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ABSTRACT
Motivation RNA folding is a complicated kinetic process. The
minimum free energy structure can only provide a static view of
the most stable conformational state of the system. Thus simply
prediction of such a structure is insufficient to provide detailed insights
into the dynamic behavior of RNAs. A sufficiently sophisticated
analysis of the folding free energy landscape, however, can provide
the relevant information.
Results We develop algorithms to euclidate the folding landscapes
of RNA molecules with a novel coarse-grained model we call basin
hopping graph (BHG). Each vertex of the BHG is a local minimum,
which represent the corresponding basin in the landscape. Its
edges connect basins when the direct transitions between them
are “energetically favorable”. The weights on the edges are the
corresponding saddle heights and thus measure the difficulties of
these favorable transitions. BHGs can be approximated efficiently and
with high accuracy for RNAs well beyond the length range accessible
to enumerative algorithms.
Availability The algorithms described here are implemented in
C++ as standalone programs. The source code, a tutorial, and
supplemental material can be freely downloaded from http://www.

tbi.univie.ac.at/bhg.html.
Contact qin@bioinf.uni-leipzig.de

Keywords RNA folding landscape, basin hopping graph, local
minimum, saddle, local minimum generation, direct saddle, free
energy barrier, optimal refolding path

1 INTRODUCTION
An emerging theme is that much of RNA’s functional complexity
is rooted not only in the details of its intricate 3D structure
but also equally in its ability to adaptively acquire very distinct
conformations on its own or in response to specific cellular signals
including the recognition of proteins, nucleic acids, metal ions,
metabolites, vitamins, changes in temperature, and even RNA
biosynthesis itself. These conformational transitions are spatially

and temporally tuned to achieve a variety of functions. The most
obvious examples are riboswitches (Baumstark et al., 1997; Perrotta
& Been, 1998; Schultes & Bartel, 2000) and RNA thermometers
(Klinkert & Narberhaus, 2009; Narberhaus et al., 2006). The
knowledge of the intricate 3D structure alone is insufficient.

The intricate structures of RNAs are typically modeled to
a reasonable approximation in terms of secondary structures
(Thirumalai et al., 2001). This is because on one hand, the
thermal melting data (thermodynamic free energy model) of
secondary structures has been interpreted by a nearest-neighbor
model (Mathews et al., 1999, 2004) and form the basis for widely
used structure prediction algorithms that predict secondary structure
with reasonable accuracy (Hofacker, 2003; Zuker & Sankoff, 1984;
Zuker, 2003). In particular, the partition function of the Boltzmann
ensemble of secondary structures for a given RNA sequence
can be computed in cubic time using a well-known dynamic
programming approach (McCaskill, 1990). Thus, a stochastic
bracktracing algorithm (Ding & Lawrence, 2003) can be used
to produce representative structures and to generate Boltzmann-
weighted samples to assess complex structural features like base
pair probabilities. On the other hand, the prediction of RNA
structures including tertiary contacts a subject of utmost importance
and difficulty in computational biology. The existing prediction
softwares (Rivas & Eddy, 1999; Smit et al., 2009; Das & Baker,
2007; Rother et al., 2011) remain time consuming and technically
challenging since the predictive thermodynamic free energy models
that exist for secondary structure have not been developed for
tertiary structure. In particular, the problem of predicting RNA
secondary structures with pseudoknots has been shown to be NP-
complete even in a toy version of the nearest-neighbor model
(Maňuch et al., 2011). For this reason, in the main text of this
contribution, we focus on the Boltzmann ensemble of secondary
structures for a given RNA sequence. However, considering the
structural importance of pseudoknots, as well to show that the
general mechanism of our software can be adapted to handle such a
problem, we demonstrate more details in Part H of our supplement.

In the following, we simply mention energy instead of free
energy for the brevity of the text. The kinetic process of RNA
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Fig. 1. (A) Adjacency in an RNA folding landscape is encoded by
insertion or deletion of a single base pair. The underlying graph
of an RNA folding landscape is connected due to the existence
of the particular valid secondary structure which contains no base
pair (open structure). (B) Schematics representation of an energy
landscape and its associated barrier tree. Local minima are labeled
with numbers (1-5), saddle points with lowercase letters (a-d). The
global minimum is marked with an asterisk.

folding can be described as a dynamic process in the molecule’s
energy landscape (Flamm et al., 2002). The energy landscape is a
particular network whose vertices represent the possible structures
and whose edges connect structures that can be interconverted by
elementary rearrangements, typically the opening or closing of
individual base pairs. For each structure as a vertex in the landscape,
its energy is evaluated based on the thermodynamic energy model
(Mathews et al., 1999) for characterizing its dynamical state.
Thus the transition rates between adjacent secondary structures
can be determined in a Metropolis manner (Flamm et al., 2000;
Xayaphoummine et al., 2007). In this setting, the RNA folding
process is viewed as a Markov chain and the transition rates between
two adjacent structures in the landscape are related with their energy
differences. Typically, different structural transitions are of different
rates as observed by Smit et al. (2007), which is consistent with the
thermodynamic pictures: the equilibrium distribution of this Markov
process coincides with the Boltzmann distribution on the secondary
structures.

The number of different secondary structures, however, makes
it impossible to enumerate the entire landscape except for very
short sequences, so that one has to resort to coarse grained
approximations. The barrier tree of the landscape, Fig. 1(B),
encodes the local minima and their connecting energy barriers. It
is maybe the most natural construction of this type. The idea to
elucidate the basin structure of a landscape by means of a barrier tree
has been developed independently in different contexts, including
potential energy surfaces for protein folding (Wales, 2011; Garstecki
et al., 1999), spin glasses (Klotz & Kobe, 1994) and molecular
clusters (Doye et al., 1999). The exact computation of barrier trees
in general requires the enumeration of the landscape. For RNA
secondary structures, a modification of the backtracing step in the
dynamic programming folding algorithm can be used to enumerate
only the lowest-lying fraction of the landscapes (Wuchty et al.,
1999). However, even within this favorable setting, barrier trees are
accessible only for RNA molecules with up to about 100 nt.

An alternative to the exact construction of barrier trees is the
use of heuristic approaches. For example, Tang et al. (2008)
adopted computational techniques for motion planning in robotics
to obtain an approximated representation of the RNA folding
landscape. A different type of coarse graining can be obtained
by conditioning the folding algorithms on the distances from two
reference points, resulting in a kind of two-dimensional “projection”

of the landscape (Lorenz et al., 2009). Heuristic methods are also
utilized to (locally) navigate the optimal folding path between two
given structures. For instance, findpath (Flamm et al., 2000) is a
very fast algorithm that produces excellent quality direct pathways
based on the Morgan-Higgs algorithm (Morgan & Higgs, 1998).
Furthermore, RNAtabupath (Dotu et al., 2010) and its related
web server, RNApathfinder employed a tabu semi-greedy
heuristic to determine nearly optimal folding pathways between
two given secondary structures. Lorenz et al. (2009) developed a
heuristic algorithm PathFinder based on their two-dimensional
“projection” of the landscape.

The difficult part in computing coarse graining models such as
barrier trees, is to determine the saddle points. The local minima,
on the other hand can be obtained efficiently by means of modified
dynamic programming algorithms. This was demonstrated first by
Clote (2005) with respect to the Nussinov-Jacobson energy model
and later extended to to the Turner energy model by Lorenz &
Clote (2011). Their extension of McCaskill’s algorithm can be
used to generate Boltzmann-weighted samples of local minima.
Empirically, they find that the number of local optima is roughly
the square root of the number of secondary structures, i.e., it grows
exponentially with chain length. Exact combinatorial results have
been derived by (Fusy & Clote, 2012) for the base stacking energy
model, which is a mild variant of the Nussinov model, where each
stacked base pair contributes -1 toward the energy of the structure.

For larger RNAs, hence, one still has to resort to sampling.
Boltzmann-weighted samples are not necessarily the most efficient
way to explore the basin structure of the landscape because they
are strongly biased towards usually small fraction of low energy
structures. Sahoo & Albrecht (2012) thus considered a stochastic
sampling method to obtain local minima within a prescribed
distance of a reference structure: random structures are iteratively
improved by gradient (down-hill) walks until local minima are
reached. Such samples can be used to estimate the number of total
local minima following the arguments of Garnier & Kallel (2000).

The rest of the paper is organized as following. In Section 2.1 and
2.2, we first introduce the basic concepts and existing results in the
field of RNA folding landscapes. In Section 2.3, We introduce the
“basin hopping graph” as a new coarse graining model of the energy
landscape and then describe algorithms for its construction. In
Section 3 we present and discuss our experimental results. Section 4
summarizes the paper and suggests directions for future work.

2 THEORY

2.1 RNA folding landscapes
Given an RNA sequence σ, let X = Xσ denote the set of all secondary
structures that can be formed by σ assuming that (1) only canonical (GC,
AU, and GU) base pairs are formed, (2) base pairs do not cross, i.e.,
pseudoknots are not formed, (3) hairpin loops have a minimum length of
3. These conditions are the ones defining the ensemble of structures also
using in the most commonly used RNA folding tools including mfold
(Zuker & Sankoff, 1984) and the ViennaRNA Package (Hofacker et al.,
1994; Lorenz et al., 2011). It is well known that the cardinality |Xσ | grows
exponentially with the length of σ (Hofacker et al. (1996) and the references
therein) provided the stickiness of σ, i.e., the probability that two arbitrarily
chosen nucleotides in σ can form a base pair, is relatively large. This is true
for most biological RNA sequences, since for which the values of stickiness
are around 0.375 (Hofacker et al., 1994).
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Fig. 2. A landscape with four local minima (A, B, C, and D)
is illustrated in the left hand side. Its corresponding barrier tree
(top) and basin hopping graph (bottom) are shown on the right
hand side with saddle heights annotated inside. For any pair of
local minima, their corresponding saddle heights are all equal to
0 kcal/mol. Regarding direct saddle heights, expect DS(A,D) =
DS(B,C) = 0.5kcal/mol, the rest are all of value 0 kcal/mol. One
key difference is the energetically favorable neighborhood relation
between the basins, can be displayed in the basin hopping graph, but
not in the barrier tree.

This set of discrete conformations is arranged as a graph by defining a
“move set”, i.e. by specifying which pairs of secondary structures can be
interconverted in a single step (Reidys & Stadler (2002) and the references
therein). Fig. 1 (A) gives a simple example. Each vertex of the RNA folding
landscape, i.e., each RNA secondary structure x, is associated with an energy
f(x). A well-established energy model allows us to explicitly compute f(x)

for every structure s in terms of additive contributions for base pair stacking
as well as hairpin loops, interior loops, bulges, and multiloops (Mathews
et al., 1999).

2.2 Local minima, saddles, and basins
A secondary structure x ∈ X is a local minimum (LM) of the landscape
if it does not have neighbors with lower energy. In particular, x is a global
minimum or a minimum free energy structure (MFE) if its energy is minimal
within X . For each LM x we define its gradient basin G(x) ⊂ X as the set
of structures z ∈ X so that the unique gradient walk with starting point in z
ends in x. We note for later reference that the gradient basins of all the LMs
in the RNA folding landscape forms a partition of its configuration spaceX .
This partitioning forms an intuitive coarse-grained model of the landscape.

An important concept for our own approach is the direct saddle. A direct
saddle between two LMs x and y is a structure s ∈ X with minimal energy
so that both x and y are reachable from s by means of an adaptive walk. We
call DS(x, y) = f(s) the direct saddle height between x and y. Not every
pair of LMs is connected by direct saddles. However, the graph consisting
of LMs and their connections by direct saddles is always connected (see
supplementary material (SM) Part A) (Klemm et al., 2014).

The cycle Bh(x) of x at energy level h can be defined as a maximal
connected subset of {z ∈ X|f(z) ≤ h} that contains x. In other worlds,
Bh(x) is the set of structures found by a flooding algorithm starting at x
(Sibani et al., 1999; Flamm et al., 2000, 2002). In particular, the basin
B(s) = Bf(s)(s) of s (Flamm et al., 2002) is the set of all points in X
that can be reached from s by a path whose elevation never exceeds f(s).

The saddle height S(x, y) between any two vertices x and y is the
minimal value h for which y ∈ Bh(x). In other words, S(x, y) is the
level at which two cycles Bh(x) and Bh(y) “merge”. If x and y are LMs
connected by a direct saddle point then S(x, y) ≤ DS(x, y). A structure
s ∈ X is called a saddle between x, y ∈ X if (i) f(s) = S(x, y) and
(ii) there is a path P connecting x and y so that f(s) ≥ f(z) for all
z ∈ P . A path P ∗ connecting x and y in the landscape is energetically
optimal if maxz∈P∗ f(z) = S(x, y). Energetically optimal paths are not
necessarily unique (SM Part C). For RNA folding landscapes, the problems

of computing saddle heights, saddle points and energetically optimal path
are NP-hard (Maňuch et al., 2011).

It has been proven in (Flamm et al., 2002) for any two saddles s′ and s′′

eitherB(s′) ⊆ B(s′′),B(s′′) ⊆ B(s′), orB(s′′)∩B(s′) = ∅ is satisfied,
i.e., the basins below saddles of a landscape form a hierarchy with respect to
set inclusion order (see SM Part B). Since the landscape is connected, this
hierarchical structure is naturally represented by a tree called barrier tree
(Flamm et al., 2002; Wolfinger et al., 2004). The leafs and interior nodes of
this tree correspond to the LMs and their saddle points, respectively.

The barrier tree can be computed using a flooding algorithm (Sibani et al.,
1999; Flamm et al., 2000) implemented e.g. in the program barriers
(Flamm et al., 2002). It takes an energy sorted list of structures as input.
This list may contain either all structures or only the structures below
some threshold energy. The only part of barriers that relies on the
geometric properties of the configuration space is the routine that generates
all neighbors of each structure in the list. Therefore, barriers has a
time complexity of O(∆ × K), where ∆ denotes the maximum number
of neighbors for a structure in the landscape and K denotes the number
of structures in the input list. For the technical complications arising from
degeneracy in the landscape see Flamm et al. (2002).

The barrier tree abstraction has two major disadvantages: (1) It neglects
much of the geometric information of the folding landscape since the
neighborhood relation between basins is ignored as illustrated in Fig. 2.
(2) The high computational cost makes it unfeasible in practice for RNA
molecules with a length higher than 100 nucleotides (nt).

2.3 The Basin Hopping Graph
2.3.1 Definition The basin hopping graph (BHG) has been devised to
overcome these shortcomings. The basic idea is to incorporate additional
neighborhood information by considering LMs as adjacent if the transition
between their corresponding basins are “energetically optimal”. For two
given LMs x and y, the condition energetically optimal requires that their
direct saddle height is equal to their saddle height, i.e. DS(x, y) = S(x, y).
A schematic diagram of BHG for a toy landscape is illustrated in Fig. 2. In
which, the transition from A to B on Fig. 2 is energetically optimal, since
S(A,B) = DS(A,B) = 0, but the transition from A to D is not, since
1 = DS(A,D) > S(A,D) = 0.

The reason that we focus on the energetically optimal transitions is, on one
hand, as proven in SM Lemma 1, for any given pair of local minima x and
y, their energetically optimal paths can be represented into a concatenation
of energetically optimal transitions between neighbored basins. Use Fig. 2
as an example, there are two energetically optimal paths between A and
D: A → B → D and A → C → D are exactly composed by optimal
transitions between neighbored basins (A,B), (B,D), (A,C) and (C,D).

On the other hand, a key observation is that the “energetically optimal”
transitions are usually rare and hence the BHG is a fairly sparse graph.
Therefore, BHG may be the minimal “information container” which is able
to track the energetically optimal paths between any two local minima in the
RNA landscape. We have shown in Fig. 2 that barrier tree is failed to track the
optimal path between A and D. In SM Part C, we further prove inductively
that the barrier tree is equivalent to the dendrogram obtained from the BHG
by single linkage clustering.

The BHG could be constructed by enumeration and flooding in a manner
very similar to the barrier tree. Instead, we describe an efficient heuristic that
allows to overcome the stringent length restrictions imposed by enumerative
approaches. The procedure consists of two largely independent components:
(1) The RNAlocmin programs generates a sample set of LMs within a
user-defined energy range above the MFE. This component replaces the
exhaustive enumeration of all low energy states. (2) The BHGbuilder
algorithm is then used to estimate direct saddle points and to determine
BHG-adjacency on the input set of LMs. As we show below, the vertex and
edge weights can be estimated along the way.

2.3.2 RNAlocmin The basic idea of RNAlocmin is straightforward:
it samples a start structure and then uses a gradient walk to determine the

3



M. Kucharı́k, I.L. Hofacker, P.F. Stadler, J. Qin

corresponding LM. The main technical difficulty is to make the sampling
part efficient. Boltzmann sampling, as implemented in RNAsubopt -p or
sfold (Ding & Lawrence, 2003; Ding et al., 2004), predominantly yields
structures close to the MFE, which are very frequently transported to the
global minimum or one of the other local optima with very low energy.

In order to avoid this kind of oversampling we resort to the idea underlying
Simulated Annealing and modify the Boltzmann weights by an extra scaling
factor ξ that artificially increases the sample temperature:

Pξ(s) = e
−f(s)
ξRT /Qξ, (1)

where the correspondingly modified partition function ξ serves as
normalization factor. A change of the thermodynamic temperature T also
affects the RNA energy parameters, which are free energy contributions
(Mathews et al., 1999), and hence affects f(s) in a biased manner. It is
necessary therefore, to be able to vary the thermodynamic temperature and
the sample temperature ξ independently. For ξ = 1 we obtain regular
Boltzmann ensembles, for ξ → ∞ we approach uniform sampling of X .
The implementations of partition function algorithms of the ViennaRNA
Package have been modified to provide this option from version 2.0.3 on.

Since we are interested in the LMs within a prescribed energy increment
above the MFE, it pays to adjust ξ accordingly. Instead of a fixed, optimal
ξ, we use an adaptive ξ-schedule which prefers LMs with relatively low
energies. Since the thermodynamic energy models of RNAs is strongly
dependent on the input sequence, we first invest into estimating the expected
energies as function of ξ. To this end, we obtain a set of LMs from
1000 sampled structures and tabulate the average energy of LMs for each
ξ = 0.4 + k × 0.1 in which an integer k ranges over the interval [0, 21],
Fig. 3 (TOP). From these values we obtain an estimate e(ξ) for the expected
free energy by linear interpolation. In principle one could pre-compute these
tables for various sequence compositions. We found, however, that the
computational overhead to estimate these values for each input is tolerable
in practice. Alternatively, one could also estimate the e(ξ) “on the fly” from
the already sampled LMs.

From each sampled structure s, we obtain the corresponding LM x

via a gradient walk starting from s. In practice, the implementation does
not completely evaluate candidate structures, but considers the energy
increments for opening and closing individual base pairs, each of which can
be obtained by three look-ups from the tabulated energy model. For each
LM x, the number q(x) of gradient walks terminating in x is recorded to
keep track of sampling efficiency. Sahoo & Albrecht (2012) introduced a
heuristic criterion designed to avoid reaching the same local minimum too
many times from different initial random starting points. They propose that
the sampling is sufficient when most of the minima have been seen at least
twice. We modify this rule and stipulate that sampling is sufficient up to
energy level e if `e1 � `e∞, where `ek denotes the number of minima with the
energy less than e that have been detected at least once and at most k times
(`ek = |{x | 1 ≤ q(x) ≤ k;E(x) < e}|). The rule of Sahoo & Albrecht
(2012) and its energy dependent variants are empirically well supported (see
also Section. 3) but so far lack a good theoretical justification.

To turn the rule into an operational criterion we determine, at a given step
of the sample procedure, the smallest energy cutoff e so that `e1 ≤ µ`e∞,
where the parameter µ is a user-defined threshold, set to µ = 0.1 by default.
The energy e is then interpreted as the desired expected energy for the next
sampling epoch. The corresponding value of ξ is obtained from the pre-
computed table mentioned above. RNAlocmin continues until the energy e
exceeds the user-defined upper bound or if the requested number of iterations
have been done.

The time complexity of RNAlocmin is composed of two parts. First
samples have to be gathered by RNAsubopt, then gradient walks have to
be constructed for each sample. The time complexity of average gradient
walk is O(n2), where n is the length of sequence. We are dealing mainly
with highly folded structures and they tend to have only small number
of insertions possible, therefore these structures have O(n) neighbors.
Recomputing their energy is inO(1) steps as mentioned earlier and gradient

Precomputed table of expected energies
ξ 1.8 2.0 2.2 2.3 2.4
eξ −17.8 −16.0 −14.5 −13.9 −13.1
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Fig. 3. Computation of LMs for Melitaea cinxia U6 snRNA
JX878560.1 (107nt) with RNAlocmin. (Left) Adaptive ξ-schedule
as a function of run time. For each sampling epoch we show
the values of e and ξ as ξ(e). The pre-computed eξ table is
shown at the top. (Right) Size-weighted Fraction of undiscovered
LMs compared to exhaustive enumeration with RNAsubopt and
barriers. Basin sizes are estimated from the 106 structures with
the lowest energies.
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Fig. 4. Iterative path construction in BHGbuilder. First, an initial
path x → p1 → · · · → p7 → y is computed with findpath
for the first pair of LMs (x, y) in the priority queue L. The base
pair distance between x and y is 8. Next, the gradient walks starting
from {p1, . . . , p7} determine three consecutive LMs v1, v4 and v6.
Thus the adjacent pairs (x, v1), (v1, v4), (v4, v6), and (v6, y) are
inserted into L for the next iteration.

walk has at most O(n) steps on RNA landscapes. For each value of ξ
we have a setup cost of O(n3) for the forward recursion of McCaskill’s
algorithms, and O(n2) to generate a sample. The complexity of the latter
step could be reduced to O(n logn) using the Boustrophedon method
(Ponty, 2008). Since the sampling step is dominated already by the effort for
the gradient walk, we retained the simpler implementation. The total time
complexity is thenO(I ·n3 +N ·n2), where I is the number of ξ-sampling
epochs and N is the total number of sampled structures.

For performance evaluation we generated samples of 10 randomly
generated RNA sequences with uniform nucleotide composition for each
lengths from 60 to 500. For each sequence, LMs are generated from at most
105 start structures for each value of ξ. Computations were performed on an
Intel Xeon CPU E5450 3.00GHz.

2.3.3 BHGbuilder BHGbuilder aims to determine the BHG-
adjacency and the corresponding edge weights (saddle heights) between
these adjacent LMs. Initially, all pairs of LMs are arranged in a priority
queue L by increasing base pair distance. Then BHGbuilder uses an
iterative procedure to determine the BHG-adjacent LMs: for each pair
of LMs in L, (1) an initial path ℘ = (x = p0, p1, . . . p`+1 =
y) is computed with some existing heuristic path-finding algorithm. Our
implementation uses findpath (Flamm et al., 2000) provided by the
ViennaRNA Package as the default underlying algorithm (alternatives
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Fig. 5. Average performance of RNAlocmin for random generated
RNA sequences of lengths 60–500. The crosses annotate the time
points when ξ get updated.

such as Pathfinder could be used as well); (2) an iterative re-evaluating
procedure (Fig. 4) is used to improve ℘. At each pi ∈ ℘, we start a
gradient walk and determine their end points vi. If all vi coincide with x or
y, then {x, y} is a candidate BHG-edge. Otherwise, each pair of distinct,
consecutive (w.r.t. to ℘) LMs is reinserted into the priority queue. The
process ends when L is empty and returns an approximation of the BHG
graph. Its vertex set consists of both the LMs provided as input (e.g. by
RNAlocmin) and the additional LMs obtained in the path-construction step.
Its edges are the BHG-adjacencies as outline above. Finally, a double-sided
flooding procedure (optional) is called to further improve the edge weights
between two BHG-adjacent vertices. Here, an exact saddle can be discovered
by enumerating the structures in these two adjacent basins if the number of
structures enumerated does not overcome a certain threshold.
BHGbuilder has time complexity ofO(P ·M2+E ·K ·n), where terms

capture above described algorithm and flooding of resulting pairs of LMs:
P is the time complexity of one run of underlying path finding algorithm,
O(n2) in the case of findpath; M is number of LMs in input, E ∼ M

denotes the number of edges in the BHG as an output; K denotes the
maximal number of additional structures appearing in the flooding procedure
and O(n) is the average time complexity to compute the neighborhood
for each structure. Therefore the time complexity of BHGbuilder with
findpath is O(M2 · n2 +M ·K · n).

3 RESULTS AND DISCUSSION
3.1 RNAlocmin

Fig. 5 summarizes the sampling schedule and the size-weighted
fraction of undetected basins as a function of invested CPU time.
Not surprisingly, sampling times to reach a given level of coverage
of the landscape increases with sequence length. This is an obvious
consequence of the exponential increase in the number of LMs.
Nevertheless, the adaptive ξ-schedule is effective since for different
RNA lengths, the speed of finding new LMs keeps stable, i.e. the
number of detected LMs grows linearly with respect to running time
(shown in the SM Part D).

Fig. 5 (Right) shows that for sequence lengths up to 500 nt
RNAlocmin is able to find within 200 seconds a collection of
LMs whose combined basin sizes cover more than two thirds of
the search space. For the sequences shorter than 300nt, this fraction
increases to 80%. Very similar results are obtained from biological
RNA sequences and collected in SM Part E.

To compare the performance of RNAlocmin with RNAlocopt
(Lorenz & Clote, 2011), we allocate the same CPU time to both
programs and evaluate the total number of detected LMs and the
size-weighted fraction of undiscovered basins. Both Fig. 6 and the
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Fig. 6. Comparison between RNAlocmin and RNAlocopt for the
SV11 RNA switch L07337 1 (115nt), see sect. 3.2.4. The sample
size for RNAlocmin was limited to N = 400, 000 structures.
The fraction of undetected basins was estimated by enumeration of
10 ·N suboptimal structures with RNAsubopt -e and subsequent
evaluation of the gradient basins with barriers.

additional benchmarks summarized in the supplemental material
show that RNAlocmin consistently outperforms its competitor
with respect to both measures.

3.2 BHGbuilder

3.2.1 Approximated BHG vs Barrier tree In Fig. 7, we compared
the BHG (top) and the barrier tree (bottom) for an RNA molecule
5’-GUGUCGCUUUCGAUUAAGGACCUACAACAGGCU-3’. In
order to highlight the difference between barrier tree and BHG we
consider the refolding pathway between the MFE (1) and the next-
lowest local minimum (2). Both structures readily allows us to read
off the saddle height as 1.9kcal/mol. The BHG shows that there
are two alternative optimal pathways 1 → 11 → 5 → 17 →
9 → 8 → 2 and 1 → 11 → 5 → 17 → 9 → 3 → 2. The
barrier tree provides a much less unambiguous picture. It suggests a
refolding pathway climbing to the saddle separating LM 1 and LM
2, but does not provide any indication of the intermediate states.
The path backtracking procedure implemented in barriers can
identify the first folding pathway. Due to the inherent tree topology,
however, it is not possible to find also the alternative connection. We
note here, this path backtracking procedure is limited to short RNA
molecules.

There are pairs of LMs that are not connected by an energetically
optimal path but are still BHG-adjacent. An example is LM 1 and
LM 5 in Fig. 7, which are adjacent in BHG while 1.6 = S(1, 5) <
DS(1, 5) = 3.2. These cases appear when the underlying path-
searching algorithm misses the optimal solution for the initial path.
In practice, these “energetically sub-optimal” paths rarely hurt the
computation of the saddle height, which is calculated only after the
entire BHG, and hence the competing indirect paths, have been
determined. Since these paths usually reduce the graph-distance
at the expense of a small energy penalty, such paths may still be
relevant for the folding kinetics. One might want to consider an
optimization criterion that involves both path length and energy
instead of just peak energy along the path as we do here.

3.2.2 Approximation of saddle heights BHGbuilder is a
heuristic algorithm and thus will in general only find upper
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Fig. 7. Comparison of BHG and barrier tree for a small RNA
molecule. The vertex set of the BHG (top) comprises the 15 LMs
of the input and two additional LMs 16 and 17 discovered by
BHGbuilder. The barrier tree generated with barriers (below)
contains only the 15 input LMs. Secondary structure drawings were
produced with VARNA (Darty et al., 2009).

bounds of saddle heights. For moderate-size RNAs, a direct
comparison to exact values obtained from barriers is possible.
For larger molecules, we compare with other heuristics. In
particular, it is interesting to check whether the construction of
the BHG brings a further improvement of the saddle heights
compared to the path construction heuristic findpath alone.
Since BHGbuilder uses findpath for its initial estimates of
saddle heights, it is of course guaranteed that Sbarriers(x, y) ≤
SBHGbuilder(x, y) ≤ Sfindpath(x, y). The improvements of
BHGbuilder over findpath are mostly a consequence of the
inclusion of additional LMs such as (17) in Fig. 7 (top), which is
necessary for the optimal path. In Fig. 8 we use two snRNAs as
examples, the 107 nt U6 snRNA of Melitaea cinxia and the 166
nt U1 snRNA of the mouse. For U6 we sample 1000 LMs and
determine the exact saddle heights between all pairs by flooding
with RNAsubopt/barriers. The saddle point estimates are
very similar in this case, with BHGbuilder obtaining the exact
values and only small errors of up to 0.1kcal/mol in about 7.4%
of the pairs for findpath. For the 166 nt mouse U1 snRNA,
however, an exact computation with barriers already exceeds
our hardware limitations. The direct comparison of BHGbuilder
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Fig. 8. Comparison of the saddle height estimates of BHGbuilder
and findpath for Melitaea cinxia U6 snRNA JX878560.1 (107nt)
and the Mus musculus U1 snRNA NR 004413.2 (166nt). Here, the
x-axes denote the indices of LM-pairs which are sorted according
to their saddle heights in an increasing order and the y-axes are the
corresponding saddle heights (kcal/mol) estimations derived from
different methods. The inset shows the difference in saddle height
between BHGbuilder and competing algorithms. The inset on
l.h.s. shows that BHGbuilder and barriers have achieved the
same performance and, therefore, no further improvement can be
made.

Algorithm Number of 〈∆E〉 〈time〉
best runs [kcal/mol] [s]

RNAtabupath 14 3.0598 4617.7
BHGbuild 34 1.1028 7.6674
BHGbuild -noF 34 1.1028 0.6824
Pathfinder 95 0.0367 113.01
findpath 12 1.5104 0.6397

Table 1. Performance comparison with different folding path
prediction algorithms for the re-folding paths between the MFE
structure and a randomly selected LM. Values are averages over 100
RNA sequences of length 200nt. ∆E is the average difference in
the energy from the best run. BHGbuild -noF is BHG algorithm
without the optional flooding step. Pathfinder was run with
option -M DB-MFE, for findpath we used depth=1000.

and findpath yields a moderate improvement of on average 0.8
kcal/mol for almost half of the pairs of LMs.
BHGbuilder performs equally well or better than findpath

in all 10 examples of SM Part F. For three cases, we find substantial
improvements of the saddle point energies that can help to derive
more exact RNA kinetic parameters. In seven cases only small or
no improvements were obtained. Still, the adjacency information
generated by BHGbuilder, Fig. 4, can add further accuracy to
kinetic parameters in all cases since it provides information on
alternative connections between LMs, see SM Part F for details.

3.2.3 Prediction of Folding Pathways BHGbuilder can also
be used to predict the optimal folding path between a pair of
user-prescribed LMs. Here we make use of the iterative path
improvement step to elaborate on an underlying folding path
prediction software such as findpath (Flamm et al., 2000),
RNAtabupath (Dotu et al., 2010), and Pathfinder (Lorenz
et al., 2009). In Tab. 3.2.2 we compare BHGbuilder with
findpath, RNAtabupath, and Pathfinder on 100 randomly
generated instances with n = 200, i.e., well beyond the reach
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Fig. 9. Energy landscape of the SV11 RNA. The distribution of base
pair distances from MFE and metastable structure are shown for a
sample of 4×106 structures for RNAlocmin (A) and 108 structures
for RNAlocopt (B). The metastable basin is missed completely
by RNAlocopt. Panels (C) and (D) record the the folding energy
and base pair distance from the mfe structure along the optimal
(re)folding path from the MFE to the metastable state as computed
by BHGbuilder. The x-axis is the number of structures along the
path.

of exact enumeration. Interestingly, the computationally expensive
flooding step brings no improvement for this task. Pathfinder
nearly always obtains the path with the lowest peak height but is
more than two orders of magnitude slower.

3.2.4 SV11 RNA: a hard case The SV11 sequence is a
particularly hard test case for landscape-oriented algorithms because
it features a functional metastable state with high energy and a
very high energy barrier. The 115 nt SV11 RNA was discovered
in in vitro selection experiments as an excellent substrate for Qβ
replicase (Biebricher & Luce, 1992). It features a nearly palindromic
sequence with an extremely stable, hairpin-like MFE structure.
Pulse-chase experiments showed that the active conformation is
a metastable structure formed during replication, while the MFE
does serve as a template for the Qβ replicase. Melting experiments
indicated that the metastable conformation comprises two distinct
stems (Biebricher & Luce, 1992).

The energy difference between the MFE and the metastable
conformation is 28.5 kcal/mol, well beyond the reach of exhaustive
enumeration. Boltzmann sampling is inefficient for such large
energy differences as well. We indeed observe that RNAlocopt is
still trapped in the vicinity of the MFE after one hour at a sample size
of 108. During the same wall clock time RNAlocmin (convergence
parameter m = 0.8) found the metastable in a sample of 4 × 106

structures.
Fig. 9 (A) and (B) summarize the differences between

RNAlocopt and RNAlocmin in the base pair distance
distributions of the LMs. While RNAlocopt found only 620
distinct LMs, we obtained 2 619 305 with RNAlocmin using a
much smaller sample size. Importantly, RNAlocmin covers not

only LMs near to MFE but also, due to the adaptive schedule, those
more distant LMs in energy and base pairing pattern. RNAlocmin
found the metastable stable state as the 365.172th LM w.r.t. energy.
BHGbuilder cannot process an input set of this size within

reasonable time. Most of the LMs, however, are not persistent.
They are either very shallow or just “transition” LMs with only
2 neighbors in the final BHG. Therefore, we selected from the
initial input set those that remains LMs with respect to an expanded
move set that includes base pair shifts (Wuchty et al., 1999). Now
the metastable has rank ∼6700 w.r.t. energy. Starting from the
7000 lowest LMs w.r.t. to the expanded move set and removing
shallow LMs whose gradient basin has an escape barrier lower
than 1.0 kcal/mol leaves an initial set of 2665 non-shallow LMs
as input. BHGbuilder constructs a BHG with 110.593 vertices
and 224.666 edges in less than 20 hours. The optimal folding path
connecting MFE to meta-stable state in the BHG has a saddle height
of −59.2kcal/mol. This is a 3.1 kcal/mol improvement over both
findpath and Pathfinder. We visualized the optimal path
by monitoring how the free energies and the base pair distances
(with MFE) vary along this path in Fig. 9 (C) and (D), respectively.
With few exceptions, the base pair distance monotonically decreases
along the pathway. Interestingly, most of these detours appear in
close vicinity of high peaks of energy, which is potentially necessary
to circle around the high energy barriers.

4 CONCLUDING REMARKS
The BHG introduced here is a conceptually rigorous coarse graining
of its underlying landscape comprising the LMs and those direct
saddle points between them that are also globally the most favorable
connections. At the same time it is a refinement of the barrier tree,
which can be obtained from the BHG by single linkage clustering.
Its focus on BHG-adjacency captures the most likely transitions
between basins.

Thus, when BHG serves as a basis of computing folding
dynamics, one-step transition rate Px,y between any two given local
minima x and y is approximated by an Arrhenius rule as Px,y ∝
e−S(x,y)/RT if x and y are adjacent in BHG and 0 otherwise. This
improves upon the Arrhenius approximation for the barrier tree in
which Px,y ∝ e−S(x,y)/RT for each pair of local minima. Using
Fig. 2 as an example, in the BHG, any pathway fromA toD need to
pass through either B or C, thus it requires two steps to refold from
A to D. However, in barrier tree, this is approximated as a one-
step transition since it omits the geometric information between two
basins. This approximation will be less accurate than the macro-
state transition rates model outline by Wolfinger et al. (2004), for
instance, the direct transition betweenA andD in Fig. 2 is neglected
in the BHG model. A toy kinetic example comparing the three
discussed approaches is presented in SM Part G. The exponential
relation between energies and rates suggests that energetically non-
optimal direct transitions will play only a minor role compared to
pathways with multiple intermediates that all have strictly smaller
peak energies. This is true only for differences larger than a few
kT . To accommodate this point, we can replace energetic optimality
by a relaxed condition of the form DS(x, y) − S(x, y) ≤ ∆Eef
which includes some sub-optimal direct transitions between basins
to BHG. It will be interesting to see how the threshold ∆Eef
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affects the folding kinetics. It is computationally feasible to keep
sub-optimal transitions as long as ∆Eef is a small multiple of kT .

The BHG has been introduced with the explicit goal to allow for
an efficient high quality heuristic approximation so as to overcome
the stringent size limitations of the exact algorithms. Empirically
we find that the combination of improved sampling of low-energy
local LMs with RNAlocmin, fast construction of initial candidate
saddles with findpath, and the construction of the BHG by
iterative path improvement with BHGbuilder comes very close
to the exact solutions for small systems. At the same time it extends
the range at which RNA folding landscapes can be studied to at least
300 nt, thus including most structured RNAs of biological interest.
For instance, RNAs shown in SM Part E and F. BHGbuilder is
also capable of exploring partial landscapes determined by the input
set of LMs. Therefore, it allows us to “zoom-in” and focus on the
region of particular biological interest.
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