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We characterize the distributions of short cycles in a large metabolic network
previously shown to have small world characteristics and a power law de-
gree distribution. Compared with three classes of random networks, including
Erdős-Rényi random graphs and synthetic small world networks of the same
connectivity, both the metabolic network and models for the chemical reac-
tion networks of planetary atmospheres have a particularly large number of
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Glossary

BA Albert-Barabasi scale free network
CFC chloro-fluoro-carbon compounds
Ecoli1 The model of the E. coli core metabolism from

(Wagner and Fell, 2000)
ER Erdős-Rényi random graph
HC Hydrocarbon reaction network
MCB Minimal cycle basis
SWk Watts-Strogath Small World network with connections to the

k nearest neighbors

1. Introduction

The rapidly increasing amount of molecular data on genes, proteins and metabolic
pathways enhances our capability to study cell behaviour. The understanding of
the molecular logic of cells requires the ability to analyze metabolic processes and
gene networks in qualitative and quantitative terms. In this contribution we shall
focus on global features of metabolic networks that are likely to have evolved and
thus set the networks of cellular chemistry apart from abiotic reaction networks.

Recent surveys, in particular (Jeong et al., 2000; Wagner and Fell, 2000; Fell
and Wagner, 2000), have revealed that metabolic reaction networks belong to
the class of small world networks in the wider sense: they have a diameter that
is much smaller than what one would expect for an uncorrelated random graph
with the same number of vertices and edges.

Small world networks have received considerable attention since the seminal
paper by Watts and Strogatz (Watts and Strogatz, 1998). In a recent paper
(Amaral et al., 2000), Amaral et al. present evidence that there are (at least)
three structurally different classes of networks that are distinguished by the
distribution P (d) of the vertex degrees d:

(a) Single Scale Networks with a sharp distribution of vertex degrees exhibiting
exponential or Gaussian tails. This class includes also the Erdős-Rényi
model of uncorrelated random graphs (Erdős and Rényi, 1960; Bollobás,
1985).

(b) Scale Free Networks with a power law distribution P (d) ∼ d−γ . A simple
model for this type of networks was introduced recently by Barabási et

al. (Barabási and Albert, 1999; Barabási et al., 1999). Metabolic networks
(Wagner and Fell, 2000; Jeong et al., 2000) and food-webs (Montoya and
Solé, 2000) belong to this class.

(c) Broad Scale Networks for which P (d) has a power-law regime followed by
a sharp cut-off, e.g. exponential or Gaussian decay of the tail. An example
is the movie-actor network described in (Watts, 1999)

The most common model of graph evolution, introduced by Erdős and Rényi
(Erdős and Rényi, 1960), assumes a fixed number n = |V | of vertices and assigns
edges independently with a certain probability p (Bollobás, 1985). In many cases
ER random graphs turn out the be quite different from a network of interest.
The Watts-Strogatz (Watts and Strogatz, 1998) model of small world networks
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starts with a deterministic graph, usually a circular arrangement of vertices in
which each vertex is connected to k nearest neighbors on each side. Then edges
are “rewired” (in the original version) or added (Newman and Watts, 1999;
Newman et al., 2000) with probability p. We shall consider the latter model
for k = 1, denoted SW1 below, which corresponds to adding random edges to a
Hamiltonian cycle. Both ER and SW1 graphs exhibit an approximately Gaussian
degree distribution.

The other extreme is scale-free BA model (Barabási and Albert, 1999; Barabási
et al., 1999) with a degree distribution of the form P (d) ∼ d−3: Starting from
a small core graph, at each time step a vertex is added together with m edges
that are connected to each previously present vertex k with probability

Π(k) = d(k)
/

∑

j

d(j) , (1.1)

where d(j) is the degree of vertex j. A recent extension of the model allows the
tuning of the scaling exponent γ in the range 2 ≤ γ ≤ 3 (Albert and Barabasi,
2000).

Much of the literature discusses small world networks in terms of the average
path length between two vertices (Newman et al., 2000) or of the network’s
clustering coefficient (Herzel, 1998; Barrat and Weigt, 2000) which measures how
close the neighborhood of a each vertex comes on average to being a complete
subgraph (clique) (Watts and Strogatz, 1998). In this contribution we consider
the small cycle of small world networks in detail. This approach is motivated by
the following two observations:

Recent work on the spread of epidemics on a small world network (Pandit and
Amritkar, 1999) emphasizes the importance of “far-reaching” edges. The idea
is that clipping a far edge will force a (relatively) long detour in the network.
Hence it is these edges that are responsible for the small diameter of the graph
G. We shall see in section 2 that detours are intimately related to the cycles in
the graph. In particular, we describe the connection between cycles in directed
and undirected models and argue that the collection of relevant cycles is the
appropriate mathematical object for our purposes. In section 3 we briefly outline
the relationship between the cycle structure of a reaction network and Chemical

Flux Analysis. In the following section the distribution of triangles and longer
relevant cycles is discussed for uncorrelated random graphs as well as for small
world models. In section 6 we compare two classes of chemical reaction networks
here: (1) Metabolic networks in which all reactions are mediated by specific
enzymes, and (2) the reaction networks of planetary atmospheres which lack
specific catalysis. A discussion of our results and open problems concludes this
contribution.

2. Detours, Cycles, and Circuits

Let us look at detours in graphs in more systematic way. Throughout this
paper we will represent a network as a simple (unweighted, undirected) graph
G(V, E) with vertex set V and edge set E. A cycle in G is a closed path which
meets each of its vertices and edges exactly once. The length of a cycle C, i.e.,
the number of its vertices or edges, is denoted by |C|. With each edge e ∈ E we
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Figure 1: S(G) consists of the twelve triangle only. The hexagon (bold edges), however, is
crucial for the network structure since the local information conveyed by the triangles does
not allow the reconstruction of the hexagonal overall-structure.

can associate the set S(e) containing the shortest cycles in G that go through e.
It is easily verified that a far edge in the sense of (Pandit and Amritkar, 1999)
is an edge that is not contained in a triangle. In other words, e is a far edge if
and only if S(e) does not contain a triangle. The cycles C ∈ S(e) determine the
shortest detours (which have length |C| − 1) when e is removed from the graph.

It seems natural to consider the set S(G) =
⋃

e∈E S(e) of shortest cycles of
all edges in G and to study e.g. their length distribution. However, as the l.h.s.
example in Fig.1 shows, the shortest cycles S(G) do not convey the complete
information about the graph. Additional cycles appear to be relevant, such as the
hexagon in Figure 1. It cannot be reconstructed from the collection of triangles,
but it determines the diameter (maximal distance between two vertices) of the
graph.

A formal treatment of cycles in undirected graph conveniently starts with the
notion of the cycle space. The set of all subsets of E forms an |E|-dimensional
vector space over {0, 1} (with addition and multiplication modulo 2). Vector
addition in this edge space is given by symmetric difference X⊕Y = (X∪Y )\(X∩
Y ). The cycle space C consisting of all cycles and edge-disjoint unions of cycles
in G is a particularly important subspace of the edge space (Chen, 1971). The
dimension of the cycle space is the cyclomatic number ν(G) = |E| − |V |+ c(G),
where c(G) is the number of connected components of G.

The notion of a cycle space is readily extended to directed graphs ~G(V, A)
with vertex set V and arc set A. A circuit is a directed closed path on the vertex
set of ~G such that each arc and each vertex (with the exception of the starting
point) is visited exactly once. With each circuit one associates a vector C ∈ R

|A|

with entries Ca = +1 if the a is in the circuit and its orientation agrees with the
orientation of the path, Ca = −1 if the orientation of arc and circuit are opposite
and Ca = 0 if the arc a is not part of the circuit, see Fig.2 for an example. The
circuit space is the vector space over R generated by (the vector representations

of) all circuits on ~G. Note that if C is a circuit then −C is the circuit with the
opposite orientation.

The length of a cycle or a circuit is the number of its edges or arcs, respectively.
In terms of the vector representation we have |C| =

∑

a |Ca|. For each collection
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Figure 2: The circuit C delimiting the shaded region in the directed graph ~G on the l.h.s.
and the orientation indicated by the arrow has the vector representation

(+1, 0, 0, 0,−1, +1, 0, 0,−1, +1,+1,−1, 0, 0, 0, 0, 0, 0, 0) .

The r.h.s. shows the graph G◦, obtained from ~G by one edge of each 2-cycle and ignoring
the direction of the arcs. We have for example R = {2, 8, 15, 16} or R′ = {3, 8, 14, 17} as

“reverse arcs” that are omitted in passing from ~G to G◦.

B of cycles or circuits we define the length

`(B) =
∑

C∈B

|C|. (2.1)

This definition is meaningful for both cycles of undirected graphs and circuits of
directed graphs. A minimum cycle basis (MCB) is a cycle basis with minimum
length. MCBs have the property that their longest cycle is at most as long as
the longest cycle of any basis of C (Chickering et al., 1994). A MCB therefore
contains the salient information about the cycle structure of a graph in its most
compressed form. It appears natural to consider the cycle structure of a graph
in terms of its MCBs, in particular, because the following theorem establishes a
strong connection between the shortest detours discussed in the previous section
and minimal cycle bases.

Theorem 2.1. (Stepanec, 1964; Zykov, 1969)
Each cycle C ∈ S(G) of an undirected graph is contained in a minimal cycle

basis.

In general, graphs do not have unique MCBs. In fact, the known classes of
graphs with unique MCB have a very simple structure: they are outer-planar
(Leydold and Stadler, 1998), Halin graphs (Stadler, 2000), or certain series-
parallel graphs (McKee, 2000). However, the distribution of cycle sizes is the
same in all MCBs of a graph G. More precisely:

Theorem 2.2. (Stepanec, 1964; Chickering et al., 1994)
Suppose M is a MCB of G containing nk cycles of length k. Then every MCB

of G has exactly nk cycles of length k.

A cycle is called essential if it is contained in all minimal cycle bases. In
particular, a cycle is essential if it is the unique shortest cycle through some edge
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Figure 3: Organic carbon compounds may exhibit elaborate polycyclic structures. The
example shown here is Compound 8 from (Kammermeier et al., 1996) (aromatic “double
bonds” are indicated by thick lines). The nine essential cycles are marked with gray shades.
There are two groups of relevant non-essential cycles: four 8-rings and three 6-rings. A
minimal cycle basis contains two of the three 6-rings and one of the four 8-rings.

(Gleiss and Stadler, 1999). This condition is not necessary, however. An example
of a graph with a non-unique MCB indicating the essential cycles is given in
Fig. 3.

The main difference between undirected and directed graphs arises from the
fact that in the directed case we can have two arcs connecting the same pair
of vertices, one in each direction. Such pairs of arcs form circuits of length 2
which we shall call 2-cycles. With a directed graph ~G(V, A) we may associate
in a natural way an undirected graph G◦(V, E) with the same vertex set V and
an edge set E obtained by ignoring the direction of the arcs. In the case of
cycles of length two we identify one of the arc with the undirected edge and omit
the other. For a given directed graph ~G the underlying undirected graph G◦ is
uniquely determined. The sets E ⊆ A of retained edges and the corresponding
set R = A \E of omitted “reverse edges”, on the other hand, are not unique. It
depends obviously on the (arbitrary) choice of one of the two arcs of each 2-cycle.
We shall sometimes write G◦

R to emphasize the fact that the correspondence of
A and E depends on R.

It is clear that C and −C are always linearly dependent, hence a basis of
the circuit space cannot contain both orientations of the same circuit. On the
other hand, since the change of orientation does not change the length of the
circuit, we can always replace C by −C in a basis. We can therefore disregard
the orientation of the circuit and consider it only as the set of its arcs.

This observation allows us to obtain a simple correspondence between the
circuit space of a directed graph ~G and the cycle space of is underlying undirected
graph G◦:

Theorem 2.3. A collection Q of circuits in ~G is a minimal length basis of the
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circuit space if and only if Q = M∪D, where M is a minimal cycle basis of G◦
R

for some R, and D is the set of 2-cycles in ~G.

Proof. The circuit space of ~G has the dimension ν( ~G) = |A| − |V | + c(G◦)
where c(G◦) denotes the number connected components of G◦, i.e., the number

of weak components of ~G, see e.g. (Berge, 1985, Thm.3.4). It is clear that any
basis B of the cycle space of G◦ forms a linearly independent set in the circuit
space of ~G. Furthermore, the set B∪D is linearly independent since each 2-cycle
in D contains an arc that is neither part of another 2-cycle nor part of a cycle
in B. We have
|B ∪ D| = ν(G◦) + |D| = |E| − |V | + c(G◦) + |R| = |A| − |V | + c(G◦) = ν(~G),
hence B ∪ D is a basis of the circuit space.
Now we can use the well-known fact that the circuits form a matroid (see e.g.
(Horton, 1987; Hartvigsen and Mardon, 1993)) to obtain minimal length cycle
bases by means of the greedy algorithm from the set Z of all circuits. The crucial
observation is that Z consists of the double edges, i.e. 2-cycles, and of circuits
that are obtained from the cycles of G by omitting a particular combination of
reverse edges R. We have already seen that a basis may contain a circuit only in
one of the two orientations. The shortest circuits in Z are the |D| 2-cycles, which
are linearly independent. The greedy criterion thus implies that each of them is
contained in all minimal length bases. All other circuits are strictly longer and
by construction belong to cycles in G◦. Let C and C ′ be two circuits belonging
to the same cycle C◦ with different sets omitted reverse edges R and R′. Then C ′

can be written as a linear combination of C and the 2-cycles formed from R∪R′.
Thus D ∪ {C, C′} is linearly dependent and hence at most one circuit belonging
to a cycle C can be part of the basis. Conversely, if the greedy algorithm selects
a circuit C then it can be replaced by any circuit C ′ with the same underlying
cycle C◦ and any R without affecting length or linear independence.
Thus the greedy algorithm effectively selects a minimum cycle basis of G◦. We
have already argued in the first part of the proof that D is extended to a circuit
basis by any cycle basis of the undirected graph G◦. Thus we obtain a minimal
circuit bases by extending D with a minimal cycle basis M of G◦. 2

Theorem 2.3 shows that as far as the cycle structure is concerned we may safely
neglect the direction of the arcs. As an immediate consequence Theorems 2.1 and
2.2 are valid for minimum length bases of the circuit space as well. As far as the
cycle structure of a network is concerned, we are thus justified in restricting
ourselves to the underlying undirected graph G◦.

The main shortcoming of MCBs for the characterization of graphs is the fact
that the MCB is not unique in general. A natural way to avoid ambiguities is to
consider the union of all minimum cycles bases, also known as the set R(G) of
relevant cycles. The term “relevant” is justified by two important properties of
R(G): (i) a cycle is relevant if and only if it cannot be written as an ⊕-sum of
shorter cycles (Vismara, 1997), and (ii) the shortest cycles through an edge are
relevant, i.e., S(G) ⊆ R(G) as an immediate consequence of Theorem 2.1. Con-
sequently, the composition of R(G) in terms of number and length distribution
of cycles is an important characteristic of a graph. The numerical studies below
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make use of Vismara’s (Vismara, 1997) algorithm for computing R(G), which is
based on Horton’s MCB algorithm (Horton, 1987).

3. Flux Analysis in Chemical Networks

Let us now return to chemical networks. Because it is germane to their func-
tional analysis, we first point out a nexus between graph representations of
metabolic network, and metabolic flux analysis (MFA), the most generic frame-
work to analyze the biological function of metabolic networks.

The key ingredient of MFA is the stoichiometric matrix S. Its entries are
the stoichiometric coefficients skr, i.e., the number of molecules of species k
produced (skr > 0) or consumed (skr < 0) in each reaction r. Reversible reactions
are entered as two separate reactions in most references. In general, additional
“pseudo-reactions” are added to describe the interface of the metabolic reaction
network with its environment.

The dynamics of the concentration of metabolite k may be generally described
by

dck

dt
=
∑

r

skrJr − µ(t)ck (3.1)

where the flux Jr depends on the kinetic properties of the participating enzymes,
on the concentrations of metabolites and on environmental parameters such as
temperature and pH. The enzymes are generally subject to complex regulations
by inhibition and activation. The assumption of a steady state and neglecting
the dilution as a consequence of low concentrations of intermediates yields the
homogeneous, time-independent system of linear equations

SJ = ~o (3.2)

for the flux vector J . Consequently, the steady state flux vectors are elements of
the null-space Null(S). Using the constraint that we have must have Jr ≥ 0 for

each reaction r, we see that J is a steady state flux vector iff J ∈ Null(S)∩R
|V |
+ .

The extremal rays of this cone are usually called the elementary flux modes and
are closely associated with the relevant metabolic pathways, see e.g. (Clarke,
1988; Heinrich and Schuster, 1996; Fell, 1997; Schilling et al., 2000; Edwards and
Palsson, 2000; Schuster et al., 2000) for further details on MFA.

It is not hard to see that if all reactions are mono-molecular, then S is the
incidence matrix of a directed graph: skr = 1 for the single product k formed
in reaction r and skr = −1 for the single metabolite used in reaction r, i.e., S

is the incidence matrix of the digraph ~G whose vertices are the chemical species
and whose edges denote the reactions. Such networks were studied already in the
1960s (Balaban et al., 1966). It is well known that x is element of the cycle space

of ~G if and only if Sx = ~o, i.e., the circuit space of ~G is Null(S) (Bollobás, 1998).

The stationary flux vectors are therefore cycles of ~G.
In general, S represents a directed hypergraph (Zeigarnik, 2000). Equivalently,

one may use a bipartite graph in which one class of vertices represents the sub-
strates and the other class of vertices denotes the reactions. Arcs point from the
educts to the reaction node and from the reaction node to the products, Fig. 4.
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Figure 4: Representations of the reaction NO2 + O3 → NO3 + O2 in hypergraph form
drawn as the equivalent directed bipartite graph (l.h.s) and as part of a substrate graph
(r.h.s).

A very simple graph representation of chemical networks, which is sufficient for
our purposes, is the substrate graph Σ introduced in (Wagner and Fell, 2000). Its
vertices are the molecular compounds (substrates); two substrates k and l are
adjacent in Σ if they participate in the same reaction r. The substrate graph is
a straight-forward approximation of the directed hypergraph representing S: a
directed hyper-edge is replaced by a clique on the same set of vertices. As a con-
sequence, the stationary flux vectors are closely related to the cycles of substrate
graph.

We consider undirected substrate graphs because directed graphs would not
properly represent the propagation of perturbations: even for irreversible reac-
tions the product concentration may affect the reaction rate, for instance by
product occupancy of the enzyme’s active site; this in turn affects the substrate
concentration. Thus, perturbations may travel backwards even from irreversible
reactions. A similar argument for considering undirected graphs can be derived
from metabolic control theory (Sen, 1991). A number of more complicated graph
representations are discussed e.g. in the book (Temkin et al., 1996).

Note that S does not identify the input and output metabolites. This infor-
mation is added in the form of additional “I/O-vertices” and “pseudo-reactions”
representing flux in and out of the reaction network in MFA applications, see
e.g. (Fell, 1997). The corresponding extension of the cycle space of the network
graph is the vector space spanned by all cycles of the reaction network and all
paths connecting pairs of “I/O-vertices” (Hartvigsen, 1993). The generalization
of the notion of relevant cycles to this extended vector space will be explored in
detail elsewhere.

4. Triangles

It is clear that all triangles in a graph are relevant, since a triangle is necessarily
a shortest cycle through each of its edges. Hence |R(G)| ≥ ∆, where ∆ denotes
the number of triangles in G. We expect 〈∆〉ER =

(

n
3

)

p3 triangles in an ER
random graph with edge-drawing probability p. For the SW1 graphs we obtain
a similar expression:

〈∆〉SW1 = np + n(n − 4)p2 +
1

6
n(n2 − 9n + 20)p3 . (4.1)

The MCB will therefore consist almost exclusively of triangles if ∆ � ν(G). The
average vertex degree is d = 2|E|/n = p(n − 1) for ER and d = 2 + p(n − 3) for
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Figure 5: Cycles in the BA model.
L.h.s.: triangles in BA models with different values of m.
R.h.s.: mean length of a relevant cycle in BA networks.

SW1, resp. Assuming that n is large we expect to find only triangles in R(G)
for d �

√
3n. Numerical simulations show that this is indeed the case, see Fig 6

in the following section. In this regime, we have |R(G)| ∼ d3/6, and the graph
contains no far edges. Not surprisingly, there is little difference between SW1
and ER random graphs for large n.

Since the BA model is constructed such that it yield a fixed average vertex
degree d, it should be compared to random graph models with the same vertex
degree d instead of random graphs with a fixed edge drawing probabilities p.
We have an asymptotically constant number of triangles for both ER and SW1:
∆ER → d3/6 and ∆SW1 → d3/6 − d + 2/3, resp. Note that as a consequence
the clustering coefficient vanishes asymptotically. In SW networks with a priori

connectivity k > 1 we find of course a number of triangles that grows at least
linearly with n, since the initial (p = 0) networks already contains (k − 1)n
triangles. The clustering coefficient stays finite for large n in this case (Watts,
1999).

The large vertex degree of the “early” vertices in the BA model suggests
that there should be many more triangles than in ER or SW1 models. The
expected degree of vertex s at “time” t is known (Dorogovtsev et al., 2000):
d(s|t) = m[

√

t/s − 1]. The probability of an edge between s and t, t > s, is
therefore pst = md(s|t − 1)/2(t− 1)m, where 2(t− 1)m is the sum of the vertex
degrees at “time” t − 1. We have therefore

〈∆〉 =
∑

r<s<t

prspstprt

≈ m3

8

∫ n

1<r<s<t

(1/st2)

(
√

s

r
− 1

)

(

√

t

r
− 1

)(

√

t

s
− 1

)

∼ Cm3 ln3 n + O(ln2 n)

(4.2)

The l.h.s. panel in Fig. 5 shows ∆ for typical BA-random graphs with m =
2, . . . , 8 as a function of “time”. The behavior of ∆ in a individual growing
network is well represented by equ.(4.2).

An extension of the BA model generates graph with 2 < γ ≤ 3. In addition to
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the growth of the network, the model includes to rewiring operations: (i) addition
of m new edges such that the initial points of the edges are chosen randomly
while the terminal points are selected according to equ.(1.1), and (ii) rewiring
of m randomly selected edges by leaving on endpoint fixed and re-attaching the
other endpoint according to equ.(1.1). Since the scaling exponents depend on
the relative frequency of the two rewiring operations, a quantitative comparison
of chemical reaction networks with the extended BA model does not seem to
meaningful at this point.

There is, however, a universal scaling relation between P (d) ∼ d−γ and the
degree d(s|t) ∼ (t/s)β of vertex s and time t (Dorogovtsev et al., 2000), namely
β = 1/(γ−1) and 2 ≤ γ ≤ 3, i.e., 1

2
≤ β � 1. Using the same reasoning as above

the number of triangles should scale as 〈∆〉 ∼ C(β)n2β−1 ln n for 2 < γ < 3.
Thus we again expect the fraction of triangles to vertices to approach zero for
large systems. The number of triangles in graphs with the same number of edges
in vertices, on the other hand, increases with decreasing values of γ.

5. Longer Cycles

Much less can be said in general about longer relevant cycles. Computationally
we find that the number L = |R| − ∆ of non-trivial relevant cycles has its
maximum around |E| ≈ 0.74n3/2 independent of the random graph model, Fig 6.
The scaling of is consistent with L ∼ Cn5/2, where the constant C ≈ 0.036 is the
same for ER and SW1 random graphs and C ≈ 0.016 for the BA models. For
small vertex degrees, d � |V |1/2 we find R(G) ≈ ν(G), i.e., the MCB is (almost)
unique.
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Figure 6: Relevant non-triangles in ER (
�

), SW1 (4), and BA (•) random graphs with
n = 30 (l.h.s) and n = 100 (r.h.s).

The cyclomatic number of a BA random graph is ν(G) ∼ (m/2− 1)n; Hence,
asymptotically, almost all relevant cycles must be long for β < 1, i.e., γ > 2.
The l.h.s. of Fig. 5 shows that the average length of a relevant cycle grows
logarithmically with n in the BA model. Not surprisingly, the slopes decrease
with m.
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6. Chemical Reaction Networks

6.1. A Metabolic Network

Metabolic networks form a particular class of chemical reaction networks which
is distinguished by the fact that all reactions are associated with specific enzymes
that catalyze the reaction.

For our analysis of metabolic graphs, we use the substrate graph of the Ecoli1
core metabolism, a set of chemical reactions representing the central routes of
energy metabolism and small-molecule building block synthesis. Similar to (Wag-
ner and Fell, 2000), we omit the following substrates from the graph: CO2, NH3,
SO4, AMP, ADP, and ATP, their deoxy-derivatives, both the oxidized and re-
duced form of thioredoxine, organic phosphate and pyrophosphate. The resulting
graph has n = |V | = 272 vertices and |E| = 652 edges. Its analysis is summarized
in Table 1.

Recent results by Barabasi et al. (Jeong et al., 2000) show that the degree
distribution of a variety of metabolic networks follows a power law with scaling
exponent γ ≈ 2.2. Note that these author did not use the substrate graph Σ.
Instead, they used the digraph representation of the reaction network, discussed
in Section 3 and Figure 4, whose vertices are the substrates, the reactions, and the
enzymes catalyzing the reaction. The numerical values of γ are not necessarily
comparable between different graphical representations of reaction network.

The extended BA model (Albert and Barabasi, 2000), which is based on both
growth and partial re-wiring of the networks can explain scaling exponents γ
between 2 and 3. The discussion in (Fell and Wagner, 2000; Wagner and Fell,
2000) shows that a sequentially growing metabolic network is consistent with
data because the evolutionary oldest metabolites have the largest vertex degrees.

COA ACCOASUCC

FAD

FADH2

GLU

SER

CMP

CTP

MALACP

ACACP OXACP

DHACP

ENACP

FAACP

GL3P

PA

CDPDG

Figure 7: The subgraph of Ecoli spanned by the relevant cycles of length 9. Two of these
long cycles are highlighted. The edges shown in bold are part of each of the 16 relevant
9-cycles.

The longest relevant cycles in a metabolic network are of particular interest
since they reflect parts of the network that cannot easily be replaced by alter-
native routes. In Fig. 7 we show the largest such cycle in Ecoli1. We emphasize
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Figure 8: Degree distribution of the atmospheric reaction network of Earth. The symbols
correspond to three different bin widths of the histogram for P (d). The data are consistent
with a power law with γ = 1.86 ± 0.09 (full line).

that the cycles in our analysis represent routes for transmission of perturbations,
but not necessarily of mass, as it is commonly considered in MFA. This is ap-
parent from Fig.7, which does not correspond to a pathway from a biochemical
chart, but links several pathways together. Note that the notion of a pathway
requires from the outset the distinction between “substrates” or products and
intermediates; for our purposes such a distinction is not necessary.

6.2. Planetary Atmospheres

It seems interesting to compare metabolic networks to reaction networks that
are not governed by the enzymatic reactions. A class of large and well-understood
models are the chemical networks of planetary atmospheres. The data reported
here are taken from the book (Yung and DeMore, 1999). For details on these re-
action networks we refer to (Yung and DeMore, 1999) and the references therein.

The largest network included in this study is a model of Earth’s atmosphere
which contains a large number of reactions involving halogen species including
the CFCs implicated in global warming.

The atmospheres of the Jovian planets Jupiter, Saturn, Uranus, and Neptune
are dominantly reducing. The thermodynamically stable form of carbon in the
giant planets is methane CH4. The photolysis of CH4 leads to the production of
higher hydrocarbons, some of which have been detected Earth-based or space-
craft observations. The network of the most important reactions inter-converting
carbon species is denoted HC in Table 1 below.

Smaller networks model the atmospheres of the planets Mars and Venus, the
Jovian satellite Io and the Saturn satellite Titan. The bulk of the atmospheres
of both Mars and Venus is CO2. While a pure CO2 atmosphere should contain
sizeable amounts of CO and O2 small amounts of H2O stabilize CO2 through a net-
work of reactions involving ·OH radicals. In addition, both atmospheres contain
N2 and exhibit the associated chemistry of nitrogen oxides. Venus furthermore
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exhibits an interesting sulfur chemistry. Io’s thin atmosphere is dominated by the
photo-chemistry of SO2. Titan possesses a mildly reducing atmosphere exhibiting
a rich hydrocarbon and nitrogen chemistry with HCN as a core species.

Fig. 8 shows that the atmosphere chemistry models also appear to have a
scale free degree distribution with a scaling exponent γ ≈ 1.9. This is surprising
since these reaction networks could not have arisen by a stepwise mechanism. A
possible explanation is a strong bias in the choice of chemical species and reaction
pathways: the network models have been constructed to describe inter-conversion
of a relative small number of dominating (or interesting) species, which naturally
favors a “hub and spine” arrangement.

6.3. Comparison

Table 1 shows that the three random models BA, SW1, and ER agree at least
qualitatively with each other. The BA random graphs exhibit a much broader
distribution of cycle sizes (not shown) than the ER and SW1 models. As a conse-
quence, the average cycle numbers for ER and SW1 have statistical uncertainty
of about 2%, while the uncertainty of the BA values is 5 to 10 times higher. Note
that ER and SW1 have a similar number of relevant cycles, but the cycles are
slightly longer in SW1.

The substrate graphs of the planetary atmosphere models have a much larger
average vertex degree. This accounts for the increased number of triangles and
the lack of long relevant cycles.

Two features distinguish the metabolic network Ecoli1 from all three random
network models:

(1) The number ∆ of triangles is almost 10 times larger than expected. This
can be explained by two effects. In part this might be an artifact of the
substrate graph representation. The ratio 282/379 ≈ 0.744 indicates that
almost all triangles are contained in 4-cliques, since in each 4-clique we
have three triangles that belong to a particular MCB, while the fourth face
of the tetrahedron is their ⊕-sum (Gleiss et al., 2000).
More importantly, however, the discussion in section 4 leads us to expect
an increased number of triangles in scale free networks with small scaling
exponent γ < 3, as is the case in metabolic networks (Wagner and Fell,
2000; Jeong et al., 2000). A quantitative comparison between metabolic
networks and the extended scale-free model (Albert and Barabasi, 2000)
does not appear to be useful since the rewiring mechanism of the extended
BA model is too artificial to apply to metabolic networks.

(2) There is a much smaller number of relevant pentagons and hexagons, which
results in an overall somewhat reduced number of relevant cycles: 723 com-
pared to about 1060 (BA), 904 (ER), and 805 (SW1). This is most likely
again a consequence of the small value of the scaling exponent γ.

The atmosphere chemistry networks have a significantly larger average vertex
degree. This explains the fact that almost all relevant cycles are triangles.

The vertices with the largest degree d in the raw data of many of the above
networks are in some cases exceptional. In metabolic networks, for instance, ATP
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Table 1: Cycle Structure of Networks.

Model |V | |E| |C| 3 4 5 6 7 8 9 �

BA 272 625 MCB 78 158 124 20 0.4 0.01 0 380
R 81 285 527 161 5.5 0.4 0 1060
S 81 273 414 144 5.5 0.4 0 918

ER 272 625 MCB 18 58 163 131 11 0.4 0 381
R 18 61 212 528 82 3.2 0 904
S 18 61 205 311 68 3.2 0 666

SW1 272 625 MCB 15 46 131 167 21 1.1 0.03 381
R 15 48 157 427 151 7.1 0.2 805
S 15 48 155 301 108 6.5 0.2 634

Ecoli1 272 652 MCB 282 51 19 20 3 5 1 381
R 379 114 90 83 5 36 16 723
S 379 56 24 42 2 14 16 533

Earth 250 780 MCB 431 98 2 0 0 0 0 531
R 918 332 6 0 0 0 0 1256
S 918 303 6 0 0 0 0 1227

Titan 56 305 MCB 243 2 0 0 0 0 0 245
R 646 52 0 0 0 0 0 697
S 646 0 0 0 0 0 0 646

Venus 43 207 MCB 159 3 0 0 0 0 0 162
R 438 10 0 0 0 0 0 448
S 438 10 0 0 0 0 0 448

Mars 32 167 MCB 130 0 0 0 0 0 0 130
R 342 0 0 0 0 0 0 342
S 342 0 0 0 0 0 0 342

HC 40 299 MCB 260 0 0 0 0 0 0 260
R 1017 0 0 0 0 0 0 1017
S 1017 0 0 0 0 0 0 1017

is involved as “universal energy currency”. Many of the reactions in planetary
athmosphere involve a background gas atom as a means to removing excess
energy from a reaction or photons hν. Following (Wagner and Fell, 2000) we
argue that one should consider the network topology without these “special
purpose” vertices. Almost all relevant cycles involving these exceptional species
are triangles. We remark that their inclusion does not lead to qualitative changes
of either the degree distribution or the distibution of relevant cycles apart from
the obvious increase in the total number of cycles.

7. Discussion

We have shown that the union of minimal cycle bases, i.e., the set of relevant

cycles forms a suitable framework for the investigation of the detours and, equiv-
alently, cycles, in large network graphs. In the case of chemical reaction networks
this view is reinforced by the close relationships of the cycle space and the sta-
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tionary flux vectors of the network. We have also shown that the cycle structure
of directed graphs can be discussed in terms of the underlying undirected graph.
Since we have been interested in the propagation of perturbations through the
chemical networks, undirected graphs are the appropriate model.

In metabolic flux analysis one is mostly concerned with the propagation of
mass through the network. In this case directionality is crucial and directed
graph models are required. In particularly, one would have to consider directed

circuit bases, i.e., basis vectors with only non-negative entries. The discussion of
sections 2 can indeed be generalized at least in part to directed cycle bases. In par-
ticular, all strongly connected networks have a directed cycle basis (Berge, 1985;
Hartmann et al., 1995). This topic will be discussed in more detail elsewhere.

The comparison of the metabolic networks and the reaction networks in plan-
etary atmospheres show that the atmosphere models have a significantly higher
vertex degree. This may be related to the fact that reactions in metabolic net-
works are mediated by specific enzymes; it is plausible that not all reactions that
are chemically feasible have enzymes that make them part of the metabolism.

In (Wagner and Fell, 2000) a scaling exponent γ = 1.59±0.21 is reported for the
substrate graph of the E. coli core metabolism, while we find γ = 1.86± 0.08 for
the atmosphere model of Earth. It is unclear at this point whether this difference
is significant and whether we have here in fact a scaling exponent γ < 2. It is
surprising that the atmosphere models exhibit a scale-free degree distribution
because they most likely did not arise through stepwise addition of chemical
species. More likely, the small-world geometry is an artifact of the construction
of the models around a few dominating or interesting molecules which form the
hubs of the network.

On the other hand, it appears reasonable to assume that the complex metabolic
networks of present day organism have evolved from much simpler stages by
stepwise addition of new metabolites. A BA-like mechanism of deriving new
metabolites more readily from old, highly connected nodes appears plausible:
the new metabolite is produced by a new enzyme which arose by mutation from
an existing one – hence the nodes with the highest connectivity are most likely
to give rise to variant enzymes which are likely to work with the same or a
similar substrate. This view is consistent with the data (Fell and Wagner, 2000;
Wagner and Fell, 2000): The most highly connected substrates are those that are
identified as belonging to the oldest core of the metabolism (Morowitz, 1999).

Present-day metabolic networks have, however, a much larger than expected
number of triangles and a correspondingly flatter degree distribution compared
to the BA model. Strictly speaking, we do not know the biological significance
of the relative paucity of longer cycles in metabolic networks. Nevertheless, we
would like to venture a speculation.

Organisms are constantly exposed to environmental fluctuations requiring
transitions in metabolic states. That is, a metabolic network needs to produce
different outputs depending on the environment. Environments may vary rapidly,
requiring rapid transition between metabolic states. Quite likely, networks with
long cycles have longer transition times, because environmental perturbations
may lead to prolonged oscillations in such networks. The dynamical system rep-
resentation of metabolic networks required to test this idea rigorously lies beyond
the scope of this article.
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The extended BA model explains the decrease in γ by random rewiring events
that are biased in such a way that the modified reactions are more likely to inter-
convert two highly connected substrates. Such a mechanism appears unlikely
since chemistry imposes very restrictive constraints on the vertices (chemical
species) that can be connected (inter-converted) by a reaction. The loss of en-
zymes and hence edges in the network graph, on the other hand, appears to occur
rather frequently: (Huynen et al., 1999) for instance show that many organism
use only parts of the citric-acid cycle. There does not seem to be a good reason
why the loss of enzymes should preferentially affect poorly connected substrates,
i.e., those that cannot be produced easily through alternate routes. We therefore
argue that a degree-dependent rewiring process is not a likely explanation of the
small values of γ. A selective advantage of rapid response, i.e., of small cycles,
however, could well be the driving force behind this bias and explain the small
γ-values of metabolic networks.
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