Lecture: Comparative Genomics

Lecturer: Dr. Stephan Steigele

Bioinf, University of Leipzig

Leipzig WS07/08

Part I Outline

-what is Comparative Genomics?

what is Comparative Genomics?

lets start with THE examples

Initial sequencing and analysis of the human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

-what is Comparative Genomics?

what is Comparative Genomics?

• There appear to be about 30,000–40,000 protein-coding genes in the human genome—only about twice as many as in worm or fly. However, the genes are more complex, with more alternative splicing generating a larger number of protein products.

• The full set of proteins (the 'proteome') encoded by the human genome is more complex than those of invertebrates. This is due in part to the presence of vertebrate-specific protein domains and motifs (an estimated 7% of the total), but more to the fact that vertebrates appear to have arranged pre-existing components into a richer collection of domain architectures.

• Hundreds of human genes appear likely to have resulted from horizontal transfer from bacteria at some point in the vertebrate lineage. Dozens of genes appear to have been derived from transposable elements.

• Although about half of the human genome derives from transposable elements, there has been a marked decline in the overall activity of such elements in the hominid lineage. DNA transposons appear to have become completely inactive and long-terminal repeat (LTR) retroposons may also have done so.

• The pericentromeric and subtelomeric regions of chromosomes are filled with large recent segmental duplications of sequence from

elsewhere in the genome. Segmental duplication is much more

- Contributions

selected slides were inspired/taken from many people:

- Ann-Charlotte Berglund Sonnhammer
- Benny Chor
- Lawrence Hunter
- Mathieu Blanchette
- Kay Nieselt
- Daniel Huson

Comparative Gene Prediction

Gene A sequence of nucleotides coding for protein

Gene Prediction Problem

Determine the beginning and end positions of genes in a genome

a piece of DNA

- Comparative Gene Prediction

Annotation of Genomic Sequence

Given the sequence of a genome, we would like to be able to identify:

- Genes
- Exon boundaries & splice sites
- Beginning and end of translation
- Alternative splicings
- Regulatory elements (e.g. promoters)

Computational methods can

- Achieve moderate accuracy quickly and cheaply
- Help direct experimental approaches.

- Comparative Gene Prediction

Gene prediction : Three Approaches

- Statistical or *ab initio* methods. These methods attempt to predict genes based on statistical properties of the given DNA sequence. Programs are e.g. *Genscan, GeneID, GENIE* and *FGENEH*
- Homology methods. The given DNA sequence is compared with known protein structures, e.g. using "spliced alignments". Programs are e.g. *Procrustes and GeneWise*
- Comparative methods. The given DNA string is compared with a similar DNA string from a different species at the appropriate evolutionary distance and genes are predicted in both sequences based on the assumption that exons will be well conserved, whereas introns will not. Programs are e.g. CEM (conserved exon method) and Twinscan

- Comparative Gene Prediction

-ORF Lengths

A simple measure: ORF length Comparison of Annotation and Spurious ORFs in S. cerevisiae

- Comparative Gene Prediction

- Codon Bias

Gene prediction : Codon bias

- Synonymous codons depict the same Amino-acids (degenerative genetic code)
- For each species, the use of one of the codon for a similar AA will be vary based on the relative abundance of the corresponding tRNA. (Codon bias).
- This is true only for Coding regions. In non coding regions the appearance of a codon will appear randomly.

Com	parative	Genomi	ics
-----	----------	--------	-----

-Procaryotic

Gene Prediction in Procaryotes

- Most bacterial promoters contain the Shine-Delgarno signal, at about -10 that has the consensus sequence: 5'-TATAAT-3'.
- The terminator: a signal at the end of the coding sequence that terminates the transcription of RNA
- The coding sequence is composed of nucleotide triplets. Each triplet codes for an amino acid. The AAs are the building blocks of proteins.

- Procaryotic

Gene Prediction in Procaryotes is rather easy

Every 21 nucleotide $\left(\frac{64}{3}\right)$ is a stop

The coding region of all protein-coding genes starts with a START codon and ends with a STOP codon. So called ORFs (Open Reading Frames) can be searched in the genome sequence. Valid only for prokaryots or lower eukaryots (few or

Figure 8.1. ORF map of a portion of the *E. coli lac* operon using the DNA STRIDER program (Marck 1988). Shown are AUG and termination codons as one-half and full vertical bars, respectively, in all six possible reading frames. The *lacZ* gene is visible as an ORF that runs from positions 1284 to 4355 in frame 3.

no introns).

- Comparative Gene Prediction

- Procaryotic

ORF prediction combined with Ribosomal Binding Site makes *Glimmer*

- Comparative Gene Prediction

- Eucaryotic

But whats with Eucaryotic Genes ?

the p53 tumor supressor gene

This particular gene lies on the reverse strand.

- Comparative Gene Prediction

- Eucaryotic

Many Signals in Eucaryotic Genes

- Eucaryotic

Signal Vs. Content

In gene finding, a small pattern within the genomic DNA is referred to as a signal, whereas a region of genomic DNA is a content

- Examples of signals: splice sites, starts and ends of transcription or translation, branch points, transcription factor binding sites
- Examples of contents: exons, introns, UTRs, promoter regions

- Eucaryotic

What is it about genes that we can measure (and model)?

Most of our knowledge is biased towards protein-coding characteristics

- ORF (Open Reading Frame): a sequence defined by in-frame AUG and stop codon, which in turn defines a putative amino acid sequence.
- Codon Usage: most frequently measured by CAI (Codon Adaptation Index)

Other phenomena

- Nucleotide frequencies and correlations: value and structure
- Functional sites: splice sites, promoters, UTRs, polyadenylation sites

- Alignments within the same species

EST alignment to predict Intron/Exon boundaries

EST: Expressed Sequence Tag. cDNA is produced from mRNA and sequenced.

- Very powerful
- If several ESTs are available, allows the identification of alternative splicing products
- Programs: EST-GENOME; Genseqer
- ► BUT:
 - EST sequences are usually very poor quality (sequence errors)
 - EST sequences are often contaminated
 - Presence of an EST sequence depends on expression (level, tissus...)

Com	parative	Genomi	ics
-----	----------	--------	-----

- Comparative

Gene prediction: sequence conservation

- Between organisms, protein sequence conservation can be conserved (homology). Homology will be detectable only in the coding regions.
- Database search programs such as Blast ot tFasta can be used to search the DNA sequence against a protein database. The DNA sequence is translated in all six-frame and searched individually against the database.

- Comparative Gene Prediction

- Comparative

Using Homology : the comparative Approach

Comp	parative	Genomi	cs
------	----------	--------	----

-Introns

The problem: INTRONS

the detection of the numerous introns in higher eukaryotic genes is difficult

- It does not help to search for ORFs
- There are often many introns per gene
- The intron splicing sites do not always have a strict consensus.
- The existence of alternative splicing makes the things even more difficult.

- Comparative Gene Prediction

-Introns

Lewis Caroll Example (Procrustres)

'T WAS BRILL	IG, AND THE	S LI TH Y	TOVES DID	GYRE AND	GIMBLE I	N THE	WABE
T WAS BRILL	IG, AND THE	S L TH E	DOVES	GYRATED AND	GAMBLED	N THE	WAVE
T WAS BRILL	IG, AND THE	S L TH E	DOVES	GYRATED	NIMBLY I	N THE	WAVE
T HRILL	ING AND HE	L LISH	DOVES	GYRATED AND	GAMBLEDI	N THE	WAVE
T HRILL	ING AND HE	L LISH	DOVES	GYRATED	NIMBLY I	N THE	WAVE

- Comparative Gene Prediction

GenScan

and what's now ??

-GenScan

Prior knowledge

- We want to build a probabilistic model of a gene that incorporates our prior knowledge.
- E.g., the translated region must have a length that is a multiple of 3.

- GenScan

Prior knowledge

- The translated region must have a length that is a multiple of 3.
- Some codons are more common than others.
- Exons are usually shorter than introns.
- The translated region begins with a start signal and ends with a stop codon.
- 5/ splice sites (exon to intron) are usually GT;
- ► 3/ splice sites (intron to exon) are usually AG.
- The distribution of nucleotides and dinucleotides is usually different in introns and exons.

-GenScan

GenScan

(not GeneScan, a commercial product)

- A Semi-Markov Model
 - Explicit state model of how long to stay in a state (rather than just self-loops, which must be exponentially decaying)
- Tracks phase of exon or intron (0 coincides with codon boundary, or 1 or 2)
- Tracks strand (and direction)

- Comparative Gene Prediction

-GenScan

GenScan Parameters

- Initial probabilities for being in each state
- All transition probabilities
- A set of length distributions for all states
- A set of sequence generating models for each state.
- Fitting Semi-Markov processes is much more computationally complex
 - use explicit length distributions only when necessary
 - others are made exponentially decreasing like HMMs.

- Comparative Gene Prediction

-GenScan

 $x_m(i) = \text{probability}$ of being in state m at position i; $H(m,\gamma_i) = \text{probability}$ of emitting character γ_i in state m; $\Phi_{m\kappa} = \text{probability}$ of transition from state k to m.

Intergenic

Intergenic

Every box stores transition probabilities for outgoing arrows (states in our HMM). Every arrow stores emission probabilities for emitted nucleotides (emissions in our HMM).

-GenScan

Parse

- S = ACTGACTACTACGACTACGATCTACTACGGGCGCGACCTATGCG

- For a given sequence, a parse is an assignment of gene structure to that sequence.
- In a parse, every base is labeled, corresponding to the content it (is predicted to) belongs to.
- In our simple model, the parse contains only "I" (intergenic) and "G" (gene).
- A more complete model would contain, e.g., "-" for intergenic, "E" for exon and "I" for intron.

- Comparative Gene Prediction

-GenScan

Finding the best parse

- ► For a given sequence S, the model M assigns a probability Pr(P|S, M) to every parse P.
- We want to find the parse P* that receives the highest probability.

 $P^* = argmax_p Pr(p|S, M)$

- Viterbi
- Posterior decoding

-GenScan

The generation of a parse of a given sequence *L*:

- 1. An initial state q_1 is chosen according to an initial distribution π on the states, i.e. $\pi_i = P(q_1 = Q^{(i)})$, where $Q^{(j)}(j = 1, ..., 27)$ is an indexing of the states of the model.
- 2. A state duration or length d_1 is generated conditional on the value of $q_1 = Q^{(i)}$ from the duration distribution $f_{Q^{(i)}}$.
- 3. A sequence segment s_1 of length d_1 is generated, conditional on d_1 and q_1 , according to an appropriate sequence generating model for state type q_1 .
- 4. The subsequent state q_2 is generated, conditional on the value of q_1 , from the (first-order Markov) state transition matrix *T*, i.e. $T_{i,j} = P(q_{k+1} = Q^{(j)}|q_k = Q^{(i)})$.
-GenScan

The generation of a parse of a given sequence *L*:

- ► This process is repeated until the ∑_{i=1}ⁿ d_i of the state durations first equals or exceeds L, at which point the last state duration is appropriately truncated, the final stretch of sequence is generated and the process stops.
- ► The resulting sequence is simply the concatenation of the sequence segments, $S = s_1 s_2 ... s_n$.

- Comparative Gene Prediction

-GenScan

Maximum likelihood prediction

Given such a model *M*. For a fixed sequence length *L*, consider $\Omega = \Phi_L \times S$, where Φ_L is the set of all possible parses of *M* of length *L* and *S_L* is the set of all possible sequences of length *L*. The model *M* assigns a probability density to each point (parse/sequence pair) in Ω . Thus, for a given sequence $S \subset S_L$, a conditional probability of a particular parse $\phi \subset \Phi_L$ is given by:

$$m{P}(\phi|m{S}) = rac{m{P}(\phi,m{S})}{m{P}(m{S})} = rac{m{P}(\phi,m{S})}{\sum_{\phi' \subset m{\Phi}_L}m{P}(\phi',m{S})},$$

using P(M, D) = P(M|D)P(D).

The essential idea is to specify a precise probabilistic model of what a gene looks like in advance and then to select the parse ϕ through the model *M* that has highest likelihood, given the sequence *S*.

- Comparative Gene Prediction

-GenScan

Initial and transition probabilities

- For gene prediction in randomly chosen blocks of contiguous human DNA, the initial probability of each state should be chosen proportionally to its estimated frequency in bulk human genomic DNA.
- This is a non-trivial problem, because gene density and certain aspects of gene structure vary significantly in regions of differing C+G content (so-called "isochores") of the human genome, with a much higher gene density in C+G-rich regions.
- Hence, in practice, initial and transitional probabilities are estimated for four different categories:

(I) < 43% C+G, (II) 43-51% C+G, (III) 51-57% C+G, and (IV) > 57% C+G.

- Comparative Gene Prediction

-GenScan

Initial and transition probabilities

The following initial probabilities were obtained from a training set of 380 genes by comparing the number of bases corresponding to each of the different states:

```
▶ Group I II III IV
```

C+G-range < 43% 43-51% 51-57% > 57% Initial probabilities: Intergenic 0.892 0.867 0.540 0.418 Intron 0.095 0.103 0.338 0.388 5' UTR 0.008 0.018 0.077 0.122 3' UTR 0.005 0.011 0.045 0.072

- For simplicity, the initial probabilities for the exon, promoter and poly-A states were set to 0.
- Transition probabilities are obtained in a similar way.

Com	parative	Genomics
-----	----------	----------

-GenScan

Simple signal models

- There are a number of different models of biological signal sequences, such as donor and acceptor sites, promoters, etc.
- One of the earliest and must influential approaches is the weight matrix method (WMM), in which the frequency P⁽ⁱ⁾_a of each nucleotide a at position *i* of a signal of length *n* is derived from a collection of aligned signal sequences.
- The product P(A) = ∏ⁿ_{i=1} P⁽ⁱ⁾_{ai} is used to estimate the probability of generating a particular sequence A = a₁a₂...a_n.

-GenScan

Positional Independence

Pr("ACTT"|M)

- = Pr("A" at position 1 and "C" at position 2 and "T" at position 3 and "T" at position 4|M)
- = Pr("A" at position 1|M) × Pr("C" at position 2|M) × Pr("T" at position 3|M) × Pr("T" at position 4|M)
- In general, probabilities of independent events get multiplied.
- A PSSM assumes independence among nucleotides at different positions.

Com	parative	Genomi	ics
-----	----------	--------	-----

-GenScan

Positional dependence

- In this data, every ACTG time a "G" appears in ACTT position 1, an "A"
 GCAC appears in position 3.
- Conversely, an "A" in position 1 always occurs with a "T" in position 3.

ACTT GCAC ACTT ACTA GCAT ACTA

ACTT

- Comparative Gene Prediction

-GenScan

nth-order PSSM

- Normally, PSSM entry (i,j) gives the score for observing the ith letter in position j.
- In an nth-order PSSM, each score is conditioned on the preceding letters in the sequence.
- The entries A|A, C|A, G|A and T|A should sum to 1.

	1	2	3	4
A A	0.25	0.45	0.12	0.21
A C	0.29	0.20	0.24	0.15
A G	0.33	0.13	0.41	0.33
A T	0.13	0.22	0.23	0.31
C A	0.34	0.35	0.09	0.10
T T	0.19	0.24	0.25	0.31

2nd-order PSSM

- Comparative Gene Prediction

-GenScan

nth-order PSSM

- Normally, PSSM entry (i,j) gives the score for observing the ith letter in position j.
- In an nth-order PSSM, each score is conditioned on the preceding letters in the sequence.
- How many rows are in a 3rd-order PSSM for nucleotides? nth-order?

	1	2	3	4
AIA	0.25	0.45	0.12	0.21
A C	0.29	0.20	0.24	0.15
AlG	0.33	0 - /	0.41	0.33
A	The prob observin	ability o g an "A"	f	0.31
CIA	in posi given t	in position 3, given that we		0.10
	already observed a "C" in position 2.		1	
TIT			0.25	0.31

2nd-order PSSM

GenScan

1	Conditional probability
GCG CAG CCG GCG	 The conditional probability Pr(x y) =
CCG	Number of occurrences of v:x
GCG CCT	Number of occurrences of y:*
GGG CGG	where * is any letter.
GCG AGG	
CAG CCT	
CAT CCT	

GCG

CAG CCG

GCG CCG

CCG

CCT CCG GGG CGG AGG CAG CAG CCT CAT CCT GCG

-GenScan

Conditional probability

 What is the probability of observing a "G" at position 3, given that we observed a "C" at the previous position?

Com	parative	Genomics	5
-----	----------	----------	---

GCG

CAG CCG

GCG CCG

CCG

CCT CCG GGG CGG AGG CAG CAG CCT CAT CCT GCG

-GenScan

Conditional probability

- What is the probability of observing a "G" at position 3, given that we observed a "C" at the previous
 - position?

Comparative	Genomics
-------------	----------

-GenScan

Simple signal models

- The weight array matrix (WAM) is a generalization that takes dependencies between adjacent positions into account.
- In this model, the probability of generating a particular sequence is

$$P(A) = P_{a_i}^{(i)} \prod_{i=1}^n p_{a_{i-1},a_i}^{i-1,i}$$

► where p^{i-1,i}_{v,w} is the conditional probability of generating a particular nucleotide v at position i, given nucleotide w at position i - 1

Comparative Gene Prediction

- GenScan

WMM for recognition of a start site

```
Pos. -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7

A .16 .29 .20 .25 .22 .66 .27 .15 1 0 0 .28 .24 .11 .26

C .48 .31 .21 .33 .56 .05 .50 .58 0 0 0 .16 .29 .24 .40

G .18 .16 .46 .21 .17 .27 .12 .22 0 0 1 .48 .20 .45 .21

T .19 .24 .14 .21 .06 .02 .11 .05 0 1 0 .09 .26 .21 .21
```

- Under this model, the sequence ...ccgccACC ATG GCGC... has the highest probability of containing a start site, namely:
 - $P = 0.48 \times 0.31 \times 46 \times 0.33 \times 0.56 \times 0.66 \times 0.5 \times 0.58 \times 1 \times 1 \times 1 \times 0.48 \times 0.29 \times 0.45 \times 0.4 = 0.006.$

The sequence . . . AGTITITT ATG TAAT . . . has the lowest non-zero probability of containing a start site at the indicated position, namely: $P = 0.16 \times 0.16 \times 0.14 \times 0.21 \times 0.06 \times 0.02 \times 0.11 \times 0.05 \times 1 \times 1 \times 1 \times 0.09 \times 0.24 \times 0.11 \times 0.21 = 20.4 \times 10^{-11}$

-GenScan

Transcriptional and translational signals

- Poly-A signals are modeled as a 6 bp WMM model with consensus sequence AATAAA.
- A 12 bp WMM, beginning 6 bp prior to the start codon, is used for the translation initiation signal.
- In both cases, one can estimate the probabilities using the GenBank annotated "polyA signal" and "CDS" features of sequences.

Comparative	Genomics

-GenScan

Transcriptional and translational signals

- Approximately 30% of eukaryotic promoters lack a TATA signal. Hence, a TATA-containing promoter is generated with 0.7 probability, and a TATA-less one with probability 0.3.
- TATA-containing promoters are modeled as a 15 bp TATA WMM and an 8 bp cap site WMM.
- the length between the two WMMs is generated uniformly from the range 14...20 bp.
- TATA-less ones are modeled as intergenic regions of 40 bp.

Comparative Genomics		
Comparative Gene Prediction		
GenScan		

Modeling the 5' splice site

- · Most introns begin with the letters "GT."
- We can add this signal to the model.

-GenScan

Modeling the 5' splice site

- · Most introns begin with the letters "GT."
- We can add this signal to the model.
- Indeed, we can model each nucleotide with its own arrow.

Comparative	Genomics
-------------	----------

-GenScan

Modeling the 5' splice site

- Like most biological phenomenon, the splice site signal admits exceptions.
- The resulting model of the 5' splice site is a length-2 PSSM.

- Real splice sites show some conservation at positions beyond the first two.
- We can add additional arrows to model these states.

-GenScan

Modeling the 5' splice site

-GenScan

Splice signals

- The donor and acceptor splice signals are probably the most important signals, as the majority of exons are internal ones.
- Previous approaches use WMMs or WAMs to model them, thus assuming independence of sites, or that dependencies only occur between adjacent sites.

- GenScan

Splice signals

The consensus region of the donor splice sites covers the last 3 bp of the exon (positions -3 to -1) and the first 6 bp of the succeeding intron (positions 1 to 6):

. . . exon intron. . .
Position -3 -2 -1 +1 +2 +3 +4 +5 +6
Consensus c/a A G G T a/g A G t
WMM:
A .33 .60 .08 0 0 .49 .71 .06 .15
C .37 .13 .04 0 0 .03 .07 .05 .19
G .18 .14 .81 1 0 .45 .12 .84 .20
T .12 .13 .07 0 1 .03 .09 .05 .46

-GenScan

Donor site model

- However, donor sites show significant dependencies between non-adjacent positions, which probably reflect details of donor splice site recognition by U1 snRNA and other factors.
- Given a sequence S. Let C_i denote the consensus indicator variable that is 1, if the given nucleotide at position i matches the consensus at position i, and 0 otherwise. Let X_j denote the nucleotide at position j.

-GenScan

Donor site model

For example, consider:

		$\dots exon$			intron						
Position	-3	-2	-1	+1	+2	+3	+4	+5	+6		
Consensus	c/a	Α	\mathbf{G}	G	Т	a/g	Α	\mathbf{G}	\mathbf{t}		
$S \dots T$	A	Α	\mathbf{C}	G	Т	A	Α	G	\mathbf{C}	С	

Here, $C_{-1} = 0$ and $C_{+6} = 0$, and = 1, for all other positions. Similarly, $X_{-3} = A$, $X_{-2} = A$, $X_{-1} = C$ etc.

- Comparative Gene Prediction

-GenScan

Donor site model

We use χ² statistics for the variable C_i versus X_j, for all pairs i, j with i₆ = j in the set of donor sites from the genes of the given learning set, based on the C_i versus X_j contingency table:

where $f_i(x)$ is the frequency at which the training set has the consensus base at position *i* and the base *x* at position *j*.

► A significant χ^2 score indicates that there is a dependency between site *i* and *j*.

- Comparative Gene Prediction

-GenScan

Donor site model

The idea is then to identify an ordering of the sites by decreasing discriminatory power and then to derive separate WMMs for each of the different cases, thus obtaining a so-called maximal dependence decomposition:

of donor sites with, or without, a G at position +5, respectively.

- Comparative Gene Prediction

-GenScan

Exon models

- Coding portions of exons are modeled using an inhomongeneous 3-periodic fifth order Markov model.
- Here, separate Markov transition matrices, c₁, c₂ andc₃, are determined for hexamers ending at each of the three

xxxxxxxxxx x1 x2 x3 y1 y2 y3 z1 z2 z3 xxxxxxxxx

codon positions, respectively:

- This is based on the observation that frame-shifted hexamer counts are generally the most accurate compositional discriminator of coding versus non-coding regions.
- However, A + T rich genes are often not well predicted using hexamer counts based on bulk DNA and so Genscan uses two different sets of transition matrices, one trained for sequences with < 43%C + G content and one Stephan Steigerfor all others.

-GenScan

Modeling variable-length regions

The HMM solution

A small problem

0.9

- Say that each blue arrow emits one letter.
- What is the probability that the intron will be exactly 2 letters long?
- 3 letters long?
- 4 letters long?

A small problem

0.9

- Say that each blue arrow emits one letter.
- What is the probability that the intron will be exactly 2 letters long? 10%
- 3 letters long? 9%
- 4 letters long? 8.1%

- Comparative Gene Prediction

-GenScan

State length distributions

- In general, the states of the model correspond to sequence segments of highly variable length.
- For certain states, most notably for internal exon states *E_k*, length is probably important for proper biological function, i.e. proper splicing and inclusion in the final processed mRNA.
- For example, it has been shown in vivo that internal deletions of exons to sizes below about 50 bp may often lead to exon skipping, and there is evidence that steric interference between factors recognizing splice sites may make splicing of small exons more difficult.
- There is also evidence that spliceosomal assembly is inhibited if internal exons are expanded beyond 300 bp.

-GenScan

State length distributions

- In summary, these arguments support the observation that internal exons are usually 120...150*bp* long, with only a few of length less that 50 bp or more than 300 bp.
- Constraints for initial and terminal exons are slightly different.
- The duration in initial, internal and terminal exon states is modeled by a different empirical distribution for each of the types of states.

- Comparative Gene Prediction

-GenScan

State length distributions

- In contrast to exons, the length of introns does not seem critical, although a minimum length of 70...80bp may be preferred.
- The length distribution for introns appears to be approximately geometric (exponential).
- However, the average length of introns differs substantially between the different C + G groups: In group I, the average length is 2069 bp, whereas for group IV, the average length is only 518 bp.
- Hence, the duration in intron states is modeled by a geometric distribution with parameter q estimated for each C + G group separately.

- Comparative Gene Prediction

-GenScan

Empirical length distributions for introns and exons:

For the 5' UTR and 3' UTR states,

geometric distributions are used with mean values of 769 and 457 bp, respectively.
Comparative Gene Prediction

-GenScan

Weil's so schī $\frac{1}{2}$ n ist ... Exon Exon Exon 0 2 0 2 1 Init Term Exon Exon Exon 3' 5' Sngl Poly Prom А N

- Comparative Gene Prediction

-TwinScan

Using Homology : the comparative Approach

- Comparative Gene Prediction

- TwinScan

TwinScan

- The input to Twinscan consists of a target sequence, i.e. a genomic sequence in which genes are to be predicted, and an informant sequence, i.e. a genomic sequence from a related organism.
- For example, the target sequence may come mouse genome and the informant sequence may be the human genome.
- Given a target and an informant, in a preprocessing step, one determines a set of top homologs (e.g. using BLAST) from the informant sequence, i.e. one or more sequences from the informant sequence that match the target sequence best.

mouse.

conserved human (top homologs)

- Comparative Gene Prediction

- TwinScan

Conservation sequence

- The top homologs represent the regions of conserved informant sequence, which we will simply call "the informant sequence" in the following.
- Similarity is represented by a conservation sequence, which pairs one of three symbols with each nucleotide of the target:
 - . unaligned | matched : mismatched
- Gaps in the informant sequence become mismatch symbols, gaps in the target sequence are ignored.
- Consider:

123456789 position GAATTCCGT target sequence

Comparative Gene Prediction

-TwinScan

Conservation sequence

and suppose that BLAST yields the following HSP:

345 6789 target position ATT-CCGT target alignment || || BLAST alignment ATCACC-T Informant alignment

The conservation sequence derived from this HSP is:

123456789 position GAATTCCGT target sequence

.. | |: | |: | conservation sequence

Com	parat	ive (Gen	omi	cs
-----	-------	-------	-----	-----	----

- Comparative Gene Prediction

- TwinScan

Conservation sequence

- Note that the conservation symbol assigned to the target nucleotide at position i is determined by the best HSP that covers i, regardless of which homologous sequence it comes from.
- Position i is classified as unaligned only if none of the HSPs overlap it.
- Probability of sequence and conservation sequence
- Recall that Genscan assigns each nucleotide of an input sequence to one of seven categories: promoter, 5' UTR, exon, intron, 5' UTR, poly-A signal and intergenic.

- Comparative Gene Prediction

- TwinScan

Conservation sequence

- Genscan chooses the most likely assignment of categories to nucleotides according to the Genscan model, using an optimization algorithm (i.e., a modification of the Viterbi algorithm).
- Given a sequence, the Genscan model assigns a probability to each parse of the sequence (i.e., path through the model that generates the sequence.)
- The Twinscan model assigns a probability to any parsed DNA sequence together with a parallel conservation sequence. Under this model, the probability of a DNA sequence and the probability of the parallel conservation sequence are independent, given the parse.

- Comparative Gene Prediction

- TwinScan

Consider the following example:

10 20 30 123456789|123456789|123456789|123456789 ATTTAGCTACTGATAATGGACCCCTTCAGCATGGTATCC target sequence T ||:|||........:|:|!||||||:||:||:|| conservation sequence C

Consider the probability of observing the target sequence *T*_{7,33} extending from position 7 to 33, given the hypothesis *E*_{7,33} that an internal exon extends from position 7 to 33.

- Comparative Gene Prediction

- TwinScan

Example

Consider the following example:

10 20 30 123456789|123456789|123456789|123456789 ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC target sequence T |::|.......:::::!!!!!!!!:!!::!! conservation sequence C

This is simply the probability of the target sequence T_{7,33} under the Genscan model times the probability of the conservation sequence C_{7,33} under the conservation model, assuming the parse E_{7,33}:

$$P(T_{7,33}, C_{7,33}|E_{7,33}) = P(T_{7,33}|E_{7,33})P(C_{7,33}|E_{7,33}).$$

- Comparative Gene Prediction

- TwinScan

TWINSCAN's model

- Twinscan consists of a new, joint probability model on DNA sequences and conservation sequences, together with the same optimization algorithm used by Genscan.
- Twinscan arguments the state-specific sequence models of Genscan with models of the probability of generating any given conservation sequence from any given state.
- Coding, UTR, and intron/intergenic states all assign probabilities to stretches of conservation sequence using homogeneous 5th-order Markov chains:

- Comparative Gene Prediction

- TwinScan

TWINSCAN's model

One set of parameters is estimated for each of these types of regions.

Again, consider:

10 20 30 12345678911234567891123456789 ATTTAGCCTACTGAAATGGACCCCTTCAGCATGGTATCC target sequence T ||:||.........:|:|:|||||||:||:||:|| conservation sequence C

▶ The probability of observing *C*_{7,33}, given *E*_{7,33}, is:

 $P_{C}(C_{7,33}|E_{7,33}) = P_{E}(C_{7,7}|C_{2,6}) \times \cdots \times P_{E}(C_{33,33}|C_{28,32}),$

where $P_E(C_{33,33}|C_{28,32})$, for example, is the estimated probability of a '|' (match) following the five context symbols '|:||:' in the conservation sequence of an exon.

- Comparative Gene Prediction

- TwinScan

 Models of conservation at splice donor and acceptor sites are modeled using 2nd-order WAMs of length 9 bp and 43 bp, respectively (lengths as in Genscan).

- Comparative Gene Prediction

TwinScan

was it worth !!

- Comparative Gene Prediction

-the benefit

Comparative genomics approach to annotation

Comparative annotation approach: translated DNA comparison allow detection of homology outside annotated features and annotation of overlooked ORF, intron, or detection of Frameshifts in the sequence

- Comparative Gene Prediction

- Evaluate the accuracy of Gene Prediction

Accuracy of GenPrediction: Nucleotide Level

- Comparative Gene Prediction

- Evaluate the accuracy of Gene Prediction

Accuracy of GenPrediction: Exon Level

- Comparative Gene Prediction

- Evaluate the accuracy of Gene Prediction

Evaluations of Gene Finding

Two important competitive evaluations of genomic annotation (mostly gene finding)

- GRASP on 3Mb of Drosophila genome around ADH in 2000.
- EGRASP on 1% of Human genome in 2006

Many ways to measure accuracy

- Per nucleotide (% correct, sensitivity/specificity)
- Per exon (missed exons, wrong exons)

- Comparative Gene Prediction

- Evaluate the accuracy of Gene Prediction

EGASP results per nucleotide

- Comparative Gene Prediction
 - Evaluate the accuracy of Gene Prediction

EGASP results per Exon

- Comparative Gene Prediction

- Evaluate the accuracy of Gene Prediction

EGASP results per Gene

For what Orthologs?

Ortholog assignment

- One important question for evolutionary analysis and for life science in general is a definition of uniqueness and invention in the sets of protein sequences
- this is important for promotor analysis and functional elucidation
- so, what we need is to know more about homologous genes

and what are Orthologs

Homology

genes with a common origin

- May be genes in the same or in different organisms
- Does not say that function is identical
- Can only be true or false, and not a percentage!

Paralogs

Gene trees and species trees

A Gene tree evolves with respect to a Species tree

-Ortholog Assignment

In/Out-paralog definition

Sonnhammer & Koonin, Trends Genet. 18:619-620 (2002)

In-paralogs eq. co-orthologs

 paralogs that were duplicated after the speciation and hence are orthologs to a cluster in the other species

Out-paralogs = not co-orthologs

 paralogs that were duplicated before the speciation. Not necessarily in the same species.

Orthologs for functional genomics

- Co-orthologs / inparalogs are more likely than outparalogs to have identical biochemical functions and biological roles
- Co-orthologs can be used to discover human gene function via model organism experiments
- Co-orthologs are key to exploit functional genomics/proteomics data in in model organisms

Orthology and function conservation

- Orthology does not say anything about evolutionary distance
- Close orthologs, e.g. human-mouse are very likely to have the same biological role in the organism
- Distant orthologs, e.g. human-worm are less likely to have the same

How to find orthologs?

Calculate phylogenetic tree, look for orthologs in the tree:

 Two-way best matches between two species can be used to find orthologs without trees. [However, in-paralogs are harder to find this way]

Orthology is not transitive!

Multiple species at different distances may give erroneous groups, that includes out-paralogs

Orthology is not transitive!

- Orthology strictly defined for only 2 species/clades
- Combining species of different distances is very dangerous
- But OK to combine multiple equidistant ones

- COG/KOG (Clusters of Orthologous Groups).
- InParanoid
- OrthoMCL

Two-way best match approach to finding orthologs

- COG -Clusters of Orthologous Groups of proteins

COG -Clusters of Orthologous Groups of proteins

Classify proteins from completely sequenced genomes. The algorithm ²

- Mask coiled coil and low-complexity regions (COILS2 & SEG).
- All-against-all sequence comparisons (BLAST blastpgp).
- Identify in-paralogs.
- Detect best hits between genomes.
- Calculate the probability that a gene is assigned to a given COG.

²Tatusov et al (Nucleic Acids Res 2000) Tatusov et al (Nucleic Acids Res 2001)

-Ortholog Assignment

- COG -Clusters of Orthologous Groups of proteins

COG/KOG

- COG: prokaryotes and unicellular eukaryotes
- KOG: eukaryotes
-Ortholog Assignment

- COG -Clusters of Orthologous Groups of proteins

-Ortholog Assignment

- COG -Clusters of Orthologous Groups of proteins

KOG cluster for 60s ribosomal protein L39 ECU09g0395 Hs17449824 Caenorhabditis Arabidopsis Hs17457639 thaliana elegans Hs20541952 Hs20535633 Hs22052327 Hs22046107 At2g25210 CE06883 At2g25210 At3g02190 At3g02190 YJL189w 7291732 SPCC663.04 CE06883 Hs16579830 Hs4506647 Hs18590969 Hs18592185

-InParanoid

InParanoid

Classify proteins from completely sequenced eukaryotic genomes.

The algorithm³:

- Filter out shorter transcripts.
- All-against-all sequence comparisons (BLAST blastp + filtering with SEG).
- Detection of inparalogs.
- Detection of mutual best hits.
- Add inparalogs + confidence values.
- Resolve overlapping groups.
- Bootstrap-based confidence values.

³Remm et al (J Mol Biol 2001) O?Brien et al (Nucleic Acids Res 2005) Stephan Steigele

InParanoid

InParanoid

-InParanoid

InParanoid

InParalog score

Score for inparalog

$$P = \frac{scoreAP - scoreAB}{scoreAA - scoreAB}$$

-InParanoid

Confidence values for main orthologs from sampling

TVHIVDDEEPVR---KSLAFM---LTMNGFA T+ ++DD +R K L M +T+ G A TILLIDDHPMLRTGVKQLISMAPDITVVGEA

Sampling with replacement; insertions kept intact

GAFDEP---LVTHVR..... GA + ++T +R GAEEHMAPDILTLLR.....

Bootstrap alignment \rightarrow bootstrap score **Confidence** = (bootstrap alignments best-best matches / nr of bootstraps)

-Ortholog Assignment

-InParanoid

InParanoid clusters

Ortholog Assignment

-InParanoid

InParanoid clusters

All species vs al Human vs all Gene search Downloads

🖉 🖛 Inparanoid 🛹

Inparalog and Orthologs clusters for Homo sapiens (Ensembl) and Caenorhabditis elegans (Wormbase) (4588 clusters in total)

Cluster #1				
Protein ID	Species	Score	Bootstrap	Name
23 72799900351799	H sapsens	1	100%	Dynein heavy chain, cytosolic (DYHC) (Cytoplasmic dynein heavy chain 1) (DHC1). [Source:Uniprof/SWISSPROT;Acc:Q14204]
W2/Gew9300062	C elegans	1	100%	

Chuster #2				
Protein ID	Species	Score	Bootstrap	Name
B 534690036439	H sapiens	1	100%	Pre-mRNA processing splicing factor 8 (Splicing factor Prp8) (PRP8 homolog) (220 kDa U5 mRNP-specific protein) (p220). [Source:Uniprot/SWISSPROT,Acc:Q6P2Q9]
W20660004187	Cielegans	1	100%	
Cluster #3			_	
Protein ID	Species	Score	Bootstrap	Name
E0570000353174	H. sapsens	1	100%	Ryano dine receptor 2 (Cardiac muscle-type ryano dine receptor) (RyR2) (RYR-2) (Cardiac muscle ryano dine receptor-calcium release channel) (hRYR-2). [Source: Unprot/SWISSPROT,Acc:Q92736]
12:5793000334832	H sapiens	0.5		Ryanodine receptor 3 (Brain-type ryanodine receptor) (RyR3) (RYR-3) (Brain ryanodine receptor-calcium release channel). [Source-Uniprot/SWISSPROT;Acc.Q15413]
				Ryanodine recentor 1 (Skeletal muscle-type ryanodine receptor) (RyR1)

100%

(RYR-1) (Skeletal muscle calcium release channel) [Source:Uniprot/SWISSPROT,Acc:P21817]

OrthoMCL

OrthoMCL

Classify proteins from completely sequenced genomes⁴

⁴Li et al (Genome Res 2003) Chen et al (Nucleic Acids Res 2005) Stephan Steigele

-OrthoMCL

Similarity Matrix

The relationships are turned into a weighted graph, where the nodes are the protein sequences and the edge weight their

⁵Li et al (Genome Res 2003)

-OrthoMCL

What is normalized ?

- the edge weight connecting each pair of sequences w_{ij} is divided by ^{W_{ij}}/_W, where W represents the average weight among all ortholog (underlined) and 'recent' paralog (italicized) pairs, and W_{ij} represents the average edge weight among all ortholog pairs from species *i* and *j*.
- the net result of this normalization is to correct for systematic differences in comparisons between two species (e.g., differences attributable to nucleotide composition bias), and when *i* = *j*, to minimize the impact of 'recent' paralogs (duplication within a given species) on the clustering of cross-species orthologs.

-Ortholog Assignment

OrthoMCL

OrthoMCL cluster

💠 - 🔶 - 💋 😳 😭 🗰 http://arthonal.cbi.upe	nn edujkgi-bin/OrthoMcNHob.cgi	v 0 0 K.	. <i>o</i> x
	Orthog Groups of Protein Sequences term And Control Co	-	
Earth-Second Located - brokerson Located - Henry Benry Benry - brokerson Located - brok	Current Josus With Control of Control Sequences (2019) Bankar of Cohotis Sequences (2019) Bankar of Cohotis Sequences (2019) Bankar of Cohotis Govern 2019 Art 34, 2009 Wights concerned are CohotACL-28 never from a hack in that heproref a strate age. Art 34, 2009 Wights concerned are CohotACL-28 never from a hack in that heproref a strate age. Art 1, 2009 Wights concerned are CohotACL-28 never from a hack in that heproref a strate age. The cohot of the strate of the Article Article Research and a strate of the cohot of the strate of the Article Research Bankar and Article Cohot of the Article Article Research Bankar and Article Article Article Article Article Research and David Bankar and Article Article Article Article Research Bankar Article A		
	The bala with the maloine share contact Ease (The		
	, to usy needs a strike plant tokket <u>reaction</u>		
Pind 000	Match case		

-Ortholog Assignment

OrthoMCL

OrthoMCL cluster

	# Sequences	#	Tax	a	# M	atch	Pa	irs (?	0	Av	: E-	Vah	ue	Ave	%	Coy	erage	: A	ve %	[den	itity
	25		21		2	90 (96.6	5%)		3	10e	-19			9	2.2		T	40	5	
inks to OG1_4124								P	iyle	etic I	Patte	em									
Pfam Domain Architecture	Bacteria	ын 0	tma 0	det 0	dan U	tpa 0	cta 0	20 a 0	pn 0	9n	nata 0	ban 0	www.u	8m	1011 0	280 0	eco D				
Multiple Sequence Alignment	Archaes	hal	mja 0	650 0	puq																
Get Sequences (FASTA)	Single-Cellular Eukarvota	dai 0	44i 1	pfa 0	970 0	pkn 0	фя 0	dan O	tgo 0	Фл 0	1	ipo 1	уШ 1	khi 1	da 1	ᅄ	ecz 0	1	go 147 1 1	0	tye D
	Multi-Cellular	et.	054	cel	de	ðan e	101	ch	94	ted.	đe:	hi e		100	cc.						

List of Protein Sequences

Number	Accession	Taxon	Length	Accession & Description
1	<u>ddi6716</u>	Dictyostelium discoideum	125	DDB100451_
2	<u>sce3539</u>	Saccharomyces cerevisiae S288C	140	VPS55, Late endosomal protein involved in late endosome to vacuole trafficking: functional homolog of human obesity receptor gene-related protein (OB-RGRP)
3	<u>spo1039</u>	Schizosaccharomyces pombe	122	<u>SPACOD 11.</u> involved in intracellular protein transport
4	<u>yli5429</u>	Yarrowia hpolytica CLIB99	130	y <u>at.mmu2775</u> similar to wi[NCU06713.1 Neurospora crassa NCU06713.1 hypothetical protein
5	<u>kla3961</u>	Klupveromyces lactis CLIB210	142	RELANDONS similar to sp[P47111 Saccharomyces cerevisiae YJR044c singleton
6	<u>dha578</u>	Debaryomyces hansenii CBS767	140	pataoa12947g. highly similar to CA3048 IPF14991 Candida albicans

Com	para	tive	Gen	omi	ics
-----	------	------	-----	-----	-----

OrthoMCL

OrthoMCL cluster VS. KOG (COG) clusters

Com	parative	Genomi	cs
-----	----------	--------	----

-OrthoMCL

Drawbacks of Blast-based orthology assignment

- No guarantee that the same segment is used in different sequences
- No evolutionary distance model
- Does not take multiple domains into account

-HomoloGene

HomoloGene

Classify proteins from completely sequenced genomes.⁶

- Uses the NCBI Taxonomic tree.
- For closely related species: DNA sequence similarity & conserved gene order (= synteny).
- For distantly related species: protein sequence similarity.

Inparalogs are usually present in different clusters.

⁶Wheeler et al (Nucleic Acids Res. 2007)

-HomoloGene

HomoloGene clusters

4 ·	S http://www.ncbi.	nim.nih.govjen	treziquery fcgPt	2-honologene			💌 🛛 🛥 💟	- 8
	(P10	D H	lomolo Discover	Gene Homologs	<u>Help</u> ein Gesone Stoitse	Map Visser	Gene Unifere	My NCE 22 Sign in: Register
Search HomoloGen	e 💌 for				Go Clear			
	Limits Previ	ewindex	History	Clippoard De	talis			
About Entrez	HomoloGene is a genes of several o	system for a completely se	utomated detraquenced euk	action of homologs aryotic genomes	among the annotated			
HomoloGene	HomoloGene	Release F	d Statistic		What's Naw			
	Initial numbers of	genes from p	complete geno	mes.	WHAT S HEW			
Build Procedure	numbers of genes	placed in a	homology grou	up, and the	HomoloGene release 54 incorporates			
FTP Site	numbers of group	s for each sp	ecies.		Collus collus Oscilidad in NCRI			
	Species	Number	of Genes H	omoloGene	Galus galus release 2.1), and Oriza			
Genome		Input	Grouped	groups	sativa (included in NCBI Oryza sativa			
Resources	Hisagiens	22,873	20,108	19,491	release 4.1).			
Musimusculus	Pitrogiodytes	25,096	17,817	17,136	Manufacture descentioned on DMA			
Ratus nonegicus	C.familians	19,785	16,628	16,195	protein and genomic sequences of			
Danio rerio	Mimusculus	24,175	20,512	19,142	genes in a HomoloGene entry, using			
	Caralhas	21,991	10,004	10,028	the Download link.			
	G.galus	17,959	7,000	7.704	Discourse that the PTD disc			
	D.meishogaster	14,033	0 274	7,734	Please note that the FIP files broke the and broke tim the are now			
	A gamoise C ologonio	13,909	6 304	1 020	deprecated, and will be retired on			
	Carryana	20,050	2 719	2 192	Apr. 1, 2007. Please use the files			
	S. pumbe	5,043	4 730	3,183	homologene data and/or			
	S. Cerevisiae	5,063	4 455	4,000	homologene.xml.gz instead.			
	E ana anii	0,330	9,000	2047				
	C.gosoypii Micrises	4,720	6 314	5,947	Tip of The Day			
	Nerassa	10,070	5 918	5.912				
	A theijone	10,070	13 221	12,900	Management and the state of the second s			
	O sativa	C 007	12 874	12 505	to Homeleas from EleBase by using			
	P falcinarium	6 202	970	949	"Limits' in the tool bar.			
	" indicates organism	s where new g	enorre annotatio	n data is used	[More Tips]			
	in this build.							
	Last updated on wea	a Mer 21 2007						
					Related Resources			
	we have recently	adopted a na	ew build proce	dure that				
	find more distant	relationships	but the proce	dure still	Entres Commen			
	refers to the DNA	sequence for	r computation	of some of	Ender Genomes			
	the statistics. The	e matching st	trategy is guid	ed by the	A collection of complete genome sequences			
	taxonomic free su	sch that more	closely relate	ed organisms	that includes more than 1000 viruses and			
	inclute parentins	n addition to	orthology	antines new	over hundred microbes			
	antiono paratige i				Bacteria			
	Sources of Ad	dditional l	nformation		 Eukaryota 			
	HomoloGene entr	ies have been	n augumented	with	Viruses			
	homology and phy	enotype inform	mation drawn	from the				
	following sources.				C064			
	Unine Mendelian	Inheritance i	n Man (ONIN) IGN		Phylogenetic			
The set	HOUSE GENOME I	intermedica IN	190		A second second			
M PRICE	000	🔄 🛄 Metgh	case					

-Ortholog Assignment

-HomoloGene

HomoloGene clusters

Limits Preview/	Index History	Clipboard Details	
Display Summary		Show 20 💌 Send to 💌	
All: 128 Fund: 0	Mammals: 28	×	
Landa and	Items 1 - 20	of 128	Page 1 of 7 Next
El HamoloGene 17	31 Gene conserv	d in Amniotal	Download Links
H.sapiens	LEPR	leptin receptor	
P.troglodytes	LEPR	leptin receptor	
C.familiaris	LEPR	leptin receptor	
M.musculus	Lepr	leptin receptor	
R.norvegicus	Lepr	leptin receptor	
G.gallus	LEPR	leptin receptor	
2: HomoloGene 19	G. Gene conserved	in Eutheria	Download, Links
H.sapiens	LEP	leptin (obesity homolog, mouse)	
P.troglodytes	LEP	leptin (obesity homolog, mouse)	
C.familiaris	OB	leptin (obesity homolog, mouse)	
M.musculus	Leo	leptin	
R norvegicus	Lep	leptin	
□3: HemoloGene 41	031. Gene conserv	ed in Bilateria	Download, Links
H.sapiens	LEPROTL1	leptin receptor overlapping transcript-lik	
P.troglodytes	LOC472729	similar to Leptin receptor overlapping tra	
C.familiaris	LOC475601	similar to leptin receptor overlapping tra	
M.musculus	Leprotl1	leptin receptor overlapping transcript-lik	
R.norvegicus	Leproti1	leptin receptor overlapping transcript-lik	
G.gallus	LEPROTL1	leptin receptor overlapping transcript-lik	
C.elegans	C30B5.2	C30E5.2b	
T4: HomoloGene 10	682. Gene conserv	ed in Amniota	Download, Links
H.sapiens	LEPROT	leptin receptor overlapping transcript	
C.familiaris	LOC609115	similar to Leptin receptor gene-related pr	
M.musculus	Leprot	leptin receptor overlapping transcript	
R.norvegicus	Leprot	leptin receptor overlapping transcript	
G.gallus	LEPROT	leptin receptor overlapping transcript	
5: HomoloGene:51	63. Gene conserve	d in Amniota	Download, Links
H.sapiens	TRH	thyrotropin-releasing hormone	
P.troglodytes	TRH	thyrotropin-releasing hormone	
C.familiaris	LOC484643	similar to Thyroliberin precursor (Thyrotr	
M.musculus	Trh	thyrotropin releasing hormone	
R.norvegicus	Trh	thyrotropin releasing hormone	
G.gallus	TRH	thyrotropin-releasing hormone	
6: HomoloGene 10	308. Gene conserv	ed in Eutheria	Download, Links
H.sapiens	APOM	apolipoprotein M	And the second second

Com	parative	Genomi	cs
-----	----------	--------	----

-Orthostrapper

Orthostrapper: Gene Trees

- A gene family is a set of homologous genes. (Common descent.)
- A vertex in a gene tree is either a speciation event or a duplication event.
- Divereged through a speciation event: Orthologs.
- Diverged through a duplication event: Paralogs.

-Orthostrapper

Orthostrapper

- analyze a set of *bootstrapped* trees instead of single gene trees
- frequency of orthology assignment in bootstrapped trees are used in support values for orthology assignment

-Orthostrapper

Orthostrapper

- Partial tree reconciliation.
- ► Find pairwise orthologs by computer parsing of tree.

-Ortholog Assignment

-Orthostrapper

orthostrapper.cgb.ki.se

Comparative Genomics	
Ortholog Assignment	

-Orthostrapper

Drawbacks of tree reconciliation for orthology assignment

- Assumption that the species tree is fully known.
- Does not always give confidence values.
- Computationally expensive.

Sequence Motifs

To understand the regulatory network of many 1000 genes is still one of the big challenges in molecular biology and bioinformatics.

- microarray technology.
- orthologous genes

offer the "possibility" to analyse promoter regions and to identify regulatory elements contained in them.

Sequence Motifs

- Starting point is the assumption that genes with similar expression profiles are co-regulated.
- This assumption implies that the similarity of the profile is the result of a similarity of the regions that are involved in transcription regulation.
- The term promoter was coined in the 60s, when geneticists described the function of a locus immediately upstream of the three genes in the lactose operon. The locus appeared to *promote* expression of the genes.

-Sequence Motifs

Figure from: M Levine and R Tjian (2003) Transcription regulation and animal diversity. Nature 424:147-51. Comparison of a simple eukaryotic promoter and extensively diversified metazoan regulatory modules. a, Simple eukaryotic transcriptional unit. A simple core promoter (TATA), upstream activator sequence (UAS) and silencer element spaced within 100 – 200 bp of the TATA box that is typically found in unicellular eukaryotes. b, Complex metazoan transcriptional control modules. A complex arrangement of multiple clustered enhancer modules interspersed with silencer and insulator elements which can be located 10 – 50 kb either upstream or downstream Stephar@Sacomposite core promoter containing TATA box (TATA), Initiator sequences (INR), and downstream promoter

Motivation

Besides the actual promoter the following regulatory elements are known:

Promoter

DNA sequence close to the 5'-end of a gene, that serves as the binding site for the RNA polymerase and from which transcription is initiated.

Enhancer

Control element, that enhances level of transcription.

Locus control region

Locus Control Regions are defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number-dependent manner at ectopic (abnormal) chromatin sites.

Motivation

Insulator

A DNA sequence, that prevents activation or inactivation of transcription because of surrounding chromatin.

Silencer

Control element, that suppresses gene expression independent of distance or direction of gene from the element.

Matrix attachment region

An AT-rich DNA segment, that serves as binding point to the nuclear matrix.

Frequently-found metazoan motifs in the core promoter

-Sequence Motifs

Eukaryotic promoter diversity

Biol. Evol. 20(9):1377-1419.

Comparative Genomics

High evolvability of regulatory sequences

- most of the changes in regulatory networks are likely to occur in cis; changes in trans (transcription factors) may often have too strong effects.
- one single mutation may lead to the acquisition of a new DNA-factor interaction (rapid turnover)?
- the expression in one tissue may evolve independently of expression in another tissue (promoter modular organization)

Wray et al. (2003) The Evolution of Transcriptional Regulation in Eukaryotes. Mol. Biol. Evol. 20(9):1377-1419.

Transcription factor binding sites (TFBS) are short and imprecise

-short sequence	e motifs (6-12	bp)							
		• *						T <mark>ATA</mark> AA	
								TATAGA	
- some positions of the motif are variable								TATAAA	
Some posicio								T <mark>ATA</mark> AA	
								G <mark>ATA</mark> AA	
comotimos di	fforont transcri	ntion	fact		roco		ho	TATAAA	
								TATAAA	
same sequence	emoui							TATAAT	

								TATA box	
TATAAA									
TATAGA			1	2	3	4	5	б	
TATAAA			-					-	
TATAAA		A	0	8	0	8	7	7	
GATAAA		С	0	0	0	0	0	0	
TATAAA		G	1	0	0	0	1	0	
TATAAA		т	7	0	8	0	0	1	
TATAAT		Waight matricag							
***		weight matrices							

-Sequence Motifs

TFBS prediction using weight matrices

D., et al. (2003). Nucleic Acids Research 31: 1739-1748.

-Sequence Motifs

Motif Logo

5

		10000011
•	Motifs can mutate on non	TGAGAGA
	important bases	TGGGGGA
•	I he five motifs in five	TGAGAGA
	mutations in position 3 and	TGAGGGA

 Representations called motif logos illustrate the conserved and variable regions of a motif TCCCCCA

Motif Logos: An Example

(http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html)

High false positive rate in TFBS prediction

Predictions: Transfac v.6.4

Very low!

Blanco, E., et al..

(2006). Nucleic Acids Research 34: D63-D67.

Comparative approaches are necessary

Select those motifs or regions that are shared by:

- orthologous sequences : phylogenetic footprinting
- co-expressed genes : shared regulatory motifs

Functional Microarray experiments or orthologous indicate that some sets of genes are regulated by common *transcription factors* (TFs). These attach to the DNA upstream of the coding sequence, at certain *binding sites*. Such a site displays a short motif of DNA that is specific to a given type of TF. To find such motifs, one considers a collection of genes that are believed to be coregulated:

-Sequence Motifs

Phylogenetic footprinting

Highly conserved

enhancer in gene DACH1

Motivation

In the 'upstream' regions of this set of genes one searches for common motifs. The search for motifs is hampered because of the following problems:

- The motif has unknown length
- The motif for a given TF is not 100% conserved
- The sequences that are used for the motif search do not necessarily contain the complete promoter sequence
- Different transcription factors with different target genes can have very similar binding motifs (example: the TF MRE binds to CRCAAAW, the TF SCB binds to CNCGAAA).

Motif Finding Algorithms

We will discuss a number of different algorithms that address motif finding. These are all heuristics, and aren't guaranteed to solve the problem:

- Brute-Force-Approach
- Planted Motif Problem
- FootPrinter
- Gibbs Sampling

- Planted Motif Problem

Planted Motif Problem

The computational problem is to determine such a motif by analyzing a set of sequences that contain instances of the motif.

We formalize the problem as follows (Pevzner and Sze):

Planted (*I*, *d*)**-Motif Problem:** Suppose there is a fixed but unknown nucleotide sequence *M* (the motif) of length *I*. The problem is to determine *M*, given *t* sequences each of length *n*, and each containing a planted variant of *M*. More precisely, each such planted variant is a substring of length *I* which differs from *M* at up to d positions.

- Planted Motif Problem

Planted Motif Problem

To inspire research in this area, Pevzner and Sze formulated the following:

Challenge Problem: Find a (15, 4)-motif in t = 20 sequences of length 600.

These are typical values for finding TF binding sites in coregulated gene promoter regions in yeast.

Planted Motif Problem

Planted Motif Problem

But why is this such a difficult problem, i.e. a challenge? Any two instances of the (I, d)-motif may differ by up to 2d positions. In this case for the (15, 4)-signal, two strings of length 15 can differ by as many as 8 mutations. Two differentiate between signals and non-signals in this case is of course extremely difficult.

Brute-Force-Approach

The Motif Finding Problem

Additional information:

- The hidden sequence is of length 8
- The pattern is not exactly the same in each array because random point mutations may occur in the sequences

-Sequence Motifs

Brute-Force-Approach

The Motif Finding Problem

The patterns revealed with no mutations:

-Sequence Motifs

Brute-Force-Approach

The Motif Finding Problem

The patterns with 2 point mutations:

 $cctgatagacgctatctggctatcca\underline{GgtacTt}aggtcctctgtgcgaatctatgcgtttccaaccat agtactggtgtacatttgat\underline{CcAtacgt}acaccggcaacctgaaacaaacgctcagaaacagaagtgc aa\underline{agtTAgt}gcaccctcttcttcgtgggctctggccaacgagggctgatgtataagacgaaaatttt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatctta\underline{cctCcAt}$

Can we still find the motif, now that we have 2 mutations?

-Sequence Motifs

-Brute-Force-Approach

Defining Motifs

- To define a motif, lets say we know where the motif starts in the sequence
- ► The motif start positions in their sequences can be represented as s = (s₁, s₂, s₃, ..., s_t)?

-Sequence Motifs

-Brute-Force-Approach

Brute-Force-Approach

Motifs: Profiles and Consensus

Alignment		a G g t a c T t C c A t a c g t a c g t T A g t a c g t C c A t	 Line up the patterns by their start indexes
		CcgtacgG	$\mathbf{s} = (s_1, s_2,, s_t)$
Profile	A C G T	3 0 1 0 3 1 1 0 2 4 0 0 1 4 0 0 0 1 4 0 0 0 3 1 0 0 0 5 1 0 1 4	 Construct matrix profile with frequencies of each nucleotide in columns
Consensus		ACGTACGT	 Consensus nucleotide in each position has the highest score in column

-Brute-Force-Approach

- We have a guess about the consensus sequence, but how 'good' is this consensus?
- Need to introduce a scoring function to compare different guesses and choose the 'best' one.

-Brute-Force-Approach

Defining Some Terms

- t number of sample DNA sequences
- n length of each DNA sequence
- DNA sample of DNA sequences (t × n array)?
- I length of the motif (I-mer)?
- s_i starting position of an I-mer in sequence i
- $s = (s1, s2, \dots s_t)$ array of motif's starting positions

-Brute-Force-Approach

Scoring of Weight Matrices

-Brute-Force-Approach

The Motif Finding Problem

- If starting positions s = (s1, s2, ... st) are given, finding consensus is easy even with mutations in the sequences because we can simply construct the profile to find the motif (consensus)
- But: the starting positions s are usually not given. How can we find the 'best' profile matrix?

-Brute-Force-Approach

The Motif Finding Problem: Formulation

- Goal: Given a set of DNA sequences, find a set of *I*-mers, one from each sequence, that maximizes the consensus score
- Input: A t × n matrix of DNA, and l, the length of the pattern to find
- Output: An array of t starting positions s = (s1, s2, ... s_t) maximizing Score(s, DNA)?

Brute-Force-Approach

Brute-Force Algorithm

One brute-force approach to solving this problem is the following:

For each sequence s_i , consider all n - l + 1 contained *l*-mers. For each such choice of *t* selected *l*-mers, compute the consensus sequence *C* and the total distance of all *t* selected *l*-mers to *C*. Return the sequence *C* with the smallest total distance. The run time of this is $O(ln^t)$.

Brute-Force-Approach

Brute-Force Algorithm

Another brute-force approach is:

For all 4^{*l*} possible *l*-mers *M*, compute the total distance of *M* to all *t* sequences. Return the *l*-mer *M* with the smallest total distance. The run time of this is $O(4^{l}n^{t})$. In both cases, the algorithm is too slow.

-Brute-Force-Approach

The Motif Finding Problem: Brute Force Solution

- Compute the scores for each possible combination of starting positions s
- The best score will determine the best profile and the consensus pattern in DNA
- The goal is to maximize Score(s, DNA) by varying the starting positions s_i, where:

$$s_i = [1, \ldots, n-l+1]i = [1, \ldots, t]$$

-Brute-Force-Approach

Scoring of Weight Matrices

- BruteForceMotifSearch(DNA, t, n, l)
- bestScore ← 0
- for each $s=(s_1, s_2, ..., s_l)$ from (1, 1..., 1)to (n-l+1, ..., n-l+1)
- if (Score(s,DNA) > bestScore)
- **bestScore** ← score(**s**, **DNA**)
- **bestMotif** \leftarrow (s_1, s_2, \ldots, s_t)
- return bestMotif

-Brute-Force-Approach

Running Time of BruteForceMotifSearch

- ► Varying (n l + 1) positions in each of t sequences, we're looking at (n l + 1)^t sets of starting positions
- ► For each set of starting positions, the scoring function makes *l* operations, so complexity is *l*(*n* − *l* + 1)^{*t*} = *O*(*ln^t*)?
- That means that for t = 8, n = 1000, l = 10 we must perform approximately 10²⁰ computations - it will take billions years

-Brute-Force-Approach

When is the Problem Solvable?

Consider the expected number of (I, d)-motifs in the problem. For simplicity, assume that the background sequences are i.i.d. Then the probability (using the Binomial distribution) that a given *I*-mer *C* occurs with up to *d* substitutions at a given position of a random sequence is:

$$p_{(l,d)} = \sum_{i=0}^{d} {l \choose i} (3/4)^{i} (1/4)^{l-i}$$

Then the expected number of length l motifs that occur with up to d substitutions at least once in each of the t random length n sequences is:

$$E(l,d,t,n) \approx 4^{l} (1 - (1 - p_{(l,d)})^{n-l+1})^{t}.$$
 (1)

-Brute-Force-Approach

When is the Problem Solvable?

- The above formulas are only an estimate since they do not model overlapping motifs, and the assumption of i.i.d. background distribution is usually incorrect.
- Nevertheless, the formula gives a good estimate of the solvability of the respective problem.
- For example, by this estimate, 20 random sequences of length 600 are expected to contain more than one (9,2)-motif by chance, whereas the chances of finding a random (10,2)-motif are less than 10⁻⁷.
- So, the (9,2) problem is impossible to solve, because "random motifs" are as likely as the planted motif.
- However, for the (10,2) the probability of a random motif occurring is very small.

-Sequence Motifs

- Phylogenetic Footprinting

Phylogenetic footprinting

enhancer in gene DACH1

- Phylogenetic Footprinting

Phylogenetic footprinting

Functional regions of DNA evolve slower than nonfunctional ones.⁷

- Consider a set of orthologous sequences from different species
- Identify unusually well conserved substrings (i.e., ones that have not changed much over the course of evolution)?

- Phylogenetic Footprinting

Small Example

Size of motif sought: k = 4

-Sequence Motifs

- Phylogenetic Footprinting

Solution

Parsimony score: 1 mutation

- Phylogenetic Footprinting

Parsimony: Sankoff-Algorithm

A dynamic programming algorithm for counting the smallest number of possible (weighted) state changes needed on a given tree

- Let Sj(i) be the smallest (weighted) number of steps needed to evolve the subtree at or above node j, given that node j is in state i. Suppose that cij is the cost of going from state i to state j.
- Initially, at tip (say) j

 $S_{j}(i) = \begin{cases} 0 & \text{if node } j \text{ has (or could have) state } i \\ \infty & \text{if node } j \text{ has any other state} \end{cases}$

- Phylogenetic Footprinting

Then proceeding down the tree (postorder tree traversal) for node a whose immediate descendants are l and r

$$S_{a}(i) = \min_{i} [c_{ij} + S_{l}(j)] + \min_{k} [c_{ik} + S_{r}(k)]$$

The minimum number of (weighted) steps for the tree is found by computing at the bottom node (0) the S₀(i) and taking the smallest of these.

-Sequence Motifs

- Phylogenetic Footprinting

-Sequence Motifs

Phylogenetic Footprinting

FootPrinter Algorithm⁸

- ► the inputs to the algorithm are *n* homologous sequences S₁, S₂,..., S_n
- the phylogenetic tree T relating them
- the length k of the motifs sought
- and the maximum parsimony score d allowed.

⁸Tompa/Blanchette Stephan Steigele

- Phylogenetic Footprinting

FootPrinter Algorithm

- ► The algorithm proceeds from the leaves of *T* to its root.
- At each node u of T, it computes a table W_u containing 4^k entries, one for each possible k-mer.
- ► For each such k-mer s, let W_u[s] be the best parsimony score that can be achieved for the subtree of T rooted at u, if the ancestral sequence at u was forced to be s.
- Let the set of children of *u* be denoted *C*(*u*); let *h*(*s*, *t*) be the number of positions at which k-mers *s* and *t* differ; and let Σ = {*A*, *C*, *G*, *T*}.

The table W_u is computed according to the following recurrence: $W_u[s] =$

$$\begin{cases} 0 \\ +\infty \\ \sum_{V \in C(u)} \min_{t \in \Sigma^k} W_v[t] + h(s, t) \end{cases}$$

if u is a leaf and s is a substring of S_u if u is a leaf and s is not a substring of S_u if u is not a leaf
Comparative Genomics

-Sequence Motifs

- Phylogenetic Footprinting

FootPrinter Algorithm⁹

 $W_u[s]$ = best parsimony score for subtree rooted at node u, if u is labeled with string s.

Stephan SteigTompa/Blanchette

- Phylogenetic Footprinting

FootPrinter Algorithm¹⁰

 $W_u[s]$ = best parsimony score for subtree rooted at node u, if u is labeled with string s.

Stephan Steige@mpa/Blanchette

-Gibbs-Sampling

Gibbs Sampling

Gibbs sampling is a well-known method for finding motifs (and/or patterns) in DNA sequences (Lawrence et al. 1993¹¹). It belongs to the alignment-based methods which

- Compute a stochastically derived multiples alignment of all sequences with the putative motif
- Compute a profile: relative frequency of A,G,C,T at each position
- Result: log-odds weight matrix

¹¹CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, JC Wootton (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208-214.

-Gibbs-Sampling

Gibbs Sampling

Gibbs sampling is a well-known method for finding motifs (and/or patterns) in DNA sequences (Lawrence et al. 1993¹¹). It belongs to the alignment-based methods which

- Compute a stochastically derived multiples alignment of all sequences with the putative motif
- Compute a profile: relative frequency of A,G,C,T at each position
- Result: log-odds weight matrix

¹¹CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, JC Wootton (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208-214.

-Gibbs-Sampling

Gibbs Sampling

- Given t sequences s₁,..., s_t, each of length n, and an integer l, the goal is to find an *l*-mer in each of the sequences s_i such that the "similarity" between these t *l*-mers is maximized.
- Let (a₁,..., a_t) be a list of *I*-mers contained in s₁,..., s_t. These form a t × I alignment matrix A.
- Let P(A) = (p_{ij}) denote the corresponding 4 × I profile, where p_{ij} denotes the frequency with which we observe nucleotide i at position j.
- Usually, we add pseudo counts to ensure that P does not contain any zeros (Laplace correction).

-Gibbs-Sampling

Greedy Profile Search

For a given profile P and an arbitrary I-mer a, consider

$$Prob(a \mid P) = \prod_{i=1}^{l} p_{a_i i},$$

the probability that *a* was generated by *P*. Any *I*-mer that is similar to the consensus string of *P* will have a "high" probability, while dissimilar ones will have "low" probabilities.

-Gibbs-Sampling

Greedy Profile Search

For example, consider *P* given by:

	1	2	3	4	5	6	7	8	9
A	.33	.60	.08	0	0	.49	.71	.06	.15
С	.37	.13	.04	0	0	.03	.07	.05	.19
G	.18	.14	.81	1	0	.45	.12	.84	.20
Т	.12	.13	.07	0	1	.03	.09	.05	.46
We c	btain:								

Prob(CAGGTAAGT | P) = 0.02417294365920Prob(TCCGTCCCA | P) = 0.0000000982800.

- Gibbs-Sampling

Greedy Profile Search

So, given a profile P, we can evaluate the probability of every *l*-mer *a* in a sequence *s* to find the *P*-most probable *l*-mer in *s*, defined as

 $a^{\star} = \arg \max Prob(a \mid P).$

This motivates a simple greedy heuristic, greedy profile search:

- Given sequences s₁,..., s_t of length n, randomly select one *I*-mer a_i for each sequence s_i and construct an initial profile P.
- ► For each sequence s_i, determine the P-most probable *I*-mer a'_i. Set P equal to the profile obtained from a'₁,..., a'_t and repeat.

-Gibbs-Sampling

Greedy Profile Search

This naive approach starts with a random *seed* profile and then attempts to improve on it using a greedy strategy. Does it work well? No.

-Gibbs-Sampling

Greedy Profile Search

This naive approach starts with a random *seed* profile and then attempts to improve on it using a greedy strategy. Does it work well? No.

-Gibbs-Sampling

Greedy Profile Search

- The number of possible seeds is huge and thus any randomly chosen seed will rarely be close to the optimum. Even if we run it many times, this approach does not work well.
- In each iteration, the greedy profile search method can change any or all *t* of the profile *l*-mers and thus will jump around in the search space.
- Gibbs sampling is similar in that it starts with a random seed profile, and the key idea is that it is then only allowed to change one *I*-mer per iteration.

-Gibbs-Sampling

Gibbs Sampling Algorithm

- ► For this we generalize the Motif Finding Problem as follows: given a multivariable scoring function f(y₁, y₂, ..., y_t), find the vector **y** that maximizes f.
- Consider a probability distribution *p* where *p* ≈ *f*. Intuitively, if *f* is relatively large at the optimum, then if we repeatedly sample from the probability distribution *p*, then we are likely to quickly encounter the optimum.
- Gibbs Sampling provides us a method of sampling from a probability distribution over a large set.

-Gibbs-Sampling

Gibbs Sampling Algorithm

- Gibbs Sampling uses the technique of Monte Carlo Markov Chain simulation.
- The idea is to set up a Markov Chain having p as its steady-state distribution, and then simulate this Markov Chain for long enough to be confident that an approximation of the steady-state has been attained.
- The final state of the simulation approximately represents a sample from the steady-state distribution that contains the maximum.

- Gibbs-Sampling

Gibbs Sampling Algorithm

Gibbs sampling operates as follows:

- 1. At the beginning of every iteration, a substring a_i of length l in each of the t sequences s_1, \ldots, s_t is chosen.
- 2. Randomly select one input sequence s_h .
- 3. Build a 4 × *I* profile *P* from $a_1, \ldots, a_{h-1}, a_{h+1}, \ldots, a_t$.
- Compute background frequencies *Q* from input sequences *s*₁,..., *s*_{*h*-1}, *s*_{*h*+1},..., *s*_{*t*}.
- 5. For each *l*-mer $a \in s_h$, compute $w(a) = \frac{Prob(a|P)}{Prob(a|Q)}$.
- 6. Set $a_h = a$, for some $a \in s_h$ chosen randomly with probability $\frac{w(a)}{\sum_{a' \in s_h} w(a')}$.
- 7. Use $a_1, a_2, \ldots, a, \ldots, a_t$ and restart with 2
- 8. Repeat until "converged"

-Gibbs-Sampling

Gibbs Sampling Algorithm

Gibbs sampling is a method that often works well in practice. However, it has difficulties finding subtle motifs.

- Also, its performance degrades if the input sequences are skewed, that is, if some nucleotides occur much more often than others. The algorithm may be attracted to low complexity regions like AAAAAAA....
- To address this problem, the algorithm can be modified to use "relative entropies" rather than frequencies.

The Gibbs sampling algorithm is very similar to the expectation maximization (EM) algorithm.

Comparative (Genomics
---------------	----------

- Distinctions

Distinctions

We can use two main components to classify motif searching algorithms.

- The first distinction can be made on whether the algorithms search in the space of starting positions, or whether they search in motif space starting from some suitable initial motifs.
- Most modern algorithms do the latter.
- The second distinction can be made upon whether the algorithms work internally with patterns or with profiles.
- The second approach has some advantages in finding motifs with many degenerate positions but are in general somewhat more costly.

The EM Algorithm

- The EM algorithm is a very general iterative algorithm for parameter estimation by *maximum likelihood* when some random variables involved are not observed, i.e. considered missing or incomplete.
- The EM algorithm follows a intuitive idea when some of the data are missing
 - replace missing values by estimated values
 - estimate parameters
 - repeat

The EM Algorithm

- the first step uses estimated parameter values as true values
- the second step uses estimated missing values as "observed" values
- they are iterated until convergence

The EM Algorithm

- The idea has been in use for many years before Orchard and Woodbury (1972) in their missing information principle provided the theoretical foundation of the underlaying idea
- The term EM was introduced in Dempster, Laird, and Rubin (1977) where proof of general results about the behavior of the algorithm was first given as well as a large number of applications.

The EM Algorithm

The EM Algorithm

We now discuss the EM algorithm in general terms.

- Suppose we are given a probability density function p(x | Θ) that depends on some parameters Θ.
- Suppose we are given measurements X = {x₁,..., x_N}. The goal of *maximum likelihood estimation* is to find parameters

 Θ that maximize:

$$p(\mathcal{X} \mid \Theta) = \prod_{x_i} p(x_i \mid \Theta) =: \mathcal{L}(\Theta \mid \mathcal{X}),$$

that is, to find

$$\Theta^* = \arg \max_{\Theta} \mathcal{L}(\Theta \mid \mathcal{X}).$$

L The EM Algorithm

The EM Algorithm

Depending on the probability density function $p(x | \Theta)$ this problem is either easy or hard. For example,

- If p(x | ⊖) is simply a Gaussian function with the parameters of ⊖ being the mean value and standard deviation,
- ► then one computes the derivative of L(Θ | X) and/or log L(Θ | X),
- sets it to zero and solves directly for the mean and standard deviation.

Note also that the k-means algorithm is a variant of the expectation-maximization algorithm in which the goal is to determine the k means of data generated from Gaussian distributions.

The EM Algorithm

The EM Algorithm

Expectation maximization (EM) is a general technique for finding the maximum likelihood estimate of the parameters of an underlying distribution from a given dataset, when the data is *incomplete* or has *missing / hidden values*.

- Assume that X is observed data that is generated by some distribution. Let us call X the *incomplete-data*.
- ► Assume that a *complete* data set Z = (X, Y) exists and has the joint density function

$$p(z \mid \Theta) = p(y \mid \Theta, x)p(x \mid \Theta).$$

Comparativ	e Genomics
------------	------------

- The EM Algorithm

The EM Algorithm

We define the complete-data likelihood function as:

$$\mathcal{L}(\Theta \mid \mathcal{Z}) = \mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y} \mid \Theta).$$

This is a *random variable*, as \mathcal{Y} is unknown, random and assumed to be governed by some underlying distribution. Thus, we can think of this likelihood as a function of \mathcal{Y} :

$$\mathcal{L}(\Theta \mid \mathcal{X}, \mathcal{Y}) = h_{\mathcal{X}, \Theta}(\mathcal{Y}),$$

where \mathcal{X} and Θ are constant and \mathcal{Y} is a random variable.

L The EM Algorithm

The EM Algorithm

EM alternates between performing an

- expectation (E) step, which computes an expectation of the likelihood by including the latent variables as if they were observed,
- and a maximization (M) step, which computes the maximum likelihood estimates of the parameters by maximizing the expected likelihood found in the E step

The parameters found in the M step are then used to begin another E step, and the process is repeated.

The EM Algorithm

The EM Algorithm

E-step: Find the expected value of the complete-data log-likelihood $p(\mathcal{X}, \mathcal{Y} | \Theta)$ with respect to the unknown data \mathcal{Y} and the current parameter estimates. That is, define:

$$Q(\Theta, \Theta^{(i-1)}) = \mathbb{E}[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta^{(i-1)}],$$
(2)

where $\Theta^{(i-1)}$ are the current parameter estimates and Θ are the new parameters that we will optimize to increase Q. Note that \mathcal{X} and $\Theta^{(i-1)}$ are constants, \mathcal{Y} is a random variable governed by $f(\mathbf{y} \mid \mathcal{X}, \Theta^{(i-1)})$ and Θ is a normal variable that we seek to adjust.

Comparative C	aenomics
---------------	----------

- The EM Algorithm

The EM Algorithm

The equation above can be rewritten as:

$$\mathbb{E}[\log p(\mathcal{X}, \mathcal{Y} \mid \Theta) \mid \mathcal{X}, \Theta^{(i-1)}] =$$

$$\int_{\mathbf{y}\in\mathbf{Y}}\log p(\mathcal{X},\mathbf{y}\mid\Theta)f(\mathbf{y}\mid\mathcal{X},\Theta^{(i-1)})d\mathbf{y}.$$

Here we integrate over all possible values of *y*. This is a deterministic function that could be maximized if desired.

Com	parative	Genomi	ics
-----	----------	--------	-----

The EM Algorithm

The EM Algorithm

M-Step: Maximize the expectation that we computed in the first step. That is, find:

$$\Theta^{(i)} = \arg \max_{\Theta} Q(\Theta, \Theta^{(i-1)}).$$
 (3)

- If we choose Θ⁽ⁱ⁾ = arg max_Θ Q(Θ, Θ⁽ⁱ⁻¹⁾) we will always make the difference positive and thus the likelihood of x under the new model unless Θ⁽ⁱ⁾ = Θ⁽ⁱ⁻¹⁾.
- The two steps are repeated as necessary.
- The algorithm is guaranteed to converge to a local maximum.

The EM Algorithm

- Hence, as indicated in the beginning, we first replace the missing values y by estimated values (called *E-step*).
- Then we compute a new parameter set using the estimated y values as observed values. To do this, we maximize Q(⊖, ⊖⁽ⁱ⁻¹⁾) with respect to ⊖ (called the *M*-step).

Comparative	Genomics
-------------	----------

The EM Algorithm

The EM Algorithm

Lets look at a small example in the context of motif finding. Assume we are given the data $x = x_1, x_2, x_3$ as follows. It is the observed data.

1 2 3 4 5 6x_1 = A C A G C A x_2 = A G G C A G x_3 = T C A G T C

We are missing the start positions z_{ij} of the hidden motif (which one is it?) and want to represent them by a matrix *w* where w_{ij} is the probability that the pattern starts at position *j* in sequence *i*.

The EM Algorithm

The EM Algorithm

Assume that a motif finding algorithm resulted in the following model parameters Θ which in our case is a $4 \times (l+1)$ matrix *p* describing

- in the 0th column the background probabilities of the 4 nucleotides
- and in the other I positions the probabilities that a certain letter is in the motif.

Com	parative	Genomi	ics
-----	----------	--------	-----

The EM Algorithm

The EM Algorithm

Assume that our motif has length three and is

We use this initial guess now to estimate the missing data *w*. Using Bayes rule and assuming that all starting positions are equally likely we can write

$$w'_{ij} = P(z_{ij} = 1 | x, p) = \frac{P(x | z_{ij} = 1, p)}{\sum_{k=1}^{4} P(x | z_{ik} = 1, p)}$$

The EM Algorithm

The EM Algorithm

This yields the following matrix w:

0.0520 0.7790 0.0130 0.1558 0.1108 0.0416 0.0166 0.8390 0.0170 0.8547 0.0427 0.0855

Now we estimate the missing data using our initial model. We can then refine the model by assuming the probabilities for the motif starting positions are correct.

The EM Algorithm

The EM Algorithm

- If we ask now about the probability of each letter we can re-estimate the new model by updating the frequencies of each letter with the weights given by w.
- For example for the first pattern position being a c we add $w_{1,2} + w_{2,4} + w_{3,2}$ to the previous frequency, that is $p'_{1,1} = 0.7790 + 0.8390 + 0.8547 + 0.3$ and so on.

Then the new frequencies need to be normalized, that is $p_{1,1} = \frac{p'_{1,1}}{\sum_i p'_{i,1}}.$

Comparative Genomics

-Sequence Motifs

The EM Algorithm

The EM Algorithm

This results in:

0 1 2 3 A 0.079 0.742 ... C 0.692 0.110 ... G 0.150 0.077 ... T 0.079 0.071 ...

As one can see the new model tends to model the motif CAG quite well.

- The Projection Algorithm

The Projection Algorithm

In the Planted (I, d)-Motif Problem assume the motif is ACAGGATCA

The following 4 sequences now each contain a planted version of this motif:

AGTTATCGCGGCACAGGCTCCTTCTTTATAGCC ATGATAGCATCAACCTAACCCTAGATATGGGAT TTTTGGGATATATCGCCCCTACACAGGATCACT GGATATACAGGATCACGGTGGGAAAACCCTGAC When we now have a closer look at the four morif variants we notice that some variants fully agree on a subset of the positions of the full motif:

> ACAGGCTCC AtAGCATCA ACAGGATCA ACAGGATCA

The Projection Algorithm

The Projection Algorithm

The key idea is now to choose *k* positions in an *l*-mer, concatenate them to form a *k*-mer. Then this *k*-mer is a projection of the *l*-mer in the Hamming space: $ACAGGATCA \xrightarrow{P} AAGTC$
— The Projection Algorithm

The Projection Algorithm

To address the Planted (I, d)-Motif Problem,

- the key idea of this method is to choose k of l positions at random,
- ► then to use the k selected positions of each *l*-mer x as a hash function h(x).
- When a sufficient number of *I*-mers hash to the same bucket, it is likely to be enriched for the planted motif *M*:

Comparative Genomics

-Sequence Motifs

- The Projection Algorithm

d = 3 substitutions and *o*'s mark the k = 2 positions used in hashing.)

— The Projection Algorithm

The Projection Algorithm

- Like many probabilistic algorithms, the Projection algorithm performs a number of independent trials of a basic iteration.
- In each such trial, it chooses a random projection h and hashes each *l*-mer x in the input sequences to its bucket h(x).
- Any hash bucket with sufficiently many entries is explored as a source of the planted motif, using a series of refinement steps, as described below.

— The Projection Algorithm

Random Projections

- Choose k of the l positions at random, without replacement.
- ► For an *l*-mer x, the hash function h(x) is obtained by concatenating the selected k residues of x.
- Viewing x as a point in *I*-dimensional Hamming space, h(x) is the projection of x onto a k-dimensional subspace.
- ► If *M* is the (unknown) motif, then we call the bucket with hash value *h*(*M*) the *planted* bucket.

— The Projection Algorithm

Random Projections

- ► The key idea is that, if k < l d, then there is a good chance that some of the t planted instances of M will be hashed to the planted bucket, namely all planted instances for which the k hash positions and d substituted positions are disjoint.</p>
- So, there is a good chance that the planted bucket will be enriched for the planted motif, and will contain more entries than an average bucket.

Comparative Genomics

-Sequence Motifs

- The Projection Algorithm

Example

$$\begin{array}{l} \text{Given the sequences} \left\{ \begin{array}{c} 1234567\\ s_1 & \text{cagtaat}\\ s_2 & \text{ggaactt}\\ s_3 & \text{aagcaca} \end{array} \right\} \text{ and the (unknown)} \\ (3,1)\text{-motif } M = \text{aaa.} \end{array}$$

Hashing with k = 2 produces the following hash table:

h(x)	pos.	h(x)	pos.	h(x)	pos.
aa	(1,5), (2,3), (3,1)	cg		gt	(1,3)
ac	(2,4), (3,5)	ct	(2,5)	ta	(1,4)
ag	(1,2), (3,2)	ga	(2,2)	tc	
at	(1,6)	gc	(3,3)	tg	
ca	(1,1), (3,4), (3,6)	gg	(2.1)	tt	(2,6)
~~					

The motif *M* is planted at positions (1, 5), (2, 3), (3, 1) and (3, 5) and in this example, three of the four instances hash to the planted bucket h(M) = aa.

- The Projection Algorithm

Finding the Planted Bucket

- Obviously, the algorithm does not know which bucket is the planted bucket.
- So, it attempts to recover the motif from every bucket that contains at least s elements, where s is a threshold that is set so as to identify buckets that look as if they may be the planted bucket.
- In other words, the first part of the Projection algorithm is a heuristic for finding promising sets of *l*-mers in the sequence. It must be followed by a refinement step that attempts to generate a motif from each such set.

The Projection Algorithm

Choosing the Parameters

The algorithm has three main parameters:

- ▶ the projection size k,
- the bucket (inspection) threshold s, and
- ▶ and the *number of independent trials m*.

In the following, we will discuss how to choose each of these parameters.

- The Projection Algorithm

Choosing the Parameters

The algorithm has three main parameters:

- ▶ the projection size k,
- the bucket (inspection) threshold s, and
- ▶ and the *number of independent trials m*.

In the following, we will discuss how to choose each of these parameters.

- The Projection Algorithm

Choosing the Parameters Projection size:

- Ideally, the algorithm should hash a significant number of instances of the motif into the planted bucket, while avoiding contamination of the planted bucket by random background *I*-mers.
- To minimize the contamination of the planted bucket, we must choose k large enough. What size must we choose k so that the average bucket will contain less than 1 random *l*-mer?

Since we are hashing t(n - l + 1) *l*-mers into 4^k buckets, if we choose *k* such that

$$4^k > t(n-l+1),$$

then the average bucket will contain less than one random *I*-mer.

The Projection Algorithm

Choosing the Parameters

For example, in the Challenge (15, 4)-Problem, with t = 20 and n = 600, we must choose k to satisfy:

$$k < l - d = 15 - 4 = 11$$
 and
 $k > \frac{\log(t(n - l + 1))}{\log(4)} = \frac{\log(20(600 - 15 + 1))}{\log(4)} \approx 6.76.$

The Projection Algorithm

Choosing the Parameters

Bucket threshold: In the Challenge Problem, a bucket size of s = 3 or 4 is practical, as we should not expect too many instances to hash to the same bucket in a reasonable number of trials.

— The Projection Algorithm

Choosing the Parameters

Number of independent trials: We want to choose *m* so that the probability is at least q = 0.95 that the planted bucket contains *s* or more planted motif instances in at least one of the *m* trials.

Let $\hat{p}(l, d, k)$ be the probability that a given planted motif instance hashes to the planted bucket, that is:

$$\hat{p}(l,d,k) = rac{\binom{l-d}{k}}{\binom{l}{k}}.$$

Then the probability that **fewer than** *s* **planted instances hash to the planted bucket in a given trial** is $B_{t,\hat{p}}(I,d,k)(s)$. Here, $B_{t,p}(s)$ is the probability that there are fewer than *s* successes in *t* independent Bernoulli trials, each trial having probability *p* of success.

- The Projection Algorithm

Choosing the Parameters

If the algorithm is run for *m* trials, the probability that *s* or more planted instances hash to the planted bucket in at least one trial is:

$$1-\left(B_{t,\hat{\rho}(l,d,k)}(s)\right)^m\geq q.$$

To satisfy this equation, choose

$$m = \left\lceil \frac{\log(1-q)}{\log(B_{t,\hat{\rho}(l,d,k)}(s))} \right\rceil.$$
 (4)

Using this criterion for *m*, the choices for *k* and *s* above require at most thousands of trials, and usually many fewer, to produce a bucket containing sufficiently many instances of the planted motif.

- The Projection Algorithm

Motif Refinement

- The main loop of the Projection algorithm finds a set of buckets of size ≥ s. In the refinement step, each such bucket is explored in an attempt to recover the planted motif.
- The idea is that, if the current bucket is the planted bucket, then we have already found k of the planted motif residues. These, together with the remaining *I* – k residues, should provide a strong signal that makes it easy to obtain the motif in only a few iterations of refinement.
- We will process each bucket of size ≥ s to obtain a candidate motif. Each of these candidates will be "refined" and the best refinement will be returned as the final solution.

- The Projection Algorithm

Motif Refinement

Candidate motifs are refined using the *expectation maximization* (EM) algorithm based on the following probabilistic model:

- An instance of some length-/ motif occurs exactly once per input sequence.
- Instances are generated from a 4 × / weight matrix model W, whose (i, j)th entry gives the probability that base i occurs in position j of an instance, independent of its other positions.
- The remaining n I residues in each sequence are chosen randomly and independently according to some background distribution.

- The Projection Algorithm

Motif Refinement

Let *S* be a set of *t* input sequences, and let *P* be the background distribution. The EM-based refinement seeks a weight matrix model W^* that maximizes the likelihood ratio

$$\frac{\operatorname{Prob}(S \mid W^*, P)}{\operatorname{Prob}(S \mid P)},$$

that is, a motif model that explains the input sequences much better than P alone.

— The Projection Algorithm

Motif Refinement

- The position at which the motif occurs in each sequence is not fixed a priori, making the computation of W* difficult, because Pr(S | W*, P) must be summed over all possible locations of the instances.
- To address this, the EM algorithm uses an iterative calculation that, given an initial guess W₀ of the motif model, converges linearly to a locally maximum-likelihood model in the neighborhood of W₀.

The Projection Algorithm

Summary of Projection Algorithm

Algorithm Projection Input: sequences s_1, \ldots, s_t , parameters k, s and mOutput: best guess motif

```
for i = 1 to m do
choose k different positions I_k \subset \{1, 2, ..., l\}
for each l-mer x \in s_1, ..., s_t do
compute hash value h_{l_k}(x)
Store x in hash bucket
for each bucket with \geq s elements do
refine bucket using EM algorithm
return consensus pattern of best refined bucket
```

Stephan Steig

- The Projection Algorithm

Performance

The following table gives an overview of the performance of PROJECTION compared to other motif finders on the (I, d)-motif problem. The measure is the *average performance* defined as $|K \cap P| / |K \cup P|$ where *K* is the set of the I_t residue positions of the planted motif instances, and *P* is the corresponding set of positions predicted by the algorithm.

	Ι	d	Gibbs	WINNOWER	SP-STAR	PROJECTION
	10	2	0.20	0.78	0.56	0.82
	11	2	0.68	0.90	0.84	0.91
	12	3	0.03	0.75	0.33	0.81
	13	3	0.60	0.92	0.92	0.92
	14	4	0.02	0.02	0.20	0.77
	15	4	0.19	0.92	0.73	0.93
	16	5	0.02	0.03	0.04	0.70
	17	5	0.28	0.03	0.69	0.93
	18	6	0.03	0.03	0.03	0.74
el	₹19	6	0.05	0.03	0 40	0.96

- Pattern Branching

Pattern Branching

Main idea:

- Pattern branching searches in the spave of motifs rather than in the space of starting positions.
- The sample-driven approaches (see the a) in the following figure) generally use random sample strings as seeds for a local search. the extended versiuon of this approach (see b)) searches the neighborhood of the samples and typically find the global optimum, albeit a large computational cost.
- The branching approach (c)) finds the optimum by a deterministically driven branching process.

Comparative Genomics

-Sequence Motifs

-Pattern Branching

Pattern Branching

(a) Sample-driven approach

(c) Branching from sample strings

-Pattern Branching

Pattern Branching

Let *M* be an unknown motif of length *I*, and let A_0 be an occurrence of *M* in the sample with exactly *k* substitutions. Given A_0 , how do we determine *M*?

- Since the Hamming distance d(M, A₀) = k, we have M ∈ D_{=k}(A₀), defined as the set of patterns of distance exactly k from A₀.
- We could look at all $\binom{l}{k} 3^k$ elements of $D_{=k}(A_0)$ and score each pattern as a guess of M.
- However, as this must be applied to all sample strings A₀ of length *I*, it would be too slow.

-Pattern Branching

Pattern Branching

The idea of the Pattern Branching algorithm is to construct a path of patterns

$$A_0 \longrightarrow A_1 \longrightarrow \ldots \longrightarrow A_k,$$

in each step, moving to the "best neighbor" in $D_{=1}(A_i)$. The pattern A_k is scored as a guess for M.

-Pattern Branching

Pattern Branching

Given a pattern *A* of length *I*, two questions must be addressed:

- How do we score A?
- How do we determine the "best neighbor" of A?

First, we score A using its *total distance* from the sample. For each sequence s_i in the sample $S = \{s_1, \ldots, s_t\}$, let

$$d(A, s_i) = \min\{d(A, P) \mid P \in s_i\},\$$

where P denotes an *I*-mer contained in s_i . Then the total distance of A from the sample is

$$d(A,S) = \sum_{s_i \in S} d(A,s_i).$$

-Pattern Branching

Pattern Branching

Given a pattern *A* of length *I*, two questions must be addressed:

▶ How do we score A?

▶ How do we determine the "best neighbor" of *A*?

First, we score *A* using its *total distance* from the sample. For each sequence s_i in the sample $S = \{s_1, ..., s_t\}$, let

$$d(A, s_i) = \min\{d(A, P) \mid P \in s_i\},\$$

where *P* denotes an *I*-mer contained in s_i . Then the total distance of *A* from the sample is

$$d(A,S) = \sum_{s_i \in S} d(A,s_i).$$

-Pattern Branching

Pattern Branching

Second, we define a *best neighbor* of *A* to be any pattern $B \in D_{=1}(A)$ with smallest total distance d(B, S). The resulting algorithm is very straight-forward:

```
Algorithm Pattern Branching(S, I, k)
Input: Sequences S, motif length I, number of substitutions k
Output: best guess motif M
Init: M \leftarrow arbitrary motif pattern
for each I-mer A_0 \in S do
for j \leftarrow 0 to k do
if d(A_j, S) < d(M, S) then M \leftarrow A_j
A_{j+1} \leftarrow BestNeighbor(A_j)
Output M
```

- Pattern Branching

Pattern Branching

To conduct a more thorough search of $D_{=k}(A_0)$, one can keep a set \mathcal{A} of r patterns at each iteration instead of a single pattern, defining BestNeighbors(\mathcal{A}) to be the set of r patterns $B \in D_{=1}(\mathcal{A})$ with lowest total distance d(B, S). Letting $\mathcal{A}_0 = \{A_0\}$, we thus have $|\mathcal{A}_0| = 1$ and $|\mathcal{A}_j| = r$ for j > 0. The algorithm returns the motif that has the smallest total distance to all input strings.

-Pattern Branching

Profile Branching

The Profile Branching algorithm is similar to the Pattern Branching algorithm. However, the search is in the space of motif *profiles*, instead of motif *patterns*. The algorithm is obtained from the Pattern Branching algorithm by making the following changes:

- 1. convert each sample string A_0 to a profile $P(A_0)$,
- 2. generalize the scoring method to score profiles,
- 3. modify the branching method to apply to profiles, and
- 4. use the top-scoring profile found as a seed for the EM algorithm.

Ste

-Pattern Branching

Profile Branching

To convert an initial sample string A_0 into a profile $P(A_0)$, the authors follow the idea of MEME¹².

Let $A_0 = a_1 \dots a_l$ be an *l*-mer of nucleotides. Then $P(A_0)$ is defined as the $4 \times l$ profile matrix (p_{vw}) which in column *w* has probability

$$p_{vw} = \left\{ egin{array}{cc} rac{1}{2} & ext{if } v = a_w, \ & \ rac{1}{6} & ext{else.} \end{array}
ight.$$

For example, for $A_0 = ACGA$ we obtain:

$$P(A_0) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline A & \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & \frac{1}{2} \\ C & \frac{1}{6} & \frac{1}{2} & \frac{1}{6} & \frac{1}{6} \\ G & \frac{1}{6} & \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ T & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

-Pattern Branching

Profile Branching

The total distance score for patterns is replaced by an entropy score for profiles:

Let $P = (p_{vw})$ be a profile and $A = a_1 \dots a_l$ a pattern. The log probability of sampling *A* from *P* is given by:

$$e(A \mid P) = \sum_{w=1}^{l} \log(p_{a_w w}).$$

For each sequence $S_i \in S = \{S_1, \dots, S_t\}$, let

$$e(S_i \mid P) = \max\{e(S_i \mid A) \mid A \in S_i\}.$$

The entropy score of P is

$$e(P,S) = \sum_{S_i \in S} e(P,S_i).$$

This value describes how well *P* matches its best occurrence in Stephane age sequence of the input

- Pattern Branching

Profile Branching

We define the *best neighbor* of a profile *P* to be the profile $Y \in \mathcal{D}_{=1}(P)$ with highest entropy e(Y, S). The Profile Branching algorithm proceeds as follows. For each

I-mer A_0 in the sample *S*, let $P_0 = P(A_0)$ and construct a path of profiles

$$P_0 \longrightarrow P_1 \longrightarrow \ldots \longrightarrow P_k,$$

by iteratively applying the best neighbor calculation for profiles. After branching for k iterations for each *l*-mer A_0 in the input sample, the EM algorithm is run to convergence on the top-scoring profile found.

-Pattern Branching

Profile Branching

The algorithm is as follows:

Algorithm Profile Branching Input: Sequences *S*, motif length *I*, number of substitutions *k* Output: best guess motif profile *P* Init: $P^* \leftarrow$ arbitrary motif profile for each *I*-mer $A_0 \in S$ do $P_0 \leftarrow P(A_0)$ for $j \leftarrow 0$ to *k* do if $e(P_j, S) < e(P^*, S)$ then $P^* \leftarrow P_j$ $P_{j+1} \leftarrow$ BestNeighbor(P_j) Run EM algorithm with P^* as seed and return result

-Pattern Branching

Profile Branching

This algorithm runs about 5 times slower than the Pattern Branching algorithm.

The Pattern Branching algorithm clearly outperforms the Profile Branching algorithm on Challenge-like problems. However, pattern-based algorithms have difficulties finding motifs with many degenerate positions.

- Pattern Branching

Software

Gibbs based:

http://bayesweb.wadsworth.org/gibbs/gibbs.html
MEME (Multiple Expectation maximization for Motif Elicitation):
http://meme.sdsc.edu/meme/intro.html
Pattern/Profile Branching:

http://www-cse.ucsd.edu/groups/bioinformatics/softw