ∩ F2

If, in addition,

(F3) F is isotone,

the set system F is called a filter on X. Each filter basis F uniquely defines a filter
which we will denote by F ↑ . A filter U is an ultrafilter if there is no filter F 6= U
that is finer than U .

For a filter F , axiom (F2) can be replaced by

(F2’) F1, F2 ∈ F =⇒ F1 ∩ F2 ∈ F .

Each filter basis F defines a unique filter which we denote by F ↑ . We denote the set
of filters on X by ΦX. The discrete filter of x is ẋ = {A ⊆ X|x ∈ A}. Analogously
we write Ḟ = {A ⊆ X|F ⊆ A}. Note that Ȧ = {A}↑ . Hence, we have F ↑=

⋃
F∈F Ḟ

for any filter basis F .

If F is a filter, then

F ↓=
⋂{

F ∈ F
}
6= ∅ . (2)

Clearly, ẋ↓= {x}. Note that, in general, F ↓/∈ F if X is an infinite set. For instance,
the ε-neighborhoods around a point x ∈ R

n form a filter basis, the intersection of all
neighborhoods of x, however, is {x} which itself if not a neighborhood of x w.r.t. the
standard topology on R

n.

Two filters F and G are disjoint if there is F ∈ F and G ∈ G such that F ∩G = ∅. If
F and G are not disjoint, there is a uniquely defined coarsest filter that is finer than
both F and G:

F ∨ G =
{
H = F ∩ G

∣∣F ∈ F , G ∈ G
}

(3)

If F and G are disjoint we write F ∨G = ∅. We have F ∨G ⊆ H if and only if F ⊆ H
and G ⊆ H.

3. Convergence

3.1. Axioms of Filter Convergence.

Definition 2. Let X be a set, ΦX the set of filters on X, and q ⊆ ΦX×X a relation.
We will write F →q x, “the filter F converges to x”, if

(C0) F →q x and F ⊂ G implies G →q x, i.e., if F converges to x, then every finer
filter also converges to x.
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The limes of F is the set

limF = {x ∈ X|F →q x} (4)

By (C0) F ⊆ G implies limF ⊆ limG. Set Conv(X) = {x ∈ X|∃F : F →q x}. It
will be useful to extend the notion of convergence to filter bases: We say a filter basis
F →q x if and only if the filter F ↑→q x.

Definition 3. Let X be a set, ΦX the set of filters on X, and q ⊆ ΦX×X a relation.
The pair (X, q) is a generalized convergence space if (C0) and

(C1) ẋ →q x for x ∈ X

is true.

Axiom (C1) could be replaced e.g. by Conv(X) = X.

3.2. Neighborhood. The notion of “neighborhood” can be introduced by means of
the following construction.

Definition 4. Suppose (X, q) satisfies (C0). Then

Nq (x) =
⋂

{F ∈ ΦX|F →q x} (5)

is called the neighborhood filter of x ∈ X. We call a set N ∈ Nq (x) a neighborhood
of x.

Note that a filter that converges to x is by definition finer than the neighborhood
filter of x. In other words, for each neighborhood N ∈ Nq (x) and each filter F →q x,
there is a set F ∈ F such that F ⊆ N .

3.3. Closure and Interior. The notions of the closure cl(A) and the interior int(A)
of a set A ⊆ X can be defined in terms of convergence. The notions of open and
closed sets are related to closure and interior operators in a natural way.

Definition 5. Suppose (X, q) satisfies (C0). Then we define

cl(A) =
{
x ∈ X

∣∣∃F ∈ ΦX : A ∈ F and F →q x
}

int(A) =
{
x ∈ A

∣∣F →q x implies A ∈ F
} (6)

Even more general definitions of closure operators do not necessarily rely on conver-
gence, see e.g. [10].

Theorem 1. Suppose (X, q) satisfies (C0). Then the closure and interior operators
satisfy

(0) X \ int(A) = cl(X \ A) and, equivalently, X \ cl(A) = int((X \ A)).
(I’) cl(X) = Conv(X), int(X) = X, int(∅) = X \ Conv(X), cl(∅) = ∅.
(II’) A ⊆ B implies cl(A) ⊆ cl(B) and int(A) ⊆ int(B).

Axiom (C1) is then equivalent to

(III) A ⊆ cl(A) for all A ⊆ X.

If (C0) and (C1) hold, we have in addition

(I) cl(X) = X and int(∅) = ∅.
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(II) cl(A) ∪ cl(B) = cl(A ∪ B) and int(A) ∩ int(B) = int((A ∩ B)).

Proof. We first show that the definition of the closure operator is equivalent to

x ∈ cl(A) ⇐⇒ ∃F : F →q x and A ∈ F∗ (7)

In order to prove equ.(7) we observe that A ∈ F implies X \A /∈ F by (F1) and hence
A ∈ F∗; Conversely, if F →q x and A ∈ F∗, then F∗ = F# implies that A ∩ F 6= ∅
for all F ∈ F . Hence there is a filter G with basis {F ∩A|F ∈ F}, which is finer than
F , and hence converges to x, and contains A.
Equ.(7 implies that x /∈ cl(A) is equivalent to F →q x =⇒ A /∈ F∗. Recalling
that A /∈ F ∗ is equivalent to X \ A ∈ F , we see that x /∈ cl(A) is equivalent to
x ∈ int((X \ A)), i.e., X \ cl(A) = int(X \ A), and (0) holds.
Property (I) follows immediately from the definitions, property (II) follows from the
isotony of filters.
(C1), ẋ →q x, implies {x} ∈ ẋ and hence A ∈ ẋ whenever x ∈ A. Thus x ∈ A
implies x ∈ cl({x}). Now we use (II): {x} ⊆ A implies x ∈ cl({x}) ⊆ cl(A) and hence
A ⊆ cl(A). Conversely, x ∈ cl({x}) implies that there is filter containing {x} that
converges to x. This filter must contain all sets that contain x, i.e., it coincides with
ẋ. Thus ẋ →q x.
If (III) holds, then X = Conv(X). Thus (I) simplifies to (I’).
The inclusion rules (IV) now follow immediately from the definitions of closure and
interior and the filter axioms: For instance, if x ∈ int((A ∩ B)) then F →q x implies
A ∩ B ∈ F . Since A ∩ B ⊆ A, isotony of F implies A, B ∈ F . Thus x ∈ int(A) and
x ∈ int(B), i.e., x ∈ int(A) ∩ int(B). The other three assertions follow by analogous
arguments.
If x ∈ int(A)∩ int(B) we have F →q x implies A ∈ F and F →q x implies B ∈ F . In
other words, if x ∈ A∩B then F →q x implies both A ∈ F and B ∈ F , and hence, by
(F2’), A ∩ B ∈ F . Thus x ∈ int((A ∩ B)). Therefore int(A) ∩ int(B) ⊆ int((A ∩ B)).
Conversely, we have A∩B ⊆ A implies int((A ∩ B)) ⊆ int(A) and A∩B ⊆ A implies
int((A ∩ B)) ⊆ int(B). Thus int((A ∩ B)) ⊆ int(A) ∩ int(B). Consequently we have
int((A ∩ B)) = int(A)∩ int(B). The corresponding result for the closure operator now
follows from (0). �

Theorem 1 establishes the basic properties of a generalized closure operator. It also
strongly suggests that spaces that do not satisfy at least (C0) and (C1) may have
counter-intuitive properties such as the non-empty interior of the empty set, or the
fact that the closure of a set A can be a non-trivial subset of A. The use of (I), (II),
and (III) as axioms goes back to Hausdorff’s work [12]. We shall see in section B.6
that a closure operator satisfying these axioms uniquely determines a pretopological
spaces.

3.4. Open and Closed Sets.

Definition 6. Let (X, q) satisfy (C0). A set A ⊆ X is open in (X, q) if A = int(A).
It is closed if A = cl(A).
A set N ⊂ X is a τ -neighborhood of x if there is an open set O (open neighborhood)
such that x ∈ O ⊆ N . The τ -neighborhoods of x form a filter Tq (x), which we call
the topological neighborhood filter of X.
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Clearly, the collection of open sets that contain x form a basis of the topological
neighborhood filter Tq (x). The open neighborhoods form a filter basis of Tq (x).

Lemma 1. (i) Tq (x) ⊆ Nq (x). (ii) A set A is open if and only if for each each
x ∈ A there is N ∈ Nq (x) such that N ⊆ A. (iii) Tq (x) = Nq (x) if and only if each
neighborhood F ∈ Nq (x) contains an open set O with x ∈ O, i.e., if each neighborhood
contains an open neighborhood.

Proof. (i) follows directly from the definition of Tq (x). (ii) A is open iff for each x ∈ A
holds A ∈ Nq (x). The filter axioms insure that this is equivalent to the seemingly
weaker condition of the lemma. (iii) If Tq (x) = Nq (x) if and only if every A ∈ Nq (x)
contains a basis element of Tq (x), i.e., an open set O that in turn is a neighborhood
of x. Since x ∈ O implies that there is N ⊆ O with x ∈ N and N ∈ Nq (x), claim
(iii) follows. �

Theorem 2. Let (X, q) be a generalized convergence space. Then the sets O of all
open sets and C of all closed satisfy

(O0) A set A is open if and only if its complement X \ A is closed.
(O1) ∅ ∈ O, X ∈ O, and ∅ ∈ C, X ∈ C.
(O2) If O1, O2 ∈ O then O1 ∪ O2 ∈ O. If C1, C2 ∈ C then C1 ∩ C2 ∈ C.
(O3) If Oi ∈ O for all i ∈ I, then

⋃
{Oi|i ∈ I} ∈ O. If Ci ∈ C for all i ∈ I, then⋂

{Ci|i ∈ I} ∈ C.

Proof. (O0) We have A ∈ O ⇐⇒ A = int(A). This is equivalent to X \ A =
X \ int(A) = cl(X \ A) ⇐⇒ X \ A ∈ C.
(O1) follows immediately from (I) and (I’).
(O2) follows directly from property (II’) of the closure and interior operators.
(O3) Consider a collection {Ci|i ∈ I} of closed sets, where I is an arbitrary index

set. Then we have
⋂

j∈I Cj ⊆ Ci for all i ∈ I. Property (II) implies cl
(⋂

j∈I Cj

)
⊆

cl(Ci) = Ci for all i ∈ I and hence cl
(⋂

j∈I Cj

)
⊆

⋂
i∈I Ci. On the other hand, (III)

implies
⋂

i∈I Ci ⊆ cl
(⋂

i∈I Ci

)
. Therefore

⋂
i∈I Ci = cl

(⋂
i∈I Ci

)
, i.e.,

⋂
i∈I Ci ∈ C. The

corresponding proposition for the union of open sets follows from (O0). �

Note that (X,O) forms a topological space in the conventional sense, see e.g. [9].
The neighborhood filters in this space are exactly the topological neighborhood filters
Tq (x). Hence, if Tq (x) 6= Nq (x) we obtain a notion of neighborhood that is more
general than the topological concept.

3.5. Convergence Spaces and Topology.

Definition 7. Let X be a set, ΦX the set of filters on X, and q ⊆ ΦX × X a
relation. We say the filter F ∈ ΦX converges to x with respect to q if (F , x) ∈ q. For
convenience we write F →q x. Consider the following axioms

(C2) F →q x implies (F ∩ ẋ) →q x.
(C3) F →q x and G →q x implies (F ∩ G) →q x.
(C4) F →q x whenever all ultrafilters U that are finer than F converge to x.
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(C5) The neighborhood filters Nq (x) converge to x for all x ∈ X.
(C6) The topological neighborhood filters Tq (x) converge to x for all x ∈ X.

A generalized convergence space satisfying (C2) is a Kent convergence space. If it
satisfies (C3) it is called a limit space, if (C4) holds, we have a pseudotopological
convergence space, if (C5) holds we have a pretopological convergence space, and if
(C6) holds, we have a topological convergence space. If (S) holds, (X, q) is called
symmetric.

The following obvious implications hold for general convergence spaces:

topological =⇒ pretopological =⇒ pseudotopological =⇒ limit space =⇒ Kent

Kent convergence spaces are characterized by the fact that they can be represented
as an infimum of a set of topological spaces. (X, q) is a Kent convergence space if
and only if there is a collection Q of topological convergence relations such that for
all F ∈ ΦX holds

lim qF = sup
q′∈Q

lim q′F (8)

For the details see [17]. Limit spaces [8] and pseudotopological spaces were introduced
by Fischer and Choquet, resp., as generalizations of topological spaces. They were
further generalized by Kent [16]. Pretopological spaces, also introduced by Choquet
[4], will be discussed in the following section.

Two topological convergence spaces will be of particular importance in the following.
The discrete convergence space (X, d) is defined by the fact that F →d x implies
F = ẋ, i.e., Nd (x) = ẋ, and every set A ⊆ X is both open and closed. In other
words the discrete convergence structure d on X gives rise to the discrete topology
on X. In the indiscrete convergence space (X, i) every filter converges to every point,
i.e., Ni (x) = X for all x ∈ X, and hence X is the only non-empty open or closed set.
Obviously, discrete and indiscrete convergence spaces are topological.

Definition 8. Let (X, q1) and (X, q2) be generalized convergence spaces. We say that
q1 is finer than q2 and q2 is coarser than q1 if F →q1

x implies F →q2
x for all x ∈ X

and F ∈ ΦX. We write q1 ⊆ q2, regarding the convergence relations q1 and q2 as
subsets of X × ΦX.

As an immediate consequence we see that

q1 ⊆ q2 implies Nq2
(x) ⊆ Nq1

(x) , (9)

since Nq2
(x) = ∩{F|F →q2

x} ⊆ ∩{F|F →q1
x} = Nq1

(x).

Kent [16] shows that for each Kent convergence relation q there is a finest limit,
pseudotopological, pretopological, and topological convergence relation that is coar-
ser than q. Their construction starts from q and proceeds by applying the appropriate
axiom (C3) through (C6) in order to obtain additional converging filters.

3.6. Pretopological Spaces. Pretopological spaces play a crucial role in our dis-
cussion. The following theorem shows that these structure can be based on the notion
of neighborhood.
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Theorem 3. Let (X, q) be a pretopological convergence space, with closure and inte-
rior operators given by definition 5. Then we have

int(A) = {x ∈ X|A ∈ Nq (x)}

Nq (x) =
{
F ⊆ X

∣∣x ∈ int(F )
}

cl(A) = {x ∈ A|Q ∩ A 6= ∅ for all Q ∈ Nq (x)}

(10)

Proof. By definition, the neighborhood filter Nq (x) is the intersection of all filters F
that q-converge to x. Thus A ∈ Nq (x) implies that A ∈ F holds for all filters that
converge to x. Conversely, if A ∈ F for all F →q x, then A ∈ Nq (x) is true. Hence
“F →q x implies A ∈ F” is equivalent to A ∈ Nq (x). This proves the first equation.
In order to verify the second line we observe that x ∈ int(F ) is equivalent to F ∈ F
for each filter that converges to x. Hence F ∈ Nq (x). Conversely, if F ∈ Nq (x)
then F ∈ F for each filter the converges to x, i.e., F →q x implies F ∈ F , and thus
x ∈ int(F ).
The equation for cl(A) now follows from (0). �

Theorem 3 shows that neighborhood filters, closure operators (satisfying (I), (II) and
(III)) and interior operators are equivalent. If one of these objects is known, the
other two can be recovered from (0) and equ.(10), respectively. Instead of prescribing
the convergence relation q of a pretopological space we may therefore start from the
collection N : x 7→ N (x), x ∈ X of neighborhood filters which, for all x ∈ X satisfy
x ∈ Nx for all Nx ∈ N (x). Given (X, N) we obtain the equivalent convergence space
(X, q � ) by defining

F →q � x ⇐⇒ N (x) ⊆ F (11)

It is then easy to verify the following consistency result:

Lemma 2. (X, q � ) is a pretopological convergence space. For all x ∈ X it satisfies
Nq � (x) = N (x).

Proof. From x ∈ N for all N ∈ N (x) we see N (x) ⊂ ẋ and hence (C1) holds. From
F ⊂ G and F →q � x follows G →q � x since G is finer than F and hence also finer
than N (x); this verifies (C0). Finally, (C5) follows by definition since N (x) →q � x
and hence N (x) =

⋂
{F|F →q � x} = Nq � (x). �

In the following, and in the main text, we speak of pretopological spaces (X, N)
instead of pretopological convergence spaces (X, q � ) since prescribing the neighbor-
hood filters will be more intuitive for our applications than prescribing the abstract
convergence relation q.

Theorem 4. A pretopological space (X, N) is topological if and only if one, and
therefore all, of the following equivalent conditions are satisfied

(i) N (x) = T (x) for all x ∈ X.
(ii) For each x ∈ X and each N ∈ N (x) there is a subset A ⊆ N such that x ∈ A

and N ∈ N (y) for every y ∈ A.
(iii) The interior operator is idempotent, i.e., int(int(A)) = int(A).
(iv) The closure operator is idempotent, i.e., cl(cl(A)) = cl(A).
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Proof. (i⇐⇒ii) is e.g. [9, Thm.I.7.1], (ii⇐⇒iv) is [9, Thm.I.3.2], (iii⇐⇒iv) is easily
obtained from equ.(10). �

The comparison of convergence relations translates into the familiar partial order for
pretopologies and topologies: If (X, N1) and (X, N2) are pretopological spaces, then
N1 is finer than N2 if and only if N2(x) ⊆ N1(x) for all x ∈ X. If (X, q1) and (X, q2)
are topological convergence spaces, then q1 ⊆ q2 if and only if T2(x) ⊆ T1(x) for all
x ∈ X. This is equivalent to the more familar characterization that (X,O1) is finer
than (X,O2) if and only if O2 ⊆ O1, i.e., if the open sets w.r.t. to the topology O1

are also open w.r.t. the topology O2.

The following result [16, Thm.1] easily follows from the discussion above.

Lemma 3. Let (X, q) be a generalized convergence space. Then

q ⊆ q �
q
⊆ qOq

(12)

where q �
q
and qOq

denote the convergence relations of the pretopological space (X, Nq)
and the topological space (X,Oq), respectively.

The following result will be useful for the discussion of continuous functions:

Lemma 4. Let (X, q1) and (X, q2) be generalized convergence spaces such that q1 is
finer than q2. Then Nq1

is finer than Nq2
and Oq1

is finer than Oq2
.

Proof. The first part follows immediately from equ.(9) above.
Let O be an open neighborhood of y w.r.t. q2. Thus for all x ∈ O, there is Nx

q2

such that x ∈ Nx
q2

⊆ O. From Nq2
(x) ⊆ Nq1

(x) we know that for each Nx
q2

there is
x ∈ Nx

q1
⊆ Nx

q2
⊆ O, and hence O is open w.r.t. Oq1

as well. Oq2
⊆ Oq1

. �

3.7. Composition of Pretopologies. A useful composition of pretopologies on a
set X is described in [7]. Let p and q be two pretopologies on X with neighborhood
filters Np (x) and Nq (x). We set

Npq (x) = {A ⊆ X|intpA ∈ Nq (x)} (13)

where intp denotes the interior operator w.r.t. to the pretopology p. The closure and
interior operators satisfy

intpq = intqintp and clpq = clqclp (14)

The discrete topology d is the unit element of this composition, while the indiscrete
topology i acts as null element, i.e., pd = dp = p and pi = ip = i.

Given two pretopologies p and q we define p ∧ q via its neighborhood filters

Np∧q (x) = Nq (x) ∪ Nq (x) (15)

Let α be an ordinal number. Then define pα = pα−1p if pα−1 exists and pα =
∧

β<α pα

otherwise. The powers of p satisfy pα+β = pαpβ and (pα)β = pαβ for all ordinal
numbers. For each p there is least ordinal number t(p), called the topological defect,
such that pt(p) is a topology [3, 11, 12, 22, 24]. In the following we shall write cl(A)α

for the closure of A in pα. The “topological closure” is Â = cl(A)t(p).
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4. Uniform Structures

4.1. Symmetry.

(S’) x ∈ N (y)↓ implies y ∈ N (x)↓.
(S) F →q x and y ∈ F ↓ implies F →q y.

(R0) x ∈ cl(y) implies y ∈ cl(x) for all x, y ∈ X.

In a topological space (S) and (R0) are equivalent, see e.g. [28]. In pretopological
spaces (S’) and (R0) are equivalent.

If (X, q) is a pretopological space, then (S) trivially implies the much weaker symme-
try condition (S’). We remark that Kent [18] calls (S’) symmetric while Preuß [27] uses
“symmetric” for (S). In [17] it is shown that (S) is equivalent to “weak uniformizabil-
ity”, meaning that q can be represented as the infimum of a set of completely regular
topologies on X analogous to equ.(8).

Lemma 5. A pretopological space satisfies (S) if and only if y ∈ N (x) ↓ implies
N (y) = N (x).

Proof. (See also [17, Thm.2.2.] Substituting N (x) for F in (S) we find that in a
(S) pretopological space y ∈ N (x) ↓ implies N (x) → y and hence N (y) ⊆ N (x).
Consequently, x ∈ N (x) ↓⊆ N (y) ↓. Thus, N (y) → y and (S) imply N (y) → x,
whence N (y) ⊆ N (x). Therefore N (y) = N (x)
Conversely, suppose y ∈ N (x)↓ implies N (y) = N (x). Since F → x means N (x) ⊆
F we have F ↓⊆ N (x) ↓ and y ∈ F ↓ implies y ∈ N (x) ↓; now N (y) = N (x)
guarantees F → y. �

4.2. Uniformities and Filters on X × X. We first recall the definition of the
relation product of subsets of X × X:

∆ = {(x, x)|x ∈ X}

F−1 = {(x, y)|(y, x) ∈ F}

F ◦ G =
{
(x, y)

∣∣∃ z ∈ X : (x, z) ∈ G and (z, y) ∈ F
}

F [x] = {y ∈ X|(x, y) ∈ F}

(16)

Note that the relation product ◦ is associative, satisfies ∆ ◦ F = F ◦ ∆ = F and
(F−1)−1 = F .

Now let F ,G ∈ Φ[X × X]. We define

ẋ × ẋ = {A ⊂ X × X|(x, x) ∈ A}

∆̇ = {A ⊂ X × X|∆ ⊆ A}

F−1 = {F−1|F ∈ F}

F ◦ G =

{
{H|∃F ∈ F , G ∈ G : F ◦ G ⊆ H} if F ◦ G 6= ∅ ∀F ∈ F , G ∈ G

∅ otherwise

F × G = {H|∃F ∈ F : F × G ⊆ H}

F [x] = {F [x] ⊂ X|F ∈ F}

(17)
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Let U ∈ Φ[X × X] and consider the following properties.

(u1) ∆ ⊆ U for all U ∈ U .
(u2) U ∈ U implies U−1 ∈ U .
(u3) For all U ∈ U there is a V ∈ U such that V ◦ V ⊂ U .
(u4) For all U ∈ U and all x ∈ X there is V ∈ U such that (V ◦ V )[x] ⊂ U [x].

The filter U is called a preuniformity on X if (u1) is satisfied, a semiuniformity if (u1)
and (u2) hold, a quasiuniformity if (u1) and (u3) hold, a uniformity if (u1), (u2), and
(u3) hold, and a local uniformity if (u1), (u2), and (u4) hold. The elements U ∈ U
are called entourages, see e.g. [25]

4.3. Preuniform Convergence Spaces.

Definition 9. Let X be a set and let Υ ⊆ Φ(X × X) be a set of filters on X × X.
Consider the following properties:

(U0) G ∈ Υ and G ⊆ F implies F ∈ Υ.
(U1) ẋ × ẋ ∈ Υ for all x ∈ X.

(UD) ∆̇ ∈ Υ.
(US) F ∈ Υ implies F−1 ∈ Υ.
(U3) F, G ∈ Υ implies F ∩ G ∈ Υ.
(UP) There is a filter U ∈ Φ[X × X] such that Υ = {F ∈ Φ[X × X]|U ⊆ F}.
(U4) F, G ∈ Υ and F ◦ G 6= ∅ implies F ◦ G ∈ Υ.

The pair (X, Υ) is a preuniform convergence space if it satisfies (U0) and (U1) [1].

Note that ∆̇ ⊆ ẋ × ẋ for all x ∈ X. Hence (UD) and (U0) imply (U1). A preuniform
convergence space satisfying (UD), (UP), (US) is diagonal, principal, a semiuniform
convergence space, respectively. A semiuniform convergence space satisfying (U3) is
a a semi-uniform limit space. Note that (UP) implies (U3). Principal convergence
spaces can be identified with the uniformities discussed in the previous subsection. A
semiuniform limit space is called a uniform limit space if it satisfies (U4). These were
first studied by [30]. Principal uniform limit space are equivalent to Weil’s [29] notion
of “uniform spaces”.

Let (X, Υ) be a pre-uniform convergence space. Then (X, qΥ) defined by

H →qΥ
x whenever ∃F ∈ Υsuch that F [x] ⊆ H (18)

Since (ẋ×ẋ)[x] = ẋ, we see that (C1) follows from (U1), i.e., (X, qΥ) is the generalized
convergence space induced by (X, Υ).

Conversely, given a generalized convergence space (X, q) we may construct

Υq =
{
F ∈ Φ[X × X]

∣∣∃H ∈ ΦX : H →q x and (ẋ ×H) ⊆ F
}

(19)

It is clear that (X, Υq) is a preuniform convergence space.

It remains to show that these definitions are “consistent”

Lemma 6. qΥq
= q.
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Proof.

H →qΥq
x ⇐⇒ ∃F such that F [x] ⊆ H and ∃H′ such that H′ →q x(ẋ ×H′) ⊆ F

⇐⇒ ∃F such that ∃H′ : H′ →q x and H′ = (ẋ ×H′)[x] ⊆ F [x] ⊆ H

⇐⇒ ∃H′ : H′ →q x and H′ ⊆ H

⇐⇒ H →q x

�

A semiuniform convergence space (X, Υ) has an underlying Kent convergence space
(X, qΥ) defined by

F →qΥ
x ⇐⇒ (F ∩ ẋ) × (F ∩ ẋ) ∈ Υ (20)

which satisfies (S). Note that equ.(20) follows immediately from equ.(18), axiom (US),
and axiom (C2). Conversely, every Kent convergence space satisfying (S) may be
considered as a semiuniform convergence space (X, Υq) where

Υq =
{
F

∣∣ ∃G ∈ ΦX and x ∈ X such that G →q x and G × G ⊆ F
}

(21)

For more details we refer to [27].

Let (X, Υ) be a semiuniform convergence space, and consider the following axioms:

There exists a substantial body of literature on various types of uniformizations of
convergence spaces, see e.g. [2, 6, 19, 15, 27].

5. Continuity

5.1. Continuity in Convergence Spaces. Let f : X → Y be an arbitrary function
and let F be a filter on X. Then we define f(F) = {f(F )|F ∈ F}. It is easy to
see that f(F) is a filter basis: Since ∅ /∈ F it follows that f(F ) 6= ∅. Property (F2)
follows immediately from f(F ∩ F ′) ⊆ f(F ) ∩ f(F ′) for any two sets F, F ′.

Definition 10. Let (X, q) and (Y, p) be two generalized convergence spaces and let
f : X → Y be a function. Then f is continuous in x ∈ X (w.r.t. the relations q and
p) if

F →q x implies f(F) →p f(x) (22)

The function f is continuous if it is continuous for all x ∈ X.

Lemma 7. Let (X, N) and (Y, M) be two pretopological spaces. Then f : X → Y is
continuous in x ∈ X (w.r.t. the associated convergence relations q = q � and p = p � )
if

For each M ∈ M(f(x)) there is N ∈ N (x) such that f(N) ⊆ M. (23)

Proof. Definition 10 translates to: f is continuous in x if and only if N (x) ⊆ F
implies M(f(x)) ⊆ f(F)↑ . This implies in turn

f : X → Y is continuous in x if and only if M(f(x)) ⊆ f(N (x))↑ (24)

since F ⊆ F ′ implies f(F) ⊆ f(F ′) and hence f(F)↑⊆ f(F ′)↑ .
It remains to show that (24) and (23) are equivalent. If condition (24) holds, then
for each M ∈ M(f(x)) there is a set M ′ ⊆ M such that M ′ ∈ f(N (x)), and hence
there is an N ∈ N (x) such that M ′ = f(N), i.e., equ.(23) holds. Conversely, if for
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each M ∈ M(f(x)) there is an N ∈ N (x) such that f(N) ⊂ M , then M ∈ f(N (x)),
i.e., f(N (x))↑ is finer than M(f(x)). �

The notion of convergence in pretopological spaces coincides with the usual definitions
of convergence in topological spaces if (X, q), or (X, N), is topological.

Theorem 5. Consider a function f : X → Y Then:

(i) If q2 ⊆ q1 and f : (X, q1) → (Y, p) is continuous then f : (X, q2) → (Y, p) is
also continuous.

(ii) If p1 ⊆ p2 and f : (X, q) → (Y, p1) is continuous then f : (X, q) → (Y, p2) is
also continuous.

Proof. (i) Suppose f : (X, q1) → (Y, p) is continuous. Then (F , x) ∈ q2 ⊆ q1 implies
(f(F)↑ , f(x)) ∈ p, i.e., f : (X, q2) → (Y, p) is also continuous.
(ii) Suppose f : (X, q) → (Y, p1) is continuous. Then (F , x) ∈ q implies (f(F) ↑
, f(x)) ∈ p1 ⊆ p2, i.e., f : (X, q) → (Y, p2) is continuous. �

5.2. Final Convergence Relations. Let (X, q) be a generalized convergence space,
let Y be a set and f : X → Y a function. We may define a convergence relation {(q)
by defining G →f(q) y whenever there is coarser filter H = f(F)↑ such that F →q x
and y = f(x). It is clear that (Y, f(q)) is a generalized convergence space, since
f(ẋ) ↑= ẏ with y = f(x). The convergence structure f(q) is called final. It is the
coarsest convergence structure such that f : (X, q) → Y is continuous [8].

Similarly, we may start with a pretopological convergence space (X, q) and ask for the
coarsest pretopology on on Y such that f is continuous. Note that this is in general
not f(q)), since in order to obtain a pretopology on Y we need to require in addition
that the intersection of any set of filters that converge to x must also converge to x.
Hence the final pretopology fp(q)) has the neighborhood filters

A(y) = Nfp(q) (y) =
⋂

x∈f−1(y)

f
(
Nq (x)

)
↑ (25)

if f−1 6= ∅ and A(y) = ẏ otherwise. It is clear that f : (X, q) → (X, fp(q)) is
continuous, see also [8].

We may use proposition 5 of [20] as definition: A continuous function f : (X, q) →
f : (Y, p) is a pretopological quotient map if and only if for each y ∈ Y there is x ∈ X
such that f(Nq (x))↑= A(y).

Consequently A(y) = S(y), i.e., f(Nq (x)) ↑= A(y) for all x ∈ f−1 is a sufficient
condition. Such quotient maps are called neighborhood preserving.

5.3. Uniform Continuity.

Definition 11. A function f : (X, Υ) → (Y, Ψ) from one preuniform convergence
space into another one is uniformly continuous if

(f × f)(F) ∈ Ψ (26)

for all F in Υ.
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Lemma 8. If f : (X, Υ) → (Y, Ψ) is uniformly continuous, then f : (X, qΥ) →
(Y, qΨ) is continuous.

Proof. Suppose H →qΥ
x, i.e., F [x] ⊆ H for some F ∈ Υ, and hence ẋ × H ∈ Υ.

Assuming uniform continuity we have (f × f)(ẋ × H) ∈ Ψ and hence by definition
(f × f)(ẋ ×H)[f(x)] →qΨ

f(x). It remains to compute

(f × f)(ẋ ×H)[f(x)] = (f(ẋ) × f(H))[f(x)] = (ḟ(x) × f(H))[f(x)] = f(H)

and hence we have fH) →qΨ
f(x), i.e. f is continuous. �

6. Connectedness

Definition 12. Two sets A, B ⊆ X are separated in (X, q) if cl(A)∩B = A∩cl(B) =
∅.

Theorem 6. Let (X, q) be a generalized convergence space. Then the following propo-
sitions are equivalent:

(c1) There is no proper subset of X that is both open and closed.
(c2) X cannot be represented as the union of two disjoint open sets.
(c3) X cannot be represented as the union of two disjoint closed sets.
(c4) X cannot be represented as the union of two separated sets.

Proof. The equivalence of (c1), (c2), (c3) is obvious.
In order to show (c3)⇐⇒(c4) we first assume that A and X \ A are separated for
some A 6= ∅, X. If A is not closed, there is x ∈ cl(A)\A. This leads to a contradiction
since cl(A) ∩ (X \ A) = ∅ implies x /∈ (X \ A), i.e., x ∈ A. Thus A is closed. The
same argument can be used to show that X \A is closed. Conversely, suppose A and
X \A are both closed. Then A∩ (X \A) = cl(A)∩ (X \A) = A∩ cl(X \ A) = ∅, i.e.,
A and X \ A are separated. �

Corollary 1. A generalized convergence space (X, q) is connected if and only if the
associated topological space (X,Oq) is connected.

Definition 13. A generalized convergence space is connected and one, and hence all,
of the conditions (c1) through (c4) are satisfied.
A generalized convergence space (X, q) is path connected if for all x, y ∈ X there a
continuous function f : [0, 1] → X such that f(0) = x and f(1) = y. Such a function
f is called a path.

Theorem 7. If (X, q) is path-connected, then it is connected.

Proof. Let (X,Oq) be the topological space associated with (X, q). If f : [0, 1] →
(X, q) is is continuous, then, by Lemma 3 and theorem 5 f : [0, 1] → (X,Oq) is also
continuous. Thus path-connectedness implies path-connectedness w.r.t. the associ-
ated topology Oq, which implies that (X,Oq) is connected. Corollary 1 completes
the proof. �
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7. Separation Properties

7.1. “Lower” Separation Axioms. A convergence space is

(T0) ẋ →q y and ẏ →q x implies x = y.
(T1) ẋ →q y implies x = y. In other words, if x 6= y then ẋ 6→q y.
(Re) reciprocal if x, y ∈ limF implies {F|F →q x} = {G|G →q y}.
(H) Hausdorff if x, y ∈ limF implies x = y, i.e., each filter converges to at most

one point.
(T2) separable if F →q x, and G →q y, x 6= y implies F ∨ G = ∅.

(αT2 1

2
) α-Urysohn if F →q x, G →q y, x 6= y implies cl(F)α ∨ cl(G)α = ∅.

(wT2 1

2
) Urysohn if F →q x, G →q y, and x 6= y implies cl(F) ∨ cl(G) = ∅.

(T2 1

2
) ℵ0-Urysohn if F →q x, G →q y, and x 6= y implies cl(F)ℵ0 ∨ cl(G)ℵ0 = ∅.

(T2 1

2
) strongly Urysohn if F →q x, G →q y, and x 6= y implies F̂ ∨ Ĝ = ∅.

Remark. Some authors define (T2) via the existence of disjoint open neighborhoods
for any two points, e.g. [8].

The terms reciprocal was introduced in [23]. In [15] the property was introduced as
“axiom P”.

Lemma 9. (T2), (H), (T0∧Re) are equivalent in any generalized convergence space
(X, q).

Proof. If (X, q) is not Hausdorff, then there are two points x 6= y and a filter F such
that F →q x and F →q y. Since F ∨ F = F 6= ∅, (X, q) is not separable.
If (X, q) is not separable then there two points x 6= y and two are non-disjoint filters
F and G such that F →q x and G →q y. In this case F ∨ G 6= ∅ q-converges to both
x and y, violating (H).
It is clear that (H) implies (Re) and (T0). Suppose F →q x and F →q y. By (Re) we
have {F|F →q x} = {G|F →q y} and hence ẋ →q y and ẏ →q x. (T0) implies that
x = y, thus every filter converges to at most one limit point, i.e., (H) holds. �

(Re) implies (S).

7.2. Regularity. Remark. In many (older) references the notions regular and (T3),
normal and (T4) are reversed.

Let α be an ordinal number, let F be a filter on X. Then we define:

cl(F) = {cl(F ) |F ∈ F}↑

cl(F)α = {cl(F )α F ∈ F}↑

F̃ = {cl(F )ℵ0 F ∈ F}↑

F̂ = {F̂ |F ∈ F}↑

(27)

Note that cl(F)α ⊆ cl(F)β if α ≥ β, and hence F̂ ⊆ F̃ ⊆ cl(F).

A generalized convergence space (X, q) is

(αR) α-regular if F →q x implies cl(F)α →q x;
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(R) regular if F →q x implies cl(F) →q x;

(ℵ0R) ℵ0-regular if F →q x implies F̃ →q x;

(sR) strongly regular if F →q x implies F̂ →q x.

This terminology is consistent with [8, 13, 5, 21]. However, we use regular for what
is sometimes called weakly-regular and ℵ0-regular for regular in [21]. If (X, q) is

topological, then (αR) is equivalent for all α since cl(F) = F̂ . Regularity coicides
with the usual notion on topological spaces.

Lemma 10. F →q x implies cl(F) ⊆ ẋ.

Proof. Consider F ∈ F . By definition, z ∈ cl(F ) iff there is a filter G such that
F ∈ G and G →q x. Consequently, we have x ∈ cl(F ). By construction we have for
all F ′ ∈ cl(F): x ∈ F ′ and hence F ′ ∈ ẋ, i.e., cl(F) ⊆ ẋ. �

A generalized convergence space (X, q) is (α-T3), (T3), (ℵ0T3), or (sT3) if it satisfies
the corresponding regularity axiom (αR), (R), (ℵ0R), or (sR), respectively and the
separation axiom (T0). Such spaces are considered in some detail in [21].

Lemma 11. (α-T3) implies (α-T2 1

2
).

Proof. We proceed in two steps. First we show that a regular (T0) space is Hausdorff:
To this end suppose (X, q) is not separable, i.e., there are two distinct points x 6= y
and non-disjoint filters F →q x and G →q y, i.e., F ∨ G q-converges to both x and
y. Hence, by lemma 10, cl(F ∨ G) ⊆ ẋ and cl(F ∨ G) ⊆ ẏ. Now (R) implies that
cl(F ∨ G) also q-converges to both x and y. The same holds for the finer filters ẋ and
doty, contradicting (T0). A regular (T0) space hence is Hausdorff.
Now suppose (X, q) is α-regular and there are two points x 6= y and filters F →q x,
G →q x, such that cl(F)α ∨ cl(G)α 6= ∅, i.e., (αT2 1

2
) does not hold. Axiom (αR)

implies cl(F)α →q x and cl(F)α →q y, whence cl(F)α ∨ cl(G)α q-converges to both x
and y, contradicting (H). Hence an α-regular Hausdorff space is α-Urysohn. �

7.3. Complete Regularity. A set A is completely within B, A � B, if there is
a continuous function ϕ : (X, q) → [0, 1] (with the usual topology interpreted as a
convergence space) such that ϕ(A) ⊆ {0} and ϕ(X \B) ⊆ {1}. By definition we have
∅ � A for all X 6= ∅ and A � X for all A 6= X. Furthermore, A′ ⊂ A, B ⊂ B′, and
A � B implies F ′ � G and F � G′. To see this, we simply use the same function
ϕ that establishes F � G an restrict F or X \ G to a subset.

Lemma 12. A � B implies cl(A) ⊆ B.

Proof. The lemma is trivial for A = ∅ or B = X. Hence we may assume that
A 6= ∅ and B 6= X. In this case we have ϕ(A) = {0} and ϕ(X \ B) = {1}. The
function ϕ is continuous, i.e., F →q x implies ϕ(F ) → ϕ(x). More explicitly, this
means that, for all ε > 0, there is a set F ∈ F such that ϕ(F ) ⊆ Bε(ϕ(x)), where
Bε(y) = [0, 1] ∩ (y − ε, y + ε). Now suppose x ∈ cl(A). Then F ∩ A 6= ∅ for all FF
and hence ϕ(A) = {0} implies 0 ∈ ϕ(F ) ⊆ Bε(ϕ(x)), i.e., ϕ(x) < ε. Thus ϕ(x) 6= 1,
which implies x /∈ (X \ B) and hence x ∈ B. �
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For each filter F we define

F? = {G ⊆ X|∃F ∈ F : F � G}↑ (28)

Lemma 12 implies F∗ ⊆ cl(F) since cl(F ) ⊆ G whenever F � G.

A convergence space is

(CR) completely regular if F →q x implies F? →q x.
(T3 1

2
) if it is complete regular and (T0).

The discussion above shows that a completely regular convergence space is regular,
and hence the separation axiom (T31

2
) implies (T3).

7.4. Normality. Normal convergence spaces are introduced in [26] in the following
way.

For A 6= ∅ we write

N (A) = {N |A ⊆ int(N)} =
⋂

x∈A

N (x) (29)

Definition 14. (QN) (X, q) is quasi-normal if for all pairs of non-empty disjoint
closed sets A and B (i.e., A = cl(A) 6= ∅, B = cl(B) 6= ∅, and A ∩ B = ∅)
holds N (A) ∨ N (B) = ∅.

(N) (X, q) is normal if for all non-empty closed sets A = cl(A) 6= ∅ holds N (A) ⊆
cl(N (A)).

(T4) (X, q) is (T4) if it is (T1) and normal.

With these definitions [26] shows:

(QN) implies (N). In topological spaces (QN) and (N) are equivalent. (T4) implies
regularity and hence (T3).

8. Compactness

8.1. Adherence of a Filter. The discussion below is extracted from [8].

Definition 15. x ∈ X is adherent to the filter F if there is G ⊆ F such that G →q x.
The adherence adhF is the set of all points adherent to F .

In particular, therefore limF ⊆ adhF . More generally we have

adhF =
{
x ∈ X

∣∣∃G ⊆ F : G →q x
}

== ∪G⊆F limG . (30)

We remark two useful results from Fischer’s [8] paper:

cl(A) = adhȦ for all A 6= ∅.
If (X, q) is (T2) and F is a convergent filter, F →q x, then adhF = {x}.

8.2. Compact Convergence Spaces.

Definition 16. A convergence space (X, q) is compact if adhF 6= ∅ for every filter
F on X.

An equivalent formulation is
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Lemma 13. A convergence space (X, q) is compact if and only if every ultrafilter on
X converges.

Lemma 14. Let (X, q) be a compact (T2) pretopological space. Then F converges if
and only if adhF consists of a single point.
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