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In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to
maintain genome integrity. Chromatin components, such as histone variants and histone post-translational
modifications, along with the higher-order chromatin structure, impact several DNAmetabolic processes, including
replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between
this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating
early steps in the replication process. We then discuss chromatin reassembly following replication fork passage,
where the incorporationof a combinationof newly synthesizedhistones andparental histones can impact the inher-
itance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine
methylation can impact maintenance of the chromatin landscape, using heterochromatin as amodel chromatin do-
main, andwediscuss the potentialmechanisms involved in this process. This article is part of a Special Issue entitled:
Methylation: A Multifaceted Modification— looking at transcription and beyond.

© 2014 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

In eukaryotes, the genetic material is organized in a nucleoprotein-
complex called chromatin. Within its building block, the nucleosome,
147 base pairs of DNA are wrapped around an octamer of histone pro-
teins, including two copies each of the core histones H3, H4, H2A, and
H2B [1]. This basic unit is versatile showing distinct variations including
DNAmethylation, histone variants, and post-translationalmodifications
of histones (reviewed in [2,3]). In turn, these marks can either alter the
structure directly or through recruitment of chromatin-binding proteins
that impact the chromatin state and various processes acting on DNA
including replication, transcription, and repair. Notably, to access to
the DNA sequence during these processes chromatin organization is
transiently disrupted. These dynamics can challenge the maintenance of
information conveyed at a chromatin level and in turn could impact
gene expression profiles, cell identity and function. Thus, in all of these
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instances a proper chromatin reassembly is a critical step to consider.
DNA replication with a doubling of the genomicmaterial poses a particu-
lar challenge since it is accompanied by a genome-wide effect on chroma-
tin that undergoes destabilization and re-assembly on the two daughter
strands. Therefore, replication has been envisioned as awindowof oppor-
tunity to change the chromatin landscape and thus of importance to eval-
uate maintenance versus switch in gene expression profiles. In addition,
an unfaithful duplication of the DNA sequence and its organization into
chromatin could also affect genome function. Thus, coordinating the faith-
ful duplication of theDNA sequence and its organization into chromatin is
important to consider tomaintain/alter genome and epigenome integrity.

Histone modifications have been implicated in regulating cellular
activities at defined genomic loci (reviewed in [3,4]). In this review, we
focus specifically on methylation of lysine residues. An extensively-
documented correlation betweenmethylation and a DNAmetabolic pro-
cess is transcription,where the enrichment inH3K9me3, H3K27me3, and
H4K20me3 associates with transcriptionally inactive regions, contrasting
withH3K4me3 andH3K36me3 thatmark transcriptionally active regions
[3,4]. The recent emergence of a connection between histone lysine
methylation and DNA replication lead us to review these pioneering
studies in order to address how methylation at specific residues and
to different extents (either mono-, di-, or trimethylation) impact early
steps in DNA replication. In turn, we discuss how DNA replication
impacts the propagation of these methylation marks to the daughter
strands, an important parameter in epigenetic inheritance during
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cellular divisions. Finally, beyond the nucleosomal level, we review
possible mechanisms that participate to restore the histone lysine
methylation state on defined chromatin domains. For this we use
pericentric heterochromatin as a model, a well-characterized chromatin
domain enriched in H3K9me3 and H4K20me3, marks that are critical
for proper centromere function and chromosome segregation.

2. Histone lysine methylation: a role in early replication steps?

We distinguish here four typical phases (Fig. 1) during replication in
which we can highlight proposed roles for histone lysine methylation.
First, recognition of replication origins by the origin recognition
complex (ORC); second, recruitment during early G1 phase of the cell
division control protein 6 (CDC6) and theminichromosomemaintenance
(MCM) complex to ORC binding sites, forming the pre-replication
complex (preRC) in a process referred to as “licensing”; third, “firing” of
the origins at the entry to S-phase, mediated by the action of kinases
including the cell division control protein 45 (CDC45) (reviewed in
[5–7]); fourth, “elongation” (reviewed in [6]). In this section we restrict
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Fig. 1.Histone lysine methylation implicated in four phases of eukaryotic DNA replication. Duri
origin licensing, H4K20me1 is present at this stage, however, its role in promoting the assembly
step. During origin firing, differentmethylationmarks cooperate to regulate CDC45 binding to th
CDC45 loading, as this mark is found at late-replicating genes. H3K4me3 inhibits CDC45 bindi
TRX1 monomethylates H3K27 during elongation, however, the function of this mark remains
our discussion to lysine methylation and how this mark on histones H3
and H4 may impact different aspects of DNA replication (Table 1).

2.1. Origin recognition

How origins are identified in metazoans remains largely unknown,
and to date no consensus sequence has been described to sufficiently
predict origin identification [8]. Thus, dynamic features determined by
either DNA structural elements such as G-quadruplexes [9] or
chromatin-related factors have attracted attention as they may provide
a signal for early steps in DNA replication (for review see [10,11]). Here
we highlight possible links between histonemethylation and chromatin
replication (Fig. 1). In a first example, peptide arrays of 82 histone pep-
tides featuring differentmethylationmarks enabled the identification of
ORC components that bind to distinctly methylated peptides [12].
Human ORC1, a protein that features a bromo-adjacent homology
(BAH) domain (reviewed in [13]), specifically binds a peptide presenting
H4K20me2 [14]. Sub-cellular fractionation further supported this binding
since abrogation of the BAH recognition domain impaired ORC1 binding
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Table 1
Summary of the H3 and H4 lysine methylation implicated in the different DNA replication steps. The table describes their proposed methylase(s) and demethylase(s), the enrichment at
genomic positions related to replication, and their roles in origin licensing, origin firing, replication elongation, and heterochromatin assembly.

Modification Replication sites enrichment Role in DNA replication steps Methylase(s) Demethylase(s)

Histone Lysine Degree

H3 4 me1 Early origins Not reported. MLLs (KMT2A-H) LSD1,2 (KDM1A-B)
JARID1B/PLU1 (KDM5B)

me2 Early origins Not reported. MLLs (KMT2A-H)
NSD2-3 (KMT3F-G)
SET7/9/D7 (KMT7)

LSD1,2 (KDM1A-B)
JARID1B/PLU1 (KDM5B)

me3 Early origins CDC45 binding inhibition [20]. MLLs (KMT2A-H)
SMYD3 (KMT3E)
PRDM9 (KMT8B)

JARID1B/PLU1 (KDM5B)
LOXL2

9 me1 Early origins Heterochromatin assembly [48]. SETDB1 (KMT1E)
PRDM3,16 (KMT8E-F)

JMJD1A-C (KDM3A-C)
LSD2 (KDM1B)
JMJD2A-D (KDM4A-D)

me2 Mid phase origins Heterochromatin assembly. G9a/EHMT2 (KMT1C)
GLP/EHMT1 (KMT1D)
PRDM2,8 (KMT8A,D)
ASH1L (KMT2H)

JMJD1A-C (KDM3A-C)
LSD2 (KDM1B)
JMJD2A-D (KDM4A-D)

me3 Late origins Heterochromatin assembly [67]. SUV39H1/2 (KMT1A-B)
PRDM2 (KMT8A)

JMJD2A-D (KDM4A-D)

27 me1 Not reported Replication Elongation [23]. EZH2 (KMT6)
NSD2 (KMT3G)

JHDM1D (KDM7A)
PHF8 (KDM7B)

36 me1 Early origins Regulation of CDC45 binding [21]. NSD1 (KMT3B)
SMYD2 (KMT3C)

FBXL11,10/JHDM1A,B (KDM2A,B)

me2 Not reported Not reported. NSD1 (KMT3B)
SMYD2 (KMT3C)

FBXL11,10/JHDM1A,B (KDM2A,B)
JMJD2A-D (KDM4A-D)
JMJD5 (KDM8)

me3 Late origins Regulation of CDC45 binding [21]. SETD2 (KMT3A) JMJD2A-D (KDM4A-D)
56 me3 Late origins?

(heterochromatin)
Not reported. SUV39H1,2 (KMT1A-B) JMJD2E (KDM4L)

79 me1 Not reported Origin licensing [22]. DOT1L (KMT4) Unidentified
me2 Origins DOT1L (KMT4) Unidentified

H4 20 me1 Not reported Origin licensing [17]. SET8/PR-SET7 (KMT5A)
NSD1,2 (KMT3B,G)
ASH1L (KMT2H)

JHDM1D (KDM7A)
PHF8 (KDM7B)

me2 Late origins? (heterochromatin) ORC recruitment [14,16].
Heterochromatin assembly [67].

SUV4-20H1/2 (KMT5B-C)
NSD1,2 (KMT3B,G)
ASH1L (KMT2H)

JHDM1D (KDM7A)
PHF8 (KDM7B)

me3 Late origins? (heterochromatin) SUV4-20H1/2 (KMT5B-C)
ASH1L (KMT2H)

Unidentified

1435C. Rivera et al. / Biochimica et Biophysica Acta 1839 (2014) 1433–1439
to chromatin [14]. Peptide arrays also identified that H3K9me3 and
H3K27me3-containing peptides can interact with ORC components [15].
Importantly, in line with in vitro results, chromatin immunoprecipitation
(ChIP) experiments show an increase in the H4K20me2 signal at defined
origins accompanied by higher occupancy of hORC1 relative to adjacent
sequences. Conversely, upon depletion of Suv4-20, the enzyme that
imposes this mark, ORC subunit occupancy decreased [16]. Thus, first
hints into a possible role for H4K20me2 are provided as a means to reg-
ulate origin recognitionwith the example of the recruitment of ORC com-
ponents. The detailed mechanisms await further experimental work and
in vivo assays will be needed to validate a functional relevance.

2.2. Origin licensing

Origin licensing is characterized by the formation of the preRC
complex. While, to date, a direct role for histone methylation in
recruiting the preRC is missing, the coincidence of the onset of licensing
with an increase inH4K20me1 at origins inmammalian cells is intriguing.
Next, PR-Set7, the methyltransferase responsible for H4K20me1 [17], is
degraded, preventing re-replication [16,18]. The importance of PR-Set7
(also known as Set8 or KMT5a) has been demonstrated by tethering it
to a specific genomic locus, this in turn lead to the loading of the pre-RC
complex in a manner dependent on Suv4-20, which catalyzes the
H4K20me3 reaction (Fig. 1) [18]. Thus, the dynamics of H4K20 methyla-
tion is important for the proper selection of origins in mammalian cells.
How this kind of selection can be achieved in yeast, which lacks
PR-Set7, should be examined to determine if H4K20methylationme-
diated by another methyltransferase may act in the same pathway or if
a distinct mechanism is at work. In this respect, one should note that in
yeast, a role for H3K4me2 was proposed based on a genetic screen to
identify histone modifications important in DNA replication [19]. Per-
turbation of either the enzymes responsible for the marks or mutating
H3K4 to H3R4 resulted in minichromosome maintenance defects [19].
Thus, future work should elucidate further whether these particular
marks show a conserved role across species at the time of replication
and whether they act alone or in combination with other histone
modifications.

2.3. Origin firing

Origin firing requires the binding of CDC45 to the preRC. Notably,
methylation on H3K4 and H3K36 has been implicated in CDC45 recruit-
ment (Fig. 1). This was documented through in vitro peptide-binding
assays where unmodified H3 peptides efficiently pulled down CDC45
from nuclear lysate and recombinant CDC45, whereas the H3K4me3
peptide did not [20]. Consistently, ChIP analysis of H3K4me3 at the
B-globin replication origin in Jurkat cells shows that H3K4me3 does
not correlate with CDC45 enrichment [20]. Notably, in cells expressing
a catalytic dead mutant of MLL, the H3K4me3 methyltransferase,
CDC45 does accumulate at this origin [20]. Thus, H3K4me3 could
prevent the binding of CDC45. In yeast, genome-wide studies show
that an increase in H3K36me1 correlates with CDC45 binding and this
mark is enriched in early replicating genes, whereas H3K36me3 is
present in late-replicating genes, suggesting that this mark may delay
CDC45 binding (Fig. 1) [21]. In addition, genome-wide studies in
human K562 cells showed an enrichment of H3K79me2 at replication
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initiation sites [22]. Interestingly, themodulation of the cellular levels of
DOT1L, the enzyme that imposes this mark, impacts the extent of
replication in different organisms. Whereas depletion of human DOT1L
leads to some DNA regions to replicate more than once per cycle [22],
in Trypanosoma brucei, over-replication is observed upon DOT1A
(a DOT1L homologue) overexpression [22]. Altogether, these studies
strengthen thenotion that roles formethylation in regulating replication
may be species-specific and they underline the fact that the context in
which these marks are present is also important.

2.4. Replication elongation

Following origin firing, the eukaryotic replisome promotes repli-
cation elongation. A role for H3K27methylation has been assigned in
tetrahymena cells during this time [23] (Fig. 1). Notably, PCNA, a protein
that can bind several factors at the replication fork, interacts in particular
with TRX1, the methyltransferase enzyme that catalyzes H3K27me1.
Upon deletion of this enzyme, the levels of H3K27me1 are reduced
as shown by mass spectrometry analysis and single stranded DNA
(ssDNA) accumulates, indicating a perturbation of replication [23]. Con-
sistently, mutation of K27 to glutamine mimicked the phenotype of the
TRX1 deletion [23]. Further experiments should aim to elucidate the
mechanistic role of H3K27me1 in replication elongation, including
whether this mark is present ahead or behind the replication fork, and
how its dynamics impacts the elongation process.

To summarize, histone lysine methylation states at defined residues
have been implicated in regulating different steps in DNA replication.
Whilemany of these early studies exploit in vitro approaches or present
correlative studies linking methylation with the presence and/or
absence of replication origin binding proteins, they point to a role of
histone modifications in regulating replication. Future work will be
needed to try to understand themechanisms bywhichmethylation im-
pacts replication processes, including the role of the opposing activities
of methyltransferases and demethylases that establish, remove, and
maintain these marks to define the chromatin landscape.

3. Inheritance of histone methylation marks after passage of the
replication fork

Methylation of distinct histone lysine residues has been implicated
in defining chromatin domains, including regions of active transcrip-
tion, silenced regions, and heterochromatin [4,24]. How this informa-
tion can be transmitted (or not) through multiple cell divisions to
maintain the gene expression profiles that impact cell function has
raised increasing interest [25–27]. In this section we discuss specifically
how methyl marks may be propagated during replication first by de-
scribing the contribution of recycled parental histones and the impact
of depositing newly synthesized histones.We then discuss the propaga-
tion of H3K27methylation, an importantmark in gene silencing [28,29],
by thepolycombgroup (PcG) proteins. Finally,we describemechanisms
that participate in dynamically maintaining defined chromatin regions,
using heterochromatin as a model chromatin domain.

3.1. Parental and newly synthesized histones: setting the stage for
chromatin inheritance?

In standard cultured cells, current data support the view in which
parental (H3–H4)2 tetramers randomly segregate to the nascent
strands, bringing along theirmodifications (reviewed in [30,31]). Notably,
since H2A–H2B dimers are more dynamic, to date they have been largely
ignored in their capacity to provide a means for parental H2A–H2B in-
heritance during replication. The most recent analysis focusing on H3
variants used stable isotope labeling of amino acids in cell culture
(SILAC)-based mass spectrometry experiments to visualize whether
endogenous and tagged histone dimers mix after replication. These ex-
periments could reveal that the replacement variant H3.3 does mix by
10–20%, but they could not detect a similar mixing with the replicative
histone variant H3.1 [32,33]. However, whether this is due to the nature
of the variant or to the nature and dynamics of the underlying associat-
ed genomic sequences with respect to their transcriptional state is un-
known. Interestingly, cell-type specific marks may play a role in this
process [35], and this could impact the inheritance of certain marks at
defined regions. Finally, whether the parental (H3–H4)2 tetramers
present symmetric histone modifications (where both copies of H3
and H4 feature identical marks) or asymmetric modifications [34],
could also impact the propagation of the chromatin landscape.

Newly synthesized histones generally feature distinctmarks, such as
H4K5K12 diacetylation and H3K9me1 [35–37], although it is important
to note that not all histones presenting these marks are necessarily
newly synthesized. Interestingly, the histone variants H3.1 and H3.3
exhibit a differential methylation pattern, where H3.1 is enriched in
the H3K9me1 mark [37], and this might impact further modifications
at defined loci. The coordination of the deposition of newly synthesized
histones and the recycling of parental histones hasmajor implications in
reestablishing the chromatin landscape. In this respect, histone chaper-
ones, proteins that escort histones and are involved in their transfer
without necessarily being part of the final product [38], represent key
candidates for recycling histones. In the context of replication, one
should stress the importance of two histone chaperones with major
roles in handling histones at the replication fork (for reviews see [38,
39]). First, chromatin assembly factor-1 (CAF-1), which deposits the rep-
licative histone variant H3.1–H4 in a manner coupled to DNA synthesis
[40], and second, anti-silencing function 1 (ASF1), that is found associated
with the helicase complex and proposed to coordinate the recycling and
de novo deposition of newly synthesized histones [41,42].

Once the chromatin is reassembled, themethylmarks on the parental
and newly synthesized histones may recruit chromatin binding proteins
to further modify the histones. Notably, some histone lysine methyl-
transferases, including MLL, SetDB1, Suv39H1/2, Suv4-20H1/2 and
others, contain structural domains that recognize and bind methylated
lysines, such as chromo, tudor, and PHD domains (reviewed in [24]).
Some of them even exist in complexes with the enzymatic activity
required for further modifications. One example is the EED component
of the PRC2 complex,which recognizes and bindsH3K27me3, to promote
PRC2 activity to methylate neighboring nucleosomes [32,43]. Further,
Suv39h1, an H3K9 methyltransferase, recognizes and binds H3K9me3
through its chromodomain [44]. Suv39h1 can then methylate neigh-
boring histones, converting its preferred substrate H3K9me1 to the
di and trimethylated state [37,45–47]. Enzymes may also modify non-
nucleosomal histones in transit, including parental histones evicted
ahead of the fork and newly synthesized histones prior to deposition.
Indeed, SetDB1 monomethylates soluble H3K9 [48], which, depending
on the localization of the deposited histones, may prime particular
genomic regions for further modifications [48] or recruit a particular
partner to initiate a biological response. Recently, additional enzymes,
termed the PRDM enzymes, have been implicated in monomethylation
of H3K9 [49]. It will be important to delineate how the choice of the
enzyme impacts the fate of histones and/or whether the enzymes act
redundantly. Thus, defining how and when the H3K9me1 mark is
established, which enzymes are responsible for these modifications,
and how histones bearing this mark are targeted to particular chromatin
domains will be major goals to shed light on how histone marks can in-
fluence the inheritance of chromatin domains.

3.2. Polycomb Repressive Complexes: new players in epigenetic inheritance?

The polycomb group (PcG) proteins, initially identified inDrosophila
[50,51] and conserved in metazoans [52,53], have been implicated in
gene silencing (for a review the reader is referred to [54]). Polycomb
repressor complex 2 (PRC2) methylates H3K27 to H3K27me3, a hall-
mark of silenced genes, while PRC1 recognizes and binds H3K27me3
through the chromodomain of the Polycomb (Pc) protein [28,29,55,56].
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Immunofluorescence approaches enabled the detection of an increased
PRC1 assembly on chromatin from mitosis to G1, suggesting that the
complex may be unloaded from chromatin during S phase [57]. Howev-
er, in a cell-free DNA replication system, the binding of PRC1 to chroma-
tin can tolerate passage of the replicationmachinery, potentially through
an interaction with the DNA itself [58]. Additionally, this in vitro system
found that the PRC1 protein posterior sex combs (PSC) self-associates
[28,43,59]. The latter study suggests a model where the cell exploits
the dimerization of PSC to bridge PRC1 bound to parental chromatin to
PRC1 associated with the daughter strands. This would thus permit
passage of the replication fork while ensuring the propagation of PRC1
occupancy at defined chromatin regions [28,43,59].

Reestablishing H3K27me3 on the duplicated chromatin depends on
themethyltransferase E(z), amember of the PRC2 complex [43]. Several
studies exploitingmass spectrometry approaches show that H3K27me3
appears stable following replication, supporting the view that parental
histones andmarks are recycled [60,61]. However, studies inDrosophila
have challenged this view. Using immunofluorescence approaches in
Drosophila embryos, the authors could detect PcG protein E(z) on the
newly synthesized DNA without detection of H3K27me3 [63,64]. They
proposed a model where the complexes comprising the enzymatic
activities, rather than the methyl marks themselves, are propagated at
defined chromatin regions to reestablish themethylation state following
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echanism. Solid lines represent enzymatic reactions, dotted lines represent targeting



1438 C. Rivera et al. / Biochimica et Biophysica Acta 1839 (2014) 1433–1439
maintained throughmultiple cell divisions tomaintain genome stability
(reviewed in [26,29,67,68]). Here we use it as a case study on how
methylation patterns can be stably inherited to maintain particular
states in defined chromatin domains.

Severalmechanisms are in place tomaintainheterochromatin offering
a robust means to back up one another in case one pathway is perturbed.
First, de novo histone deposition of H3.1–H4 featuring H3K9me1 is the
preferential substrate for Suv39h1 to the H3K9me3 state, leading to the
recruitment of HP1 [48] (Fig. 2B). Interestingly, the histone chaperone
CAF-1 exists in a complex with SetDB1, a methyltransferase implicated
in catalyzing H3K9me1 on soluble histones, and HP1 [48]. In addition,
the PRDM enzymes have also been involved in the monomethylation of
soluble H3K9 [49]. This offers a possible mechanism for heterochromatin
formation fromde novo histone depositionwhere newly synthesized his-
tones featuring H3K9me1 are deposited, further modified to H3K9me3,
which then recruits HP1 (Fig. 2B) [69]. A recent work in Caenorhabditis
elegans showed a similar stepwise mechanism to establish H3K9me3 on
heterochromatin [70]. Like H3K9me3, H4K20me3 could result from a
stepwise mechanism, in which PR-Set7/Set8 monomethylates H4K20
[71,72] and then Suv4-20 converts H4K20me1 to H4K20me2/3 [73].
However, while PR-Set7/Set8 interacts with PCNA through a conserved
motif [74], its specific recruitment to sites of heterochromatin replication
has not been elucidated yet. In contrast, Suv4-20 interacts with the pro-
tein HP1 [73], providing a possible mechanism for the propagation of
this modification on the replicating heterochromatin (Fig. 2C). Secondly,
recycling parental histones featuring H3K9me3 may recruit HP1 through
its chromodomain (Fig. 2C) [46,47] to further recruit Suv39h1 [45] and
modify neighboring nucleosomes. Finally, sumoylation of HP1 has
been put forward as a mark that leads to de novo recruitment of HP1
at heterochromatin sites, independent of H3K9me3 status, as observed
in cells lacking Suv39h1 and void of H3K9me3 (Fig. 2C) [75]. In addition
to H3K9me3 and H4K20me3, recent studies have suggested that
H3K56me3 is a novel mark of heterochromatin. Immunostaining
analyses on HeLa cells showed that the H3K56me3 mark localizes to
pericentric heterochromatin and co-localizes with H4K20me3 [76].
However, further studies are necessary to define the role of this mark
as well as its inheritance mechanism in heterochromatin.

We have reviewed the links between lysine methylation of histones
H3 and H4 and chromatin replication, particularly in three aspects: the
role of lysinemethylation in the initiation of DNA replication, pathways
to propagate lysine methylation marks following replication, and the
pathways to reestablish the characteristic lysine methylation landscape
of heterochromatin. In each aspect, the degree of histone lysinemethyl-
ation on defined residues plays various roles. Thus, the current chal-
lenge is to have an in-depth comprehension of the function of histone
lysine methylation on chromatin replication, to elucidate whether his-
tone methylation patterns affect replication directly or indirectly, and
to unveil how these marks are inherited and/or re-established in other
chromatin domains. It is critical to have a better understanding of the
handling of both parental and newly synthesized histones and how
different modifications may prime the chromatin for additional modifi-
cations by themethylases and demethylases. The development of inno-
vative approaches, including combiningmass spectrometry approaches,
novel biochemical and structural tools, and in vivo assays will be critical
to provide new insight into the mechanisms behind the role of histone
modifications in regulating chromatin replication and the impact on
chromatin inheritance.
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