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Abstract

A construction for a minimal cycle basis for the Cartesian and the strong
product of two graphs from the minimal length cycle bases of the factors
is presented. Furthermore, we derive asymptotic expressions for the aver-
age length of the cycles in the minimal cycle bases of the powers (iterated
products) of graphs. In the limit only triangles and squares play a role.

Keywords: Cartesian graph product, strong graph product, minimal cycle basis.

AMS Subject Classification: 05C38 [paths and cycles].

1Corresponding author
1



Minimum Cycle Bases of Product Graphs 2

G1 G2

Figure 1. G1 has ν(G1) = 3 and `(G1) = 38. Deletion of a single edge leads to G2 with
ν(G2) = 2 but `(G2) = 44.

1. Introduction

Minimum length bases of the cycle space of a graph (MCBs) have a variety of
applications in science and engineering, for example, in structural flexibility analysis
[15], electrical networks [5], and in chemical structure storage and retrieval systems
[6]. Brief surveys and extensive references can be found in [13, 12].

In general, minimum cycle bases are not very well behaved under graph operations.
Neither the total length `(G) nor the length of the longest cycle λ(G) in a MCB of
G are minor monotone, see Fig. 1 for a counterexample. Hence, there does not seem
to be a general way of extending MCBs of a certain collection of partial graphs of
G to an MCB of G. Consequently, not much is known about the length `(G) of the
MCB. The sharp upper bound `(G) ≤ `(Km) = 3(m − 1)(m − 2)/2 for graphs with
m vertices is proved in [13, Thm.6]. For 2- connected outerplanar and planar graphs
we have `(G) ≤ 3m − 6 and `(G) ≤ 6m − 15, respectively [16, Thm.11]. A global
upper bound `(G) ≤ ν(G)+κ(T(G)), where ν(G) is the cyclomatic number of G and
κ(T(G)) the connectivity of the tree graph of G, is derived in [17].

Iterated Cartesian products of small graphs play a role in many fields [14]. The
generalized hypercubes (homogeneous Hamming graphs), for instance, are ubiqui-
tous in computer science, theoretical biology, and the physics of disordered systems.
Cartesian powers of cycles appear as configuration spaces in certain spin glass models
[9].

In this paper we construct MCBs for two classes of composite graphs: the Cartesian
and the strong products. Moreover, we construct MCBs for iterated products of
graphs with respect to these products, and compute the average cycle length of MCBs
of such powers. Interestingly, in the limit only cycles of lengths three and four play
a role. Corresponding results for the direct product will be published separately.

2. Preliminaries

Throughout this contribution we consider only simple, unweighted, undirected
graphs. Let G(V, E) be the graph with vertex set V and edge set E. For the edge
e ∈ E joining the vertices x, y ∈ V we write e = xy. The subgraph induced by
W ⊂ V is denoted by G[W ]. The cardinality of a set A is |A|.



Minimum Cycle Bases of Product Graphs 3

2.1. Cycle Bases. Let G(V, E) be a graph. The set P(E) of all subsets of E
forms an |E|-dimensional vector space over GF(2) with vector addition X ⊕ Y :=
(X ∪Y )\ (X ∩Y ) and scalar multiplication 1 ·X = X, 0 ·X = ∅ for all X, Y ∈ P(E).

A (generalized) cycle is a subgraph such that every vertex has even degree. Such
graphs are also known as Eulerian subgraphs. We represent a (generalized) cycle by its
edge set C and write VC for its vertex set. An elementary cycle is a connected minimal
subgraph such that every vertex in VC has degree 2. The set C of all generalized cycles
forms a subspace of (P(E),⊕, ·) which is called the cycle space C(G) of G. A basis B
of the cycle space C is called a cycle basis of G(V, E) [3]. The dimension of the cycle
space is the cyclomatic number or first Betti number ν(G) = |E| − |V | + 1, see [8].

The length |C| of a generalized cycle C is the number of its edges. The length `(B)
of a cycle basis B is the sum of the lengths of its generalized cycles: `(B) =

∑

C∈B
|C|.

A minimum cycle basis (MCB) M is a cycle basis with minimum length. Since the
cycle space C(G) is a matroid in which an element has weight |C| the greedy-algorithm
can be used to extract a MCB, see e.g. [20]. The cycles in M are edge- connected,
chordless, and isometric, see e.g. [13]. An MCB can be computed in polynomial time
[13, 1].

A cycle is relevant if it is contained in some MCB [18].

Proposition 1. [19] A cycle C is relevant if and only if it cannot be written as a

⊕-sum of shorter cycles.

2.2. Products. Given two non-empty graphs G = (VG, EG) and H = (VH , EH) the
Cartesian product G�H has vertex set VG × VH and (x1, x2)(y1, y2) is an edge in
EG

�
H iff either x2 = y2 and x1y1 ∈ EG or if x1 = y1 and x2y2 ∈ EH , see e.g. [14].

In particular, the product of two edges x1y1 = e1 ∈ EG and x2y2 = e2 ∈ EH is the
chordless 4-cycle

e�f = {(x1, y1)(x1, y2), (x1, y2)(x2, y2), (x2, y2)(x2, y1), (x2, y1)(x1, y1)}. (1)

Two edges (x1, x2)(y1, y2) and (x′
1, x

′
2)(y

′
1, y

′
2) are parallel if x1 = y1, x′

1 = y′
1, x2 = x′

2,
and y2 = y′

2 or if x2 = y2, x′
2 = y′

2, x1 = x′
1, and y1 = y′

1. Note that the square e�f
consists of two pairs of parallel edges. We write C � = {e�f |e ∈ EG, f ∈ EH}.

The direct product G × H has the same vertex set as the Cartesian product, and
(x1, x2)(y1, y2) is an edge if x1y1 ∈ EG and x2y2 ∈ EH . The strong product G � H is
also defined on VG × VH . Its edge set is the union of the edge sets of the Cartesian
and the direct product. All three products are commutative and associative, which
implies that powers (iterated products) with respect to the three products are well
defined.

The induced subgraphs Gy = G�H[{(x, y)|x ∈ VG}] and xH = G�H[{(x, y)|y ∈
VH}] are the fibers of G�H; for the other products fibers are defined analogously.
In the case of the Cartesian and the strong product the fibers are isomorphic to the
corresponding factors. The fibers with respect to the direct product have no edges.

The edges of G�H can be labeled as xe for e ∈ EH and x ∈ VG or ey for e ∈ EG

and y ∈ VH . In this notation we have e�f = {ex, vf, ey, uf} where e = uv ∈ EG and
f = xy ∈ EH . Note that two edges of G�H are parallel if only if they are of the form
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ex and ey or uf and vf , respectively. If C and D are cycles in G and H, respectively,
we write Cy and xD for the corresponding cycles in the fibers Gy and xH.

2.3. Hammack’s Cycle Basis for Cartesian Products. In his paper [11] on
the cyclicity of graphs Richard Hammack constructs a cycle basis for G�H in the
following way: Let G = (VG, EG) and H = (VH , EH) be two non-empty graphs, TG

and TH spanning trees, and BG and BH cycle bases of G and H, respectively. By [11,
p.165] the union of the pairwise disjoint sets

H1 = {e�f |e ∈ TG, f ∈ TH}

H2 = {Cy|C ∈ BG, y ∈ VH}

H3 = {xC|x ∈ VG, C ∈ BH}

(2)

is a cycle basis of G�H. We denote it by H and call it a Hammack basis of G�H.
Recall that a graph is null-homotopic if each of its cycles can be written as a sum

of triangles [2, 7].

Lemma 2. Let G and H be two null-homotopic graphs and MG and MH be MCBs

of G and H, respectively. Then the resulting Hammack basis is a minimum cycle

basis of G�H.

Proof. By the above the cycle space C(G�H) has a basis that consists of triangles and
squares only. If C is a triangle then it must be contained in a fiber Gy or a fiber xH.
Furthermore, a maximal set of linearly independent triangles is the union of maximal
sets of independent triangles in each fiber. In the present case it is the union of the
MCBs of all fibers. The remaining basis elements must therefore be squares. �

The Hammack basis is not a MCB in general. The smallest counterexample is the
pentagonal prism K2�C5. Its Hammack basis consists of two pentagons xC5 and yC5

and four squares. Thus `(B) = 26. However, a minimal cycle basis M of K2�C5

consists of all five squares and only one of the two pentagons. Thus `(G) = 25.

3. A Minimal Basis for the Cartesian Product

In this section we construct a minimal basis of C(G�H). The crucial observation
is that corrsponding cycles in different fibers can be transformed into each other by
a series of ⊕-additions of squares taken from the set C � .

Lemma 3. Let C ∈ C(G), D ∈ C(H), u, v ∈ VG and y, z ∈ VH . Then there are

collections Q′ ⊆ C � and Q′′ ⊆ C � of squares such that

Cz = Cy ⊕
⊕

Q′ and vD = uD ⊕
⊕

Q′′ . (3)

Proof. For y, z ∈ VH let P be a path from y to z consisting of the edges f1, . . . , fl and
the vertices q0 = y, q1, . . . , ql = z. Then xP is the corresponding path in the fiber xH
with vertices (x, qj) and edges xfj . For each edge g = x1x2 ∈ EG and each path P in
H we write

C(g; P ) = {x1f1,
x1f2, . . . ,

x1fl, g
z,x2fl,

x2fl−1, . . . ,
x2f1, g

y} (4)
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for the cycle composed of the paths x1P from (x1, y) to (x1, z) and x2P from (x2, z)
to (x2, y) together with the edges (x1, z)(x2, z) and (x2, y)(x1, y). In particular, if P
consists of a single edge h we have C(g; P ) = g�h. Write Pk and P k for the subpaths
from y to qk and from qk to z, respectively. Then

C(g; P ) = C(g, Pk) ⊕ C(g, P k) (5)

since C(g, Pk) and C(g, P k) have exactly the edge qkg in common. Thus we can
decompose any cycle of the form C(g; P ) into a ⊕-sum of 4-cycles:

C(g; P ) =
l

⊕

j=1

C(g; fj) =
l

⊕

j=1

(g�fj) (6)

Now consider a path Q in G from u to v with edges gi. Set C(Q; P ) = uP∪Qz∪vP∪Qy .
Then C(Q; P ) =

⊕

i C(gi; P ) because C(gi; P ) and C(gi−1; P ) have exactly the edges
of the path xiP in common, where xi = gi−1 ∩ gi ∈ VG.

Finally, let x, y ∈ H, C ∈ C(G) and P a path in H connecting x and y. Let u and
v be adjacent vertices in C and write g = uv. Then C = Q ∪ {g} where Q is a path
in G connecting u and v. Now Cx ⊕C(Q; P )⊕C(g, P ) = Cy. We already know that
both C(Q; P ) and C(g, P ) can be written as ⊕-sums of squares from C � . Obviously,
the same argument can be made for uD and vD. �

Theorem 4. Let x ∈ VG, y ∈ VH , and BG and BH be cycle bases of G and H.

Furthermore, let TG and TH be spanning trees of G and H. Set B � = {e�f |e ∈
TG, f ∈ EH} ∪ {e�f |e ∈ EG, f ∈ TH} Then

Bxy

G
�

H = {xC|C ∈ BH} ∪ {Cy|C ∈ BG} ∪ B � (7)

is a cycle basis of G�H.

Proof. Let C be an arbitrary cycle of G�H. By Hammack’s proposition it can be
written as a superposition of cycles that are contained in the G or H fibers and
squares from C � . By Lemma 3, however, we can replace Dy by Dy′

and a suitable
collection of squares. These squares contain a path P connecting y and y′. Since a
spanning tree of H contains such a path for any pair y, y′ ∈ VH it is sufficient to use
squares of the form e�f with e ∈ EG and f ∈ TH . Analogously, xD and x′

D can
be interconverted by means of squares of the form e�f with e ∈ TG and f ∈ EH .
Obviously H3 ⊆ B � , hence Bxy

G
�

H generates the cycle space.

The cyclomatic number of G�H is

ν(G�H) = |EG||VH| + |EH ||VG| − |VG||VH| + 1. (8)

Since

|Bxy

G
�

H | =|EG| − |VG| + 1 + |EH | − |VH | + 1+

|EG|(|VH | − 1) + |EH |(|VG| − 1) − (|VH | − 1)(|VG| − 1)

=|EG||VH | + |EH ||VG| − |VG||VH | + 1 = ν(G�H),

we infer that Bxy

G
�

H is a cycle basis of G�H. �
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By Proposition 1 a cycle basis B is minimal if each of its cycles in relevant, that
is, if no cycle C ∈ B can be expressed as a ⊕-sum of strictly shorter cycles. In the
following we will need a few technical results.

Lemma 5. If C is a cycle that is contained in a single fiber with respect to a factor,

say G, then it cannot be written as a ⊕-sum of squares from C � and cycles that are

in fibers with respect to H.

Proof. Let C be a cycle in G�H. Suppose the projection pG(e) of e ∈ C into G is an
edge. Then we say the G-parity of e is the parity of the number of edges in C that
have the same projection into G as e. The G-parity of edges in H-fibers is defined as
0. Analogously we define the H-parity of an edge with nontrivial projection into H.

For a square S ∈ C � both the G- and the H-parity of every edge is 0. If both the
G- and the H-parity of every edge in a cycle C is 0, then both parities are 0 for all
edges of C ⊕S. Moreover, the G-parity of any cycle D in an H-fibers is 0, thus every
edge of C ⊕ D also has G-parity 0.

Since the G-parity of all edges in cycles that are completely contained in a G-fiber is
1, no such cycle can be represented as a ⊕-sum of 4-cycles from C� and H-fibers. �

Lemma 5 is equivalent to the statement: B � is a maximal independent subset
of C � . For given (x, y) ∈ VG

�
H , every cycle basis of G�H contained in {xC|C ∈

BH} ∪ {Cy|C ∈ BG} ∪ C � must contain {Cy|C ∈ BG} and {xC|C ∈ BH}.
Next we argue that every cycle that is neither contained in a single fiber nor in C�

can be written as a ⊕-sum of (strictly) shorter cycles. We proceed in two steps. The
first one is quite obvious:

Lemma 6. Let C be a cycle that in neither contained in a single fiber nor in C � .

Then |C| ≥ 5.

Proof. If |C| = 3 it is obviously contained in a single fiber. If |C| = 4 and C is not
contained in a single fiber then it must contain and edge e from both a G-fiber and
an edge f from H-fiber that have a vertex, say (x, y), in common. Thus C contains
the two edges xf and ey, i.e., the coordinates of the two adjacent points are (x, y′) and
(x′, y). The fourth point of C has Hamming distance 1 from both (x, y′) and (x′, y)
hence its coordinates (x′, y′) are uniquely determined. Thus the remaining two edges
of C are x′

f and ey′

, i.e., C = e�f ∈ C � . �

The second step is less trivial.

Lemma 7. Let C∗ be a cycle that in neither contained in a single fiber nor in C � .

Then C∗ is not relevant.

Proof. Let (g, h) be an arbitrary vertex of C∗ and let C∗
H be the projection of C∗ into

gH and C∗
G the projection into Gh. For each vertex x ∈ G�H we define δ(x) as the

sum of the distances of x from the fibers Gh and gH. In symbols,

δ(C∗) =
∑

x∈VC∗

degC∗(x)

2
δ(x), (9)

where degC∗(x)/2 is the number of elementary subcycles of C∗ that contain x.
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G

H

Figure 2. Reduction of C in the proof of Lemma 7.

We wish to transform C∗ into a (possibly shorter) cycle C∗∗ with δ(C∗∗) < δ(C∗).
To this end we consider the vertices of C∗ of maximum distance from Gh, and among
them the vertices of maximum distance from gH. Let M be this set and x ∈ M . The
set M spans a subgraph of C∗ whose components in the elementary subcycles C of
C∗ can only be single vertices, edges, paths or elementary cycles.

Let us consider these cases one by one, compare Figure 2. It suffices to show that
C can be transformed into a possibly shorter cycle C′ with δ(C ′) < δ(C).
(1) The component of x is a single vertex. Let y, z be two vertices of C incident with
x. They are closer to either Gh or gH than x. Let Q = xy�xz, and w the vertex of
distance 2 from x in Q. Then C′ = C⊕Q is a cycle with |C′| ≤ |C|. Possibly C ′ has w
as a new vertex, clearly δ(w) < δ(x) and, if x ∈ V (C′), then deg′

C(x) = degC(x) − 2.
Hence, δ(C ′) < δ(C).
(2) The component of x is an edge, say xy. Every neighbor z 6= x of x in C is closer to
one of the fibers Gh and gH than x. We form Q and C ′ as above. Clearly |C ′| ≤ |C|
and δ(C ′) < δ(C).
(3) The component of x is a path x = x0, x1, . . . , xk of length k. Again x must have
a neighbor z = z0 that is closer to either Gh or gH than x. Let z1, z2, . . . , zk be
chosen such that xizi are parallel to xz. The squares Qi are now defined as the cycles
xi−1xizizi−1, where 1 ≤ i ≤ k. Then

C ′ = C ⊕
k

⊕

i=1

Qi

satisfies our requirements |C′| ≤ |C| and δ(C ′) < δ(C).
(4) The component of x is a cycle x = x0, x1, . . . , xk−1, xk = x0 of length k. We
proceed by the same construction as above.

Since C∗ is finite this procedure terminates after a finite number of iterations with
a cycle C∗∗ that is contained in Gh ∪ gH. Since Gh ∩gH is a single vertex, C∗∗ is an
edge-disjoint union of elementary cycles each of which is shorter than C∗.
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By Lemma 6 we have |C∗| > 4, hence the squares added in the above procedure
as well as the elementary cycles left at the end are shorter than C∗, and the lemma
follows. �

Theorem 8. Let G and H be triangle-free graphs and let BG and BH be minimal

cycle bases of G and H, respectively. Then Bxy is a minimal cycle basis of G�H.

Proof. Since G and H is triangle free a greedy procedure to extract a cycle basis
from C(G�H) starts with 4-cycles. Hence a minimal cycle basis can be constructed
such that it contains a maximal collection of linearly independent 4-cycles from C� .
Clearly B � is such a collection. Now Lemma 5 and Theorem 4 imply that Bxy is
minimal. �

Corollary 9. If G and H are triangle free then

`(G�H) = `(G) + `(H) + 4
[

|EG|(|VH | − 1) + |EH |(|VG| − 1) − (|VH | − 1)(|VG| − 1)
]

.

The case of graphs with triangles can be treated analogously:

Theorem 10. For two graphs G and H let BG and BH be minimal cycle bases of G
and H. Let TG ⊆ BG and TH ⊆ BH be sets of triangles in the bases. Then, for each

u ∈ VG and v ∈ VH there is a minimal cycle basis B∗ of G�H containing

{T y|T ∈ TG, y ∈ VH}∪ {xT |T ∈ TH , x ∈ VG}∪ {Cv|C ∈ BG \ TG}∪ {uC|C ∈ BH \ TH}

and a suitable subset of squares Q ⊆ B � .

Proof. Using the greedy algorithm we first have to find a maximal set T of linearly
independent triangles, then we have to extract a set Q of squares such that T ∪Q is
linearly independent, and finally we have to add the longer cycles from one of the G-
and H-fibers. Since there are no triangles outside the fibers, the MCB must contain
{T y|T ∈ TG, y ∈ VH} ∪ {xT |T ∈ TH , x ∈ VG}. Since the longer cycles in the fibers
cannot be obtained from the triangles and C � we must have at least one copy of them
in the basis. By Theorem 4 one copy is sufficient and the theorem follows. �

Let tG and tH be the number of triangles in a minimum cycle basis (and hence in
every minimum cycle basis [4, 10]) of G and H, respectively. Then

`(G�H) = `(G) + `(H) + 3
[

tG(|VH | − 1) + 3tH(|VG| − 1)
]

+ 4
[

(|EG| − tG)(|VH| − 1) + |EH | − tH)(|VG| − 1) − (|VH | − 1)(|VG| − 1)
] (10)

Let λ(G) be the minimum length of the longest cycle in an arbitrary cycle basis of
G. Chickering [4] showed that λ(G) is the length of the longest cycle in a MCB. It
follows immediately from our results above that

λ(G�H) = max{4, λ(G), λ(H)} . (11)

The upper bound given in [11] is therefore an equality for all graphs G and H.
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G

H

x

u v

y

Figure 3. For each square from C� the strong product G � H contains two non-Cartesian
edges (dashed lines). Each of these edges is contained in a triangle containing two Cartesian

edges.

4. Strong Products

The strong product G � H has |VG| |VH| vertices and 2|EG| |EH| + |EG| |VH| +
|VG| |EH| edges. The Cartesian product G�H is a subgraph of G � H; hence a cycle
basis of G � H can be constructed starting from a cycle basis of G�H by adding
2|EG| |EH| cycles, each of which contains exactly one of the “non-Cartesian edges”,
see Fig. 3, provided such a set of cycles exists. The resulting collection of cycles is
linearly independent since no subset that contains a cycle with a non-Cartesian edge
can have a vanishing ⊕-sum. The cycles without non-Cartesian edges, on the other
hand, are linearly independent by construction. The resulting collection is a basis
since

ν(G � H) = 2|EG| |EH| + ν(G�H) (12)

and since there are 2|EG| |EH | non-Cartesian edges.
Each of the non-Cartesian edges is contained in a triangle the two other edges of

which are Cartesian. Consequently, we obtain a basis B of G � H by expanding a
basis of G�H with these non-Cartesian triangles.

Recall that the cycle basis Bxy

G
�

H of G�H defined in Theorem 4 contains a maximal
independent set of squares from C � , which, in particular, generates C � . Each of these
squares is contained in a K4, see Fig. 3, of which B contains the Cartesian square
Q = (x, y, v, u), and two non-Cartesian triangles N1 = (x, y, u) and N2 = (x, y, v).
For each of the Cartesian squares in B we can therefore choose a third triangle, say,
T = (u, v, x), of the corresponding K4. We have Q = T ⊕ N2. Thus we obtain a
shorter basis B′ by replacing each Cartesian square by this third triangle from the
same K4.

The basis B′ consists of a MCB of xH and Gy for single vertices x ∈ VG, y ∈ VH ,
and triangles. We can argue as above that none of the cycles from xH or Gy can
be written as a ⊕-sum of the triangles (or the Cartesian squares), hence B′ must be
minimal.

As an immediate consequence we have

`(G � H) = `(G) + `(H) + 3 (ν(G � H) − ν(G) − ν(H)) ,

λ(G � H) = max (3, λ(G), λ(H)) .
(13)
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5. Average MCB Cycle Lengths of Powers of Graphs

The n-th Cartesian power Gn of a non-empty graph G is defined recursively by

Gn = G�Gn−1 ' Gn−1
�G, G1 = G (14)

The Cartesian product of finitely many graphs is connected if and only if each factor
is connected. Recall that |VGn| = |V |n and |EGn| = n|E||V |n−1 = an|V |n with
a = |E|/|V |. Consequently, we have ν(Gn) = (na − 1)|V |n + 1. Furthermore, let
tG = τ |V | be the number of triangles in an MCB of G. Note that the distribution of
cycle lengths is the same in all MCBs of G, see [4]. It is easy to verify tGn = nτ |V |n.

Instead of the longest cycles it is also interesting to consider the average length of
a basis cycle, which we denote by L(G) = `(G)/ν(G). We write Ln = L(Gn). For
Cartesian powers equation (10) becomes

`(Gn+1) = `(G) + `(Gn) + 3τ
[

|V |(|V n| − 1) + n|V |n(|V | − 1)
]

+ 4(a − τ)
[

|V |(|V |n − 1) + n|V |n(|V | − 1) − (|V |n − 1)(|V | − 1)
]

.
(15)

Dividing by ν(Gn+1), setting ξ = 1/V , and retaining only the leading order in
O {(n + 1)−1} we obtain

Ln+1 = ξLn + 3
τ

a
(1 − ξ) + 4

a − τ

a
(1 − ξ) + O(1/n). (16)

Thus Ln approaches the limit

L∞ = lim
n→∞

Ln = 3
τ

a
+ 4

a − τ

a
. (17)

It is interesting to compare this with the average cycle length xn in Hammack’s basis
for Gn. The recursion for xn can be written, after multiplication of both numerator
and denominator by ξn+1, as

xn+1 =
na − 1 + ξn

(n + 1)a − 1 + ξn+1
xn + 4

(1 − ξ)(1 − ξn)

(n + 1)a − 1 + ξn+1
+ L1

a − 1 + ξ

(n + 1)a − 1 + ξn+1
.

This is of the from xn+1 = (1−αn)xn +βn. One easily verifies nαn = 1+O(1/n) and
nβn = x∞ + O(1/n), where

x∞ =
4 + (a − 1)L1

a
+

ξ

a
(L1 − 4). (18)

The substitution yn = xn−x∞ yields yn+1 = (1−αn)yn +en where en = βn−x∞αn =
O(ξn). It is not hard to check that yn cannot converge exponentially to 0. Thus
we can suppress the ξn terms and obtain |yn| ∼

∏n−1

k=0
[1 − 1/n + O(1/n2)]|y0|. The

product converges to 0 for n → ∞, hence yn → 0 and xn → x∞.
Of course x∞ ≥ L∞, equality holding if and only if G is null-homotopic. In this

case we have

L∞ = x∞ = 3 +
1 − ξ

a
(19)
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since τ = ν(G)/|E| = a − 1 + ξ. For the iterated products of the m-cycle Cm, on the
other hand, we have

L∞(Cm) = 4 and x∞(Cm) = 5 −
4

m
. (20)

In general Hammack’s basis has a larger average cycle length than the MCB even
though the longest cycles have the same size.

For the strong product we have L
�

∞ = 3 for all graphs G as an immediate conse-
quence of equ.(13).
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