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Abstract

The current implementation of the Neo-Darwinian model of evolu-
tion typically assumes that the set of possible phenotypes is orga-
nized into a highly symmetric and regular space equipped with a
notion of distance, for example, a Euclidean vector space. Recent
computational work on a biophysical genotype-phenotype model
based on the folding of RNA sequences into secondary structures
suggests a rather different picture. If phenotypes are organized
according to genetic accessibility, the resulting space lacks a met-
ric and is formalized by an unfamiliar structure, known as a pre-
topology. Patterns of phenotypic evolution – such as punctuation,
irreversibility, modularity – result naturally from the properties
of this space. The classical framework, however, addresses these
patterns by exclusively invoking natural selection on suitably im-
posed fitness landscapes. We propose to extend the explanatory
level for phenotypic evolution from fitness considerations alone to
include the topological structure of phenotype space as induced
by the genotype-phenotype map. We introduce the mathematical
concepts and tools necessary to formalize the notion of accessibil-
ity pretopology relative to which we can speak of continuity in the
genotype-phenotype map and in evolutionary trajectories. We con-
nect the factorization of a pretopology into a product space with
the notion of phenotypic character and derive a condition for fac-
torization. Based on anecdotal evidence from the RNA model, we
conjecture that this condition is not globally fulfilled, but rather
confined to regions where the genotype-phenotype map is contin-
uous. Equivalently, local regions of genotype space on which the
map is discontinuous are associated with the loss of character au-
tonomy. This is consistent with the importance of these regions
for phenotypic innovation. The intention of the present paper is
to offer a perspective, a framework to implement this perspective,
and a few results illustrating how this framework can be put to
work. The RNA case is used as an example throughout the text.
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1 Introduction

The Neo-Darwinian model views evolutionary change as resulting from the
spontaneous generation of genetic variation and the fixation of variants in the
population through natural selection and genetic drift. It provides a useful
framework for studying the evolution of phenotypic adaptation, the evolu-
tion of gene sequences and the process of speciation; for recent overviews see
(Futuyma, 1998; Graur and Li, 2000). Yet, many important evolutionary
phenomena do not result naturally from the current implementation of the
Neo-Darwinian model. These phenomena comprise patterns and processes
of phenotypic evolution (Schlichting and Pigliucci, 1998), such as the punc-
tuated mode (the partially discontinuous nature) of evolutionary change (El-
dredge and Gould, 1972), developmental constraints or constraints to varia-
tion (Maynard-Smith et al., 1985; Schwenk, 1995), directionality in evolution,
innovation (Müller and Wagner, 1991) and phenotypic stability or homology.
Many of these issues were debated extensively in the last two decades, but
their relationship to the mechanistic theory of evolutionary change, as rep-
resented in population genetics, remains unclear and tense.

Before selection can determine the fate of a new phenotype, that phenotype
must first be produced or “accessed” by means of variational mechanisms.
Phenotypes are not varied directly in a heritable fashion, but through genetic
mutation and its consequences on development. We shall take development
fairly broadly and refer to it as the genotype-phenotype map (Lewontin, 1974;
Wagner and Altenberg, 1996; Fontana and Schuster, 1998a). The evolution-
ary accessibility of new phenotypes depends on this map, since it determines
how phenotypes vary with genotypes. Its structure therefore bears on how a
biological system evolves. In the early days of population genetics insufficient
knowledge justified ignoring the relationship between genotype and pheno-
type. This pragmatic approach has resulted in the habit of representing the
accessibility of phenotypic and genetic states by means of metric spaces or
even stronger structures, such as the Euclidean vector space of quantitative
genetics or the Hamming graph of possible haplotypes in population genetics.
This habit has become a deeply embedded assumption in the mathematical
structure of classical population genetic theory, yielding models in which bi-
ological organization at the phenotypic and genetic level is extremely fluid.
The phenomena cited above suggest that this fluidity is largely a fiction and
point at profound asymmetries in the accessibility of phenotypic and genetic
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states.

We argue here for the need of a mathematical theory of evolution based
on spaces that are less structured than metric spaces. The motivation for
this apparently simple step comes from studies in which RNA folding from
sequences to secondary structures is used as a biophysically realistic model of
a genotype-phenotype map (Fontana and Schuster, 1998a,b). These studies
show that the space derived from organizing the set of possible RNA shapes
(phenotypes) in terms of mutational accessibility exhibits a weak and rather
unfamiliar structure (a so-called pretopology, as explained in section 4). That
topology provides a natural and straightforward explanation for punctuated
change, directionality and modularity in simulated populations of evolving
RNA molecules.

The classical way of addressing these phenomena under the assumption of
highly symmetric phenotype or genotype spaces, consists in resorting to “fit-
ness landscapes” conveniently constructed to yield the right asymmetries. If
not reflected upon, this practice eventually turns into the claim that these
phenomena are caused by the structure of the fitness landscape in conjunc-
tion with natural selection. In contrast, we argue here that the asymmetries
underlying these phenomena are rooted in the structure of the genotype-
phenotype map itself, and thus are logically prior to fitness assignments.
This shift has two consequences. It grounds patterns of phenotypic evolution
in biophysical principles and mechanisms rather than arbitrary and conve-
nient assumptions about fitness. It provides a far more natural mathematical
setting in which to address these patterns.

The present work offers, in essence, but a perspective. In conjunction with
(Cupal et al., 2000), it connects the intuitions underlying (Fontana and Schus-
ter, 1998a) with the proper mathematical structures and vocabulary. Our
goal is threefold. First, we argue that many of the recalcitrant phenomena in
evolutionary biology, like punctuated innovation, developmental constraints,
homology and irreversibility, are but statements about the accessibility topol-
ogy of phenotype space. Second, we review in a rigorous, yet hopefully acces-
sible fashion the main results of the mathematical theory of pretopological
spaces to a degree that we understand them as relevant to our present con-
cerns. We then extend and apply these instruments, illustrating the concepts
by means of the RNA case. Third, we suggest a few directions of how this
abstract framework might be utilized to model phenotypic evolution.
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2 Accessibility structures in biology

2.1 Metric spaces

Accessibility structures, frequently called configuration spaces, are an im-
portant conceptual construct in evolutionary biology, computer science and
physics which often deal with combinatorial objects, such as genetic se-
quences, network routings or spin systems. One typically considers the col-
lection of all possible objects (configurations) in that class together with a
suite of “variation operators” representing processes which transform one ob-
ject into another. In genetics such operators may represent various types of
mutation, like base pair substitution or recombination. In computer science
the operator may be more abstract, such as the permutation of the itinerary
of a traveling salesman. In physics it may be the flip of a spin. Variation
operators define neighborhoods by establishing which objects are accessible
from which other objects. For instance, the nearest neighbors of a DNA
sequence with respect to point mutations consist of all one-error mutants of
that sequence.

In many cases, the variational operators support a natural notion of “dis-
tance” which permits upgrading the notion of a set to that of a “metric
space”. A distance measure, or metric, is formally a mapping d from pairs of
elements of a set X to the positive real numbers, d : X×X → R

+
0 , satisfying

three axioms for all x, y, z ∈ X:

(D0) d(x, x) = 0.

(D1) d(x, z) ≤ d(x, y) + d(y, z).

(D2) If d(x, y) = d(y, x) = 0 then x = y.

(D3) d(x, y) = d(y, x).

A well-known example of a metric space is the set of all binary strings of
fixed length n that can be interconverted by point mutations alone. Con-
necting each sequence with its n immediate neighbors yields the hypercube
as a graph. The hypercube is a highly regular topological space where dis-
tance is the number of positions in which two sequences differ (Hamming
distance). This distance is an appropriate measure of genetic accessibility
between sequences.
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Metric accessibility topologies have far reaching consequences for evolution-
ary dynamics. Every element can be reached from any other element by a
series of mutations and the variational operator (e.g., point mutation) does
not bias the production of variants. Accessing element y from x is as easy (or
difficult) as accessing x from y. This same symmetry is oftentimes assumed
to hold also for the effects of mutations on the phenotype. In that case, se-
lection becomes the only process that can give a direction to evolution. The
problem, however, is that phenotypic variation may well be biased even in
the absence of any variational bias at the genetic level. Concepts like devel-
opmental constraint and homology express this fact. Because they conflict
with the assumption of a metric phenotype (and/or genotype) space, these
concepts are difficult to integrate with the existing mathematical framework.

2.2 Non-metric spaces

The notion of distance allows an intuitive construction of the notion of
“neighborhood” in terms of “small distance”. The notion of distance is so
familiar that one is easily fooled into believing that it precedes the concept of
“neighborhood”. Yet, neighborhood is the weaker and more primitive con-
cept. To work with spaces that support a notion of neighborhood but not of
distance runs against common sense. Some examples may sooth the pain.

RNA shape space

In RNA, both genotype (polymer sequence) and phenotype (polymer struc-
ture) are properties of a single molecule. The folding of RNA sequences into
secondary structures1 (henceforth shapes), Figure 1, inspires a simple bio-
physically grounded genotype-phenotype map that is computationally and
experimentally tractable. Simulated populations of replicating and mutating
sequences under selection exhibit many phenomena known from organismal

1Let i, j, k, l denote positions of bases in the linear sequence and (i, j) a base pair.
The secondary structure of an RNA sequence is defined as the set P of allowed base
pairs (here Watson-Crick pairs plus GU) which minimize free energy, subject to a no-knot
condition requiring that if (i, j) and (k, l) are both in P , then i < k < j implies i < l < j

(i.e. base pairs don’t cross). The secondary structure is computed with an implementation
(Hofacker et al., 1994) of a dynamic programming algorithm (Nussinov and Jacobson,
1980; Waterman, 1978; Zuker and Stiegler, 1981) widely used in laboratories to assist
in the prediction of secondary structures. The procedure is based on empirical energy
parameters (Turner et al., 1988; Walter et al., 1994).



Stadler2, Wagner, Fontana: Topology of the Possible 7

evolution: neutral drift, punctuated change, plasticity, environmental and
genetic canalization, and the emergence of modularity. The RNA model can
therefore illuminate the extent to which these patterns of phenotypic evolu-
tion are rooted in statistical regularities of the genotype-phenotype map.

It is an important fact about RNA folding that not all shapes realized by
sequences of fixed length n occur with the same frequency. Only a tiny frac-
tion of shapes is “typical”, in the sense of being realized significantly more
often than others2. As a consequence, (simulated) evolutionary histories ex-
hibit statistical regularities that can be understood in terms of the statistical
properties of typical shapes.

We single out one such statistical feature that is of special interest in the
present context. Many sequences have the same (typical) shape α as their
minimum free energy structure. We call such sequences “neutral” (in the
sense of “equivalent”) with respect to α. A structure α therefore identifies
an equivalence class of sequences. A one-error mutant of a sequence that
shares the same minimum free energy structure as that sequence is called
a “neutral neighbor”. By “neutrality” of a sequence we mean the fraction
of its 3n one-error mutants that are neutral. (Again, the term neutrality
refers here to the phenotype – the minimum free energy structure – of RNA
sequences, and should not be confused with fitness-based neutrality.) Any
given sequence folding into a typical shape has a significant fraction of neu-
tral neighbors, and the same holds for these neighbors. In this way, jumping
from neighbor to neighbor, we can map an extensive mutationally connected
network of sequences that fold into the same minimum free energy struc-
ture (Schuster et al., 1994; Reidys et al., 1997). Such networks were termed
“neutral networks” (Schuster et al., 1994). The possibility of changing a se-
quence while preserving the phenotype is a key factor underlying evolvability.
The evolutionary role of neutrality has for the most part been viewed con-
servatively as buffering the phenotypic effects of mutations. Yet, neutrality
critically enables phenotypic change by permitting phenotypically silent mu-

2More precisely, as sequence length goes to infinity, the fraction of such typical shapes
tends to zero (their number grows nevertheless exponentially), while the fraction of se-
quences folding into them tends to one. Consider a numerical example: In the space of
GC-only sequences of length n = 30, 1.07×109 sequences fold into 218, 820 shapes. 22, 718
shapes (10.4%) are typical in the sense of being formed more frequently than the aver-
age number of sequences per shape. 93.4% of all sequences fold into these 10.4% shapes
(Grüner et al., 1996a,b; Schuster, 1997).
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Figure 1: RNA folding. A secondary structure (right hand side) is a coarse

grained description of the three-dimensional shape (left hand side) of an RNA

molecule. The secondary structure does not refer to spatial coordinates, but only

to the planar topology of base pair contacts. It can be viewed as a graph consisting

of structural elements called cycles or loops: a hairpin loop occurs when one base

pair encloses a number of unpaired positions, a stack consists in two base pairs with

no unpaired positions, while an interior loop has two base pairs enclosing unpaired

positions. An internal loop is called a bulge, if either side has no unpaired positions.

Finally, multiloops are loops delimited by more than two base pairs. A position

that does not belong to any loop type is called external, such as free ends or joints.

Despite its abstract quality, the secondary structure is not a fictitious entity. It

represents a crucial folding stage on the path towards the tertiary structure of an

RNA molecule.
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tations to set the context for subsequent mutations to become phenotypically
consequential. Stated differently, neutrality shapes the accessibility structure
of phenotype space.

To see this, let us first ask what is meant by phenotype space in the case of
RNA. At the outset we are given a set , not a space, of possible shapes (on
sequences of length n). To turn this set into a space, we must define relation-
ships of nearness between shapes. One obvious approach would be to simply
define a distance measure between shapes based on morphological compar-
ison and then derive a notion of neighborhood. This would yield a metric
space of shapes. The problem with this procedure is that it does not reflect
evolutionary accessibility among shapes, because the variational operators
underlying the definition of shape distance do not correspond to physical
events or processes that occur naturally. In evolution, a shape is modified
through mutations in the underlying sequence, rather than by direct modifi-
cation of the shape, and the phenotypic effect of a mutation is determined by
the folding map. An evolutionary meaningful relation of nearness between
shapes must be mediated by the folding map and not be independent of it.
The interesting case arises when the genotype-phenotype map is many-to-
one, as it is in RNA. A robust notion of nearness among two shapes then must
reflect the mutual adjacency of the corresponding neutral networks as deter-
mined in the mutational neighborhood structure of genotype space (Fontana
and Schuster, 1998a,b), see Figure 2.

More precisely, the nearness of shape β to shape α should correlate with the
likelihood of a transition from α to β through, say, a single point mutation.
In the simplest case, this likelihood will be given by the fraction of boundary
shared by the neutral genotype sets of β and α relative to the total boundary
of the neutral set of α. Let us write S(α) for the set of all sequences folding
into α, and ∂S(α) for the set of all sequences obtained by one point mu-
tation from sequences in S(α). ∂S(α) is the boundary of S(α) in sequence
space. For any two structures α and β, S(β) ∩ ∂S(α) describes all those se-
quences folding into β which are neighbors of sequences folding into α. The
accessibility of β from α, A(β x α), now becomes the frequency ratio

A(β x α) =
|S(β) ∩ ∂S(α)|

|∂S(α)|
. (1)

where |X| stands for the number of elements (cardinality) of set X.
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Figure 2: Accessibility topology of shape space. In this schematic represen-

tation of the map from genotypes (sequences) to phenotypes (shapes), nearness of

phenotype green to phenotype red is determined by the size of the joint boundary

between the red and green neutral networks relative to the size of the red network,

A(green x red). In this picture, a random step off the red network is likely to end

on the green network. Hence phenotype green is near red . However, a random

step off green is unlikely to end in red. Hence, red is not near green.

Note that A(β x α) is not a distance measure and a so-organized shape
space is not a metric space. Accessibility lacks symmetry: in general, A(β x

α) 6= A(α x β), because the neutral sets (and hence the boundaries) of α
and β can vastly differ in size. To pin down ideas with a cartoon, suppose
we organize the United States of America in terms of accessibility based on
relative shared boundary size. In this topology, Pennsylvania is near New
Jersey – a random step out of New Jersey is likely to end up in Pennsyl-
vania – but New Jersey is not near Pennsylvania – a random step out of
Pennsylvania is unlikely to end up in New Jersey. Consider, for example,
an RNA structure β that differs from α by the presence of a small stack-
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ing region. The formation of a stacking region implies the formation of an
energetically costly loop. (To make a stack, the RNA sequence must bend
back on itself, thereby creating a constrained loop region.) A stack cannot
be initiated with just one isolated base pair because that base pair cannot
offset the destabilization resulting from the loop created by it. A minimum
of three contiguous base pairs is required on average to balance the cost of
a small hairpin loop. This is a thermodynamic all or none situation. Trig-
gering a transition from α to β (creating a small stack) requires, therefore,
specially poised sequences with the potential of establishing three contigu-
ous base pairs in a single point mutation. Such sequences can be found by
neutral drift on the genotype network of α, but they constitute only a tiny
fraction of α’s neutral genotype set. Yet, they make up all the boundary
that α shares with β. Thus, β is hard to access from α or, in topological
language, β is not near α3. Consider now a sequence randomly picked on
the neutral genotype network of β. While the stack in question is present,
it is unlikely to be energetically well stabilized, which would again require
rather special, not random sequences on β’s network. A point mutation that
destroys any base pair of a marginally stable stack will therefore cause the
whole stack to unwind, ending up with shape α. It becomes clear, then, that
many sequences of network β border network α. In other words, α is easy to
access from β. Thus, α is near β, but β is not near α.

To say that an evolutionary path is “continuous” at a certain event in time
means that a mutation to a neighboring genotype (in the topology of geno-
type space) also yields a neighboring phenotype (in the topology of phenotype
space). Absent a notion of distance, a neighborhood structure in phenotype
space has to be defined. We just argued informally that the appropriate
neighborhood structure is the one induced by the genotype-phenotype map
which determines the likelihoods for converting one phenotype into another
by application of a genetic operation. This is to be distinguished from a
popular approach in which continuity is defined through the presence or ab-
sence of any discrete character, or even by a mere “jump” in fitness. RNA
secondary structures are discrete objects to begin with and so is their change.
What determines continuity is not the degree to which a modification is in-
cremental, but the degree to which that modification is easy to achieve by

3Just how hard is “not near”? A meaningful cutoff point must be defined, but we
deliberately gloss over this question here. Details are found in (Fontana and Schuster,
1998b) and we shall briefly return to the issue in section 5.2.
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virtue of the mechanisms underlying the genotype-phenotype relation. In our
picture, a phenotypic change is discontinuous, if it constitutes a “jump” from
a developmental perspective (fitness, for that matter, may not even change
at all), that is, if it is realizable by a continuous genetic change for only
a small fraction of genotypes. At least in RNA, the discontinuity and the
magnitude of change are not aligned. The stack example illustrates how mor-
phologically large changes (absence of a stack) can be continuous. Examples
given elsewhere (Fontana and Schuster, 1998b) show how morphologically
small changes, such as a simple shift between opposing strands of a stacking
region, can be discontinuous.

Finally, the asymmetry of phenotype space can cause evolutionary change
that is directional in the absence of directional selection. The size difference
between a large and a small neutral network acts as a ratchet for drift-
induced discontinuous phenotypic transition that leaves fitness the same. If
a phenotype α is near β, but β is not near α, a fitness-neutral transition from
β to α is difficult to revert since the entry point will be rapidly lost by drift
on the large α-network.

RNA shape space, as structured by the processes of shape modification
through genetic mutation, is not a metric space. In section 5 we shall see
that its structure is even weaker than a topology.

Subspecialization of duplicated genes – the DDC model

After a duplication, two copies of a gene can undergo different evolutionary
fates. One copy may lose its function through a destructive mutation, becom-
ing a pseudo gene (Walsh, 1995). In this case the functional situation of the
genome reverts to the state preceding the duplication. In another scenario,
one gene acquires a new function, while the other maintains the original one
(Ohno, 1970). Finally, both genes may each specialize to a subset of the func-
tions of the ancestral gene. There is an emerging consensus that the most
frequent mode of evolution after gene duplication is functional subspecializa-
tion (Hughes, 1994). The causes of subspecialization, however, are unclear.
One model assumes that the ancestral gene represents a compromise between
the multiple functions it carries out, and that disruptive selection after du-
plication will drive each copy to optimize a subset of the ancestral functions
(Hughes, 1994). An alternative model, the DDC model (Force et al., 1999),
explains subspecialization by variational biases in phenotype space similar to
directional change in RNA secondary structure described above.
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DDC stands for Duplication, Degeneration and Complementation. The model
considers a gene that is expressed in a variety of domains (organ tissues)
where it participates in different developmental functions. Each expres-
sion domain is assumed to be regulated by a different set of modular en-
hancer domains. An enhancer domain is a short stretch of non-coding DNA
that binds transcription factors which influence the expression of the gene.
Enhancers often are modular, that is, for each expression domain there is
a physically and functionally distinct enhancer directing the expression in
the corresponding domain. Some enhancers are phylogenetically highly con-
served, and therefore seem to be tightly constrained. A mutation is likely
to destroy the function of such an enhancer. As in the RNA case, a first
asymmetry arises because a non-functional sequence is “near” an enhancer,
but no enhancer is “near” a non-functional sequence. Thus, enhancers of
duplicated genes will tend to degenerate. Since gene function is redundant
after duplication, any degeneration of one enhancer will be phenotypically
neutral as long as the other enhancer is maintained. The deleterious mu-
tation will simply be complemented by the enhancer(s) of the duplicated
gene. The degeneration of redundant enhancers will continue until either
one gene has lost all its enhancers while the other copy has retained them,
or until a complementary set of enhancers remains among the two genes. In
the former case one gene becomes a pseudo-gene. The latter case, however,
enables the evolution of subspecialization (through mutations in the coding
regions) which will be maintained as long as the functions served by each
copy are required for survival and reproduction. Examples consistent with
this model are the expression of engrailed (eng) (Force et al., 1999) and dis-
tal less (Dlx ) (Quint et al., 2000) paralogoues in zebrafish. Since there are
many more combinations of complementary enhancer sets enabling subspe-
cialization than causing the loss of a gene, there is a strong bias towards
evolving subspecialization (provided the ancestral gene has more than two
expression domains). The model does not assume that subspecialization is
favored by natural selection; it only assumes that mutations which eliminate
an expression domain (a developmental function) from a gene are selectively
neutral because of complementation and that the total loss of a function is
selected against.

The DDC model is an elegant and genetically plausible model of how direc-
tionality can be the outcome of an evolutionary process without directional
selection. Like in the previous RNA example, the main reason for this direc-
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tional bias resides in the mutational accessibility structure of the phenotypic
(functional) states involved.

Unequal crossover

Asymmetric accessibility structures are not limited to phenotypic states, but
can arise at the genetic level as well. Accessibility structures induced by ho-
mologous recombination (crossover at corresponding regions within chromo-
somes or sequences of fixed length) are topologically equivalent to the metric
spaces induced by point mutations (Gitchoff and Wagner, 1996; Stadler and
Wagner, 1998; Stadler et al., 2000). The situation, however, differs with un-
equal crossover (where chromosomes are misaligned and the number of genes
on a chromosome can change). Shpak and Wagner (2000) suggest that the
genotype space induced by a model of unequal crossover is not metric. The
problem here is again a lack of symmetry. Of course, distance measures on
this genotype space can be defined, but any such measure would not reflect
the accessibility structure induced by unequal crossover. This is analogous
to the RNA case where any number of morphological similarity measures
between shapes can be defined – but they do not reflect the mutational ac-
cessibility induced by the folding map.

3 Evolutionary patterns and phenotypic accessibility

Punctuated equilibria

The term punctuated equilibrium was introduced to describe a pattern of
phenotypic evolution inferred from the fossil record (Eldredge and Gould,
1972) in which a lineage spends a large amount of time in a state of stasis,
that is, of no directional change, and then suddenly undergoes a phenotypic
transition. A variety of mechanisms, ranging from sudden changes in the
environment to speciation events that break up the homeostasis of the geno-
type (Maynard-Smith, 1983) can generate this pattern. It is worth noting,
however, that some well documented examples of punctuation, like the fossil
record of Olenus, a trilobite, are character specific rather than involving the
whole phenotype. This runs against the idea that punctuation is caused by
some general factor like the breakdown of genetic homeostasis during speci-
ation (Wagner, 1989b). Computational models of RNA secondary structure
evolution (Huynen et al., 1996; Fontana and Schuster, 1998a) also show a
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pattern of punctuation. The population drifts on a neutral network in geno-
type space while maintaining the same phenotype α, until it encounters the
neutral network of a new advantageous phenotype β. If β is not near α in
the topological sense sketched previously (section 2.2), a (finite) population
will spend a long time drifting on the network of α. In the RNA model,
punctuation correlates with a discontinuous phenotypic transition. Recall,
however, that our definition of discontinuity does not hinge on “suddenness”;
the phenomenology of “long periods of stasis ending in phenotypic change”
is but a population dynamic manifestation of the topological structure of
phenotype space induced by the genotype-phenotype map, and does not re-
quire exogenous events. It is therefore tempting to speculate that some of
the punctuation events seen in phenotypic evolution are discontinuous phe-
notypic transitions in some appropriate developmental sense. At the same
time, the gradual transitions typical for the Neo-Darwinian model of evo-
lution correspond to continuous evolutionary trajectories connecting nearby
phenotypes.

Developmental constraints

Accessibility directly relates to the notion of developmental constraints which
emphasize the limitations to phenotypic variation realizable in the neighbor-
hood of a genotype. Turning a snail into a horse in a single step is not
just discontinuous, but an impossible operation if “step” means a continuous
genetic change, that is, one that remains in the neighborhood of a given geno-
type. There may, however, exist continuous paths in phenotype space that
connect a snail with a horse. The existence (or absence) of such paths is a
statement about the accessibility structure of phenotype space. The issue is
important, because such paths are likely to show up as definite evolutionary
trajectories.

We mention two well documented examples of developmental constraints,
because there is still some confusion about the existence of such constraints.
The best understood example concerns patterns of phalanx reduction which
is highly regular in amniotes and frogs (eutetrapods) and differs from the
patterns in newts and salamanders (urodeles). This is caused by developmen-
tal differences in hand/foot development between urodeles and eutetrapods
(Shubin and Alberch, 1986), as shown experimentally by Alberch and Gale
(1983, 1985) in two landmark papers. The logic of the argument is that the
last digit to develop is the first to be lost. In eutetrapods, the sequence of
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digit development is 4-3-2-(5)-1 with some limited variation in the timing of
digit “5” development. Consequently, the first digit to be lost is digit “1”
in frogs and amniotes. On the other hand, the developmental sequence in
urodeles is (1,2)-3-4 in the forelimb and (1,2)-3-4-5 in the hind limb. Conse-
quently, the first digits to be lost are “4” and “5” in the forelimb and hind
limb, respectively. This pattern can be reproduced experimentally by de-
creasing the number of cells available for digit development and is thus not
driven by natural selection. What is driven by natural selection, of course, is
whether there is a loss at all. Another example of a developmental constraint
underlies the fundamental difference between the endoskeleton of higher ray
finned fish (teleosts) and that of fleshy finned fish (Wagner, 1999), including
tetrapods. The endoskeleton of the former consists in four radials arranged
along the anterior-posterior extension of the fin basis, while the endoskele-
ton of the latter is a complicated pattern of bones derived from a branching
arrangement of skeletal analgen (Shubin and Alberch, 1986). The radials of
the teleost paired-fin endoskeleton are developmentally derived from a carti-
laginous disc that arises early in ontogeny and is later divided in two steps
into four rods that ossify and form the radials (Grandel and Schulte-Merker,
1998). This mode of development constrains the pattern of adult osteology
to a distinct and more restricted set of states than that of tetrapods and
their fish relatives, lung fish and coelacanths.

Homology

Different characters in two species are homologous if they have evolved from
the same character in a common ancestor. Besides this more conventional
use, the term “homology” also expresses a statement about “sameness” which
implies a hypothesis about the accessibility of the phenotypic character (Wag-
ner, 1989a, 1994, 1999). “Homology” asserts that many features of characters
remain conserved in spite of radical changes in function (Riedl, 1978). Since
no two instances of a character are identical, not even in the same population,
the notion of “sameness” requires a degree of abstraction, in particular if we
compare characters from different species. Two characters α and β are the
same if they differ only in “nonessential” features (Wagner, 1989a), meaning
that both α is near β and β near α. (In contrast to nearness, homology
is a symmetric relation, hence the explicit requirement of mutual nearness.)
Examples comprise differences in size, color and proportion of phenotypic
elements. In this way the assertion of homology makes assumptions about
the accessibility structure of phenotype space.
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Evolutionary innovation

The notion of evolutionary innovation is a rather informal one, describing the
fact that certain phenotypic changes are difficult to achieve and seem more
important for the subsequent evolution of a character than others (Buss,
1987). The concept is closely related to that of homology (Müller and Wag-
ner, 1991), since identifying “novelty” implies knowing what constitutes the
“same”. An innovation may be characterized as a transformation of a phe-
notypic character that radically changes the set of subsequently accessible
phenotypes (Galis, 2001). It is tempting to speculate that this notion is
related to the notion of discontinuous change in the sense of Fontana and
Schuster (1998a).

Irreversibility and directionality

There are many examples of evolutionary reversibility, most notably the evo-
lution of polygenic quantitative characters, such as body size (Roff, 1997).
Yet, not all evolutionary transitions are readily reversible. For instance the
evolution of a genetically inactive Y-chromosome or the evolution of obliga-
tory parthenogenesis seem to be irreversible (Bull and Charnov, 1985). Many
examples of evolutionary irreversibility involve the loss of genetic informa-
tion, since it is easier to lose a functional part of the genome, and the cor-
responding phenotype, than regaining it by mutation. Even if evolution as
a whole is not directional, there is sufficient evidence suggesting that certain
transformations are highly biased. One direction of the transformation is
easy, like the loss of an enhancer element, but the inverse step is unlikely to
occur. The same holds for the small stack example in the RNA case detailed
in section 2.2. Some directional trends in evolution are therefore explained
more naturally by asymmetries in transition probabilities than by directional
selection. These “entropic” or combinatorial biases are, again, reflected in
the asymmetric accessibility between phenotypes.

In this section we have brought together a series of arguments of why it seems
desirable, if not necessary, to introduce non-metric accessibility structures
into the language of mathematical evolutionary theory. The next section
presents some of the pertinent concepts.
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4 Pretopological Nearness and Neighborhood

4.1 Topological Concepts

This section provides a brief, yet rigorous, introduction to the mathemati-
cal structures needed to reason about the accessibility topology induced by
genotype-phenotype maps, such as the RNA folding map. No original math-
ematics is provided here. The effort rather consists in making fairly abstract
material accessible to the theoretical biologist who grapples with patterns of
phenotypic evolution, but is unfamiliar with topological concepts. We refer
to the textbook of Gaal (1964) for proofs that are not central to our topic.

Sets augmented with relations among their elements are called “spaces”.
Spaces are distinguished by the degree of structure they possess. Figure 3
provides a highly simplified concept chart. Euclidean vector spaces are per-
haps the most concrete, since they possess a rich algebraic structure and are
close to our intuitive understanding of time and space: vectors are elements
that can be added, multiplied with a scalar and projected onto each other.
We exploit this structure when making drawings. If it is removed, the famil-
iar notion of distance still remains intact and characterizes a metric space.
The shapes of molecules – such as proteins or RNA – or the sequences of
genes are examples of elements forming a metric space: shapes or sequences
can’t be added, but their distance (or similarity) can still be quantified. If
this traditional notion of distance is dropped, a notion of neighborhood still
remains. Elements entertain relationships of nearness, but nearness isn’t a
number anymore. Two elements may be near to a third, but there is not
enough structure to always state which one is nearer. A space of this kind is
a topological space. It has enough structure to support a notion of bound-
ary that behaves in a familiar way like the boundary we draw around an
area on a sheet of paper. More specifically, a set can be “closed” by includ-
ing its boundary, and closing a set twice doesn’t add anything beyond that.
Removing the structure underlying this behavior of boundary uncovers the
weakest notion of nearness that characterizes a pretopological space. Losing
the notion of neighborhood still saves convergence. Giving up convergence,
we are left with a plain set.

Properties of an abstract space are often discussed in terms of a more concrete
one. For example, topologies are derived top-down from metric spaces by
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Figure 3: Simplified topological concept chart. See main text for details.
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using the notion of distance to define neighborhood (such as ε-balls in R
n).

This makes everything a notch easier. Our interest, however, is in those cases
for which a notion of distance is not available. In this bottom-up direction,
a more abstract axiomatic approach is unavoidable.

4.2 Nearness

When a numerical distance measure is not available, nearness becomes a
relationship that must be explicitly declared to hold between two elements
of a set X4. The result is a list of pairs (x, y) ∈ X × X called a nearness
relation U on X (U ⊆ X ×X):

U = {(x, y)|“y is U -near to x”}

It is not required that (x, y) ∈ U implies (y, x) ∈ U . In general, U is not
symmetric.

We expect a formal nearness relation to capture the essential intuitions about
nearness. Any nearness relation should, therefore, contain at the very least
(x, x) for all x ∈ X, corresponding to the intuition that an element x is
always near to itself. This is really all one can say about a particular U .
Consider two nearness relations U and U ′ (on the same set X). If U ⊂ U ′,
we can think of U as the result of applying a finer sieve, that is, a more
stringent set of conditions which is satisfied by fewer elements compared to
U ′. Hence, U expresses a finer scale of nearness compared to U ′. This affords
a way of speaking about degrees of nearness (or levels of resolution), despite
nearness not being a number. Furthermore, it seems natural to say that pairs
of elements that are both U -near and U ′-near are also U ∩ U ′-near. (Note
that U ∩ U ′ is not empty, since (x, x) is contained both in U and in U ′ for
all x.) Finally, consistency suggests that if y is U -near to x at one level of
resolution, it should remain so at any coarser level.

Nearness is thus expressed by a collection U of relations U on X constrained
to satisfy the following axioms:

(U1) ∆ ⊆ U for all U ∈ U , where ∆ = {(x, x)|x ∈ X} is called the diagonal.

4This usage of “nearness” is not related to the notions of proximity or nearness in the
sense of Pervin (1963); Herrlich (1974).
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(U2) U, U ′ ∈ U implies U ∩ U ′ ∈ U .

(U3) U ∈ U and U ⊂ U ′ implies U ′ ∈ U .

The collection U is called a preuniformity.

4.3 Neighborhood

An alternative way of structuring a set X with a notion of nearness consists
in defining for each x ∈ X a collection of subsets of X called neighborhoods
of x. In analogy to nearness relations, a collection of neighborhood systems
N (x) on X is formalized as a map N : X → P(X) (where P(X) is the
powerset of X) such that for all x ∈ X:

(N1) x ∈ N for all N ∈ N (x).

(N2) N1, N2 ∈ N (x) implies N1 ∩N2 ∈ N (x).

(N3) N1 ∈ N (x) and N1 ⊂ N implies N ∈ N (x).

The Ns are neighborhoods, N (x) is a neighborhood system for element x,
and the pair (X,N ) is called a pretopological space. We speak of a neigh-
borhood basis, if only (N1) and a weakened version of (N2)

(N2’) N1, N2 ∈ N (x) implies that there is a N3 ∈ N (x) such that
N3 ⊆ N1 ∩N2

are satisfied.

It will be useful to extend the notion of neighborhood from individual ele-
ments to subsets of X.

Definition. (Neighborhood of a set.) Let (X,N ) be a pretopological
space and B ⊆ X. Then N is a neighborhood of B if and only if N contains
a neighborhood Nx of each element x ∈ B.

The neighborhood system, N (B), for the set B is thus given by

N (B) =
{

N |N ∈ N (x) ∀x ∈ B
}

=
⋂

x∈B

N (x). (2)
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4.4 From nearness to neighborhood (and back)

A pretopological neighborhood system N can be constructed from a preuni-
formity U in a natural way. For each x ∈ X we define its neighborhood
system N (x) to consist of the sets

U [x] = {y ∈ X|(x, y) ∈ U} for each U ∈ U . (3)

It is easy to verify that the sets U [x] satisfy the conditions (N1-N3) defin-
ing a neighborhood system. We call NU with NU(x) = {U [x]|U ∈ U} the
neighborhood system induced by the preuniformity U .

Conversely, given a neighborhood system N we may construct a correspond-
ing preuniformity as the collection UN of all sets U of the form

U =
{

(x, y)|x ∈ X, y ∈ Nx, for some Nx ∈ N (x)
}

, (4)

plus all sets U ′ containing some U (axiom U3). The construction (4) says
that a particular U is obtained by choosing for each x ∈ X some neighbor-
hood of x and (naturally) declaring its elements to be near x. The chosen
neighborhoods are removed from the system N and the procedure is repeated
to obtain a new U until all neighborhoods have been used up. UN is a pre-
uniformization of the neighborhood system N .

A preuniformity U and its induced pretopology (X,N ) are equivalent ways
of structuring the set X. That is, the preuniformization of the pretopology
induced by U yields again the same U 5. This is shown in Appendix 1.1.

4.5 From pretopology to topology

The concatenation of two nearness relations U ′ and U ′′ is defined by

U ′ ◦ U ′′ = {(x, y)|∃z : (x, z) ∈ U ′ and (z, y) ∈ U ′′}. (5)

U ′ ◦ U ′′ contains both U ′ and U ′′ because each nearness relation contains
the diagonal ∆ = {(x, x)|x ∈ X} by virtue of (U1). The concatenation of
nearness relations enables us to lower the resolution of nearness: elements of

5The relation between preuniformities and pretopologies on X is not one-to-one. In
general, different preuniformities give rise to the same pretopology.
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Figure 4: Open sets. An open set contains a neighborhood of each of its elements.

U ′ and U ′′ are near on a finer scale than elements of U ′ ◦ U ′′. We can think
of the elements z in (5) as “in between” x and y.

A preuniformity U such that

(UB) for each U ∈ U there is a V ∈ U with V ◦ V ⊆ U ,

is called a quasiuniformity. In essence, (UB) states that the structure of
our universe X is such that for any two elements x and y there is another
element z in between (this bottoms out at some finest resolution where the
only elements between (x, y) are x and y themselves.)

The condition (UB) has an interesting consequence which is best explained in
the language of neighborhoods rather than nearness relations. In Appendix
1.2 we show that the neighborhood equivalent of (UB) is

(N4) For each N ∈ N (x) there is an N ′ ∈ N (x) such that N ∈ N (y) for all
y ∈ N ′.

A pretopology that satisfies (N4) is called a topology. The difference be-
tween the two spaces lies in the concept of boundary. Given a neighborhood
system on X and a set A ⊆ X, we call x ∈ X a boundary element of A if
all the neighborhoods of x intersect both A and its complement X \A. The
boundary of A, ∂A, is the collection of all boundary elements of A:

∂A =

{

x ∈ X

∣

∣

∣

∣

∀N ∈ N (x) : N ∩ A 6= ∅ and N ∩ (X \ A) 6= ∅

}

. (6)
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We can now define the interior and the closure of A as:

Å = A \ ∂A Ā = A ∪ ∂A. (7)

By definition, a set A is open if it contains no boundary element. Stated
positively, a set A is open if it contains a neighborhood of each of its el-
ements, that is, for each x ∈ A there is a neighborbood N ∈ N (x) such
that N ⊆ A. A cartoon of the concept is given in Figure 4. Open sets
play a prominent role, because the collection of all open sets that contain
x, T (x) = {A|A is open and x ∈ A} constitutes a neighborhood basis at x
(Gaal, 1964). In fact, if a neighborhood system N (x) satisfies (N4), then
T (x) is a basis of N (x) and vice versa (Theorem IX’ in (Alexandroff and
Hopf, 1935)).

Returning to the difference between a pretopology and a topology, consider
the behavior of the closure operation, A ∪ ∂A. For the sake of simplicity
assume the open sets T (x) as the neighborhood basis of the topology. We
close an arbitrary set A by adding all its boundary elements (6). What
happens if we perform a closure twice? Intuitively, once a set has been closed
there are no further boundary elements and therefore nothing should happen.
This is indeed how the boundary operation behaves in a topology. Yet, in a
pretopology, adding all boundary elements to a pretopological neighborhood
may result in the creation of further boundary elements. Consider a scenario
in which x is among the boundary elements ∂A just added to A. Suppose
further that there exists an element y outside of A all of whose neighborhoods
Ny contain the previous boundary element x. Because of the inclusion of x, y
has now become a boundary element of A∪∂A. When y is added at the next
application of the boundary operator, this scenario may repeat itself and the
set may continue growing. This cannot happen in a topology. If x is in the
neighborhoods Ny of y, any Ny must contain at least one neighborhood of
x (because the Ny are open sets). But if x is a boundary element, then y
must be one too, because its Ny will intersect A by virtue of containing a
neighborhood of the boundary element x. Thus, once all boundary elements
have been added to A, no further boundary elements can be created. In a
topology, the boundary operator satisfies

∂∂A ⊆ ∂A,

which is equivalent to the idempotence, A = A, of the closure operation
(Albuquerque, 1941). The notion of boundary, in the sense of definition (6),
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does exist in a pretopology, but its behavior is not as familiar as in a topology.
Pretopological spaces can be specified by equivalent axiom systems in terms
of neighborhoods, closure, interior, or boundary. Their mutual translations
are summarized in Appendix 1.5.

Finally, symmetry results from the additional requirement:

(US) U ∈ U implies U−1 = {(x, y)|(y, x) ∈ U} ∈ U .

It follows from (U2) that the symmetric relations U ∩ U−1 are also nearness
relations. If (US) is satisfied, one speaks of a semiuniformity, and if both
(US) and (UB) hold, we have a uniformity. In terms of neighborhoods, the
symmetry axiom (US) implies two equivalent properties6

(R0) x ∈ {y} implies y ∈ {x} for all x, y ∈ X.

(S’) x ∈
⋂

N (y) implies y ∈
⋂

N (x).

Axiom (R0), introduced by Šanin (1943), plays an important role in topology
as a notion of symmetry. Čech (1966, Thm.23.B.3) proved that a pretopolog-
ical space is semiuniformizable if and only if it satisfies (S’), and, equivalently,
(R0).

4.6 Continuity

The debate on continuity in evolution would greatly benefit from a formal
definition of the term. The notion of nearness is instrumental for this purpose.
Before connecting nearness with continuity, however, we begin with the most
general notion of continuity, which depends on even less structure than is
available in pretopological spaces.

The definitions of both nearness (section 4.2) and neighborhood (section
4.3) make use of the same generic structure. This structure deserves special
emphasis. Let X be a set. A filter on X (Gaal, 1964) is a subset F of the
power set of X, P(X), with the following properties:

(F1) ∅ /∈ F .

6The equivalence is proven in Appendix 1.4.
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(F2) F1, F2 ∈ F implies the existence of a set F3 ∈ F such that F3 ⊆ F1∩F2.

(F3) If F1 ∈ F and F1 ⊆ F2 then F2 ∈ F .

If F satisfies only (F1) and (F2) one speaks of a filter basis (which uniquely
defines a filter). It is easy to verify that the neighborhood system N (x) of
an element x in a pretopological space (X,N ) is a filter on X, and that a
preuniformity U of nearness relations is a filter on X ×X.

We say that F is coarser than G (or G is finer than F) if F ⊆ G. Equivalently,
F is coarser than G if for every F ∈ F there is G ⊆ F such that G ∈ G. (Note
the reversal in the subset relation when passing from filters to their elements.
See also the notion of “resolution” in the context of nearness relations, section
4.2.)

A filter F is finest (or maximal) if it is contained in no other filter. This is
equivalent to saying that

for any A ⊂ X either A ∈ F or − A ∈ F , (8)

which justifies the name “filter”.

f

N
N’

f(N)

f(N’)

M M’
x f(x)

Figure 5: Continuity. For each neighborhood M of f(x) there is a neighborhood

N of x such that f(N) ⊆ M .

Filters are useful in defining convergence. Think of filters as generalizations
of sequences. Given a sequence (xn) = {x1, x2, . . . , }, define the “ends” as
Fk = {xk, xk+1, . . . }. It is straightforward to check that the set of ends,
{Fk|k ∈ N}, satisfies (F1) and (F2) and is therefore the basis of a filter F .
(The basis here is like a series of telescopically nested tubes.) In the case
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of a sequence, we say that (xn) converges to a limit point x, xn → x, if for
all ε > 0 there is an integer nε such that ‖xk − x‖ < ε for all k ≥ nε. The
notion of filter enables us to speak of convergence without invoking a notion
of distance ‖xk − x‖. Stated in terms of neighborhoods, the convergence
xn → x means that for every neighborhood N of x there is an integer nN
such that xk ∈ N for all k > nN . The phrase “xk ∈ N for all k > nN”
simply means that FnN

⊆ N . Recall that a neighborhood system constitutes
a filter. Thus, (xn) converges to x if and only if the filter F generated by the
ends Fk of (xn) is finer than the neighborhood filter of x, that is, N (x) ⊆ F .
This replaces the notion of a distance becoming smaller and motivates the
definition of (filter) convergence in a pretopological space:

Definition. (Convergence.) Let (X,N ) be a pretopological space and let
F be a filter on X. Then F converges to x, in symbols: F → x or x ∈ limF ,
if and only if N (x) ⊆ F .

Filter convergence sets the stage for the notion of a continuous function.

Definition. (Continuity.) Let f : (X,N ) → (Y,M) be a function between
two pretopological spaces. We say f is continuous in x ∈ X if for all filters
F on X

F → x implies f(F) → f(x). (9)

Let us translate the definition of continuity into the language of neighbor-
hoods:

Lemma 1. Let f : (X,N ) → (Y,M) be an arbitrary function between two
pretopological spaces. Then the following propositions are equivalent:

(i) f is continuous in x.

(ii) For every neighborhood M of f(x) there is a neigborhood N of x such
that f(N) ⊆M .

(iii) M(f(x)) ⊆ f(N (x))

Assertion (iii) follows directly from the definition of convergence and the def-
inition of continuity. Observe that “F → x implies f(F) → f(x)” becomes
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“N (x) ⊆ F implies M(f(x)) ⊆ f(F)”. A fact about filters (given here with-
out proof) asserts that an arbitrary function f preserves coarseness, that is,
F ⊆ G implies f(F) ⊆ f(G). Hence, f(N (x)) ⊆ f(F). But “f(N (x)) ⊆
f(F) implies M(f(x)) ⊆ f(F)” is equivalent to “M(f(x)) ⊆ f(N (x))”
which, in words, states that the neighborhood filter of f(x) is coarser than
the image of the neighborhood filter of x. This is equivalent to assertion (ii)
which is but the definition of filter coarseness. At the same time, (ii) is the
familiar neighborhood-based definition of continuity (Figure 5).

In appendix 1.3 we rephrase continuity in terms of nearness relations or
preuniformities.

4.7 Finite sets

Pretopologies simplify considerably in the case of a finite universe X. There
are only finitely many filters and every filter F is of the form

F ≡ Ḟ = {F ′|F ⊆ F ′}, (10)

where F is a subset of X. (Such filters are called discrete filters.) This one-
to-one correspondence between subsets of X and filters on X permits most
properties to be stated in terms of subsets.

A particularly useful subset is the vicinity associated with the neighborhood
filter N (x):

N(x) =
⋂

N (x) =
⋂

{N |N ∈ N (x)} (11)

The notion of vicinity can be used to establish a correspondence between pre-
topological spaces (X,N ) and directed graphs (digraphs) Γ(X,E) where X
is the vertex set and E the set of directed edges from x to y, E =

{

(x, y)|x ∈
X, y ∈ N(x) \ {x}

}

.

Properties of pretopological spaces can now be stated in more familiar graph-
theoretical terms. For instance:

• By construction, the vicinity N(x) consists of the forward-neighbors of
x and x itself.
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• A pretopological space (X,N ) is finer than another pretopological
space on the same set X, (X,M), if and only if Γ(X,EN ) is a sub-
graph of Γ(X,EM).

• A function f : (X,N ) → (Y,M) is continuous in x if and only if
f(N(x)) ⊆M(f(x)), that is, if f maps the vicinity of x into the vicinity
of f(x).

• Axiom (S’) makes (X,N ) a symmetric directed graph (two vertices are
either connected by an edge in each direction or not at all). Symmetric
digraphs are, of course, isomorphic to undirected graphs, which are,
therefore, exactly the finite pretopological spaces satisfying (R0).

A finite pretopological space is topological if and only if for each x ∈ X and
all y ∈ N(x) there exists a N(y) such that N(y) ⊆ N(x). This means that
the vicinities must be open sets.

• The open vicinity T (x) of an element x, that is, the smallest open set
containing x consists of all elements that can be reached from x along
any number of forward-edges.

A concise characterization of directed graphs that express particular topolo-
gies on their vertex sets seems to be unknown. Some interesting results in
this direction can be found in (Cupal et al., 2000).

5 Pretopologies and the genotype-phenotype map

5.1 The accessibility pretopology

Using the concepts reviewed in section 4, we next consider the structure
of phenotype space induced by a map f from genotypes G to phenotypes
P . The folding from RNA sequences to secondary structures (Figure 1 and
section 2.2) will serve as an example.

The genotype-phenotype map assigns to each genotype g a phenotype ψ =
f(g)7. The central question is how to organize the set of phenotypes, that

7To improve clarity of exposition, we shall ignore the dependency of the phenotype
on the environment. The inclusion of an environment does not affect the essence of the
arguments presented here.
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is, which neighborhood system is natural for phenotypes? The correspond-
ing question for genotypes poses no difficulty, since physical processes exist
which directly change genotypes and hence provide a natural neighborhood
structure on the set of possible genotypes. Phenotypes, however, are not
modified directly. Phenotypic innovation is the result of genetic modification
mediated by development (the genotype-phenotype map). This reasoning
motivated Fontana and Schuster (1998a) to consider a notion of phenotypic
neighborhood induced by the genotype-phenotype map which differs funda-
mentally from a notion of nearness among phenotypes based solely on the
comparison of their morphological features.

The induced neighborhood structure on the set of phenotypes reflects “ac-
cessibility” of one phenotype by another through mutations in the genotype
of the former. The interesting situation arises when the genotype-phenotype
map is many-to-one, which is typically the case in a realistic setting. The
notion of nearness of a phenotype ψ to another should be a robust property,
independent of a particular genotype giving rise to ψ – it should, in a sense,
reflect a feature that is common to all genotypes whose phenotype is ψ. In a
many-to-one map, phenotypes denote equivalence classes of genotypes (the
set of genotypes sharing the same phenotype). Nearness among phenotypes,
then, must reflect the mutual adjacency of these equivalence classes as deter-
mined in the given neighborhood structure of genotype space (Fontana and
Schuster, 1998a,b).

We address this intuition formally by first asking a seemingly unrelated ques-
tion: What kind of neighborhood system M on the set of phenotypes makes
the genotype-phenotype map everywhere continuous?

From Lemma 1 we know that for f to be everywhere continuous, we must
have for all phenotypes ψ and all genotypes g that M(ψ) ⊆ f(N (g)). When
several genotypes gi give rise to the same phenotype ψ, the requirement for
continuity becomes

M(ψ) ⊆ f(N (g1)) and

M(ψ) ⊆ f(N (g2)) and . . . (12)

for all g ∈ f−1(ψ). Define the neighborhood system

A(ψ) :=
⋂

g∈f−1(ψ)

f(N (g)) =
{

S|S ∈ f(N (g)) ∀g ∈ f−1(ψ)
}

. (13)
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In compliance with (N3), A(ψ) is meant to include all sets containing a set
described in (13), but we shall not explicitly notate this fact. The require-
ment (12) now becomes

M(ψ) ⊆ A(ψ) for all ψ. (14)

We shall see that A(ψ) has a simple interpretation. By its definition (13),
A(ψ) is just the collection of sets S containing the image of some neighbor-
hood shared by all genotypes g with phenotype ψ:

A(ψ) =
{

S|∃Ng ∈ N (g) such that f(Ng) ⊆ S ∀g ∈ f−1(ψ)
}

= · · · (15)

which is just the collection of images of neighborhoods shared by all g with
phenotype ψ (plus supersets by virtue of (N3)):

· · · =
{

f(N)|N ∈ N (g) ∀g ∈ f−1(ψ)
}

= f





⋂

g∈f−1(ψ)

N (g)



 . (16)

The collection
⋂

g∈f−1(ψ) N (g) is the set of neighborhoods shared by all geno-

types g with phenotype ψ, {N |N ∈ N (g) ∀g ∈ f−1(ψ)}. In the case of
RNA, f−1(ψ) is the so-called neutral set (or neutral network when all se-
quences folding into the same structure are mutationally connected), and
⋂

g∈f−1(ψ) N (g) is the neighborhood system of the neutral set, N (f−1(ψ)).

(See the definition for the neighborhood system of a set in section 4.3.) In
sum, we have

M(ψ) ⊆ A(ψ) =
⋂

g∈f−1(ψ)

f(N (g)) = f





⋂

g∈f−1(ψ)

N (g)



 = f(N (f−1(ψ))).

In words, a phenotype ϑ is contained in a neighborhood Nψ of phenotype ψ
(Nψ ∈ A(ψ)) if and only if there is a neighborhood of g ∈ f−1(ψ) which con-
tains a genotype h folding into ϑ. This is straightforward for maps between
finite sets, where the neighborhood structure is determined by the vicinity
(the smallest neighborhood, see section 4.7). In genotype space, the vicinity
of the neutral set of ψ comprises all sequences obtained by a single point
mutation from sequences folding into ψ. With respect to phenotypes, the
vicinity of ψ, A(ψ), therefore consists of all structures ϑ that can be accessed



Stadler2, Wagner, Fontana: Topology of the Possible 32

through a single point mutation from sequences folding into ψ:8

A(ψ) =
⋃

g∈f−1(ψ)

f(N(g))

= {ϑ|∃g ∈ f−1(ψ) and h ∈ N(g) such that ϑ = f(h)}. (17)

The pretopology A on the set of phenotypes is the weakest notion of phe-
notypic accessibility – weakest in the sense that, according to equation (17),
for phenotype ϑ to be in the neighborhood of ψ, it suffices that ϑ be realized
just once by some one-error mutant of a sequence folding into ψ. A is the
finest pretopology on the set of phenotypes P such that f : (G,N ) → P
is a continuous function. We refer to A as the accessibility pretopology 9 of
phenotype space or the final pretopology generated by f from (G,N ).

The most restrictive sense of accessibility arises by requiring that ϑ is in
the neighborhood of ψ only if ϑ is realized in the genetic vicinity of every
sequence with phenotype ψ. In the finite case, this translates to

C(ψ) =
⋂

g∈f−1(ψ)

f(N(g))

= {ϑ|∀g ∈ f−1(ψ) : ∃h ∈ N(g) such that ϑ = f(h)} (18)

In the infinite case, we cannot simply replace the intersection of the filters
f(N (g)) in equation (13) by their union, since the union of two filters is, in
general, not a filter (see Appendix 1.6). Instead we must use the filter arising
from the intersections of the individual neighborhoods. We use the notation

F ∨ G = {F ∩G|F ∈ F , G ∈ G} (19)

for the coarsest filter that is finer than both F and G. Note that F ∨ G
exists only if F ∩ G 6= ∅ for all F ∈ F and G ∈ G; otherwise F and G are
called disjoint. Since f(g) ∈ N for all N ∈ f(N (g)) and all g ∈ f−1(ψ), no
intersections are empty and the neighborhood filter

C(ψ) =
∨

g∈f−1(ψ)

f(N (g)), (20)

8The reader may wonder, in a first moment, why the intersection in equation (13)
becomes a union in equation (17). More generally, the intersection of filters can be written
as the union of their elements. This is clarified in Appendix 1.6.

9The concept of accessibility of phenotypes developed here is not related to the notion
of accessibility spaces in the sense of (Whyburn, 1970).
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exists. C is the coarsest pretopology that is finer than f(N (g)) for all g ∈
f−1(ψ). We call it the shadow pretopology, because phenotype ϑ ∈ C(ψ)
“follows” ψ like a “shadow”, being the image of a neighbor of every g that
folds into ψ.

5.2 Statistical neighborhood systems
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Figure 6: Accessibility distributions. The one-error mutants of a sample of

2199 sequences folding into the tRNA clover-leaf reference structure (length l = 76,

inset) were folded. 28% had the same structure as the reference. The 72% folded

into 141,907 distinct shapes. The curve shown is a log-log plot of the rank ordered

A(β x tRNA), equation (1), for each of the 141,907 shapes β. The vertical line is

meant to separate regions with different scaling, suggesting a natural cutoff point

above which the shape β is regarded as being near to the the tRNA shape. For

details see (Fontana and Schuster, 1998b).

The accessibility pretopology A of the previous section 5 was constructed
from the requirement that the genotype-phenotype map be everywhere con-
tinuous. This seems too strong a requirement, resulting in a rather weak
neighborhood structure. One single genotype poised for a transition from α
to β suffices to make β accessible from α. The shadow pretopology C errs on
the other extreme, as it requires that every genotype of α be mutable into a
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genotype of β. In the computational RNA genotype-phenotype model, the
C-pretopology turns out to be trivial, since the C-neighborhoods of α only
contain α.

The notion of accessibility described in section 2.2 emphasized the likelihood
of a transition from phenotype α to phenotype β by mutation of genotypes
underlying α. This affords a way of interpolating between the extreme ver-
sions of accessibility, A and C. The likelihood of a phenotypic change is
proportional to the number of genotypes with phenotype α that are adjacent
to genotypes with phenotype β (Fontana and Schuster, 1998b; Cupal et al.,
2000), as expressed in equation (1). An example distribution of such numbers
is shown in Figure 6. In the simplest case, a probabilistic version of acces-
sibility introduces a cutoff point. If A(β x α), equation (1), is below that
cutoff, β is not accessible from α. Depending on the cutoff point, a range of
accessibility structures can be constructed on phenotypes. The appropriate
cutoff value should be determined by biological factors, such as mutation
rate, population size, or the relevant time frame. In an infinite population,
for example, the issue of accessibility and innovation does not even arise.
In that case, the topology of phenotype space will have no effect on pop-
ulation dynamics. Yet, as population size shrinks and genomic replication
accuracy increases, the “effective topology” becomes weaker and increasingly
consequential for patterns of evolutionary dynamics, such as punctuation and
directionality.

The limiting pretopologies constructed in section 5 served the purpose of
formally justifying the idea of a phenotype space topology defined in terms
of the mutational adjacency of genotypic equivalence classes. A rigorous
treatment of a “statistical topology” (Fontana and Schuster, 1998b), how-
ever, must be based on consistent probabilistic notions of neighborhood and
nearness which are well beyond the scope of this contribution. Probabilistic
convergence spaces (Richardson and Kent, 1996) or fuzzy topology (Morde-
son and Nair, 1998), in particular fuzzy pre-uniformities (Badard, 1984), may
perhaps be useful in achieving this goal.

6 Continuity of evolutionary trajectories

An evolutionary trajectory can be viewed as a map from the “time axis”
into the space of phenotypes. When analyzing a series of paleontological
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samples or a series of shape transitions obtained from a computer simulation
of RNA evolution, the time axis is inherently discrete with an obvious natural
pretopology. We simply number subsequent samples and define the vicinities
on the time axis to be N(t) = {t, t + 1}. The corresponding pretopological
space will be denoted by (N, T ). Its graph is the directed path on the left in
Figure 7.

An evolutionary trajectory is the composition of two functions. First, a
function g : (N, T ) → (X,G) that assigns a genotype g(t) to each point t in
(discrete) time. The genotype space (X,G) is a pretopology induced by the
genetic operators, such as point mutation in Figure 7. This first function is
then composed with a genotype-phenotype map f : (X,G) → (Y,N ). The
space structure of the phenotypes Y is the accessibility pretopology N = A
or C, as discussed in section 5.1, or a probabilistic version as discussed in
section 5.2.
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Figure 7: Evolutionary trajectory. An evolutionary trajectory is the compo-

sition f ◦ g of the temporal sequence of genotypes and the genotype-phenotype

map f . In the case of point mutations, the pretopology G arranges the set X as a

Hamming graph. For illustrative purposes, the phenotype space is endowed with

the accessibility pretopology A. The genotype-phenotype map f is shown in the

table.

An evolutionary trajectory, then, is a map τ : (N, T ) → (Y,N ) : t 7→ τ(t) =
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f(g(t)) whose first component – the time series of genotypes g(t) – is typically
continuous, since genotypic changes occur by means of elementary genetic
operators that determine the pretopology G on X. This need not always
be the case, however. For instance, if G is derived from point mutations
(as in Figure 7), then multiple mutations (that is, g(t) and g(t + 1) differ
in more than one sequence position), insertions, and deletions constitute
discontinuities in g : (N, T ) → (X,G). Yet, if we don’t limit the case to
continuity in the genetic trace of the evolutionary trajectory anything goes
and nothing much can be said. If the genotype-phenotype map f : (X,G) →
(Y,N ) is everywhere continuous (N = A), only genetic discontinuities can
give rise to phenotypic discontinuities.

1 2 3 4 5 6 7 8 9 10 11
time

phenotype
   space

path in
phenotype space

τ

Figure 8: Continuity of an evolutionary trajectory. A short trajectory

τ : (N, T ) → (Y,N ) is shown. Transitions from t to t + 1 are continuous, or more

precisely, τ is continuous at t, if the transition (τ(t) y τ(t + 1)) follows a directed

edge in the pretopology of phenotype space. In the present example, there are two

non-continuous transitions, namely τ(3) y τ(4) and τ(8) y τ(9). Note that the

transition τ(3) y τ(4) becomes continuous in the topologization of N since τ(4) is

reachable from τ(3) along a directed path. The transition τ(8) y τ(9), however,

remains discontinuous.

In practice, accessibility will be more restrictive than N = A (and less re-
strictive than N = C). As discussed in section 5.2, “effective” accessibility is
better described by a pretopology that is (much) finer than A. As a conse-
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quence, f will not be everywhere continuous. It may even be the case that for
any genotype g there is at least one mutation of g that changes its phenotype
in a discontinuous fashion, making f nowhere continuous. But because the
remaining mutations at g change its phenotype continuously, an evolutionary
trajectory τ = f ◦ g – consisting of phenotypes constrained by selection –
may still turn out continuous. A transition at time t is continuous if and
only if τ(t + 1) ∈ N(τ(t)), that is, if it follows a directed edge in phenotype
space10. We refer to (Fontana and Schuster, 1998a,b) for a classification and
detailed discussion of discontinuities in evolutionary trajectories of simulated
RNA populations.

7 Product spaces and the notion of character

A formal explication of the character concept is a natural application of the
present (pre)topological framework. In evolutionary biology, the notion of
character aims at identifying those phenotypic descriptors that are quasi-
independent units (Lewontin, 1978) of variation within and between species.
The phenotypic variation of a character must to some extent decouple from
the remaining organism, and the parsing of a phenotype into characters be-
comes a statement about the accessibility structure of phenotypic states.
In this section we shall argue that the factorization of a phenotype space
(constructed on the basis of accessibility criteria) captures the essential for-
mal properties of quasi-independence. Based on that argument, a notion of
structural independence is proposed.

Product pretopologies

We start our discussion by introducing the notion of the (Cartesian) product
of two pretopological spaces (X1,N1) and (X2,N2). The product pretopol-
ogy (Carstens and Kent, 1969) on the Cartesian set product X1 × X2 =
{(x1, x2)|x1 ∈ X1, x2 ∈ X2} is defined by the product of the neighborhood
filters

N (x1, x2) = N1(x1) ×N2(x2)

= {M ⊂ X1 ×X2|∃N1 ∈ N1(x1), N2 ∈ N2(x2) : N1 ×N2 ⊆M}
(21)

10In a continuous setting, the situation is qualitatively similar, albeit more difficult to
visualize. The time axis will usually be the real axis R with the standard topology. Again
τ = f ◦ g can be continuous even if neither g nor f are continuous everywhere.
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We shall write the k-fold product as
∏

k(Xk,Nk) and restrict ourselves to a
finite number of factors.

In the finite case, the product of pretopological spaces (X1,N1) × (X2,N2)
translates into the strong product of the associated graph representations
(section 4.7):

Γ(X,E) = Γ(X1, E1) � Γ(X2, E2). (22)

The vertex set X of Γ(X,E) is X1 × X2. The edge set E consists of all
pairs ((x1, x2), (x

′
1, x

′
2)) 6= ((x1, x2), (x1, x2)) such that (x1, x

′
1) ∈ E1 ∪ ∆ and

(x2, x
′
2) ∈ E2 ∪ ∆ (Imrich and Klavžar, 2000, chapter 5).

Projectors

An important class of maps associated with product spaces are the projectors
prk :

∏

k(Xk,Nk) → (Xk,Nk), defined as prk(x1, x2, . . . ) = xk. The product
map f : (X,N ) →

∏

k(Yk,Mk) is continuous in x ∈ X (see section 4.6) if
and only if each of the maps fk = prk ◦ f is continuous in x (Fischer, 1959,
Theorem 13)).

Isomorphism

Two pretopological spaces (X,N ) and (X ′,N ′) are isomorphic if there is
a one-to-one map φ : (X,N ) → (X ′,N ′) such that both φ and φ−1 are
continuous, that is, if and only if φ(N (x)) = N ′(φ(x)) for all x ∈ X. We
then write (X,N ) ' (X ′,N ′).

Factorizability and phenotypic character

The product (X1,N1) × (X2,N2) is trivial if one of the factors is a single
point space, ({x}, ẋ). (Recall from section 4.7 that Ḟ is the discrete filter,
equation (10).) Obviously,

(X1,N1) × ({x}, ẋ) ' ({x}, ẋ) × (X1,N1) ' (X1,N1).

This suggests the following

Definition. (Factorizability.) A pretopological space (X,N ) is factoriz-
able if it is isomorphic to a non-trivial product, in symbols

(X,N ) ' (X1,N1) × (X2,N2)
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If the phenotype space (Y,M) can be represented as a product space of the
form

(Y,M) ' (Y1,M1) × (Y2,M2), (23)

then phenotype y ∈ Y can be viewed as a “vector” (y1, y2). A phenotype
(y′1, y

′
2) is accessible from (y1, y2) if y′1 is accessible from y1 in the factor space

(Y1,M1) and if y′2 is accessible from y2 in the factor space (Y2,M2). Since
the components y1 and y2 do not impose accessibility constraints on each
other they are structurally independent. This notion should not be confused
with a stronger version of genetic independence. Structural independence
implies that the factors y1 and y2 can be modified independently of each
other, but it does not mean that they always vary independently. There
still may be (continuous) mutations of the genotype g underlying (y1, y2)
that affect both y1 and y2. Structural independence also does not imply
statistical independence of the factors in a population. Fitness constraints,
which by definition are not part of the genotype-phenotype map, may well
cause covariations between the frequencies of the variants of two factors in a
population.

A primitive character is one that cannot be subdivided into a collection of
other characters. This suggests the following working definition:

Definition. (Primitive phenotypic character) If the phenotype space
can be represented in the form (Y,M) = (Y1,M1) × (Y2,M2) and (Y1,M1)
is not factorizable, then (Y1,M1) is termed a primitive phenotypic character.

The usefulness of this definition depends on the ability to characterize and
effectively compute factorizations of pretopological spaces. In general, such
a product decomposition will not be unique. This is analogous to the finite-
dimensional case of vector spaces, R

n '
∏n

j=1 R[ej], where we may choose
any set {ej|1 ≤ j ≤ n} of basis vectors. Yet, in the finite case, every
connected graph has a unique prime factor decomposition with respect to the
strong product defined in (22), (Dörfler and Imrich, 1970; McKenzie, 1971).
Polynomial time algorithms for computing the prime factor decomposition
of an undirected graph are known (Feigenbaum and Schäffer, 1992; Imrich,
1998).
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Factorizability Theorem – informal narrative

The problem with factorizing phenotype spaces is the identification of char-
acters. Because descriptors of characters are oftentimes neither obvious nor
simple, a notion of phenotypic dimension seems desirable that does not make
a premature commitment with regard to the physical nature of a character.
Wagner and Laubichler (2000) propose to use certain partitions of the set
of phenotypes (explained below) as representing such dimensions (and, thus,
possible characters). A partition of a set X is a collection of disjoint subsets
such that their union recovers X. Such a subset, then, corresponds to a char-
acter state (that is, a phenotypic “value” along a character “axis”). These
subsets are equivalence classes containing all phenotypes that agree on that
character state. This is somewhat analogous to the notion of “schema” in
genetic algorithm theory (Holland, 1993). For such characters to correspond
to “dimensions”, they must be “orthogonal”. In fact, the partitions Pi con-
sidered in (Wagner and Laubichler, 2000) are orthogonal11, that is, for each
P ∈ Pi and each Q ∈ Pj there is a unique x ∈ X, such that P ∩Q = {x}.

An example from RNA shape space should help clarify these notions. The
top of Figure 9 depicts a shape consisting of two features, numbered 1 and 2.
Suppose we decide to consider these two features as characters. The character
states then consist of variations on these features, such as longer or shorter
stacks and correspondingly shorter or longer loops. The characters 1 and 2
correspond to two partitions P1 and P2, respectively, that are sketched in
Figure 9. Take P1, for example. The columns correspond to disjoint subsets
of RNA shape space in which the state of character 1 is fixed, while the rest
of the shape varies. The first column of P1, for example, exhibits a particular
manifestation (state) of character 1, distinct from column 2, and so on. The
same holds for P2 and the states of character 2 (skeched at the bottom of
Figure 9). It is easy to see that P1 and P2 are orthogonal partitions of
the set of RNA shapes. For example, consider the second column – label
it P – in P1 and the first column – label it Q – in P2. The shape on the
sequence segment reserved for character 2 is fixed in Q, while the shapes on
the remaining segment vary. In set P , however, the shapes on segment 2 vary.
Hence, there will be a phenotype in P whose shape on segment 2 coincides

11Orthogonality is used here in a colloquial manner. In the context of partitions the
notion of orthogonality has to be generalized (Bailey, 1996). The correct term, defined
and used in the formal section, is “orthogonally complementary”.
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with the fixed shape on the same segment in Q. Conversely, there will be
a phenotype in Q whose variable portion coincides with the fixed portion in
P . Since the segments do not overlap, there will be exactly one phenotype in
both P and Q that consists of the fixed P -state on segment 1 and the fixed
Q-state on segment 2. Thus, P1 and P2 are orthogonal partitions. The same
reasoning applies to any features – and any number of them – one wishes to
choose.

The partioning here really just slices the sequence into disjoint segments (two
in our example) and declares any shape on a particular segment as a state
of the same character. In this interpretation, a character is but a sequence
segment (and a character state is a shape on that segment). This may be
questionable. An alternative, more satisfactory interpretation is to think of
a partition as a choice of “grain”, that is, as setting the scale or size at which
we choose to consider characters. An element of the partition (a column in
Figure 9) then corresponds to a possible character of that size (rather than
a character state).

In the formal section below, we clarify the relationship between orthogonal
partitions and the original phenotype space (X,N ). First, we show that if
(X,N ) is factorizable, that is, if it has the same structure as the product of
some factors (which need not be derived from the original space X), then
there exist orthogonal partitions of X. This means that in studying the fac-
torization of (X,N ) we might as well stick to (orthogonal) partitions derived
from the original set of phenotypes. Second, using the partitions ofX we pass
to the corresponding quotients and their quotient pretopologies. That is, our
units of analysis shift to the equivalence classes themselves (the columns in
Figure 9), rather than their elements. We then consider the (pre)topology
of the product of quotients and derive a simple condition under which this
product has the same topological structure as the original space (X,N ). In
other words, when this condition is fulfilled, we can faithfully represent the
phenotype space in terms of phenotype “components” while preserving the
original neighborhood structure. This nails the notion of structural indepen-
dence alluded to above.

As an RNA example, consider the shape labelled a in Figure 9 and shown in
Figure 10A. Using the folding map and the techniques detailed in (Fontana
and Schuster, 1998b; Cupal et al., 2000), determine the shapes that are near
a in the accessibility sense, that is, determine the vicinity of a, N(a). Next,
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assign that shape to its image in the product space. Its image is given by
the pair of equivalence classes determined by the orthogonal partitions P1

and P2 in Figure 9, that is column 2 (set P ) in P1 and column 1 (set Q) in
P2. As representatives of these classes we select the shapes with an unfolded
configuration on the variable segment. Next, determine the vicinities of each
equivalence class (proceeding in the same manner as for N(a)). The vicinity
of the pair, N(P,Q), is given by the smallest set in equation 21, provided we
replace everything by equivalence classes. Next, we pass to the product space
for each shape in N(a). If RNA shape space is factorizable, we must recover
N(P,Q). This simply expresses a superposition principle for the variability
of shape features: by analyzing the variabilities of shape features separately
and then combining them, we find the same accessibility structure as for the
overall composite shape.

Product spaces emphasize characters as quasi-independent units of pheno-
typic variation. Changes in one character should not affect other charac-
ters in the same phenotype. Yet, two RNA sequences (genotypes) with the
same phenotype can differ substantially in the degree of modularity of their
shape features. This is illustrated in Figure 10B which depicts the series of
minimum free energy secondary structures at various temperatures for two
sequences that share the same phenotype at 37◦ C. The first series reveals
a highly modular shape, in the sense that individual features remain stable
across a large temperature range and melt independently of one another.
This behavior correlates with a high degree of mutational stability (Ancel
and Fontana, 2000). The opposite is the case for the second series in Figure
10. Our definition of RNA shape space topology (section 2.2) is based on the
accessibility of one shape from another, say α, by averaging over all sequences
that give rise to α. However, the stability, and therefore autonomy, of pheno-
typic features is not an automatic property of a phenotype displaying these
features. It rather depends on the underlying genotype. Which RNA shape
transformations are continuous or discontinuous is determined by the acces-
sibility likelihoods, equation (1), and a cutoff (section 5.2). It is therefore
important to consider the local properties of the genotype-phenotype map in
the light of that topology. It turns out that the map is almost never contin-
uous at a randomly chosen genotype. In contrast, the map is continuous at
the specific genotype underlying the shape whose melting behavior is highly
modular in Figure 10B. The inability to change a phenotype in a discon-
tinuous fashion upon mutation is an indicator of phenotypic features that
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Figure 10: Factorization and Character. A: An illustration of the product

assigned to an RNA shape.

B: The figure shows the series of shape changes as the temperature is increased

from 0◦C to 100◦C for two sequences sharing the same shape at 37◦C. The shape

features of the first sequence are highly stable and react independently to changing

temperature. This correlates with a high mutational stability of these features.

Phenotypic changes upon mutation remain localized to a particular feature and

are continuous in the sense of the accessibility pretopology of section 2.2. The

same shape features are only marginally stable for the second sequence and melt

in a highly interdependent fashion. Mutations easily destroy these features. For

more details see (Ancel and Fontana, 2000).
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are sufficiently stabilized to warrant the label of characters. The framework
proposed here would be right on target, if it turns out that the factoriza-
tion condition (derived below) is in general not satisfied globally, but only
in those regions of genotype space where the genotype-phenotype map is lo-
cally continuous (which are the regions associated with stable characters).
The assessment of this possibility in the RNA case requires a computational
analysis that constitutes a topic for future research.

Factorizability Theorem – formal treatment

Lemma 2. Suppose (X,N ) is factorizable. Then there are two partitions
P1 and P2 of X satisfying

(i) For each P1 ∈ P1 and each P2 ∈ P2 there is a unique x ∈ X such that
P1 ∩ P2 = {x}.

(ii) P1 and P2 are non-trivial, i.e., they are neither the universal partition
{X} nor the identity partition

{

{x}
∣

∣x ∈ X
}

.

Proof. (i) Consider the isomorphism φ : (X,N ) → (X1,N1) × (X2,N2) and
write φi = pri ◦ φ, i = 1, 2. Then

Pi =
{

φ−1
i (xi)

∣

∣xi ∈ Xi

}

(24)

is a partition of X for i = 1, 2. Given xi ∈ Xi, i = 1, 2, there is a unique
x ∈ X such that φ1(x) = x1 and φ2(x) = x2 since φ is invertible. In other
words, there is a unique x ∈ φ−1

1 (x1) ∩ φ
−1
2 (x2), and (i) follows.

(ii) First we show that (i) implies that if one partition is universal then
the other one is the equality partition: Suppose P1 = {X} is the universal
partition. Then (i) implies P1∩P2 = X∩P2 = P2 = {x} for some x ∈ X, i.e.,
P2 is the equality partition. If P1 is the equality partition then P1 ∩ P2 =
{x} ∩ P2 = {x} for some x ∈ X and all P2 ∈ P2, hence P2 = X and P2 is
the universal partition. If one of the partitions is trivial one of them, say P1,
is therefore the universal partition, and thus φ−1

1 (x1) = X for all x1. Since φ
is invertible this implies that X1 consists of a single point, i.e., the product
is trivial.
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A pair of partitions satisfying (i) in lemma 2 is called orthogonally comple-
mentary (Wagner and Laubichler, 2000). For more general notions of orthog-
onality among partitions we refer to (Bailey, 1996). Cast in this language,
lemma 2 states:

If (X,N ) is factorizable then there is a pair of non-trivial orthogonally com-
plementary partitions of X.

Next, we introduce some more notation. Let (X,N ) be a pretological space,
and let P be a partition of X. For each x ∈ X we denote the (equivalence)
class to which x belongs with [x]. It is customary to write X/P = {[x]|x ∈
X}. Moreover, for a set M ⊆ X we write [M ] = {[x]|x ∈ M}. Associated
with P is the canonical map

χP : X → X/P, x 7→ [x] (25)

which induces the quotient pretopology on X/P with neighborhood systems

NP[x] = {[N ]|N ∈ N (x)} (26)

This is the finest pretopology on X/P such that the canonical map χP is
continuous (Fischer, 1959; Kent, 1969).

Lemma 3. If (X,N ) is factorizable then there is a pair of orthogonally com-
plementary partitions P1 and P2 and pretopologies N ψ

1 and N ψ
2 such that

(X,N ) ' (X/P1,N
ψ
1 ) × (X/P2,N

ψ
2 ) (27)

Proof. Assuming factorizability and using the notation of lemma 2 we see
that there is a one-to-one correspondence between the elements xi ∈ Xi and
the equivalence classes φ−1

i (xi) ∈ Pi because φ is invertible. That is, the
function

ψi : Xi → X/Pi, xi 7→ φ−1
i (xi)

is invertible. Defining the pretopology on X/Pi by N ψ
i (ψi(xi)) = ψi(Ni(xi))

implies that ψi is an isomorphism, i.e., (Xi,Ni) ' (X/Pi,N
ψ
i ) for i = 1, 2,

and the lemma follows since the products of these two factor spaces are, of
course, also isomorphic.
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By construction, the composition ψi ◦ φi maps a point x ∈ X onto its equiv-
alence class φ−1

i (φi(x)) = [x]i, that is, ψi ◦ φi = χPi
. In order for χPi

to
be a projector of an isomorphism it must be continuous by (Fischer, 1959,
Theorem 13). Hence the pretopologies N ψ

i must be coarser than the quotient
pretopologies, N ψ

i ⊆ NPi
, i = 1, 2, since the quotient pretopologies are the

finest ones for which the characteristic maps χPi
are continuous.

Lemma 3 shows that we can restrict ourselves to quotient maps and suitable
pretopologies on the sets X/Pi. It appears natural to choose a pair of or-
thogonally complementary partitions P1 and P2 of X and to consider the
pretopological product space

(X/P1 ×X/P2,NP1×P2
) = (X/P1,NP1

) × (X/P2,NP2
). (28)

The map

ξ : (X,N ) → (X/P1 ×X/P2,NP1×P2
),

x 7→ ([x]P1
, [x]P2

) = (χP1
(x), χP2

(x))
(29)

is invertible if and only if P1 and P2 on X are orthogonal complements.
What we need to derive is when ξ is an isomorphism. As a first step we
need a more convenient characterization of the pretopological structure of
the product space.

Lemma 4. The set

[[N (x)]] = {[M ]P1
× [M ]P2

|M ∈ N (x)} (30)

is a filter basis of the neighborhood system NP1×P2
([x]1, [x]2).

Proof. Let N ∈ NP1×P2
(α, β) with α∩β = {x}. By definition of the product

pretopology, there is N1 ∈ NP1
(α) and N2 ∈ NP2

(β) such that N1×N2 ⊆ N .
Since NP1

(α) and NP2
(β) are, by definition, filter bases of the neighborhood

filters in the quotient spaces, there exist sets M1,M2 ∈ N (x) such that
[M1]P1

⊆ N1 and [M2]P2
⊆ N2, respectively. From the filter axioms we have

M = M1 ∩M2 ∈ N (x) and hence [M ]P1
∈ NP1

(α) and [M ]P2
∈ NP2

(β),
and finally [M ]P1

× [M ]P2
∈ NP1×P2

(α, β). On the other hand we have

[M ]P1
× [M ]P2

⊆ [M1]P1
× [M2]P2

⊆ N1 ×N2 ⊆ N ∈ NP1×P2
(α, β)

[[N (x)]] is, therefore, a filter basis of the product space.
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Let us now consider the inverse map ξ−1:

ξ−1 : (X/P1 ×X/P2,NP1×P2
) → X. (31)

Define the pretopology N ∗ on X as the final pretopology generated by ξ−1.
By definition, the neighborhood filters N ∗(x) have filter bases consisting of
the sets

M∗ = ξ−1([M ]P1
× [M ]P2

)

=
{

y ∈ X
∣

∣∃α ∈ [M ]P1
, ∃β ∈ [M ]P2

, and [α]P1
∩ [β]P2

= {y}
} (32)

for each M ∈ N (x).

In sum, we first constructed the product space (28) from orthogonal comple-
ment partitions on X, and then returned from the product space back to X
via ξ−1. Now, observe that

Lemma 5. (X/P1 ×X/P2,NP1×P2
) ' (X,N ∗).

Proof. We already know that ξ−1 : X/P1×X/P2 → X is invertible. Hence it
remains to show that ξ = (ξ−1)−1 is continuous as map from (X,N ∗) into the
product space (X/P1 ×X/P2,NP1×P2

). This follows immediately, however,
since the image of the neighborhood basis {M ∗|M ∈ N (x)} under ξ is just
{ξ(M∗) = ([M ]P1

, [M ]P2
)|M ∈ N (x)} = [[N (x)]], the neighborhood basis of

the product space described in lemma 4.

The purpose of this exercise was to characterize the relationship between the
product space (28), or more precisely, the isomorphic pretopological space
(X,N ∗), and the original space (X,N ). Note that ξ is an isomorphism if
and only if N ∗ = N . Of course this is not always the case. We show
below, however, that the product space always has a coarser pretopology
than (X,N ). Formally,

Lemma 6. N ∗(x) ⊆ N (x).

Proof. There are two independent arguments to see this. (i) We can of course
write M ∈ N (x) in the form

M = {y ∈ X|[y]P1
∈ [M ]P1

and [y]P2
∈ [M ]P2

}
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Comparison with equation (32) shows M ⊆ M ∗, hence N (x) contains the
filter basis {M∗|M ∈ N (x)} and the lemma follows. The second proof is even
simpler: We simply note that ξ : (X,N ) → (X/P1 × X/P2,NP1×P2

) and
ξ−1 : (X/P1 × X/P2,NP1×P2

) → (X,N ∗) are continuous by construction.
Hence ξ−1 ◦ ξ = id : (X,N ) → (X,N ∗) is also continuous, implying the the
pretopology N ∗ is coarser than the pretopology N on X.

This result can be obtained in the even more general context of convergence
space Carstens and Kent (1969). We next seek conditions under which the
neighborhood structure is preserved in the construction of the product space:

Lemma 7. The following statements are equivalent

(i) (X,N ) ' (X/P1 ×X/P2,NP1×P2
).

(ii) (X,N ) ' (X,N ∗).

(iii) N (x) = N ∗(x) for all x ∈ X.

(iv) For each x ∈ X and each neighborhood N ∈ N (x) there is an M ∈
N (x) such that

[M ]P1
× [M ]P2

⊆ {([y]P1
, [y]P2

)|y ∈ N} . (33)

Proof. (i⇔ii) follows from the transitivity of the isomorphy relation '. (ii⇔
iii) is the fact that the identity (X,N ) → (X,N ∗) is continuous in both
directions if and only if the pretopologies coincide. Condition (iv), finally, is
the set-wise rewriting of the conditions N (x) ⊆ N ∗(x), which together with
lemma 6 implies (ii).

Condition (iv) could be called the rectangle condition, since it requires that
every neighborhood of N (x) contains the direct product M1 ×M2 of neigh-
borhoods (a “rectangular” neighborhood) from the two quotient spaces.

We are now in the position to state the main technical result of this section:

Theorem 1. A pretopological space (X,N ) is factorizable if and only if there
is a pair of non-trivial orthogonally complementary partitions that satisfy the
rectangle condition (33).
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Proof. It follows immediately from lemma 7 that the condition is sufficient.
Necessity follows from lemma 2, lemma 3, and the fact that we can rule out
pretopologies on (X/Pi) that are strictly coarser than the quotient pretopolo-
gies as canditates for factorizability: Their product N ψ

1 ×N ψ
2 is then strictly

coarser than N ∗ and therefore always strictly coarser than N , contradicting
that ξ is an isomorphism.

So far we have considered the factorization of the entire phenotype space.
This appears to be too demanding a structure, as it would imply that the
definition of a particular character is applicable to all phenotypes. A stan-
dard approach to turn global concepts into local12 ones leads to the following

Definition. The pretopological space (X,N ) is locally factorizable in x ∈ X
provided for each neighborhood N ′ ∈ N (x) there is a neighborhood N ⊆ N ′

such that the restriction (N,NN) is factorizable.

The trace pretopology NN is defined by NN(y) = {N ′ ∩ N |N ′ ∈ N (y)}
for each y ∈ N . A finite pretopological space is locally factorizable in x
if and only if the subgraph induced by the vicinity N(x) has a non-trivial
prime-factor decomposition.

8 Discussion

The products of evolution are shaped by both the dynamics of selection in
populations and the attainability of variants that selection can act upon. The
mechanisms underlying the construction of phenotype from genotype consti-
tute an important source of innovation. This source, however, is biased.
Even if mutational mechanisms generate genetic variation at random, the
phenotypic consequences need not be random, for they depend on the genetic
context in which a mutation is expressed. Underlying this bias is ultimately a
genotype-phenotype relation that is strongly many-to-one, thereby inducing
a non-trivial relationship of mutational accessibility among phenotypes. In
section 2.2 we illustrated this issue with the folding of RNA sequences (stand-
ing for genotypes) into secondary structures (standing for phenotypes). Seen

12This notion of locality is to be distinguished from the one intended in the final para-
graph of the informal narrative. There, we meant a factorization of phenotype space as
induced by the genotype-phenotype map in a restricted region of genotpe space.
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from the angle of mutational accessibility, the set of possible (RNA) pheno-
types lacks a metric and exhibits an unfamiliar topological structure. Yet,
this weak topology naturally generates the classic patterns of phenotypic
evolution, such as punctuation and irreversibility and neatly expresses “de-
velopmental constraints” (represented by folding constraints). This contrasts
with the practice of population genetics and evolutionary population biology
in which a highly structured and symmetric space of phenotypes is assumed
to begin with. The symmetry assumption forces the Neo-Darwinian model
to account for the patterns of phenotypic evolution in terms of fitness land-
scapes that are crafted ex post to break those underlying symmetries. The
present contribution offers a framework for extending the discussion about
the causes of phenotypic evolution from fitness considerations alone to in-
clude the genotype-phenotype map.

Previous work on RNA shape space forces us to abandon vector spaces in
exchange for less intuitive structures based on a neighborhood concept that
is not derived from a notion of distance. We are not saying that one couldn’t
organize phenotypes in any space one wishes, for example, a space based on
a measure of morphological similarity. What we are saying is that such a
space need not (and in RNA would not) be of help in understanding pat-
terns of phenotypic evolution, for it does not reflect the distinct capacities of
phenotypes to vary under a given genotype-phenotype map.

The appropriate formal structure for RNA shape space is a pretopology, a
structure that is weaker than a topology; its neighborhoods are, in general,
not related to open sets. In section 4 we review this notion along with the
necessary technical accessories for connecting pretopological neighborhoods
with continuity. While this material is well known to topologists, the original
literature may not be easily accessible to a theoretical biologist. The section
contains hints of original material when connecting finite (pre)topological
structures with graphs.

In section 5 we apply these concepts to describe the finest and coarsest acces-
sibility pretopologies that result if we require that the genotype-phenotype
map be everywhere continuous. In practice, accessibility is not a yes/no at-
tribute but rather a continuous likelihood (Fontana and Schuster, 1998b),
equation (1). It is turned into a binary attribute by choosing a likelihood
threshold below which one phenotype is regarded as not accessible from an-
other. This leads to a range of pretopologies with various degrees of discon-
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tinuity. The appropriate choice of threshold will depend on the distribution
of likelihoods (which, in turn, will depend on the mutation rate) and the
population size. Once phenotypes are equipped with a pretopological struc-
ture, continuity for evolutionary trajectories can be defined (section 6). Since
the fate of a phenotype in a population is constrained by selection, a locally
highly discontinuous map can nevertheless give rise to locally continuous
evolutionary trajectories (Fontana and Schuster, 1998a,b). The accessibility
topology may be such that no continuous path exists between two particu-
lar phenotypes. The dynamical signature of such irreducibly discontinuous
transitions is punctuation - long periods of phenotypic stasis with underly-
ing drift in genotype space until a genetic context arises that enables the
transition to occur in response to a small mutation. By their very nature,
phenotypic accessibility topologies depend on the definition of continuous
genetic change, that is, on what constitutes a likely mutation. In our RNA
examples we have always assumed accessibility to be relative to a single point
mutation. We should emphasize, however, that nothing conceptual hinges
on that assumption.

Given a phenotypic accessibility topology, we may ask whether it sustains a
notion akin to “dimension” that can be related to the notion of “character”
or “module”. We explored this issue in section 7 as the factorizability of
pretopologies into product spaces. This led us to define characters in terms
of structural independence which is related to Lewontin’s notion of quasi-
independence (Lewontin, 1978). The notion of units as independent entities
is always relative to a process with respect to which this independence is
expressed, such as natural selection (Kim and Kim, 2001; Wagner et al.,
2000) or the covariation of mutational effects (Lande, 1980; Houle, 2001).
Structural independence is independence with respect to accessibility and
thus expresses the most primitive notion of independence. Factorizability
of a topology asserts the existence of phenotypic units that can be varied
independently (that is, they do not impose constraints of accessibility on
each other), it does not imply that they always have to vary independently
under natural selection. The main result of section 7 is a factorizability con-
dition such that the product space remains isomorphic to the original, non-
factorized accessibility topology. This condition may not be satisfied globally.
In fact, our experience with the RNA map leads us to conjecture that the
factorizability condition is satisfied only in special regions of genotype space
- those, that is, in which the genotype-phenotype map is locally continuous.



Stadler2, Wagner, Fontana: Topology of the Possible 53

Equivalently, regions of genotype space with discontinuous phenotypic tran-
sitions cannot be factorized, which fits the intuition that innovation, that is,
a sudden change in phenotype, requires the loss of character identity. We
have not carried out the substantial computations required to corroborate
this conjecture in RNA, but circumstantial evidence is presented in (Ancel
and Fontana, 2000). If factorization is local, then different factorizations may
exist in different parts of genotype space.

Throughout this contribution the genotype-phenotype map was fixed, but
evolution is to a good extent about the modification of this very map. Thus,
one should expect the evolution of phenotype topology itself, but we have at
present little intuition about the evolutionary consequences of different kinds
of topologies.

The topological framework presented here has direct consequences for the
developmental explanation of major evolutionary transitions. Two kinds of
such transitions can be distinguished. One refers to the integration of lower
level replicators into higher level replicators, like the transition from single-
celled organisms to multicellular forms (Buss, 1987; Maynard-Smith and Eörs
Szathmáry, 1995; Michod, 1999). The other refers to the evolution of major
multicellular body plans, as they originate from the differentiation of cell
colonies, or the origin of new body parts (Müller and Wagner, 1991; Raff,
1996). The present discussion addresses the second kind of transition.

The origination of body parts or body plans is a rare evolutionary event and
constitutes a plausible instance of a discontinuous transition in the sense of
the present paper. From a topological point of view, a transition from an
ancestral character to a derived one is discontinuous (rare) if the neutral
network of the former is adjacent to the neutral network of the latter in only
a small fraction of its boundary, that is, if many genotypic states are able to
realize the ancestral state, but only a small fraction of them are poised to
generate the derived phenotype. This implies that the actual transition to
the derived phenotype happened in a genotypic state that is unlikely to be
realized in any extant species. This has direct implications for our ability to
experimentally dissect the molecular mechanisms underlying morphological
innovations.

A major goal of evolutionary developmental biology is to understand how
changes in the genetic regulation of development gave rise to new morpho-
logical characters and body plans (Hall, 1998; Raff, 1996; Wagner et al.,
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2000). There is considerable progress in identifying key molecular differences
underlying morphological innovations, like the origin of butterfly eye spot
patterns (Keys et al., 1999) or the origin of flower organs (Kramer and Irish,
1999), but the number of examples is small. The most stringent experimen-
tal test for a molecular explanation of a morphological innovation would be
the induction of the derived character in a species representing the ancestral
phenotype by genetic manipulation. If, however, the topological explanation
of rare evolutionary transitions is correct, this test cannot be done, since the
right genetic constellation poised for the transition is extremely unlikely to
exist in any extant species bearing the ancestral phenotype. Moreover, a
genetic manipulation intended to mimic the molecular mechanism that his-
torically led to the derived phenotype is likely to have different effects in
different genetic backgrounds. That is, a molecular developmental mecha-
nism that can give rise to an innovation should not be expected to cause the
derived phenotype in every genotype representing the ancestral phenotype.

A further mechanistic consequence of the topological interpretation of major
evolutionary transitions is that natural selection does not provide a complete
explanation for their occurrence. Natural selection is a sufficient explana-
tion for the outcome of an evolutionary process if the genetic variation con-
tributing to the derived phenotype is easily accessible. Whether a transition
happens, then only depends (to a first approximation) on the strength and
direction of selection. If major transitions, however, require specially poised
genotypic/developmental realizations of the ancestral phenotype, then the
transition critically depends on factors not under the control of selection,
since different genetic realizations of the same ancestral phenotype lie on a
neutral network and are not distinguishable by selection on phenotypes.

Pretopological concepts might find an empirical application in connection
with the morphospace concept. A morphospace is a topological arrange-
ment of morphological phenotypes intended to reflect a spectrum of possible
phenotypic states generated by a geometric, morphogenetic, combinatorial,
statistical, or conceptual model (Raup and Michelson, 1965; Raup, 1966;
McGhee, 1999; Eble, 2000). Although the classical notion of morphospace
does not require nearness between phenotypes to reflect genetic accessibility,
the importance of the latter for analyzing evolutionary dynamics has been
acknowledged (Eble, 2000). A pretopological neighborhood system can be
constructed from a so-called sub-basis, that is, a set of accessibility relations
that do not necessarily fulfill all the axioms of a neighborhood system. A
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sample of possible relationships of genetic accessibility among phenotypes
could be obtained from a phylogenetic reconstruction of character transfor-
mations (Donoghue, 1989), or from morphometric, phenetic and develop-
mental considerations. Of course, the observed transformations will rarely,
if ever, reflect all possible phenotypic transformations and hence provide at
most a sub-basis for the construction of a pretopological morphospace. From
a sub-basis, a neighborhood system can be constructed by adding those sets
that are implied by (N2) and (N3), section 4.3. In other words, one adds all
the intersections among sets in the sub-basis, as well as all their supersets.
This leads to a pretopology that embeds the given relationships specified by
the sub-basis. This embedding process can be used to construct the coarsest
(local) pretopology consistent with the empirical data on accessibility. It
does not presuppose a metric, but it does not exclude one either.
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Appendix

1 Pretopological Spaces

1.1 Preuniformization

This lemma states that every pretopological space has a preuniformization.

Lemma 8. The neighborhood structure NUN
induced by the preuniformiza-

tion UN of N coincides with N .
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Proof. Since U ′ = {(x, y)|x ∈ X, y ∈ Nx} ∈ UN for any choice Nx ∈ N (x), we
obtain every neighborhood Nx in the form Nx = {(x, y)|y ∈ Nx}[x] = U ′[x].
By construction, each set U ∈ UN is a superset of a U ′, hence U [x] is a
superset of some Nx ∈ N (x), and therefore a neighborhood of x.

A more abstract treatment of the relationships between pretopological spaces
and various types of uniform structures can be found in (Weil, 1937; Cook
and Fischer, 1967; Biesterfeldt, 1968; Kent, 1968; Keller, 1968; Wyler, 1974;
Preuß, 1995). In particular, the above lemma 8 is Theorem 8 by Biesterfeldt
(1968).

1.2 Condition (UB) and open sets

We rephrase (UB), section (4.5), by projecting down to neighborhoods (the
pretopology induced by U) according to (3): For each U [x] ∈ U [x] (= N (x))
there is a V [x] ∈ U [x] such that (V ◦ V )[x] ⊆ U [x]. The definition of con-
catenation (5) implies that V ⊆ V ◦ V and hence V [x] ⊆ (V ◦ V )[x] ⊆ U [x].
More explicitly:

(V ◦ V )[x] = {y|∃z ∈ V [x] and y ∈ V [z]} =
⋃

z∈V [x]

V [z] (34)

Write N = U [x], N ′ = V [x], N ′′ = (V ◦ V )[x]. By (34) N ′′ is the union of
neighborhoods of the elements in N ′. Since N ′′ contains a neighborhood of
each y ∈ N ′, it constitutes by (N3) a neighborhood for each y ∈ N ′, that is,
N ′′ ∈ N (y). We also have N ′′ ⊆ N , hence N ∈ N (y) for all y ∈ N ′. Thus,
(UB) has the following implication for neighborhoods:

(N4) For each N ∈ N (x) there is a N ′ ∈ N (x) such that N ∈ N (y) for all
y ∈ N ′.

Further material on the relation between (quasi-)uniformities and neighbor-
hood axioms can be found in (Pervin, 1962b,a).
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1.3 Preuniformities and continuity

Let f : X → Y and U ⊂ X ×X. With the notation

(f × f)(U) = {(f(x), f(y))|(x, y) ∈ U} (35)

we define uniform continuity in the following way:

Definition. Let f : (X,U) → (Y,V), where U and V are pre-uniformities
on X and Y , respectively. Then f is uniformly continuous if

∀V ∈ V : ∃U ∈ U : (f × f)(U) ⊆ V (36)

Theorem 2. If f : (X,U) → (Y,V) is uniformly continuous, then
f : (X,NU) → (Y,MV) is continuous with respect to the induced pretopologies
on X and Y .

Proof. Recall that Nx ∈ NU(x) if and only if there is U ∈ U such that
U [x] ⊆ Nx. Thus f is continuous with respect to NU and MV , if for each
V ∈ V there is a U ∈ U such that f(U [x]) ⊂ V [f(x)]. Assume that f is
uniformly continuous, that is, for each V ∈ V there is a U ∈ U such that
(f × f)(U) ⊆ V . Hence

(f × f)(U)[f(x)] = {(f(x), f(y))|(x, y) ∈ U}[f(x)] = {f(y)|(x, y) ∈ U}

= {f(y)|y ∈ U [x]} = f(U [x]) ⊆ V [f(x)],

and the theorem follows.

1.4 The equivalence of axioms (R0) and (S’)

Theorem 3. If (X,N ) is a pretopological space then

(R0) x ∈ {y} implies y ∈ {x} for all x, y ∈ X.

(S’) x ∈
⋂

N (y) implies y ∈
⋂

N (x).

are equivalent
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Proof. We first observe

{y} =
{

z
∣

∣∀N ∈ N (z) : {y} ∩N 6= ∅
}

=
{

z
∣

∣∀N ∈ N (z) : y ∈ N
}

=
{

z
∣

∣y ∈
⋂

N (z)
}

.

Therefore, x ∈ {y} is equivalent to y ∈
⋂

N (x), and the theorem follows
immediately.

1.5 Axiom systems for pretopological spaces

Pretopological spaces can be defined in a variety of seemingly unrelated, yet
equivalent, ways. In the main text we have focussed on neighborhood as the
basic concept. The neighborhood operator N assigns the collection N (x) ⊆
P(X) to each point x ∈ X. Alternative constructions make use of Closure,
Interior, and Boundary operators which assign to each set A ⊂ X its closure
A, its interior A◦, and its boundary ∂A, respectively. These operators are
related with one another in a fairly simple way, summarized in the following
table:

neighborhood closure interior boundary

N (x) = {A|x /∈ X \ A} = {A|x ∈ A◦} = {A|x ∈ A \ ∂A}

A = {x|∀N ∈ N (x) : A ∩ N 6= ∅} = X \ (X \ A)◦ = A ∪ ∂A

A◦ = {x|∃N ∈ N (x) : N ⊆ A} = X \ X \ A = A \ ∂A

∂A = {x|∀N ∈ N (x) : = A ∩ X \ A = X \ (A◦ ∪ (X \ A)◦)
A ∩ N 6= ∅, (X \ A) ∩ N 6= ∅}

Table 1: Alternatives to neighborhood.

The Closure, Interior and Boundary constructions can be used to uniquely
specify a pretopological space if and only if the axioms (1)-(3) in Table 2
are satisfied. In each case the fourth axiom (T) is a necessary and sufficient
condition for the pretopology to be a topology.

1.6 Intersection and union of filters

Filters are sets that can be intersected and united in the usual way. Because
of the filter axiom (F3) the intersection of two filters can be expressed as
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neighborhoods closure interior boundary

1 ∀N ∈ N (x) : x ∈ N ∅ = ∅ ∅◦ = ∅ ∂∅ = ∅

2 N ∈ N (x), N ⊂ N′ =⇒ N′ ∈ N (x) A ⊆ A A◦ ⊂ A ∂A = ∂(X \ A)

3 N, N′ ∈ N (x) =⇒ N ∩ N′ ∈ N (x) A ∪ B = A ∪ B (A ∩ B)◦ = A◦ ∩ B◦ A ∩ B ∩ ∂(A ∩ B) =
A ∩ B ∩ (∂A ∪ ∂B)

T N ∈ N (x) =⇒ ∃N′ ∈ N (x) : A = A (A◦)◦ = A◦ ∂∂A ⊆ ∂A
∀y ∈ N′ : ∃Ny ∈ N (y) : Ny ⊆ N

Table 2: Axiom systems for neighborhood alternatives.

the union of their elements. The union of two filters, however, is not the
intersection of their elements - it is in general, not even a filter. Yet, the
intersection of the elements of two filters does form a filter which we denote
by F ∨ G (6= F ∪ G). The following should help in making this clear.

Let F and G be filters.

Lemma 9. F ∩ G = {F ∪G|F ∈ F , G ∈ G}

Proof. (i) F ∪ G ∈ F ∩ G, because F ∈ F implies F ∪G ∈ F (since F ∪ G
is a superset of F ) and similarly G ∈ G implies G ∪ F ∈ G.

(ii) If H ∈ F ∩ G then H ∈ F and H ∈ G. Thus H can trivially be written
in the form H = F ∪G with F = H ∈ F and G = H ∈ G.

Let us write F ∨ G for the object obtained from intersecting the elements of
F and G,

F ∨ G := {F ∩G|F ∈ F , G ∈ G},

provided the intersections F ∩ G are nonempty for all F ∈ F and G ∈ G.
Otherwise F ∨ G = ∅ and we call F and G disjoint.

Observe that F ∩G ⊆ F,G implies F,G ∈ F ∨ G for all F ∈ F and G ∈ G,
provided F and G are not disjoint. Thus F ∪ G ⊆ F ∨ G.

However, since nothing ensures that the intersection F ∩ G of some F ∈ F
and G ∈ G is an element of F or G, F ∪ G is typically not a filter. F ∨ G is
the coarsest filter that is finer than both F and G, because if there was an
F ∈ F and a G ∈ G such that F ∩ G /∈ F ∨ G the intersection axiom (F2)
for filters would be violated.
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H. R. Fischer. Limesräume. Math. Annalen, 137:269–303, 1959.

W. Fontana and P. Schuster. Continuity in Evolution: On the Nature of
Transitions. Science, 280:1451–1455, 1998a.

W. Fontana and P. Schuster. Shaping Space: The Possible and the Attain-
able in RNA Genotype-Phenotype Mapping. J. Theor. Biol., 194:491–515,
1998b.

A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, and J. Postlethwait.
Preservation of duplicate genes by complementary, degenerative mutations.
Genetics, 151:1531–1545, 1999.

D. J. Futuyma. Evolutionary Biology. Sinauer Associates, Sunderalnd, Mas-
sachusetts, 1998.

S. A. Gaal. Point Set Topology. Academic Press, New York, 1964.

F. Galis. Key innovations and radiations. In G. P. Wagner, editor, The Char-
acter Concept in Evolutionary Biology, pages 581–605. Academic Press,
San Diego, 2001.

P. Gitchoff and G. P. Wagner. Recombination induced hypergraphs: a new
approach to mutation-recombination isomorphism. Complexity, 2:37–43,
1996.



Stadler2, Wagner, Fontana: Topology of the Possible 62

H. Grandel and S. Schulte-Merker. The development of the paired fins in
zebrafish (danio rerio). Mechanims of Development, 79:99–120, 1998.

D. Graur and W.-H. Li. Fundamentals of Molecular Evolution. Sinauer
Associates, Sunderland, Massachusetts, 2000.
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N. Šanin. On separation in topological space. Dok. Akad. Nauk SSSR, 38:
110–113, 1943.

C. D. Schlichting and M. Pigliucci. Phenotypic Evolution: A Reaction Norm
Perspective. Sinauer Associates, Inc., Sunderland, Massachusetts, 1998.

P. Schuster. Landscapes and molecular evolution. Physica D, 107:351–365,
1997.

P. Schuster, W. Fontana, P. F. Stadler, and I. Hofacker. From sequences to
shapes and back: A case study in RNA secondary structures. Proc. Roy.
Soc. (London) B, 255:279–284, 1994.

K. Schwenk. A utilitarian approach to evolutionary constraint. Zoology, 98:
251–262, 1995.

M. Shpak and G. P. Wagner. Asymmetry of configuration space induced by
unequal crossover: implications for a mathematical theory of evolutionary
innovation. Artificial Life, 6:25–43, 2000.

N. Shubin and P. Alberch. A morphogenetic approach to the origin and basic
organization of the tetrapod limb. Evol. Biol., 20:319–387, 1986.

P. F. Stadler, R. Seitz, and G. P. Wagner. Population dependent fourier
decomposition of fitness landscapes over recombination spaces: evolvability
of complex characters. Bull. Math. Biol., 62:399–428, 2000.



Stadler2, Wagner, Fontana: Topology of the Possible 66

P. F. Stadler and G. P. Wagner. The algebraic theory of recombination
spaces. Evol. Computation, 5:241–275, 1998.

D. H. Turner, N. Sugimoto, and S. Freier. RNA structure prediction. Annual
Review of Biophysics and Biophysical Chemistry, 17:167–192, 1988.

G. P. Wagner. The biological homology concept. Ann. Rev. Ecol. Syst., 20:
51–69, 1989a.

G. P. Wagner. The variance allocation hypothesis of stasis and punctuation.
In P. Hoyningen-Huene and F. M. Wuketits, editors, Molecular Biology
and Organisms, pages 161–185. Reidel, Boston, 1989b.

G. P. Wagner. Homology and the mechanisms of development. In B. K. Hall,
editor, Homology: The Hierarchical Basis of Comparative Biology, pages
273–299. Academic Press, San Diego, California, 1994.

G. P. Wagner. A research programme for testing the biological homology
concept. In G. R. Bock and G. Cardew, editors, Homology, pages 125–134.
John Wiley, New York, New York, 1999.

G. P. Wagner and L. Altenberg. Complex adaptations and the evolution of
evolvability. Evolution, 50:967–976, 1996.

G. P. Wagner, C.-H. Chiu, and M. D. Laubichler. Developmental evolution
as a mechanistic science: the inference from developmental mechanisms to
evolutionary processes. Am. Zool., 40:108–120, 2000.

G. P. Wagner and M. D. Laubichler. Character indentification in evolutionary
biology: The role of the organism. Theory Biosci., 119:20–40, 2000.

J. B. Walsh. How often do duplicated genes evolve new functions? Genetics,
139:421 – 428, 1995.

A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Muller, D. H. Mathews,
and M. Zuker. Coaxial stacking of helices enhances binding of oligoribonu-
cleotides and improves prediction of RNA folding. Proc. Natl. Acad. Sci.,
91:9218 – 9222, 1994.

M. S. Waterman. Secondary structure of single - stranded nucleic acids.
Studies on foundations and combinatorics, Advances in mathematics sup-
plementary studies, Academic Press N.Y., 1:167 – 212, 1978.



Stadler2, Wagner, Fontana: Topology of the Possible 67
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