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ABSTRACT

Motivation The function of an RNA molecule is not only linked to its

native structure, which is usually taken to be the ground state of its

folding landscape, but also in many cases crucially depends on the

details of the folding pathway such as stable folding intermediates or

the timing of the folding process itself. To model and understand these

processes, it is necessary to go beyond ground state structures. The

study of rugged RNA folding landscapes holds the key to answer

these questions. Efficient coarse-graining methods are required

to reduce the intractably vast energy landscapes into condensed

representations such as barrier trees or basin hopping graphs that

convey an approximate but comprehensive picture of the folding

kinetics. So far, exact and heuristic coarse-graining methods have

been mostly restricted to the pseudoknot-free secondary structures.

Pseudoknots, which are common motifs and have been repeatedly

hypothesized to play an important role in guiding folding trajectories,

were usually excluded.

Results We generalize the basin hopping graph framework to

include pseudoknotted RNA structures and systematically study

the differences in predicted folding behavior depending on

whether pseudoknotted structures are allowed to occur as folding

intermediates or not. We observe that RNAs with pseudoknotted

ground state structures tend to have more pseudoknotted

folding intermediates than RNAs with pseudoknot-free ground

state structures. The occurrence and influence of pseudoknotted

intermediates on the folding pathway, however, appear to depend

very strongly on the individual RNAs so that no general rule can be

inferred.

Availability The algorithms described here are implemented in C++

as standalone programs. Its source code and supplemental material

can be freely downloaded from

http://www.tbi.univie.ac.at/bhg.html.

Contact qin@tbi.univie.ac.at

Keywords RNA, pseudoknots, folding landscape, kinetics, basin
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1 INTRODUCTION

Beyond the role as carriers of genetic information, RNA molecules

often play much more active roles in regulating gene expression,

intracellular transport, and even as catalysts (Cech & Steitz, 2014).

More often than not, these functions are associated with the RNAs’

ability to undergo specific conformational changes, as is the case for

riboswitches. The function of an RNA molecule thus is often poorly

described by its ground state structure and instead has to be studied

as a dynamic ensemble of structures (Onoa & Tinoco I, 2004; Dirks

et al., 2004). Quantities of biological interest include folding times,

life times of meta-stable states, and folding pathways. Riboswitches

that control transcription, for example, often function through finely

balanced time-scales of transcriptional elongation and formation of

a terminator hairpin structure (Barrick & Breaker, 2007). These

relevant kinetic parameters can in principle be derived from the

folding landscapes.

The most direct way of dealing with the ensemble aspect of an

RNA is to enumerate its entire energy landscape. In addition to the

list of conformations, the landscape picture emphasizes a notion

of adjacency between RNA structures. In most cases, opening or

closing of a single base pair is taken to be the elementary operation,

and thus as the definition of adjacency between two structures

(Flamm et al., 2000a). The dynamics of folding is then modeled

as a Markov process of transitions between adjacent conformations

with transition rates estimated from energy differences using e.g. the

Metropolis rule (Flamm et al., 2000a; Xayaphoummine et al., 2007;

Smit et al., 2007).

Except for very short RNAs, this approach is not feasible

in practice because the number of secondary structures grows

exponentially with sequence length (Hofacker et al., 1996). The

dynamic programming algorithms for finding the ground state or

evaluating the partition function can be modified to enumerate only

the lowest energy states (Wuchty et al., 1999). Even so, condensed

representations are required to gain insights into the properties

of the energy landscapes that are relevant for the definition of

folding pathways and the interpretation of folding kinetics. The

first representation of this type is a barrier tree with local minima

as leafs and saddle points as interior nodes. This notion has
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implemented in the program RNAlocmin. (2) Direct saddle

connections between LMs are constructed by a heuristic that

iteratively improves initial paths and expands the initial LM set

by additional indispensable intermediate LMs. Both construction

procedures can be generalized to structures with pseudoknots in

a conceptually straightforward manner. On the technical side,

however, we encounter non-trivial problems.

Since the inclusion of pseudoknots dramatically enlarges the

search space, exhaustive enumeration is not feasible in practice,

hence we have to generalize RNAlocmin for pseudoknotted

structures. RNAlocmin works by producing a Boltzmann-

weighted sample of initial structures generated by stochastic

backtracking. To our best knowledge, the only tool that does

Boltzmann sampling of structures with pseudoknots is gfold

(Reidys et al., 2011). Its sampling space is restricted to a class of

pseudoknotted structures which are characterized by the topological

genus to be 1 as their “elementary” components and therefore

referred to as “1-structures”. This class comprises the four basic

types of pseudoknots shown in Fig. 1 – the most common H-type

and kissing hairpin (K-type) together with more exotic L-type and

M-type pseudoknots. It includes virtually all pseudoknot structures

that have been discovered so far (Bon et al., 2008). The Boltzmann

sampling from 1-structures is computationally demanding. It takes

O(n6) time to computed the partition function and then O(n5)
time to sample a single structure of length n. This first step

is asymptotically optimal. The sampling step could probably

be expedited considerably e.g. using the boustrophedon method

(Ponty, 2008). In practice, our current implementation is limited

to an RNA of length ∼ 130 nt. In SM Part B, we summarized the

technical adaptations that had been made to ensure the consistency

of the energy model within our BHG framework.

Gradient walks and connecting paths are also more difficult

to implement for pseudoknotted structures. The key issue is to

determine whether the insertion of a base pair leads outside the

class of 1-structures. The corresponding problem for secondary

structures is simple: it suffices to check whether the proposed extra

base pair crosses an existing base pair or not. For 1-structures, we

construct the conflict graphs whose vertices are the helices. An

edge connects two helices whenever they cross. For a 1-structure,

its conflict graph consists of isolated vertices and the four types of

connected components shown in Fig. 1 bottom. Relatively simple

manipulations of conflict graphs can be used to decide efficiently

whether a particular base pair can be added. For details, we refer to

SM Part B.

In order to determine the BHG-adjacency between LMs, we

extended the findpath heuristic (Flamm et al., 2000b) to compute

near optimal folding paths involving pseudoknotted structures.

Allowing pseudoknots should always result in lower or equal barrier

heights. However, since the accuracy of the findpath heuristic

decreases as the landscape grows, its estimation results can in

rare cases be slightly worse than the original (pseudoknot-free)

findpath. We will return to this point in Section 3.1.

2.2 RNA folding kinetics

From a microscopic point of view, the dynamics on an RNA

folding landscape can be described by a continuous-time Markov

process with infinitesimal generator R = (ryx) (Flamm et al.,

2000a). The transition rate ryx from a secondary structure x to

y is non-zero only if x and y are adjacent, i.e., if they differ by

adding/removing a single base pair. Typically the Metropolis rule,

ryx = r0 min{exp {−(f(y)− f(x))/RT}, 1}, is used to assign

microscopic rates. Here, f evaluates the (free) energy of x, R is the

universal gas constant, T is the absolute ambient temperature and r0
is a parameter used to gauge the time axis from experimental data.

Here we simply use r0 = 1, implicitly defining our time unit. On the

BHG, we use the Arrhenius approximation. For two adjacent LMs

x and y with saddle height S(x, y) between them we set

rxy = exp (−(S(x, y)− f(y))/RT ) . (2.1)

For all other pairs of LMs, rxy = 0. Kinetic trajectories

are computed by numerically computing the matrix exponential

exp(tR). We have shown already in previous work that the

Arrhenius formula on BHG is an excellent approximation of the

dynamics on all time scales (Kucharı́k et al., 2014). Analogous

validation data are given in SM Part C.

The number of LMs in the energy landscape of randomly

generated RNA sequences grows roughly as the square root of

the total number of structures (Lorenz & Clote, 2011). Most of

these LMs, however, contribute only to fast fluctuations because

they have narrow basins and low barriers. We therefore adopt the

quasi-steady-state (QSS) strategy (Schuster & Schuster, 1989; Rao

& Arkin, 2003) to reduce our model complexity. The key idea is

to reduce the dimension of the model by removing intermediate

QSS and to update the transition rates between the remaining states

if correlated. To this end, one assumes that population of a QSS

remains unchanged over the time of the simulation. In general,

the a priori identification of QSS intermediates is a hard problem.

Here, however, we can simply use the degree of LMs in the BHG:

LMs with low degree are typically intermediates of quick folding

pathways between LM with primary function and their population

stays extremely low during whole simulation. Further technical

details can be found in SM Part D. Throughout this contribution,

the state spaces of the examples are pruned to at most 5000 LMs.

For clarity, an LM is included in a visualization only if its population

exceeds 7% at some time during the simulation.

3 RESULTS AND DISCUSSION

3.1 Pseudoknotted LMs’ role in folding

We first analyze the composition of the LMs in the “lower” part

of the energy landscapes of RNA molecules, which we take here

as structures within 10 kcal/mol above the minimal free energy of

the whole landscape. We contrast RNAs with pseudoknots in their

ground state selected from Pseudobase++, (Han et al., 2002;

Taufer et al., 2009) and pseudoknot-free structures from the RNA

STRAND database (Andronescu et al., 2008). In addition, we select

the molecules such that their MFE structures predicted by gfold

have both sensitivity and PPV beyond 80%, so that effects caused

by the prediction software can be limited. A statistic summary of

the selected RNAs is provided in Table 2, SM Part E.

In SM Table 3, we report the composition of the LMs obtained by

gradient walks starting from gfold-sampled structures. Analogous

result of these sampled structures is summarized in SM Table 4.

In our test set, LMs with pseudoknots occupy on average about

75% of LMs included in the BHG if the ground states contains

pseudoknots. For RNAs with pseudoknot-free ground states, only
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