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Hinweise und das Bewahren der Übersicht sowie Lydia, für’s immer Zuhören, Mit-
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Zusammenfassung

Orthologe Gene in verschiedenen Spezies stammen von einem einzelnen Gen in ihrem

gemeinsamen Vorfahren ab, wobei Sie Ihre ursprüngliche Funktion in der Regel beibehal-

ten. Daher ist ihr Auffinden ein wesentlicher Bestandteil der funktionellen Annotation

von Genomen. Informationen über Orthologie tragen zudem zur Identifikation von kon-

servierten oder abweichenden biochemischen Vorgängen zwischen mehreren Spezies bei.

Ihre Detektion bietet darüber hinaus nützliche Daten für evolutionäre Analysen, wie zum

Beispiel die Rekonstruktion von phylogenetischen Bäumen oder Studien der Genom Reor-

ganisation. Orthologie Analysen erlauben die Identifikation von Proteinen, die nur in bes-

timmten taxonomischen Gruppen vorkommen und können somit auch die Entwicklung von

Wirkstoffen gegen bestimmte Pathogene unterstützen. Das ist besonders hervorzuheben,

da mikrobielle Medikamentenresistenzen ein immer größer werdendes Problem darstellen.

Mittlerweile wurden verschiedene Methoden entwickelt um orthologe Proteine genomweit

vorherzusagen. Allerdings sind diese meist zu zeitintensiv um in größerem Maßstab einge-

setzt werden zu können, oder weisen andere Limitierungen auf. Sie sind nicht in der Lage

die Leistung aktueller Computer effizient zu nutzen. Das betrifft insbesondere die ständig

wachsende Anzahl verfügbarer CPU-Kerne. In dieser Diplomarbeit wird das Programm

Proteinortho vorgestellt. Ein Ansatz, der in der Lage ist Orthologie Vorhersagen sowohl

im großen, als auch im kleinen Maßstab zu treffen. Darüber hinaus wird das Programm in

einer domänenweiten Untersuchung auf eine Vielzahl von Mikroorganismen angewendet.

Dafür wurden die Daten sämtlicher vollständig sequenzierter Bakterien des National Cen-

ter for Biotechnology genutzt. Zusätzlich wurde eine Pipeline erstellt, welche automatisch

die taxonomische Klassifikation als auch die Annotation neu sequenzierter bakterieller

Genome übernimmt. Sie basiert auf den Informationen zu orthologen Proteinen in ver-

wandten Arten.
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Abstract

Orthologous genes in different species have originated from a single gene in their

common ancestor. These genes have often retained identical functions. Thus, their

detection is an essential part of functional annotation to approach the raising num-

ber of newly sequenced genomes. Additionally, the information aids in identification

of conserved as well as divergent biochemical pathways between several species. Fur-

thermore, orthology detection provides useful data for evolutionary analysis such as

phylogenetic tree reconstruction and genome rearrangement studies. It allows the

identification of taxonomically restricted sequences which can facilitate the develop-

ment of medical treatments against certain pathogens. This is especially important

as microbial drug resistance becomes more and more problematic.

Several methods were developed to predict orthologs on a genomic scale. How-

ever, these are often to complex for larger applications and suffer from several limi-

tations. They are not capable of using today’s computational capacities efficiently.

This concerns the growing number of available CPU cores in particular. In this

thesis the program Proteinortho is presented. An approach which can handle or-

thology prediction in small- as well as in large-scale analysis. Moreover, the tool is

applied on a domain-wide scale to all completely sequenced bacterial genomes which

were provided by the National Center for Biotechnology Information. Additionally,

a pipeline for non-supervised taxonomic classification and genomic annotation of

newly sequenced bacterial genomes is introduced. It is based on information about

orthologous proteins within related species.
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Chapter 1

Introduction

The genome-wide identification of orthologs and paralogs is a central problem of

comparative genomics. It can yield clues to functional labeling and thus, spare

a great amount of wet lab labor. This is especially important as the number of

sequenced species increases from day to day [1]. Furthermore, phylogenetic and

genomic content analysis as well as studies on protein evolution and target pre-

diction largely depend on orthology [2, 3]. In turn, a lot of databases exist which

permit to search by gene name or sequence comparison. However, this results in a

limitation to species included in the certain projects. These are mostly restricted

to groups of special interest or model organisms. Therefore, the species of interest

have to be related to these groups. Otherwise, an assignment can solely cover the

amount of genes that occurs in larger taxonomic groups. This should be a small

part compared to the capabilities a stand-alone tool can offer. Therefore, several

prediction programs were developed to address this problem. They allow orthology

analysis within a self defined group of species. However, these approaches are often

limited to a comparison of only two species. Whereas programs for identification

of orthologous and paralogous proteins within multiple genomes exist, they acquire

a huge amount of space, suffer from time expensive calculations or are restricted

to closely related species. Additionally, these programs often require supercomput-

ers with an enormous amount of memory even for medium sized approaches. The

design of their algorithms is not intended to facilitate multiple CPU cores or even

distribute calculations over several machines such as cluster computers. These facts

make them not suitable for large-scale analysis in a reasonable period of time.

The aim of this thesis is to develop a tool which allows detection of putative

orthologs and paralogs in pairwise species comparison as well as in large-scale anal-

ysis with several hundreds of bacterial genomes. It scales well with the increasing
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Introduction

number of available CPU cores in today’s computers and offers optimizations for a

distributed application on cluster computers. Details of the implementation and the

underlying theory will be presented. Furthermore, the tool is applied to an appro-

priate large set in a domain-wide scale. The objective is to gather a set of proteins

common in most of the available fully sequenced bacteria. Subsequently, this set is

used to facilitate an approach for fully automated taxonomic classification and anno-

tation of protein coding genes within newly sequenced bacterial genomes of unknown

origin. Moreover, this method provides useful information about genomic properties,

conserved transcriptional and translational elements which can aid further investi-

gations. Introductory, information about the domain of interest (bacteria), formal

definitions of orthology and paralogy as well as existing approaches and orthology

databases will be given.
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Chapter 2

Background

2.1 Bacteria

Bacteria form a large domain of unicellular organisms. Typically, they are very

small and live in nearly every imaginable habitat including bodies of animals and

plants [4, 5, 6]. Together with archaea, they form the group of prokaryotes. How-

ever, both domains are very different. They have evolved independently from an

ancient common ancestor [7]. Prokaryotes differ in many properties from eukary-

otes. The most important difference is the missing cell nucleus which is separated

by a hull of two membranes in eukaryotes. It contains the genetic material, orga-

nized in linear, helix shaped DNA molecules combined with multiple proteins such

as histones. These units are called chromosomes [8]. On the contrary, prokaryotes

do not form such a barrier. Moreover, they rarely contain organelles divided by

membranes in general. Their genetic material consists of circular molecules within

the cell. Together with multiple proteins and a small amount of RNA, they form

the nucleoid, a term which implies that it is like the nucleus of eukaryotes [9, 10].

Most bacteria have exactly one circular chromosome within this nucleoid. However,

linear chromosomes appear in some species, too [11]. In fact, the term chromosome

for bacterial DNA is misleading as the configuration and composition differs largely

from the eukaryotic eponym. Still, it is commonly used for prokaryotes as well.

Additional to the chromosome, bacteria can contain small DNA molecules which

are called plasmids. They are frequently used for horizontal gene transfer between

different organisms and often contain antibiotic resistance genes [12, 13, 14].

Bacteria are asexual clonal organisms, thus contain identical copies of their par-

ents’ genetic material. Evolution is basically driven by mutation and selection.

Additionally, species can transfer DNA between cells by horizontal gene transfer.

3



Background Homology of genes

Three fundamental methods are known. Transformation names the uptake of ex-

ogenous DNA from the environment. Transduction instead refers to phage mediated

import of foreign DNA. Finally, two organisms can transfer genetic material directly

through cell-cell contacts as well. This is called conjugation [9, 14].

Fundamental insights in the function of genes and metabolic pathways can be

derived from these microorganisms and applied to other, more complex species [8].

Additionally, many bacteria are pathogens which cause diseases in human, animals

and plants. In this respect, the spread of microbial antibiotic resistance becomes

more and more critical [15]. Understanding bacteria can aid the biotechnological

production of recombinant therapeutic proteins such as insulin, growth factors or

antibodies [16, 17, 18].

2.2 Homology of genes

The original definition of homology was stated in 1843 as ’the same organ under

every variety of form and function’ [19]. At that time, a common ancestry was

not mentioned, which is not surprising as the theory of evolutionary biology arose

later with Darwin and Mendel. Nowadays, the feature of similarity is still a good

indication but neither essential nor sufficient [20]. It is important to mention that

homology of two proteins for instance, is neither equivalent with a common function

nor sequence nor structure [21]. Actually, they can have diverged in a way making

them not appear related even if they arose from same protein in a common ancestor.

Additionally, reverse effects can be expected. Very similar proteins are not nec-

essarily homologs. They may have evolved in a convergent way from non-related an-

cestors. Their similarity is due to adaption to similar functions. This phenomenon is

called homoplasy [22]. Without further investigation, it is hard to tell from sequence

data only, whether the proteins are actually homologs or evolved analogously [21].

Furthermore, the rate of homoplasy is expected to be very low regarding homology.

However, official definitions have been established for protein homology and are

described and discussed in some detail below.
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Official definitions

Homologous genes are derived from a common ancestor. They are divided into two

main groups, depending on the way they arose. Orthologous genes have evolved

by speciation. They are thought to have the same or at least similar functions

due to the common ancestor [21]. These are about the same genes in different

species. However, it is clear that they will further diverge while adapting to the

environmental conditions and habits of the certain taxa [23]. Paralogs mark the

second group. They are further divided into out-paralogs and in-paralogs. Out-

paralogs arose from a duplication preceding a speciation whereas in-paralogs evolved

more recently by duplication subsequent to speciation [24, 25]. If two paralogous

genes have an ortholog in another species, they are called co-orthologs [21]. If two

genes have arisen directly (without further duplication) in a set of (co-)orthologous

genes, they are furthermore called main-orthologs [26].

Figure 2.1: Illustration of relationships: The image depicts the situation of three
species after events of speciation, gene duplication and horizontal gene transfer
(HGT). Genes c2 and c3 are in-paralogs while b1 and c1 are out-paralogs with
respect to speciation 2. c1 is orthologous to c2 as to c3. Genes b1 and b2 are called
main-orthologous as they arose from the same ancestor (b). b3 evolved by horizontal
gene transfer and is thus xenologous to b1. All genes are co-orthologous to a1. The
enumeration can be continued. Adapted from [21].

Due to horizontal (interspecies) gene transfer, which is very common in prokary-

otes, a special phenomenon occurs [27]. Orthologous genes which arose from such

gene transfer, anciently belong to another species and are called xenologous [28]. All
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Background Homology of genes

mentioned relationships except this are reflexive. An overview is given in Figure 2.1.

As this thesis is focused on protein coding genes, the terms ortholog and paralog

will be used in context of proteins for simplicity, while referring to their genes as

well.

Problems

Inconsistency One problem addresses the inconsistency of the definition for par-

alogous groups. Assuming the truth is known, there is no problem. But in practical

experience the truth has to be estimated from data. This is especially critical if the

data is not complete. To exemplify this, have a look back at Figure 2.1. Genes b1

and c1 are out-paralogs by definition because there was an event of speciation after

duplication. However, if species 3 were absent or unknown, they will be assigned as

in-paralogs because the event of speciation cannot be distinguished anymore. For

that reason some interpretations use the definition only in subjection to a certain

species. They would tell that b1 and c1 are out-paralogs with respect to species 3 but

in-paralogs with respect to species 1 [26]. Therefore, any clustering to those subtypes

will be conditioned by the species which are involved, their relationships and the

intended point of view. The same problem concerns the concept of main-orthologs.

Information benefit The definition of homology which was introduced above is

an evolutionary concept. It raises the question up to which point homology remains

interesting for practical experience. Supposing both copies of an occasionally dupli-

cated gene remained in the genome, two evolutionary processes are likely. First is

neofunctionalization. As one copy is free of evolutionary pressure, it can adapt to a

new function. Second is subfunctionalization. In this case, both genes specialize and

adapt to a subset of the previous functions [29]. To go further, multiple copies of a

gene should, over a long period of time, result in various (supposably related) func-

tions. Some copies could have become very different, both in function and sequence.

As mentioned above, two proteins are homologs per definition whenever they have a

common ancestor, irrespective of their actual similarity. However, gene duplications

are known to be a major source of innovation in evolution. At this point, the result-

ing information can become blurry, especially if large sets of paralogs are included.

For most purposes, homology is only interesting up to a certain level. Smaller sets
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with functional similarity should be favored for most subsequent analysis instead

of large anciently related sets which no longer reflect to this day similar functions.

Certainly, other scenarios are imaginable where this data is still useful. However,

choosing the boundaries of similarity to broad will falsely assign many proteins as

paralogs. Introducing more stringent limits on the other hand would miss homologs

that have diverged. Again, the limits depend on the intended point of view.

Conclusion

Summing up, there are many problems regarding the actual definition of orthology

and homology. The concept was raised in a pre-Darwinan, pre-Mendelian time and

adapted to upcoming knowledge. By now, it is inconsistent regarding the paralogous

subgroups and main-orthologs. It provides no absolute view but raises fundamental

questions to practical situations. Additionally, the use of an exact discrimination,

especially of the two groups of in- and out-paralogs, remains questionable if the

interest is not any protein’s history in particular.

The primary objective is to view these concepts in a consistent and handier

way. This concerns both, classification and practical benefit for subsequent analysis.

Within the scope of this thesis, a simplified view will be used. The main assumption

is that proteins, arisen from a common ancestor and still fulfilling related functions,

are conserved regarding their sequence. This property is measurable. Depending on

a similarity measure (which will be given through an E-value threshold for blast),

proteins are treated as orthologs if there is no other candidate within the same

species that would match significantly better. In succession, this can become a

many-to-many relation. Furthermore, it is symmetric as well as transitive under

certain conditions but not reflexive. If protein a is orthologous to b, this holds

vice versa as well. If protein c is additionally orthologous to protein b, then it is

orthologous with protein a likewise, no matter if the similarity measure between

a and c is sufficient. Nevertheless, this property is constrained to proteins within

different organisms. Any protein cannot be orthologous to itself or another protein

encoded within the same species’ genome. Paralogs detection is scaled-down to

the case that orthology occurs within two or more proteins in one species. In this

case, they are paralogous instead of orthologous to each other while still remaining

7
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Figure 2.2: Illustration of relationship detection: Based on the situation presented
in Figure 2.1, this picture shows how the relationships can be detected. Black
arrows represent similarity between genes based on a certain method and threshold.
Regarding symmetric and transitive property of the definition, all proteins except
b3 are orthologous to a1. a1 and b3 are paralogous as b1 and c1 are. Same holds for
b2, c2 and c3. Thus, the seven proteins form an orthoset. A lower threshold could
assign additional similarities for example between b2 and c2. The classification in
categories would however stay the same. Closer division into in- and out-paralogs
is not intended.

orthologous to proteins from other species. From now, any group of orthologous

and/or paralogous proteins will be called orthoset. An example of this relationship

is shown in Figure 2.2. It reveals an application of the similarity method.

2.3 Existing approaches

Pairwise methods

Several methods have been developed to detect and distinguish orthologs and par-

alogs. Two basic approaches are RBH (Reciprocal Best blast Hit) and the extension

RSD (Reciprocal Smallest Distance) [30, 3, 31, 32]. The underlying definition of or-

thology is about the same as described above, except for the fact, that they are only

defined for a pair of species. Additionally, RBH does not take paralogy into account.

It is based on two sets of protein sequences and applies blast for both species against

8
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each other. Proteins that were returned as each others best matching partner are

assumed to be orthologs. A major drawback is that the highest scoring protein

reported by blast is often not the nearest phylogenetic neighbor [33]. This can

result in deviating hits. If paralogs of certain proteins exist in both genomes, their

best hit was often reported to be not equal to the vice versa best hit. To illustrate

this, assume proteins a and a′ to be paralogs in species 1 and b and b′ as paralogs in

species 2. The best hit of a is b but a’s best hit is b′. In turn, the set will be rejected

as no reciprocal best hit is achieved. RSD tries to avoid this. It is based on global

sequence alignment and maximum likelihood estimation of evolutionary distances

to detect orthologs [30]. Again, blast is utilized first. However, not the best hit is

taken into account solely but all. They are aligned to the queried sequence using

clustalw [34, 35]. Depending on a certain threshold, the best alignable sequences

are evaluated. Using a substitution rate matrix, the evolutionary distances are ap-

proximated and the most likely candidate is chosen from this set. If two proteins

are each others smallest distance partners, they are assumed to be orthologs.

Another long-serving example is the publicly available tool InParanoid [36, 25].

Starting from pairwise best blast hits between two sets of proteins, it determines

reciprocal hits. Additionally, a third set can be included as outgroup to approximate

and remove potential out-paralogs. Out-paralogs are defined as sequences which

have a lower pairwise score within the set of both species than against the outgroup.

This is reasonable but makes the choice of the outgroup a delicate proposition as it

largely influences the amount of putative out-paralogs. Finally, overlapping groups

of orthologs are resolved and confidence values are calculated based on a group’s

internal similarity.

An extended approach is MSOAR [26, 37]. The program combines sequence similar-

ity as done in InParanoid with heuristics for rearrangement and tandem duplication

distances in order to distinguish putative main-orthologs from co-orthologs. How-

ever, the approach is more complex as it incorporates the probability and graph flow

theory based Markov Cluster algorithm [38]. The algorithm simulates random walks

on the graph and determines transition probabilities within a similarity space. These

probabilities can be used to split large groups into smaller sets depending on their

similarities. In this way, putative false positives can be filtered efficiently. Further-

more, MSOAR uses clustalw alignments from putative groups to assign gene families
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and according gene trees. However, an important requirement of this approach is

that both genomes are closely related. Otherwise, the distances will largely mislead

the process of assignment.

Multi-species methods

MultiParanoid combines several outputs from InParanoid to determine groups

which cover multiple species [39]. An analog tool, MultiMSOAR, exists for MSOAR [40,

41]. The basic algorithms have to be applied pairwise to all species of interest.

Orthologous groups will be merged subsequently as their relationships are assumed

to be transitive.

The approach of OrthoMCL is similar to InParanoid but allows including multiple

species directly [42]. Furthermore, paralogs do not need to be more similar to

each other than to a third species to be reported within orthologous groups. In

order to resolve the relationships between multiple species, OrthoMCL applies the

Markov Cluster algorithm globally to all protein similarities within and in between

the species as well [38].

Databases

Several orthology databases haven been established in the past. One of the first was

the COG database (Clusters of Orthologous Groups) [43, 44]. It consists of data from

several genomes of prokaryotes and unicellular eukaryotes. Since the last update

in 2003, these are 66 species in total. As this date points out, the database is not

recently updated. A possible reason is the required manual part of the database

creation. In the first step, putative sets of orthologs are detected automatically.

This is achieved by taking triangular best blast hits into account. Thus, a putative

ortholog has to be encoded in at least three species. These triangular hits are merged

afterwards with overlapping groups in order to cluster proteins from multiple species.

Figure 2.3 shows an example. In the second step, all multi-domain proteins are

divided manually into the component domains, in order to split clusters of unrelated

groups. Finally, manual annotation is required.

Unfortunately, a program to detect putative orthologs in this way is not avail-

able. Instead, the authors offer the blast-based tool COGNITOR [43, 45]. It assigns
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Figure 2.3: Triangular best hit: The proteins a, b and c are encoded in three different
genomes. As the arrows point out, they all were returned as each others best hit.
Same holds for proteins d, e and c. Only triangular hits like this will be regarded
further. Thereby, overlapping triangles are merged which results in clustering of all
five proteins.

genomic data to pre-existing groups of the COG database. In addition to COG, a sec-

ond database, KOG (euKaryotic Orthologous Groups), was established in a similar

way [44]. It contains eukaryotic proteins from 7 organisms including Homo sapiens.

The database eggNOG (evolutionary genealogy of genes: Non-supervised Ortholo-

gous Groups) is based on the COG/KOG database but avoids the drawback of required

manual curation by incorporating a more complex algorithm [46]. To increase ac-

curacy, proteins are initially assigned to the respective sets within COG/KOG if this

is possible. Afterwards, all against all Smith-Waterman similarities are calculated.

The proteins are divided into orthologs and in-paralogs depending on these similar-

ities. Both groups will be treated separately. The clustering is done in about the

same way as introduced for the COG database. Overlapping triangular best blast

hits are merged. However, this criterion is relaxed to bidirectional best hits if not all

proteins could be assigned. Finally, functional annotation is added automatically

based on the majority of protein annotations within the set. In November 2009,

data for 373 eukaryotic as well as prokaryotic species were available.

Ensemble Compara uses a very different approach [47]. The method makes use

of gene and species trees which are inferred and reconciled. This makes the database

especially reasonable for evolutionary interests but further increases complexity. 51

eukaryotic species were available in November 2009 (release 56). Again, a tool for

applying this method to separate genomes was not published. Putative orthologs

within a genome of interest have to be detected by blast, based on orthologous
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groups annotated within the databases. A tool which is not limited to a single

orthology database but can access many sources of this kind is BLASTO (Blast on

Orthologous groups) [1].

Additionally, most authors offer a publicly available database derived from their

tools, nevertheless with a limited number of included species. For example, the

OrthoMCL DB, one of the biggest compilations, contained 128 genomes in November

2009 [48]. However, more than a thousand fully sequenced genomes were available

at this time [49].
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Chapter 3

Proteinortho

3.1 Background

As introduced, orthologous and paralogous proteins can be approximated by analysis

of their sequence similarity. If two proteins from different species are similar, they

are considered to be related. In order to gather such related proteins from two sets,

a local alignment search can be accomplished. The program blast (Basic Local

Alignment Search Tool), a keystone of bioinformatics, is adequate even for large-

scale approaches [50, 51]. It locates subsequences within a database superior to a

given E-value threshold. The E-value is a measure for the alignment score with

respect to its likelihood regarding the given database and query sequence. Thus,

the most similar sequences can be found.

In order to increase the accuracy of this approach, a reciprocal search is per-

formed. All proteins of species 1 are matched against those of species 2 and vice

versa. If two of them are closely related, they should both return their counter-

part as best hit. Whenever protein a has protein b as best hit and reverse, it can

be supposed that they are related. If one direction is missing, there might be an

ambiguous relation which nevertheless can not be clarified without further investi-

gation. Therefore, only reciprocal blast hits will be considered in this work as used

within the presented RBH method. However, this is not limited to best hits alone.

Extending this approach to multiple species raises two basic problems. One is

the runtime which increases quadratically with the number of species and proteins

respectively. The other is the enormous amount of data which needs to be examined

in order to derive groups of orthologs. The first problem can be addressed by massive

parallelization. The second one by converting the data efficiently to a graph and

detecting its connected components. An example is shown in Figure 3.1.
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Figure 3.1: Example for a graph representation: Proteins shown as circles connected
to their reciprocal best blast hit. Finding connected components in such graphs
allows to reconstruct groups of related proteins. The strategy is based on the as-
sumption that unrelated groups would not have best blast hits within each other.
Here proteins a, a′, b, c, d and e, f, g form two groups of orthologous proteins. a and
a′ are located within the same species and are therefore paralogs.

A major part of this thesis is the reimplementation and improvement of a pro-

gram called Proteinortho. It was initially written by Sonja J. Prohaska. This tool

is designed to detect orthologous proteins in a given set of species by using reciprocal

best blast hits and a graph representation as introduced above. The basic assump-

tion is that homologous proteins have similar sequences as well, a perspective which

is followed up in this thesis. However, this is not equivalent with the determination

of functional homologs which would require experimental validation for thousands

of proteins. Since this is not possible for every species, the method is a compromise

that yields reasonable candidates. Proteinortho worked sufficiently with small

datasets but was not capable to handle larger amounts as it leaked scalability and

exhausted memory resources too quickly. Furthermore, only perfect orthosets were

reported in the normal output to spare further investigation of blurry data. As

soon as a single paralog was determined, the data had to be processed from log-

files separately. This behavior is reasonable for phylogenetic approaches but turns

out to be inconvenient in practical experience with differing aims. Proteinortho

is based on sequence similarity, hence all similar proteins should be treated equally,

no matter to which species they belong. This includes paralogs, where a reasonable

discrimination cannot be achieved. From this point of view, they are as important

for subsequent analysis as orthologs even though they represent ambiguous data.

While the basic procedure was kept, major changes were made in the accomplish-
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ment of the single steps. This mainly concerns the application of blast, filtering

of hits and determination of orthologous groups. These steps were reimplemented

and optimized in terms of speed, usage of threads and memory efficiency. Further-

more, a more sophisticated choice of blast hits was established as tests revealed

opportunities for improvement. Details are presented within the next sections.

3.2 Methods

3.2.1 Workflow

Proteinortho requires a fasta file for each of at least two species containing the se-

quences of all encoded proteins or genes. Therefore, either amino acid or nucleotide

representation is possible. Initially, for each of those files a database for blast is

created using formatdb. A reciprocal blast search (either using blastp if amino

acid or blastn if nucleotide representation of proteins was chosen) is performed for

all fasta files against each other. This is the most time-consuming part of the pro-

gram. Afterwards, the results are filtered. Only hits with more than 25% sequence

identity and at least 50% overlap will be regarded further. Both limits were chosen

to increase the chance of actually detecting a functional conservation in contrast to

fusion genes, random similarity or far evolved homologs. Above the level of 25%

sequence identity, functional conservation can be supposed [52, 53]. Additionally,

using the default parameters a reciprocal hit within the adaptive best hits is re-

quired. Their formation is described later among the features in Subsection 3.2.2.

Only pairs with blast matches in both directions will remain. Meaning, for each

protein a with a blast match to protein b, an additional match from b to a is re-

quired. Otherwise, the match will not be considered. This requirement of reciprocal

hits can substantially improve the results compared to allowing even unidirectional

hits [54]. Hence, it is recommended. However, Proteinortho allows to turn this

requirement off if unwanted.

The protein and species identifiers are converted to unique numbers in order

to make them addressable in a memory efficient way. Using these new identifiers,

a mapping from species to proteins and an edge list is created to gather a graph

representation of the proteins’ orthologies. Orthologous and paralogous proteins are
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Figure 3.2: Proteinortho workflow: Step 1: Reciprocal blast runs (gray arrows)
are done with all species (light gray ’databases’) against all other. Step 2: The
retrieved information about blast hits (black arrows) between all proteins (circles)
was filtered, compressed and transformed to a graph representation. Step 3: The
graph’s connected components were detected via coloring. Nodes are the same as
in step 3 but the components are now clearly recognizable. Step 4: Finally, it is
reconverted and remapped to the species with encoded proteins.

supposed to be within a connected component as they share common features and

thus have similar sequences. These components are tagged by graph coloring. The

detection of connected components is shown in Algorithm 1.

After the connected components were tagged, they are remapped to the original

proteins and species. The result is a list of orthologous and paralogous proteins

between all investigated species. An illustration of this workflow is presented in

Figure 3.2.

3.2.2 Features

Adaptive hit-inclusion

Instead of using only the best blast hit or the best n blast hits for each protein

in other species, Proteinortho applies an adaptive approach. Regarding the bit-
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Algorithm 1 Proteinortho’s graph decomposition by coloring

1: for all uncolored nodes a do
2: choose a new color ψ
3: push a to stack S
4: for all nodes b on stack S do
5: pop b
6: color b with ψ
7: for all uncolored neighbors c of b do
8: push c on stack S
9: end for

10: end for
11: end for
12: for all colors ψ do
13: for all nodes a and b of color ψ do
14: if species(a) = species(b) then
15: mark ψ as ’contains paralogs’
16: end if
17: end for
18: end for

scores of the best hit (best) and any another considerable hit, the scoring function

s(candidate) = best+candidate
best

− 1 returns a relative similarity value between 0 (not

similar at all) and 1 (very similar). In this manner, closely related paralogs can

be detected and included without the requirement of a fixed quantity of considered

best candidates which would introduce new problems as Figure 3.3 shows.

Multi-core usage

While blastall offers a switch for multi-threaded usage, the present version (2.2.17)

is not able to comprise all CPUs efficiently when applied with example protein sets

during tests. Although eight CPUs were available on the computer, it used not

even half of them, fluctuating between only 25% and 40%. Due to this, the internal

threading was disabled and deferred to Proteinortho itself. The script partitions

the tasks and coordinates several blast jobs simultaneously to achieve full efficiency.

The same optimization method is used for creation of fasta databases, file-parsing

and assignment of blast hits.

17



Proteinortho Methods

Figure 3.3: Adaptive hit-inclusion: Exemplification of problems with the n recipro-
cal best blast-hit criterion using a fixed n. Proteins are shown in circles, blast-hits
as arrows. a) n = 1: a hits b correctly but b’s best hit points to the paralog a′ of
a. Because a reciprocal (best) hit is required, orthologous proteins a and b were not
assigned. b) n = 2: By raising n, proteins a and b are included. Furthermore, a′

was detected as paralog of a. On the other hand, a protein c not belonging to the
orthologous group may falsely be added to it as two hits are enforced. c) Adaptive n:
The number of hits is not fixed but corresponds to hits which are very similar to the
best scoring one. Default is at least 0.95 regarding the scoring function presented
before. The orthoset is identified correctly.

Optional distributed computing

The most time-intensive part of Proteinortho concerns the blast jobs. As already

mentioned in the introduction, their number increases quadratically with the number

of species and their duration with the number of proteins. Therefore, a complete

run with a larger number of species could take more than half a day. Thus, the

tool’s application is critical for a bigger amount of species and proteins respectively

as Figure 3.7 shows. In contrast, the multi-core feature mentioned above reduces

runtime only linearly.

To overcome this problem, Proteinortho offers the possibility to distribute the

blast calculations over multiple machines. This requires a shared data storage for

example a network-file-system (NFS). Different instances of the script are synchro-

nized on file level. New instances can be added and aborted on the fly, making an

application on multiple machines very flexible to changing workloads. Details are

shown in Figure 3.4.
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Figure 3.4: Distributed computing: a) Multiple computers running Proteinortho.
They cooperate dynamically using an N-way technique. All blast jobs are dis-
tributed over the machines. The results are stored on a shared storage (e.g. an NFS
Storage). There is no master. The coordination of jobs is done via a synchronization
file (sync) instead. b) Communication of a single computer to the storage. When-
ever the computer has done a job, it stores the results. The synchronization file is
locked and new jobs are chosen according to it. This information is stored for the
next computers requesting new jobs. The file gets unlocked afterwards. All possible
jobs are numbered for identification and systematic processing. If a computer has
multiple threads finishing at the same time, it acquires multiple jobs at once to
reduce the overhead for locking.

Memory efficiency

Besides the runtime, the new version of Proteinortho optimizes memory-usage

as well. The complete graph-representation and decomposition was reimplemented

in C as this turned out to be considerably more memory-efficient in comparison

to the original implementation in Perl. Instead of storing the full protein-ids and

species-names, they were mapped to integers and remapped afterwards. This allowed

to use simple arrays instead of hashes for addressing proteins. The graph itself is

represented as an edge-list. Other ortholog detection programs use matrices instead.

This in turn results in a space requirement of n2, no matter how closely connected the

graph is. The edge-list can use memory more efficient as only existing connections

require space. Figure 3.5 points this out.

The mapping of protein-ids and species-names to integers could be done in Perl

using hash-maps. However, this turned out to be very inefficient if huge amounts of

data were handled. A benchmark comparing the behavior of C++ maps and Perl’s

hash-maps is shown in Figure 3.6. A C++ map requires about half of the memory of a
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Figure 3.5: Edge-list vs. matrix: a) Most programs for orthology analysis use
similarity matrices for graph representation. The required memory is thus always in
O(n2), no matter how closely connected the graph is. b) Proteinortho instead uses
an edge-list. This allows to use memory more efficiently. Furthermore, it maps the
ids to integers and does not use fully qualified names. While the worst case scenario
requires n2 in memory for n proteins as well, real world data will omit most possible
edges.

Perl hash-map for 500, 000 pairs. This significantly increases by raising the number

of pairs which will be about 1.5 million in the later studied case of ’Domain-wide

commons’ in Chapter 4. Thus, the use of a C++ map instead of its Perl counterpart

is reasonable. The implementation was done using SWIG [55]. SWIG is a wrapper

which makes C and C++ functions available within other programming- and scripting-

languages such as Perl.

Tree builder

This additional tool creates common protein trees based on Proteinortho’s output.

It clusters species by shared proteins (by means of having orthologs or paralogs) us-

ing an adapted UPGMA algorithm. A min-operation is used instead of average for scor-

ing of clusters. In this way, relations of similar characteristics, habitats, phylogeny

and horizontal gene transfer are reflected. It allows viewing species relationship

from the perspective of shared proteins and might give an insight into evolutionary

regards.
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Figure 3.6: Pair storing benchmark: As integer a counter starting with zero was
used, the strings was unique with 30 chars each. C++ maps clearly use memory more
efficient. Starting from 50, 000 pairs this data structure is to prefer from Perl’s
correspondent hash. However in dimensions under 25, 000 pairs the overhead of
SWIG overbids the gain of efficiency.

3.3 Results

3.3.1 Program

Proteinortho is the first publicly available tool for large-scale orthology analysis

without the need of supercomputers and enormous amounts of memory. Later parts

of this thesis will reveal that today’s standard computers have sufficient memory

to handle analysis of over 700 bacterial genomes, an amount of data that was not

analyzed all at once before. However, the complexity for blast is still the biggest

weakness. To advance this, the tool provides efficient threading and dynamic dis-

tributed computation. Thereby, the time factor can be reduced by utilizing multiple
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machines. Proteinortho additionally bypasses problems of most reciprocal best

blast hit methods as it is not fixed to a certain reciprocal best hit but can utilize

virtually similar hits as well.

Behavior

The tool does not distinguish between putative paralogs and orthologs. It rather

clusters similar proteins, no matter to which species they belong. This decision

differs largely from common approaches like InParanoid or OrthoMCL which try to

unambiguously distinguish in-paralogs and out-paralogs in order to detect main-

orthologs. However, the concepts can be regarded as inconsistent. This was ex-

plained in Subsection 2.2. Additionally, the conclusion was drawn that an unam-

biguously distinction cannot be achieved in a reliable way solely based on sequence

data. The concept of main-orthologs is not traced at all. For this reason only unam-

biguous putative orthologs (orthosets with not more than one protein per species)

should be used for phylogenetic analysis and estimation of relative evolutionary

rates. On the contrary, this behavior enhances questions of target prediction. If

paralogs are allowed, the reported orthosets represent all similar sequences within

the regarded species which could interact in the same way.

Computational effort

To evaluate the improvement regarding the computational effort, an example species

(Corynebacterium glutamicum ATCC ) with 2026 proteins was chosen, renamed and

copied to multiple files in order to simulate up to 16 species with a complete or-

thologous protein pool. Concluding from this runtime evaluation, no significant

improvement was achieved in comparison to the original version. Figure 3.7 illus-

trates this when utilizing one CPU only. In this case, only the graph decomposition

works faster but still remains a negligible small part compared to the time for blast.

The effect scales slightly as the number of species grows. A clear improvement can

be observed when threads are used. The speedup again increases with the number

of species and proteins respectively. Markedly, the new version is even faster using

four threads than the old version using eight. A slope is noticeable which becomes

smother the more threads are used. This is especially interesting as the process
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Figure 3.7: Proteinortho benchmark: Comparison of old version and the improved
version 3.0 (new) with an E-value of 1e−10 utilizing different numbers of CPUs
(IntelR© XeonR© CPU at 2.33GHz). Competitive I/Os with other processes may lead
to fluctuations. However the trend can clearly be determined. The reimplemented
version largely benefits from threads.

can be distributed over an arbitrarily number of machines and thus, many CPUs.

However, it is presumably that the slope catches up when applying the program to

a corresponding quantity of species.

(
n∑

i=1

i)− n = n(n+1)
2
− n = n(n−1)

2

runs have to be done, in order to blast each of the n analyzed species against all

others. The computational effort for each blast lies in O(lDlQ) whereas lD is the

length of the database and lQ the query’s length [56]. Since blast will be used

for all species against each other, one can assume both variables as well as their

product to be equal on average (lD = lQ = l), what results in n(n−1)
2

l2. As l2 will

be equal using the average for approximation, it can be dismissed as constant. The
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conclusion is a runtime complexity of O(n2) adding up to the previously mentioned

result and thus staying overall in O(n2). However, the constant l2 grows quadratic.

Therefore, the length of sequences has a great influence in the over all runtime and

should be considered as well. Doubling the sequence lengths will take about the same

extra time as doubling the number of species. Pre- and post-processing - namely

formatdb, building up the graph representation and decomposition in its connected

components - come along with a resulting complexity of O(n) + O(n) + O(n2).

However the most time intensive part is to perform the required blast runs.

Memory requirements

Moreover, significant improvements were made regarding the memory consumption.

The original version needed about 160 GB RAM for a test set of 710 of completely

sequences bacteria. As there was no appropriate machine available, the calculations

could not be done. Using the improved version, these calculations could be done on

a machine with 2.5 GB of available memory. Therefore, memory should not limit

the application to larger sets anymore.

3.3.2 Benchmarks

Accomplishment

Basis for the evaluation of Proteinortho is the supervised COG database and the

fully automatic approach OrthoMCL which applies reciprocal best blast hits as well

but uses the Markov Cluster algorithm for clustering. As the available data in COG

is limited to certain organisms, 16 of them were chosen. The species are listed in

Table B.2. Six Gram-positive bacilli, six gamma and four alpha proteobacteria were

selected. The underlying protein sets were obtained directly from COG. OrthoMCL and

Proteinortho were applied to this sets with an E-value of 1e−10, a thread number

of eight and default parameters. However, Proteinortho was switched to output

orthosets with paralogs to match the behavior of COG and OrthoMCL. Moreover, the

E-values are not directly comparable. While both tools use blast, their way of

application is rather different. OrthoMCL collects all protein data in one fasta file

and uses it as query and database at the same time. Therefore, every sequence will
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be found at least once. Proteinortho on the other hand, splits the blast jobs each

species against each other. Therefore, a query sequence may not be included within

the database since both are considerably smaller. As the E-value depends on query

and database, the pairwise E-values will differ between both tools.

Performance

Performance data is shown in Table 3.1. Proteinortho took 16% less CPU time

when compared to OrthoMCL as it does not apply a self blast (species x against

species x) and clusters the proteins differently. Furthermore, it clearly outperforms

OrthoMCL in thread efficiency and completes the task in less than a third of the time.

Finally, memory efficiency behaves significantly better as well.

Program Wall clock time CPU time Kernel time Max. memory

OrthoMCL 117m46s 292m32s 3m30s 273 MB
Proteinortho 34m24s 245m58s 1m16s 108 MB

Table 3.1: Performance benchmark: Applied to the same dataset and eight available
CPUs, Proteinortho clearly outperforms OrthoMCL by means of memory and multi-
core efficiency.

Outcome

The outcome shows that Proteinortho’s predictions can be settled between those

of OrthoMCL and the COG database. As Figure 3.8 points out, Proteinortho reports

more groups that cover a large amount of species than OrthoMCL but less than

COG. With decreasing coverage OrthoMCL reports more sets than all others while

the biased COG falls back significantly. The database was designed to gather groups

which cover preferably large sets of species while the focus of manual curation was

not to find protein occurring in small subsets. On the other hand, OrthoMCL applies

a clustering strategy which splits large sets into smaller separate groups. Both

strategies are reflected well in the outcome.

Figure 3.9 yields a similar picture. Proteinortho lies between OrthoMCL and

the COG database regarding the number of proteins which were included. However,

it reports some sets which are very large in comparison and even exceed the COG
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Figure 3.8: Species coverage: The diagram illustrates the number of orthosets which
cover at least n species. OrthoMCL returns many small sets but the fewest sets which
cover all species. The two classes with six species can be recognized by the increased
slope at this position for Proteinortho and OrthoMCL whereas COG does not show
any significant changes here.

predictions. These are groups which should probably be split. On the other hand,

OrthoMCL yields less large sets. It obviously tends to report smaller groups. The

COG database relies on triangular best hits. Thus, it requires a protein to be present

in at least three species. Despite the fact that the chosen species were extracted

from a larger set, it is certain that most solely pairwise occurring proteins will not

be present in a third species within the whole set as well. This explains the small

gain of groups from three to two species regarding the pairwise working approaches.

Noteworthy, the curve of Proteinortho is more similar to scale-free data than

the two other approaches. Assuming the data is unbiased, this indicates a higher

consistency with the random distribution of groups where small groups occur more
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Figure 3.9: Protein coverage: The diagram illustrates the number of orthosets which
cover at least n proteins. Again, OrthoMCL reports the most small groups but less
large groups than the competitors. On the other hand, Proteinortho reports some
sets even larger than COG does. These are probably candidates which should be
split into smaller groups. An increasing slope is recognizable at position 16 which
matches the number of species.

often than large groups. The leap in all three curves at the number of 16 species

matches the number of overall species included. It can be ascribed to the fact that

there are less orthosets which contain paralogs than which do not.

The number of orthosets is illustrated in Figure 3.10. OrthoMCL returns the most

of them. This is due to the large amount of small groups as Figure 3.9 reveals. On

the other hand, COG defines the smallest number of sets as it focuses on large groups.

Proteinortho again, is in between. The approach prefers large groups as well but

does not miss small groups in turn. Furthermore, Proteinortho includes the least

number of proteins in comparison to OrthoMCL and COG. A reason is the avoided
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Figure 3.10: Methods comparison: a) Direct comparison of the sets. OrthoMCL re-
ports more than twice as many groups as COG. Proteinortho reports more orthosets
than COG but fewer than OrthoMCL. b) Illustration of equal sets. The relationship of
Proteinortho and OrthoMCL is evidently shown by their huge overlap.

self blast for each organism. Paralogous proteins which are not similar enough to

proteins in other species are not included within the prediction. Thus, Proteinortho

focuses on well conserved sets while OrthoMCL and COG try to include every possibly

related protein. Figure 3.10 illustrates the number of overlapping predictions. As

Proteinortho and OrthoMCL are based on the same approach (reciprocal best blast

hit), it is not surprising that they return many equal groups. 4599 equal orthosets

are reported by both programs. Proteinortho reports additional 1341 sets which

are not included or differ from the OrthoMCL output. These are primarily larger sets

while OrthoMCL reports multiple small sets in addition (3539). About one third of

the predicted sets is consistent with the COG database for both tools.

Evaluation

In order to evaluate Proteinortho and OrthoMCL, their predicted orthosets regard-

ing the chosen 16 species were compared to the COG database. The sets are parti-

tioned in four groups as shown in Figure 3.11. They can either be identical to the

COG sets, be subsets, supersets or overlap partially with them. An overview of the

results is shown in Figure 3.12.
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Figure 3.11: Orthoset relationships: Four mutually exclusive groups can be derived
when comparing the output of both tools to the COG database. If a predicted orthoset
is not equal to a set in the database, it can be a contained in a group (subset) or
contain a group of the database itself (superset). The remaining sets overlap only
partially with groups in the database or are not contained at all.

When expressed in percents, Proteinortho behaves best. It reports more equal

sets as well as subsets and supersets of COG annotations. Furthermore, the amount

of not assignable groups is considerably smaller. However, if the absolute values are

measured, Proteinortho’s advance drops. Still, it reports a few more equal sets

but some fewer sub- and supersets. On the other hand, OrthoMCL reports about

25% more orthosets than Proteinortho which are mostly small groups. Thus, the

chance of generating multiple subsets from the COG data raises as well. Assume a

set of proteins a, b, c, d and e within the COG database. Proteinortho may report

a group a, b, c, d. One subset group is counted. OrthoMCL on the contrary, tends to

report smaller sets. Therefore, it may yield for instance a, b and c, d as two separate

groups which would both count as subset. However, the average of size of subset

groups did not vary much between both tools. For Proteinortho it was 6.57 while

OrthoMCL’s average size was 6.49 proteins. There is no indication for an overbalance

of small groups within the group of subsets reported by OrthoMCL. Summing up,

the differences between both tools regarding COG are not outstanding. They rather

emphasize the beforehand determined trends. OrthoMCL tends to report a huge

amount of small groups whereas large groups are avoided. Proteinortho on the

other hand, matches most of the large groups reported by COG but is less prone to

small sets in comparison to OrthoMCL.
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Figure 3.12: Comparison to COG database: The putative orthosets of both tools
were compared to the annotations within the COG database. Proteinortho reports
slightly more groups which are equal to this annotation while OrthoMCL reports
more subset groups. The number of superset groups is negligible as the sets are
rarely larger than COG sets. However, the overall amount of remaining groups is
considerably bigger for OrthoMCL.

Speed comparison

To compare the runtime of OrthoMCL and Proteinortho, the same method was used

as in Subsection 3.3.1 (see Figure 3.7). Both programs were applied to a set of up to

16 equal species (only the protein identifier were renamed) with eight available CPU

cores. The absolute time till results (real time) as well as the the combined time

on all CPUs (CPU time) was measured. Figure 3.13 reveals that Proteinortho

requires significantly less CPU time. While the overall time for blast should be

about the same, Proteinortho does not apply a self blast. In this way, minus n

runs are needed for n species compared to OrthoMCL’s strategy. Details will be

discussed in Subsection 3.4.1. Moreover, the clustering algorithm is faster.

An outstanding observation is the overall duration. Proteinortho clearly per-

forms better if multiple CPU-cores are available. In the example, it finishes the

annotation within one hour while OrthoMCL took more than five hours. Further-

more, this effect scales with the number of species and CPU cores. The benchmark

depicts that Proteinortho was optimized for these situations and thus, is more

appropriate for large-scale analysis.
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Figure 3.13: Comparison of runtime: OrthoMCL and Proteinortho were applied to
a set of up to 16 identical species (Escherichia coli K12 ) with an E-value of 1e−10

and eight available CPUs (IntelR© XeonR© CPU at 2.33GHz).

3.4 Discussion

3.4.1 Self blast

In contrast to the previously presented blast based methods, Proteinortho does

not apply an additional blast against the own protein database of every regarded

species by default. However, this should be performed to be aware of paralogs and

avoid the necessity of larger species sets for detection of these properties. Otherwise,

Proteinortho is not supposed to report the same data for any subset of species in

the regarded group. The set of species is important for assignment as depicted in

Figure 3.14. Removing one species from the set can lead to different annotation

regarding paralogs in its subsets. A representative example is shown in Figure 3.15.
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Figure 3.14: Finding paralogs: Different sets of proteins a to c. Primed letters are
paralogs of the non-primed versions. Black arrows show blast hits, gray arrows not
detected relationships. a) A paralogous protein will not be found directly if a search
within one species is not applied. b) If only the reciprocal best blast hit is taken
into account, paralogs will not be detected between only two species. c) At least
three species are needed which have each a protein within a connected component
to detect paralogs.

Actually, the presented effects are largely reduced by applying the adaptive hit

inclusion introduced in Subsection 3.2.2. By using this technique, Proteinortho

can detect paralogs even for sets of only two species if they are similar enough. This

makes the n further blast runs for a set of n analyzed species broadly unnecessary

and saves runtime. Hence, this is way of application recommended. Still, this is

no guarantee for stable results regarding the mentioned effects. Therefore, a self

blast can be applied optionally if stability and paralogs detection is important in

particular.

3.4.2 Large putative orthosets

Using Proteinortho, all proteins of species 1 are applied in a blast run against the

set of proteins derived from species 2 for all regarded n species. Only the best group

of reciprocal blast hits is taken into account. Proteins are assumed to be orthologs

if they are - representing the reciprocal matches as a graph - within a connected

component. That implies there has to be a path from protein a1 to protein a2,

either direct or indirect over other proteins.

Misassigned orthosets of increasing size were observed during the tests if the

number of species was raised. Especially, if Proteinortho is applied to huge sets,

they grow enormously. This observation is reported in literature as ’mega clusters’
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Figure 3.15: Paralogs are not detected: Black arrows represent blast hits between
species 0 to 3. Primed letters are paralogs again. This illustration emphasize the
issue shown in Figure 3.14b to c. a) Two groups of paralogs (light and dark gray)
are grouped together through a protein in species 0. b) This does not occur when
species 0 is not included to the set. Therefore, different groups are reported for
the subset. Assuming blast finds paralogs by direct application, Proteinortho is
supposed to return more stable results when applying self blast runs.

for reciprocal best blast hit approaches as well [57, 58, 42, 43]. Within the biggest

test, the domain wide commons, nearly half of the proteins were reported to be part

of a single putative orthoset. Due to size and heterogeneity, this result is not useful

and determines a drawback of the presented method. It conveys the impression that

putative orthosets were joined together and reported as a big cluster.

It is reliable to imply that two or more proteins form one orthoset if all are

connected to each other. However, this is questionable for a protein that is linked

to only one protein of such a (nearly) complete connected group. Particularly, this

may be the case if large groups are assumed. One might suppose more links to other

elements of the same origin. A single one or a few connections regarding the rest

could indicate a false positive assignment or imply that the protein is very different

and thus may have another but possibly related function. In both cases, it would

be preferable to dismiss this protein, since the aim is to find candidates that are

supposed to have the same function. Especially, this holds for chains of proteins

where only the ends are actually connected to bigger components. These cases

become more critical if two big connected groups are joined through such chains.

Misassignments are the consequence.
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Figure 3.16: Bridging effect: Two proteins a and b are not connected by reciprocal
best blast hits (black arrows), because they are not within each others similarity
range (gray ellipses). However, a third protein c has a and b in its similarity range
and vice versa. In this way, a and b get connected despite the lack of a reciprocal
best blast hit between them.

A main reason for the anomaly of large putative orthosets due to joined groups

are increased distances between indirectly connected proteins. The purpose of the

initial E-value was to define a similarity threshold up to which the proteins are

supposed to be isofunctional. If a protein a was not found by a blast through

another protein b using this threshold, they are supposed to be not similar and

therefore not related. However, both can be connected (and as a result be declared

as related) by another protein c located ’between’ them. Protein a as well as protein

b are within this similarity threshold of c (and vice versa to fulfill the reciprocal blast

hit requirement). An illustration can be found in Figure 3.16.

As mentioned above, the effect of bridging is intended as it allows to find ho-

mologs more flexible than any fixed threshold. In this way, homologs between dis-

tant species can be detected. The rejection of indirectly connected proteins would

restrict orthosets to fully connected components. Doubtless, they would return re-

liable sets. On the other hand, a large amount of homologs would be missed or

partitioned into smaller groups. This again would countermine a reasonable large-

scale application. Nevertheless, the effect introduces a new problem especially for

those large-scale applications. To exemplify the problem, we assume a set of protein

sequences Pm of fixed length m and for simplification an additive metric d(a, b) with

a, b ∈ Pm. Regarding a threshold t, both protein sequences a and b are similar if

d(a, b) ≤ t. However, they can be connected by a third sequence c ∈ P if d(a, c) ≤ t

and d(c, b) ≤ t as well. In this case, protein a is similar to c which is similar to b.

Therefore, a and b are connected regarding this metric, even if d(a, b) > t. In fact

d(a, b) ≤ 2t is sufficient. Supposing multiple sequences c1...cn−1 with n ∈ N where
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d(ca−1, ca) ≤ t and d(ca, ca+1) ≤ t but all other d(ca, cb) > t with a, b ∈ N, it turns

out that d(c0, cn) ≤ nt is sufficient to connect both proteins due to chained bridging.

Figure 3.17: Chained bridging: If bridging occurs over n + 1 (n ∈ N) proteins
(c0..cn), the maximum possible distances between the chains start c0 and its end cn
increases: da < da+1|a ∈ [1..n]

Transferred to the representation of reciprocal best blast hits as graph, indirect

connected proteins can actually have a much larger distance than the given thresh-

old. It depends on the number of proteins on the shortest path between both. The

more proteins are taken into account, the higher a possible dissimilarity of elements

in orthosets returned by Proteinortho can be. Essentially, the E-value is not ad-

ditive since it takes the database context into account [50]. The exemplified effect

of raising distances between the first and last element of a chain however, is still

present as Figure 3.17 illustrates.

An additional reason for large groups are fusion genes. These are hybrids formed

from two previously separate genes which can connect two unrelated connected

components as they gain high similarity to both groups. To avoid this, blast hits

have to cover at least 50% of the protein coding region for both, query and database

sequence. Otherwise, the hit will be rejected. Figure 3.18 illustrates an example.

Due to this requirement, a fusion gene might still be clustered to a group of non-

fusion genes. However, this should be one group solely. It is unlikely (but not

impossible) that hits from two groups cover more than 50% of a combined sequence

at once. Unfortunately, this feature has been added subsequently to Proteinortho.

In order to globally incorporate the information of protein lengths for all threads,

massive restructuring of the source code and data structures would be necessary.

Otherwise, a global allocation of the additional data would increase the required

amount of memory considerably. For that reason, a lower limit is used instead.

It is given by the end of a certain blast hit which might not reflect the actual

sequence length. However, this feature allowed to split parts of the large group
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and recover about 6% more distinct connected components in the ’Domain-wide

commons’ set. An exact consideration of sequence lengths will be added in later

versions of Proteinortho.

Figure 3.18: Fusion gene: a) Two groups of orthologous genes (gray and black)
are connected by a fusion gene containing parts of both groups. This effect can
result in large non-related clusters. b) To avoid this, the matching region reported
by blast (darker gray area) of length m has to be at least half as long as the
according protein’s length n. Otherwise, for 2m < n the hit is rejected as shown in
the illustration.

Shadow E-value

To address the issue of large connected components due to increasing distances, a

second similarity threshold, the Shadow E-value, could be introduced. It has to

be less restrictive than the actual E-value and represents a fixed lower boundary

for protein similarity. Figure 3.19 shows an illustration. The maximum distance

between every protein of a putative orthoset will be restricted to this value. Thus,

the similarity within any reported orthoset will be within the range of the lower

bound. This counteracts the effect of excessive protein accumulation in a single set.

Thus, Proteinortho’s prediction should become more reliable and accurate while

still remaining flexible with respect to more distant relatives.

Unfortunately, this solution would lead to another problem. Once an unreliable

assignment was detected, there are several possibilities to handle it. An easy way

would be to dismiss the whole set. This in turn may lead to massive loss of data.

It would not be more than a filter which is automatically dismissing questionable

sets. The intended improvement could not take place. An approach for partitioning

large sets is desirable.

Intuitively, one could immediately remove any protein which is outside the

shadow range (more distant than the Shadow E-value allows) of any so far colored
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Figure 3.19: Shadow E-value: Starting from protein a two distance boundaries, the
E-value and the Shadow E-value are shown. Proteins bx are inside the given E-value
distance (dark area) and will be found via blast. In contrast, the cx-proteins can
only be found using blast with a less restrictive (Shadow) E-value, indicated by the
gray ellipse. They can be added by bridging. In contrast no protein of the dx group,
which is outside the lower bound, will be grouped with a as putative orthoset.

node regarding the introduced decomposition Algorithm 1. However, this would

not be stable and results in different outcomes as it strongly depends on the order

of coloring. In order to obtain stability, it is possible to wait until coloring of the

complete graph is done, apply the deletion rule afterwards and color again. This

must be repeated until all proteins within a putative orthoset are within each others

shadow. In turn, the method might remove many proteins which actually belong to

the group solely because another protein was misassigned, sweeping the ’witness(es)’

with it.

Algorithm 2 Graph partitioning depending on a second threshold

1: for all connected components C do
2: while C has nodes outside threshold shadow do
3: for all nodes a in C do
4: nc ← # of nodes within C and threshold shadow
5: end for
6: for all nodes a in C do
7: if na = minnm|m ∈ N then
8: remove a
9: end if

10: recalculate C
11: end for
12: end while
13: end for
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A promising approach based on the Shadow E-value is presented in Algorithm 2.

It searches for nodes within a connected component that have the fewest nodes

within their shadow range. They can not be assigned confidently to it and are

therefore removed. This concept is proposed to remove bridging nodes which connect

conserved groups. The certain groups should fall into connected components instead

of accumulating within a ’mega cluster’. Figure 3.20 illustrates the concept on a

small example. At the moment, this method is not implemented. However, it might

be applied to Proteinortho in later versions.

Figure 3.20: Shadow E-value utilization: This example illustrates the problem of
connected groups (ax and bx) via chained bridging (cx nodes). Black arrows are
blast hits below the E-value threshold, gray below the (less restrictive) Shadow
E-value threshold only. Counting of nodes within the shadow range for each node
allows to determine probably misleading ones and disconnects the connected com-
ponents into its conserved parts following Algorithm 2.

Besides considerably improving accuracy, the presented method has drawbacks,

too. Especially, the memory requirements will increase notably both in RAM and

hard disk. Runtime is effected as well since the coloring step for several components

has to be done over and over again. However, regarding the time consumption of

the blast runs themselves, this should take less than 10% of runtime.

3.4.3 Functional conservation

Proteinortho detects groups of proteins with high sequence similarity. It is widely

accepted to approximate functional conservation from this data [36, 59, 1, 26, 25].

However, it can be argued that sequence identity is a very important factor apart
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from the blast hit under a certain E-value [60]. Literature points out that 40% se-

quence identity should be used as a confident threshold for enzymes [61]. However,

the detection of functional conservation is not limited to enzymes. The accuracy

should be improved by taking functional parts into account instead of bare sim-

ilarity. Homologous proteins within distant species, sharing similar functions are

not necessarily similar by sequence as well. The contrary is the case as Figure 3.21

points out. The likelihood to find a similar sequence drops, the further speciation

has progressed. Even if its function remains the same.

Figure 3.21: Similarity dilemma: Proteins a and b are derived from the same ancestor
and are found in two different species. The likelihood that both functions are similar
is apparently bigger, than the likelihood that both have a similar sequence. This is
due to the fact that protein sequences within a species use to share common features
which have adapted to its environment and biochemicals [62, 63, 64]. The preferred
usage of certain codons is an example.

An interesting approach is to take, beside blast hits, functional domains into ac-

count as well. A possible source could be the SUPERFAMILY project which was already

used for a reliable assignment of homology in certain species [65]. SUPERFAMILY pro-

vides a library of hidden Markov models based on the SCOP database (Structural

Classification of Proteins) [66, 67]. Thus, proteins on superfamily level were used

solely. Their structure and, in a lot of cases, functional features suggest the exis-

tence of a common evolutionary origin [68] . These can be utilized for detecting

functional domains within putative orthologs. In addition, PFAM (Protein Families)

offers hidden Markov models for detection of functional domains that are based on

multiple sequence alignments without the restriction to structural or functional con-

served proteins [69, 70, 71]. Thus, the amount of data is larger. However, due to the

way of creation it is presumably not as reliable as the data from SUPERFAMILY [72].

Additional to blast, domains could be annotated for each protein within a puta-
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tive orthoset using both hidden Markov models. The same domains at each protein

can be expected if similar function is supposed. Therefore, this information could be

incorporated to refine Proteinortho’s output as presented in Figure 3.22. This is

nevertheless not a trivial approach and will increase runtime notably. Furthermore,

it would limit the homologs detection largely to confident isofunctional groups and

therefore to orthologs. As introduced in Section 2.2, paralogs are not supposed to

be isofunctional. Thus, an optional application is suggested. This method would be

convenient as quality evaluation for putative orthosets as well.

Figure 3.22: Domain based approach: Assume the arbitrary proteins a, b, c, d and e
to be detected as putative orthologs and are thus similar in sequence. Additionally,
the equality of a, b and c indicates a functional conservation. Nevertheless, domain
annotation points out that protein d misses a domain present in the majority and
protein e differs in one. However, a functional similarity is not precluded by the fact
that they differ in a domain. For instance, they might bind different sites on DNA
but cause the same effect.

3.4.4 Methods for evaluation

Unfortunately, there is no universal applicable method to evaluate predicted or-

thologs and paralogs. The required similarity between two proteins in terms of

sequence identity, regulation of chemical activities, interaction partners often varies

across studies [57]. In some wet lab studies two genes are considered to be or-

thologs if they have the ability to complement each others functions [73, 74]. On

the other hand, genome rearrangement studies refer to orthology from an evolu-

tionary point of view as the original sequence within its genomic context regarding

duplication events [2]. Methods for computational evaluation can be based for ex-

ample on gene ontology, enzyme classification numbers, correlation in expression

profiles, functional genomics data, gene neighborhood conservation or phylogenetic
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information [75, 76, 77, 78]. However, the quality of methods often differs largely

according to the way of evaluation [57, 58]. A general assessment is hard to draw as

methods behave differently, regarding the type and aggregation of data. However,

the accomplished comparative benchmark in Subsection 3.3.2 can be considered as

orientation.
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Chapter 4

Domain-wide commons

4.1 Background

It is widely accepted that all bacteria arose from a common ancestor [79, 80, 7].

Following this assumption, most of them should have a common set of proteins

(and RNA) to cover basic functions of life. These essential proteins are more evolu-

tionary conserved than non-essential proteins [31]. Proteinortho should thus be a

reasonable approach to detect them. A set of essential proteins outlines targets that

should not be aimed for drug design as this would influence beneficial bacteria as

well. However, it represents potential targets for chemical disinfection. Furthermore,

this information can be used to give a more detailed insight into bacterial evolution

and can aid in taxonomic classification based on multiple reference proteins. The

objective of this chapter is to identify such domain-wide commons for bacteria. To

improve confidence about this set, it should be isofunctional and contain no or at

least as few as possible paralogs.

4.2 Methods

4.2.1 Data source

To find proteins occurring in most bacterial species, all 710 available genomes

were downloaded from NCBI (National Center for Biotechnology Information) at

2008/11/27 [49]. The amino acid sequences of the proteins on all chromosomes and

plasmids were collected in fasta files, one for each species. Entries containing the

description ’hypothetical’ or ’predicted’ were dismissed in order to use verified data

exclusively. Finally, about 1.5 million proteins were used for subsequent analysis.
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The protein distribution within the used set of bacteria can be viewed in Figure 4.1.
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Figure 4.1: Protein distribution: Protein quantity of the considered species after
filtering ’putative’ and ’hypothetical’ entries. The 710 analyzed bacteria had 2026
proteins on average.

4.2.2 Processing

The analysis was done with Proteinortho distributed over multiple machines. The

used version differs from the previously presented one. Neither the 25% pairwise

identity nor 50% coverage for blast hits were implemented at this time. Paralogs

were allowed in this initial step. Proteinortho’s output returned not a single protein

type that occurred in all species. One reason could be missing annotations. At the

first glance, surely not every protein is annotated in every bacterial species. At

the second, all hypothetical and predicted proteins were dismissed from the given
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data. To pass over these problems, the output of Proteinortho was filtered. Solely,

connected components which covered at least 50% of all species were left. Knowing

that over half of all species contain a certain protein, it is justified to investigate

species where this protein was missed. Therefore, these proteins were used to restock

the output as described below.

Restocking

Reduction of sequence number The amino acid sequences of all proteins of

the remaining connected components were stored in fasta files. A separate file was

created for each component. To reduce the complexity of the following blast runs,

highly similar sequences were replaced by their consensus sequence. The process of

truncating is presented in Algorithm 3.

Algorithm 3 Consensus shortening

1: for all files f do
2: align f using clustalw

3: for all thresholds t = 1...0.8; t-=0.05 do
4: for all aligned sequences s do
5: if pairwise identity(sn, sn+1) ≥ t then
6: replace sn by consensus(sn, sn+1)
7: remove sn+1

8: end if
9: end for

10: if blast misses hits then
11: LAST
12: end if
13: end for
14: end for

After each step, blast was applied against the original file with an E-value of 1.

This E-value was required because database and query were very short and similar.

Every protein had to be found at least once within the reduced data. The set which

fulfilled this condition with the lowest threshold was used.

Blast For each connected component the truncated set was used to blast against

the genomes of all species where no orthologs were found. An E-value of 1e−10 was
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applied. The hits were enlarged to the next surrounding open reading frame. For

details see Section 5.2.2. If this was not possible, they were dismissed to avoid false

positives. The information was used to restock the orthosets in order to give a more

accurate overview in how many species orthologous proteins occur.

Filtering

The resulting sets were filtered. Only connected components having up to 5% par-

alogs were allowed. This step resulted in 16 proteins present in all species which

were regarded. The set of proteins revealed a conspicuous issue. As the coverage

overview in Figure 4.2 shows, there are significantly more proteins that occur in 99%

of all species than in 100%. It conveys the impression that some widely essential

proteins are not necessary to all species or have scattered replacements in some of

them. In order to gather a preferably large set, these species (about 1% of the set)

were removed. This resulted in 27 domain-wide common proteins.

Some species had duplications within the chosen proteins. For some, it turned

out that they even had all of them duplicated. This was consistent with literature

where massive duplications in general or duplications of ribosomal elements were

reported [81, 82]. As the proteins should be used as reference, duplications would

make an assignment more complicated and ambiguous. Up to 25% (= 6) duplicated

proteins were allowed per species. If this was not the case, they were dismissed.

Again about 1% of the investigated set was removed. Finally, 688 species remained.

Generation of the reference set

The amino acid sequences from all common proteins were fetched. For species that

had duplications of individual proteins included, one was chosen randomly. Finally,

a reference database for each dedicated group of proteins was created. It contains

the equivalent domain-wide proteins for each species. These files were aligned using

clustalw [83]. The guide trees were used to generate a consensus tree with consens,

a part of the PHYLIP-Package [84].
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Figure 4.2: Coverage overview: Results of the Proteinortho run with 710 bacteria.
Using blast additional appearances of proteins could be discovered that actually
covered all species. Sets with over 5% paralogs were filtered.

4.3 Results

A pool of 27 shared proteins was determined for all 688 species. These can be used to

have an insight into conserved pathways and essential elements which are potential

drug targets. They allowed to generate a protein based phylogenetic tree which can

give an overview from the protein perspective instead of the prevalent 16S based

classification [85]. Therefore, classification and protein annotation of new species

can be facilitated using these sets as additional molecular markers. An according
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application will be presented in the next chapter.

Common proteins

The following proteins were found to be orthologous in at least 688 bacterial species:

• 30S ribosomal proteins S2, S3, S4, S5, S7, S8, S10, S11, S12, S13, S17, S19

• 50S ribosomal proteins L1, L2, L3, L5, L6, L11, L14, L22, L23

• tRNA synthetases for seryl, arginyl, phenylalanyl (alpha chain)

• preprotein translocase, SecY subunit

• peptidase M22, O-sialoglycoprotein endopeptidase

• transcription elongation/termination factor NusA

Ribosomal proteins The ribosomes are complexes of RNA and proteins respon-

sible for protein synthesis. They translate mRNA into chains of amino acids and

assemble proteins. The prokaryotic complex consists of a small 30S and a large 50S

subunit. Both insisting of multiple proteins themselves [8]. For 30S, 12 of 21 pro-

teins were found, for 50S, 9 of 34. Many of the not included subunits are known to

be homologs [86]. They were filtered for that reason as described in Subsection 4.2.2.

Aminoacyl-tRNA synthetases These proteins charge tRNAs with their cor-

responding amino acids. Apart from some exceptions, most bacteria have 20 of

them [87, 88]. They arose early in evolution and are supposed to be a very ancient

group of proteins necessary for the translational machinery. A large number of ho-

mologs could be confirmed in the aminoacyl-tRNA synthetases database [89]. Even

more of the 20 synthetases should be expected to occur as common homologs. Due

to their ancientness, they might have many paralogs and were thus filtered.

Preprotein translocase SecY This protein is involved as subunit in the secEGY

protein secretion complex [90]. It is responsible for transporting unfolded proteins

to the cell membrane. The subunit can be regarded as essential, since mutations in
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the secY gene were shown to be mutual [91]. However, its exact role is unclear [92].

Further investigation might be of interest as this protein is present in most bacteria.

Peptidase M22 M22 is a poorly characterized endopeptidase [93]. Following

the MEROPS peptidase database, homologs can be found in all kingdoms of life.

Up to some exceptions, bacteria usually have at least one homolog, but usually

more [94, 95, 96]. As activity could only be proven in Pasteurella haemolytica up to

day, it is suggested that the gene has either been misassigned or a special co-factor is

required [97]. For this analysis, only orthosets with less than 5% of paralogous were

allowed. Therefore, the data of MEROPS, implying multiple copies in most bacterial

genomes, could not be verified. Instead, it supports the theory of misassignment.

Otherwise, these homologs seem to have diverged in a way that makes them not

appear as homologs to Proteinortho.

NusA This transcription factor is reported to be highly conserved and essential for

transcription elongation. It forms a complex with the RNA Polymerase and prevents

premature termination. Thereby, it regulates the rate of transcription [98, 99]. It is

required for rho-dependent termination as well [100, 101].

Reference database

The set of common proteins can be used to approximate related species. For each

of the detected common proteins, a reference database was created. This database

allows estimating the most similar species within the reference set regarding its

sequence in a genome of interest. Furthermore, similar species can be detected

using the consensus tree of the protein alignments with respect to their protein

conservation.

4.4 Discussion

The number of common proteins appears quite small. Certain processes like trans-

port of amino acids, iron, phosphate, synthesis of arginine, biotine, ribose, and the

SOS response are supposed to be conserved. This should hold for the contributing
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proteins as well. However, the regulatory networks of bacteria are known to be ex-

tremely flexible including the covered proteins [102]. Especially, transcription factors

are poorly conserved. This fact actually makes similarity based orthology detection

unfavorable to detect them. Additionally, problems are introduced with subfunc-

tionalization of paralogs. Even if a pathway is conserved, details for participating

proteins may have change during evolution.

Additionally, about half of the proteins were dismissed during filtering of ’hypo-

theticals’ and ’putatives’ in order to generate a reliable set. In context of domain-

wide analysis, this might have been a disadvantageous decision. It obviously reduces

the chance of finding homologs solely because they were not validated yet. Sets

which basically consist of not validated proteins could have been dismissed within

post processing.

A not negligible part of proteins was assigned to a ’mega cluster’ which could

not be partitioned further. Reasons and possible solutions were discussed in Sub-

section 3.4.2. This insight gave the impact to add the 25% pairwise identity and

the 50% overlapping requirements to the defaults of Proteinortho. Repeating the

study with the improved version and including predicted protein annotations would

be favorable.
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Annotation pipeline

In this chapter, a more complex application for Proteinortho will be presented.

The concerned problem is annotation of genes and transcriptional elements for newly

sequenced genomes. An additional challenge is that no further knowledge is required

as genomic sequence data from will be used and compared to previous Proteinortho

output. In detail, taxonomic classification is not necessary and the genome does not

need to be complete. The only condition is that the species belongs to bacteria.

5.1 Background

The way from gene to protein is equal in all bacteria. It is basically divided into two

steps. The first one is transcription. The information from DNA is copied to a RNA

molecule. To achieve this, an enzyme called RNA Polymerase initiates binding to

the template strand of the DNA. This occurs on certain sites, called promoters. The

enzyme moves along while copying the information to RNA. The process is called

elongation. Finally, the RNA Polymerase terminates transcription due to a special

site it has reached (terminator) and dissociates from the template [9, 103].

The prepared RNA is subsequently bound by a special protein complex, the

ribosome which initiates the process of translation. During this procedure, the

information encoded on the RNA molecule is translated to a protein. Unlike than

in eukaryotes, transcription and translation are not individual processes separated

by a physical barrier. Translation can start as soon as the emerging RNA exposes a

binding site for the ribosome [9, 103]. The following part will describe the elements

and mechanisms in more detail.
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5.1.1 Transcription

Promoter

Promoters are specific sites on the DNA where the RNA Polymerase binds and

initiates the transcription. They are usually placed proximal upstream to the tran-

scription start site and consist of two important elements which are assumed to be

highly conserved within all prokaryotes. The first one is the −35-box and second

the −10-box which is called Pribnow-box as well. As their names indicate, they

are located (centered) around 35 and 10 base pairs in front of (upstream) the tran-

scription start site. Both are separated by 17 ± 1 base pairs [8]. An extension of

the -10 box, called extended −10 box (TGn) can substitute the -35 box [103, 104].

The most significant −10 consensus sequence in Escherichia coli and most other

bacteria is TATAAT. An example sequence logo for Bacillus subtilis is shown in Fig-

ure 5.1. The according consensus sequence of the −35-box is TTGACA [105]. An

UP-element is located upstream to the previously mentioned regions. It supports

the recruitment of the RNA Polymerase which is mainly mediated by DNA-binding

proteins [9, 103, 106].

Figure 5.1: -10-box sequence logo: On the left, the logo of predicted TATA-boxes
generated during tests with Bacillus subtilis is shown. It is based on 692 sequences.
The logo of 329 experimentally validated σA TATA-boxes is shown on the right [107].
σA is the major housekeeping σ-factor in this species [108]. The consensus sequence
found in literature is well represented. However, the pipeline’s predictions focus on
the most conserved sequences and thus, miss varying sequences.

The mentioned characteristic regions are fundamental for the initial binding.

Their relative contribution differs. They can compensate each others imperfections.

A perfect promoter by means of consensus sequence is actually never found [103].

Probably, such a promoter would bind the polymerase with a strength that prevents

it from moving further for elongation.
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Terminator

Two basic types of transcription termination are known, directly through secondary

structure of the emerging mRNA and indirectly by interaction between mRNA and

special factors. The mechanisms are described in more detail below.

Figure 5.2: Terminator models: a) The basic model of an intrinsic rho-independent
terminator on mRNA level. Most important is the stem loop structure. Internal
bulges and small loops may occur. The downstream region contains a poly-uracil
trail. b) Ring-shaped protein Rho (light gray) winding the emerging RNA, leading
to rho-dependent termination.

Rho-independent In most cases, termination is achieved directly without the

requirement of any factors. The (intrinsic) terminator is a characteristic about 40

nucleotides long and GC-rich sequence of the emerging mRNA. It is responsible

for the termination effect. It contains an (not necessarily perfect) inverted repeat

which is separated by a spacer of three to ten nucleotides (see Figure 5.2a). This

sequence forms a hairpin loop which pauses the polymerase. The following poly-

uracil tail leads to dissociation of the RNA Polymerase and thus to the termination

of transcription [109, 8, 110, 111].

Rho-dependent This mechanism of termination is actually a subgroup of factor-

dependent termination. However, rho-dependent termination is the most common

and investigated one. Other factor dependent mechanisms are supposed to act in a

similar way [112, 113, 114].

In contrast to direct termination as described above, the termination sequence

does not rely on hairpin loop formation or a poly-uracil tail. Instead, a binding site

53



Annotation pipeline Background

for the protein Rho the so called rho-site is required. The protein is ring-shaped

and has ATPase and helicase activities. Once bound to the ribosome-free mRNA,

it moves along heading to the DNA-RNA hybrid at the RNA polymerase. If this

location is reached, the hybrid gets unwound. This in turn leads to transcription

termination [115]. Rho releases the transcript afterwards. Additional factors such

as NusA, NusB and NusG participate [9, 112, 103]. An illustration of Rho winding

the mRNA is shown in Figure 5.2b.

Experiments point out that the binding site is very sensitive to cytosine deletions

whereas uracil, adenine and especially guanine deletions have a lower influence on

successful termination. Furthermore, a stop codon seems to be required for termina-

tion. As the ribosome attaches in front of the Rho-factor, it needs to fall off before

the factor can pass it. Otherwise, it can not reach the hybrid [9].

Antitermination As described above, terminator structures - rho-dependent or

rho-independent - assess the end of a transcript. It can be much longer if the

termination signal is elided. This in general results in a larger number of products

encoded to mRNA [9, 8]. Rho-dependent termination for example, is disabled by

inactivating the Rho protein or hindering it to bind due to formation of secondary

structure or previous binding of other proteins. In the rho-independent case, the

responsible hairpin loop is blocked by proteins. Numerous variations of these basic

models are known [113, 114].

Regulation

The regulation within cells is very complex and usually based on multiple layers.

Transcriptional regulation is only one of them. In this field, the initiation of tran-

scription is an important controlling factor. For prokaryotes, three different types of

transcription activation are known which result in different promoters. Additional

transcription factors, activating or repressing proteins and transcription termination

play a role in regulation [9, 103]. In the first instance, it is important to introduce

the RNA Polymerase enzyme in more detail. It is the key element of transcription

and thus, important for regulation.
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RNA Polymerase This enzyme has a central role for the transcription. Struc-

tural as well as functional similarities to the DNA dependent RNA Polymerase II,

found in yeast and other eukaryotes, are present [116, 117, 118, 119]. Its core con-

sists of several subunits which are namely β, β ′, ω and two α units. The subunits

are important for the transcription [103]. β and β ′ form the active site of the poly-

merase. It binds both, template DNA and the RNA transcript. ω on the other hand,

is supposed to assist folding the β ′ subunit [120]. Both α subunits have an amino-

terminal-domain (αNTD). They are necessary to assemble β and β ′. Furthermore,

a carboxyl-terminal-domain (αCTD) is present. It mediates DNA-binding proteins

located on the up-element and thus, is important for initiation at most promot-

ers [106, 121].

Figure 5.3: RNA Polymerase and promoter: 2D-illustration of interactions between
prokaryotic RNA Polymerase with an attached σ70 subunit and promoter elements.
The UP-element is bound by a DNA-binding protein which is bound in turn to the
αCTD of the polymerase. Adapted from [103].

To initiate the transcription at a particular promoter, the formation of a holoen-

zyme is necessary. This takes place by integration of a σ-family subunit [103]. This

subunits effect the enzyme in two important ways: Firstly, it is needed to recog-

nize specific promoter sequences and positions the holoenzyme at the right location.

Secondly, it helps unwinding the DNA next to the transcription start site [122].

Most bacteria have different σ-factors (σ subunits) which share common features.

However, an exception in this case is the σ54 family. It does not share any sequence

homology with the other families and uses a distinct pathway of open complex

formation [123, 124]. The σ-factors have four different conserved domains that

are involved in binding to the core enzyme and DNA melting. Furthermore, they

recognize the promoter’s −10- and −35-box, as well as an extended −10-region [103,

123, 125]. Whereas σ70 is the major subunit, different σ-factors enable the RNA
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Polymerase to recognize different sets of promoters with different efficiency. This

makes the cell able to alter transcription in response to stresses [123].

σ competition An important fact regarding gene expression is the competition

between promoters for RNA Polymerase and σ-factors which both are normally short

in supply [126, 127]. Due to this fact, it is not always possible to utilize effective

promoters in different species. In subjection to the availability of σ-factors other

promoters could be favored. The number of promoters utilizing a certain σ-factor

is important for regulation as well. If all have an affinity to the same factor, they

need to share the available ones. Reduced transcription ratio is the result.

Transcription factors Transcription factors are proteins that up- or down-regulate

the transcription of genes [128, 129]. They affect the expression of genes based on

environmental signals. The majority has specific binding sites next to certain pro-

moters [130]. These can be UP-elements or so called operator sites which suit as

binding site for proteins. Some factors control large sets of genes, others only act on

a single promoter [131, 132, 133]. However, their functions can be different accord-

ing to the type of promoter, gene location and other proteins they interact with.

Depending on presented or hidden regions, some can act as activator in one but as

repressor in another case [129]. For example, the Escherichia coli infecting phage

λ encodes a protein that activates its own gene while repressing the anti-sense gene

for Cro [134].

Regulated recruitment (Class I) Regulated recruitment is a mechanism bac-

terias have in common with eukaryotes. If no repressor inhibits it, the genes’ tran-

scription always works on a basal level because polymerase will bind the promoter

from time to time. This happens more often if the concentration of polymerase in

the cytoplasm increases [9].

While the promoter itself does not need to be very strong, other regions around

(mostly upstream) are responsible for the recruitment of polymerase. This happens

indirect by binding an activator protein which has an affinity to the polymerase.

Furthermore, there can be more of these activators cooperating synergically. They
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might bind the polymerase in different ways for example. This allows a combinatorial

control of gene expression [8, 103].

Summing up, the rate of polymerase binding is influenced. Without activators

the gene expression is not off but works in a very inefficient manner and therefore,

on a basal level solely.

Polymerase activation (Class II) In this case, the polymerase binds the pro-

moter but stays inactive. There will be no transcription until it is activated by a

protein which induces a change of polymerase conformation. Furthermore, ATP is

required for this reaction [103].

Promoter activation (Conformation change) Normally, the distance between

the −10- and the −35-box is 17± 1 base pairs. Promoters of this kind instead, hold

a distance of 19 base pairs between these boxes. The increased distance prevents the

polymerase from adjusting correctly. A special protein is required which reshapes

the promoter. It does not need to operate with the polymerase itself since it can

bind on a different side. This reshaping of the promoter makes the polymerase able

to start transcription. Otherwise, the holoenzyme will be stuck on the promoter

what makes it work like a repressor [103].

Operons

Figure 5.4: Operons: Multiple (protein coding) genes share operator, promoter
and terminator and are transcribed together. In this way related proteins can be
regulated mutually. Further transcriptional elements can occur within the unit and
allow a more exact regulation.

Operons are units of clustered genes in bacterial genomes. They are commonly

subject to gene expression and regulation as they share transcriptional elements

such as the promoter and terminator. For that reason, they tend to have related

functions [9, 135]. The position of co-transcribed genes is often conserved among
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related species whereas it is shown that single genes tend to be rearranged in the

absence of evolutionary pressure [136].

5.1.2 Translation

Figure 5.5: Translational elements: Overview of translational elements on DNA-
level. In most cases, the coding sequence is led by a Shine-Dalgarno sequence (SD).
The protein coding sequence itself always starts with a start codon and ends imme-
diately in front of a stop codon while the open reading frame (ORF) additionally
contains the stop codon.

Coding sequence

The coding sequence codes for the actual protein. It consists of codons which are

tri-nucleotide sequences. Each is coding for a certain amino acid [9]. An illustration

is presented in Figure 5.5. Every such sequence begins with a start codon which

initiates the transcription start. The most frequent occurring start codon is ATG. It

codes for the amino acid methionine. GTG (valine) and TTG (leucine) occur in some

cases as well [137, 138, 139, 140, 141, 142, 143, 144]. Furthermore, ATT (isoleucine)

and CTG are found to act as start codon in rare cases [145, 146, 147, 141, 148].

In comparison to eukaryotes, introns are negligible in bacteria as they occur in

rare cases only [149, 9, 150]. This fact makes it possible to gather the amino acid

sequence from the coding sequence and backwards by using a mapping between

both. It is known as the genetic code. Some organisms show slight variations in this

code [151]. For example, Mycoplasma capricolum is translating TGA to tryptophan

instead of treading it like a stop codon following the universal genetic code [152].

The stop codon is located directly after each coding sequence (downstream). It

is recognized by release factors. They make the ribosome release the peptide and
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thus, finish translation, no matter which nucleotides follow after. In contrast to

all other codons, it does not code for an amino acid additionally to its function.

Common stop codons are TAA, TAG and TGA [151, 9, 8]. Under special circumstances,

these regions pause the ribosome only but do not make it fall apart. The complex

can then continue translation [153].

Areas between a possible start and stop codon on DNA level are called open

reading frame (ORF). The existence of an open reading frame is however no evidence

for an encoded protein at this location but it provides a good indication.

Shine-Dalgarno sequence

The Shine-Dalgarno sequence is located around four to seven nucleotides upstream of

the start codon. It consists of an about ten nucleotides long conserved motif with the

consensus sequence AAGGAGGTGA [154]. However, the AGGAGG containing area is the

most conserved and will be focused in this thesis. Figure 5.6 shows an example. The

Shine-Dalgarno sequence allows the ribosome to attach the mRNA and furthermore,

detect the right initial start codon since it is usually complementary to a sequence

near the 3’-end of the 16S-rRNA which is part of the ribosome complex. This

detection is not trivial as their might be several codons which would suit as initial

start codon [8, 155].

Figure 5.6: Shine-Dalgarno sequence logo: The predicted ribosome binding site
generated during tests with Moorella thermoacetica ATCC is shown on the left. It
is based on 821 sequences. The logo of 867 Shine-Dalgarno sequences annotated in
the ProTISA database is shown on the right [156]. They were predicted using the
two reliable methods. The first is based on comparisons to the Conserved Domain
Database (CDD) [157, 158]. The second uses alignments of orthologous genes [159].
The consensus sequences match well (when trimmed). However, the pipeline predicts
shorter sequences as it focuses on the most conserved part.

Even if this ribosome binding site belongs to the basic model of a gene, it is not

compulsory [160]. In fast-growing bacteria for example, the amount of genes that
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hold a Shine-Dalgarno sequence in front (upstream of an ORF) is around 90% while

some parasites and cyanobacteria are reported to have only 20% genes with such a

strong dedicated sequence [154].

One reason is the phenomenon of coupled transcription which occurs in operons.

In these cases, a stop codon overlaps with the start codon of the following coding

sequence. Such a sequence could be ATGA for example. The ribosome is evidently

not falling of there but goes on generating the next protein [153]. Apparently, there

are additional other mechanisms that may not acquire an overlap. The overall

probability of a present Shine-Dalgarno sequence in front of genes organized in

operons drops, the further downstream they are located from the initial start [154].

In conclusion, the existence of these sequences upstream of open reading frames

is a good indicator for active translation. However, the absence cannot be used as

criterion for exclusion.

5.2 Methods

As stated before, the intention is to construct an annotation pipeline for a given

(newly sequenced) genome which is based on the Proteinortho results from the

’Domain-wide commons’ in Chapter 4. An overview is illustrated in Figure 5.7.

Due to the lack of taxonomic information for an unannotated genome, a classi-

fication has to be done to determine already annotated and closely related species.

For this, the 27 reference proteins from Chapter 4 are utilized. Every protein from

the determined related species is then used as seed if they are included in at least

25% of them. This results in a trustworthy initial set. Common proteins within

putative relatives are likely to be present in the species of interest as well. They

are used to approximate the properties of protein coding regions within the unanno-

tated genome. Motifs for transcriptional and translational elements are of interest

especially. These are used to predict further proteins and are finally refined by the

newly predicted data for subsequent analysis.
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Figure 5.7: Pipeline overview: Initial step of the pipeline is the discovery of related
species. Concluding from this, common proteins are used as seed for trustworthy
candidates (light gray). These can be used to derive sequence and genomic features
which aid in further annotation (dark gray). Finally, these features can be refined
based on the gained annotation.

5.2.1 Relatives discovery

Related species have to be identified in the first step. This information will be the

starting point for the choice of proteins in the next homology based annotation step.

To achieve good protein similarity, the reference proteins and the resulting consensus

tree, established in Chapter 4, are used. The proteins serve as similarity database

to estimate related species. Each protein set is used as query to search by blast

in the new unannotated genome. The best hit regarding its bitscore is used as a

reference point and thus, will be marked within the reference tree. This is done for

each protein set resulting in multiple markers within the reference tree.

The markers are derived from 27 different protein sets. In turn, this results in

27 markers normally. However, it can be more or less, depending on the number

of equally good proteins within the reference set and the hits within the genome.

If the genome is not complete or certain common proteins are lost, less markers

could be found. Additionally, some protein sequences within the reference database

are similar. The reference set was shrunken to a quasi-non-redundant database
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Figure 5.8: Subtree assignment graph example: A subtree is searched that includes
at least eight of nine blast hits (reference points, marked as circles). Starting from
each leaf with a marker, a counter within the parent nodes is incremented recursively.
Therefore, this counter tells how many hits can be found within the subtree of its
descendants. Species E, F , G and H will be chosen as they are in the smallest
subtree containing at least 75% of all markers.

using nrdb [161]. Identical sequences were merged in order to avoid unnecessary

blast effort. In these cases multiple, less weighted markers will be used to represent

these hits. Thereby, equally good hits are included as well.

The smallest subtree is chosen that includes at least 75% of these markers. This

value was applied to add some robustness against separate misleading hits. As there

are more of these subtrees possible in general, the one with the smallest number

of descendants is chosen (including leafs and inner nodes). For more details, see

Figure 5.8. Once a subtree was determined, the species within can be regarded as

related by means of their protein conservation and are used for further homology

based annotation.

Handling similar sequences

As noted above, weighted markers representing more than one species are possible.

This occurs especially for species that have many closely related organisms within

reference tree. Applying the relatives discovery to Escherichia coli for example, will

result in a lot of markers over multiple species. For this purpose, colors are used.

A marker only counts if none of the same color was counted before as Figure 5.9
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illustrates. In this way, a reliable relatives detection is achievable despite widespread

hits caused by very similar sequences in different reference species.

Figure 5.9: Subtree assignment using colors: The basic method acts as described
in Figure 5.8, but in this case some reference points split into multiple hits. The
weighted markers are marked as colored circles. Every color (here shown in gray-
scale) represents hits for one of the reference proteins. Again the counters within
parent nodes are incremented recursively but in contrast, the counter is only in-
cremented if a node of the same color was not counted already. In this way, the
best fitting subtree for multiple hits can be chosen, even if there is not a single
unambiguous hit.

5.2.2 Protein annotation based on homology

Choice of sample proteins

Based on the number of assigned relatives, different methods are utilized to increase

specificity. Proteins present in at least 25% of the relatives will be determined in

order to gather a trustworthy set. Figure 5.10 points out details. This is the most

important factor at this stage as the resulting annotations will be used as training

sets for all subsequent steps.

Direct blast method This method is used if one to four related species are

located in the assigned subtree. If a protein is found in at least one of these species,

the probability to find it in a related one is high. Assuming the chance to find it

would be m
n+1

. Where n is the number of species in the subtree and m the number
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Figure 5.10: Reference choosing methods: Depending on the number of species in
the assigned subtree, two different methods are used to generate a set of reference
proteins. The direct blast method is used if not more than four species were de-
termined as relatives. Otherwise, the considerable proteins (dark gray) are filtered
using Proteinortho. The remaining candidates will be used subsequently to anno-
tate homologs (light gray) in the genome of interest.

of species containing the protein (as homologs). The worst case (n = 4, m = 1)

would be a probability of 20%. This is good since nothing else is known about the

new genome. Furthermore, the chance of false positives will be decreased as more

attributes such as the presence of an open reading frame are checked. The according

protein sets will be downloaded from NCBI and used directly for a blast run against

the unannotated genome.

Proteinortho method With a raising number of species in the subtree, the

chance to find the proteins in the genome of interest decreases. The according

protein sets of all related species are downloaded from NCBI and filtered using

Proteinortho [49]. A reciprocal blast search with an E-value of 1e−10 is done

with these sets. Only proteins detected in at least 25% of all regarded species will
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be kept in order to use frequent proteins only. This leads to a worst case of ⌈0.25n⌉
n+1

≥ 2
9

for n ≥ 5 and thus stays over 20% as well. Using the remaining proteins, a quasi-

non-redundant database is generated with nrdb. This database is used subsequently

to annotated the investigated genome.

Choice of blast hits

The blast runs are performed using tblastn with an E-value of 1e−10. Hits which

are shorter than 75% of the respective protein in the query are not considered further.

If a query results in more than one hit, the best hits are taken into account solely.

This is calculated as before. Regarding their relative bitscore, best+candidate
best

−1 > 0.75

has to be fulfilled for each candidate. In this way, conserved paralogs should be

detected as well.

Hit validation

An according open reading frame is assigned to every chosen blast hit to approve

that it matches a possible protein coding region. In order to locate it, each blast

hit is extended up- and downstream:

• + the number of amino acids which are missing to achieve the respective

protein’s full length regarding the hit’s relative location

• +10% of the respective protein length of the query

• +10 amino acids, to embrace very short proteins

The search for a start codon in the extended sequence begins at −10% of the

position of the original hit’s 3′ end. It heads towards the upstream extension of the

query’s hit. The most upstream candidate is chosen under the condition that no stop

was encountered before. An illustration is presented in Figure 5.11. If none of the

regular start codons (ATG, GTG, TTG) is found, this is repeated with the alternative

codons (CTG and ATT) introduced in Subsection 5.1.2. A stop codon (TAA, TGA or

TAG) is searched downstream the located start codon. The very first one is chosen

as the translation would not continue afterwards a stop signal.
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Figure 5.11: ORF check: After the hit was extended, a start codon is searched from
the 3′-end to the 5′-end. The very last one is supposed to be the right. Starting
from this position back to the 5′-end, a stop codon is searched. Here, the very first
one is taken. A protein will only be annotated if both are found.

Finally, the length of the located open reading frame has to be at least 75% of the

respective protein from the query. Shorter sequences are supposed to be pseudogenes

or false positives and therefore, will be rejected. Otherwise, the located open reading

frame will be annotated as protein. The maximum length is limited by the way the

extension was done. Located open reading frames cannot exceed the length of the

query protein to more than 20%+20 amino acids (+10% of query length +10 amino

acids up- and downstream).

Feature extraction

The validated hits will serve as seeds for subsequent analysis. Typical features as

the derivation for start and stop codons, protein lengths and amino acid frequencies

are extracted. These features can enhance further predictions with respect to the

characteristics of the present genome.

5.2.3 Transcriptional elements

Data about transcriptional elements is derived from the set of beforehand predicted

homologs. These are trustworthy as they appear in closely related species. Promoter

and Shine-Dalgarno sequence can provide important clues to further predict protein
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coding genes. Their sequence motifs are analyzed by meme, an iterative expectation

maximization approach [162]. The genomes nucleotide frequencies are identified

and used as background distribution to increase accuracy. The tool can derive this

information itself regarding the given sequences. However, this data will be biased as

most of them should contain transcriptional elements. Additionally, two programs,

aln2pattern and fragrep, were used to generate the sequence patterns and detect

them within the genome [163, 164]. Their source code had to be changed slightly to

handle larger sequence sets as well.

Shine-Dalgarno sequence

The ribosome-binding site should be found in front (upstream) of every protein

coding gene. To detect them, meme was used. Given a set of sequences, it determines

the most common motif. Thereby, the amount of time increases dramatically with

the number of sequences. Additionally, operons can be assumed to appear frequently

in bacteria. Genes grouped in these transcriptional units may not need a separate

ribosome-binding site as derived in Subsection 5.1.2. In order to keep the assignment

within a usable time-scale and furthermore enhance accuracy, all protein coding

genes that have another one close in front are removed from the set. The concerning

distance will be introduced later. For meme, a number of up to 1300 sequences has

shown to be reasonable. As a representative choice of sequences can be assumed, it

would be of less use to analyze more sequences. The required time becomes much

larger while the result improves only marginal.

Figure 5.12: Simple operon model: Not all protein coding genes need a Shine-
Dalgarno sequence immediately in front. Especially for genes within operons, such
a sequence in front of the very first gene may be sufficient. Therefore, these leading
genes are used preferably for distinguishing the element’s pattern. As profound
operon prediction can hardly be done at this stage, it will be approximated by a
forced minimum distance to the preceding gene. If this requirement is not fulfilled,
the gene will not be considered further (cross).
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Concerning these circumstances, an adaptive choice of sample sequences was

introduced. A threshold starting from zero base pairs is the initial allowed distance

to an upstream protein coding gene. Solely, genes with distances below will not be

considered for Shine-Dalgarno motif analysis. If the number of considered genes is

above the limit of 1300, the threshold is raised by additional 50 base pairs. The

procedure is repeated until the number of genes is within the limit. In this way,

genes within possible operon units can be filtered preferentially while the leading

genes with the highest chance for presence of a Shine-Dalgarno sequence should

remain for analysis. See Figure 5.12 for details.

All areas from 1 to 25 base pairs upstream the remaining sequences are analyzed

for a conserved motif. The iteration starts from the common consensus sequence

AGGAGG. This pattern is supposed to belong to the typical Shine-Dalgarno sequences

for that certain species. The resulting motif is then generated using aln2pattern

and searched within the remaining sequences using fragrep. All hits are marked as

putative Shine-Dalgarno sequence.

Promoter

The subset of protein coding genes lead by a (putative) Shine-Dalgarno sequence is

used to gather the promoter pattern. Again, if their number exceeds 1300, they will

be filtered preferring operon leading genes. It is very likely to find promoters next

to these locations. 250 base pairs in front of each marked Shine-Dalgarno sequence

are analyzed using meme. The iteration starts from the consensus sequence TATAAT.

These hits are supposed to be the −10-box. In this way, the most utilized promoter

sequence within the investigated genome should be found. It has to be noted that

different σ-factors are not considered.

Terminator

For prediction of rho-independent terminator structures, TransTermHP was used [165].

It detects stem loops within a given sequence and calculates their stability. Fur-

thermore, it considers the typical terminator characteristics introduced in Subsec-

tion 5.1.1. The presence and quality of all features are evaluated, resulting in a score
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between 40 (uncertain) and 100 (confident). For some reason, scores below 40 are

not reported by TransTermHP.

Figure 5.13: Terminator cut-off: To estimate a reasonable cut-off for TransTermHP
predictions, the lowest score is chosen that approximately provides 75% true positive.
The figure shows an illustration for application with the Bacillus subtilis genome.

Using a fixed schema, the approach is inflexible to adapt to terminators in differ-

ent species. Extraordinary terminators should not be detected especially. However,

it allows annotating well known prokaryotic terminator structures very accurate.

The basic task is to estimate a threshold regarding the annotated scores for a cer-

tain unknown species. This is done as follows.

Initially, the genome is shuffled ten times while remaining the mononucleotide

frequencies. TransTermHP is then applied to these shuffled genomes and the number

of hits per score are averaged. All hits are supposed to be false positives as no certain
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terminator structure should be present within a shuffled genome. Subsequently,

TransTermHP is applied to the original genome. The difference of hits between this

run and the averaged shuffled runs is considered to be the actual true positives rate.

The first score between 100 and 40 where less than 75% of the predicted terminators

are supposed to be true positives is chosen for subsequent prediction. Figure 5.13

illustrates this with an example.

The prediction is then applied to all downstream areas of herefore annotated

protein coding genes. 250 base pairs are considered. Unfortunately, TransTermHP

requires an annotation file to work properly. Otherwise, it will not search for termi-

nators at all. The algorithm requires at least two genes to be present. It takes the

background GC-content into account to compute the scores. This content normally

differs from intergenic to intragenic regions. Furthermore, data about genes is used

to tag putative terminators as ’inside genes’ or ’intergenic’ which is not important

in this case [165]. There is nothing known about genes within the unannotated

genome anyway. To avoid this problem, the author advises to introduce fake genes

of length one at the start and the beginning of the examined sequence which were

set to positions 1,2 and L− 1,L where L is the length of the sequence. In this way,

TransTermHP could be used without a former annotation file. A side effect of the

described workaround for TransTermHP is that the scores are less reliable. They

basically depend on the GC-content in comparison to protein coding sequences. If

genes occur that are only one base pair in length, this clearly harms the point of

origin for score calculation. However, the derived threshold for scores should be

sufficient to resist this effect.

5.2.4 Protein coding genes

The annotation of protein coding genes is enhanced by the derived Shine-Dalgarno

sequence combined with statistical information derived from the homology based

annotation using glimmer. This is a very common gene prediction tool for bac-

teria [166, 167]. It is based on a hidden Markov model which has to be trained.

An appropriate training set can be derived from large open reading frames located

within the genome. Instead, the trustworthy and more numerous previously anno-

tated protein coding genes are used. The Shine-Dalgarno motif is incorporated to
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aid as important signal for genes. Additionally, the derivations of start and stop

codons are used for a probability scoring. Subsequent to the annotation, the pro-

moter, terminator and Shine-Dalgarno motif recovery is repeated and if required,

refined based on the more complete annotation.

5.3 Example run

In order to present an example of the pipelines output, the newly sequenced genome

of Clostridium difficile CD196 was downloaded from NCBI at 2009/11/20 and applied

to the annotation pipeline. The genome contained 3464 putative genes according to

the annotation file which was enclosed. In the following, boxes mark the results of the

pipeline. Each box is succeeded by the description of the result. Due to the recent

sequencing, no reliable data for comparison was available. However, the derived

sequence motifs match the widely assumed consensus sequences for Shine-Dalgarno

sequence as well as the −10-box. Additionally, they were located upstream of most

predicted protein coding sequences. Thus, their approximation can be assumed

to be senseful. Additionally, an annotation file and fasta files are provided by

the pipeline which contain the putative promoters, Shine-Dalgarno sequences and

terminators. A summarization regarding the gene prediction is given in Figure 5.14.

The whole results of this run can be found in the web at http://www.bioinf.uni-

leipzig.de/∼marcus/.

Reference protein blast
Reference protein Blast hits
30S ribosomal protein S17: Alkaliphilus metalliredigens QYMF
30S ribosomal protein S4: Clostridium difficile 630
...

...
50S ribosomal protein L23: Clostridium difficile 630

The reference proteins were used to specify related species. In the majority of cases
Clostridium difficile 630 was assigned as most related. For one protein, Alkaliphilus
metalliredigens QYMF gained the best hit.
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Neighborhood

Alkaliphilus metalliredigens QYMF

Alkaliphilus oremlandii OhILAs

[Clostridium difficile 630]

Clostridium phytofermentans ISDg

Finegoldia magna ATCC 29328

[] marks nearest species used for classification

Based on the previous results, the group of related species regarding the reference
tree is determined. Alkaliphilus metalliredigens QYMF is within close range. The
marked species will be used for taxonomic classification as well as for the initial
annotation.

Taxonomic classification

cellular organisms, Bacteria, Firmicutes, Clostridia, Clostridiales, Clostridi-
aceae, Clostridium

The taxonomic assignment is based on one the maximum level of accordance re-
garding one or more related species. The classification is consistent to the UniProt

lineage classification [168].

Derived features

Direct annotated proteins 3084
Predicted ORFs 2145
Min. protein length 39 amino acids
Max. protein length 2710 amino acids

Based on the determined reference species, 3084 proteins could be annotated directly
by homology search. The maximum length is used to remove unlikely long ORFs
from the additional open reading frame predictions of glimmer. In total, 5229
putative genes were annotated.
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Start-Codons:

TTG 15.56%
ATT 0.19%
CTG 0.03%
ATG 71.69%
GTG 12.52%

Stop-Codons:
TAA 69.46%
TAG 25.23%
TGA 5.32%

The derived start and stop codons from the directly annotated proteins were used
to facilitate the glimmer predictions.

Estimation of Shine-Dalgarno profile

Motif found in 905 of 5229 sequences
Min./Avg./Max.-Distance to start-codon: 1/13.76/20 bp

Additionally, a putative Shine-Dalgarno sequence motif is derived from the directly
annotated proteins and subsequently refined by adding the open reading frames. It
is used to facilitate the glimmer predictions as well. In this case, it was located in
front of about one fifth of all putative genes. This is reasonable as the SD sequence
is not mandatory in front of all protein coding genes. Especially within operons,
this motif is suspensible. Details were discussed in Subsection 5.1.2. However, the
amount of sequences containing this motif is reasonable high. The average distance
to the start codon was about 14 base pairs.
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Estimation of promoter profile (−10-box)

Motif found in 4876 of 5228 sequences
Min./Avg./Max.-Distance to SD: 1/74.52/195 bp

The −10-box was determined from the upstream regions of directly annotated and
predicted protein coding genes. It was located in the majority of sequences and
shows a high conservation. The average distance to the Shine-Dalgarno sequence
was 75 base pairs. One upstream sequence was not considered because the referring
gene was to close to the beginning of the genome. The implementation does not
comply with the circular nature of bacterial genomes at the moment. However, only
a small amount of genes can be effected.

Terminator data

Estimated minimal score for TransTermHP: 73
Found: 914
Average score: 93.15

A reasonable score for terminators was gathered by using the estimation explained in
Subsection 5.2.3. 914 of the 5229 putative protein coding genes had a terminator of
this kind within the downstream region. Their average TransTermHP score was 93.
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The pipeline was able to recover nearly all official annotations for protein coding

sequences automatically. Figure 5.14 summarizes the annotations in comparison

with the given data. Most genes were predicted identically, some differ in the as-

signed start codon. Due to the fact that the start codon has a dual function, this

is reasonable. On the one hand, it acts as translation start introduced in Subsec-

tion 5.1.2. On the other, it codes for an amino acid as well. Furthermore, several

different codons can act as start codon. Thus, it is likely to encounter a codon of

this kind multiple times. This makes the determination of the exact translation

start ambiguous. Only 53 coding sequences could not be determined. This includes

10 spliced genes. The pipeline is not designed to detect this type of coding se-

quences. In addition, overlapping regions are often missed. An example is presented

in Figure 5.15a. However, it was possible to detect 166 additional coding sequences.

In many cases possibly related transcriptional or translational elements were pre-

dicted that indicate the reliability of certain annotations. An example is presented

in Figure 5.15b.

Figure 5.14: Comparison of annotation: The genome of Clostridium difficile CD196
had 3464 putative protein coding sequences according to the enclosed annotation
file. The predictions are consistent with the given annotation. The majority was
annotated identically, less than a quarter with a different start codon. 53 genes were
not found at all. However, the pipeline revealed 166 additional genes that do not
match the given predictions.
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Figure 5.15: Annotation examples: a) Example for missed annotation: The dark
gray coding sequence was included in the given annotation but was not detected
by the pipeline. Neither promoter nor Shine-Dalgarno motif could be determined.
The coding sequences convey the impression that coupled transcription occurs. This
phenomenon was introduced in Subsection 5.1.2. Additionally, a high scoring ter-
minator was detected between the missing gene and the upstream anti-sense gene.
Thus, the annotation can be regarded as plausible. b) Example for additional anno-
tation: The dark gray coding sequence was not included in the given annotation but
located by the pipeline. Besides utilizing the most frequent start and stop codons
(ATG and TAA) the presence of promoter and Shine-Dalgarno sequence indicates the
plausibility of this additional prediction.

5.4 Results and discussion

Relatives discovery

The reference proteins and the derived tree, introduced in Chapter 4, were utilized in

order to detect putative related species. Combined with the available representative

set of 688 bacterial species, this allows to evaluate the assignment’s quality. To

achieve this, the relatives discovery part of the pipeline was applied to each species.

Thereby, the species itself was removed from the reference tree as well as its proteins

set from the reference proteins database in order to simulate a new species.

In the first step, best matching proteins for each reference orthoset are detected

by blast. This can result in multiple hits as some may have equally good bitscores

or are even identical in sequence. Figure 5.16 points out the results. About 75%
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had 16 or less markers in the subtree. However, species which had many related

subspecies within the references gained more hits. Some examples are Salmonella

enterica, Streptococcus pyogenes, Staphylococcus aureus and Escherichia coli. Hence,

their hits spread within this groups whereas species with less related subspecies

accumulate hits in one or only a few related organisms.
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Figure 5.16: Hits in the reference tree: The relatives prediction step was applied to
all 688 species within the reference tree. The number of derived markers within the
reference tree was counted. Fewer hits indicate higher accuracy of the method.

Quality of discrimination Besides the number of related organisms within the

tree, the degree of protein conservation within the database is important for the

number of resulting hits. Proteins which are very conserved among the species are

poor discriminators for relationships. For this purpose, rather different proteins are

preferable. Table 5.1 shows results for the discrimination capabilities of the 27 ref-

erence proteins. Outstanding is the strong conservation for ribosomal proteins when
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compared with the remaining common proteins. In order to make the discrimina-

tion more effective, the derived markers should not be treated equally. This can be

achieved by attaching weight to unambiguous hits.

Number of detected relatives The second step is to gather a subtree of related

species. Depending on the locations of the before derived markers, a group of puta-

tively related species is determined. This group should be as close as possible to the

original position of the investigated organism and be preferably small in order to re-

trieve a representative set of proteins. As Figure 5.17 shows, the majority of species

result in a subtree of four or less species. This indicates that closely related species

were found and the direct blast method would be applied to use their encoded

proteins as seed for annotation. However, about 30% resulted in larger subtrees.

This often occurs if the reference contains many related species. Proteinortho

would be utilized in these cases. It can be argued that the method can take much

time if the set of determined relatives is to large. Referring to the benchmark in

Figure 3.7, this should be achievable in reasonable time up to a size of ten. Still

about 18% remain with larger sets. Over 300 species were returned for some ex-

ceptions. However, this is not due to overrepresentation of related species. The

contrary is the case. No closely related organisms are included for these species.

As a result, their markers spread within the tree and return a rather large par-

tition of it. Some examples are uncultured Termite group 1 Bacterium phylotype

RsD17, Thermodesulfovibrio yellowstonii DSM 11347, Pirellula sp., Fusobacterium

nucleatum, Bdellovibrio bacteriovorus and Magnetococcus MC-1. These species are

outgroups for large subtrees and cannot be assigned unambiguously. For both cases,

to many related species within the tree and no closely related species, it is reasonable

to randomly chose ten species for the Proteinortho step. If all species are related,

a subset is representative as well. If on the other hand most species are distant from

the analyzed organism, the number of in the majority shared proteins should not

decrease significantly with a reduced number of species.

Accuracy of subtree assignment Besides the size of the subtree, it should

contain the original species’ position or be located next to it. To evaluate this, the

internal nodes between the contained species and the original location were counted

78



Results and discussion Annotation pipeline

Protein Not distinguishable species
arginyl-tRNA synthetase 14.1%
seryl-tRNA synthetase 20.6%
phenylalanyl-tRNA synthetase alpha chain 23.1%
peptidase M22, O-sialoglycoprotein endopeptidase 23.8%
transcription elongation/termination factor NusA 24.3%
preprotein translocase, SecY subunit 28.0%
30S ribosomal protein S2 29.8%
50S ribosomal protein L1 29.9%
50S ribosomal protein L6 29.9%
50S ribosomal protein L3 32.1%
50S ribosomal protein L5 32.8%
30S ribosomal protein S4 34.2%
30S ribosomal protein S3 34.8%
30S ribosomal protein S8 35.2%
50S ribosomal protein L2 34.5%
50S ribosomal protein L23 36.2%
30S ribosomal protein S7 36.3%
30S ribosomal protein S5 36.3%
50S ribosomal protein L11 36.7%
50S ribosomal protein L22 37.4%
30S ribosomal protein S17 37.7%
30S ribosomal protein S13 38.4%
30S ribosomal protein S11 40.7%
30S ribosomal protein S12 44.0%
30S ribosomal protein S19 44.5%
50S ribosomal protein L14 45.2%
30S ribosomal protein S10 53.2%

Table 5.1: Discrimination quality: The reference proteins are differently conserved
among the species and thus have different discrimination properties. S10 for example
was not able to report a unique hit for over half of all investigated species while the
arginyl-tRNA synthetase gave inconclusive hits for only 14.1% of the 688 species.
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Figure 5.17: Subtree size: Based on the markers from blast, subtrees were deter-
mined which should include the most related species within the reference tree. The
bar chart points out the number of species within these subtrees. Smaller sets are
preferable. This is the case in the majority. However, in particular cases the size
even became considerably larger than 60 (data not shown).

and averaged. Figure 5.18 shows the results. The majority of species resulted in a

small distance of less than eight inner nodes. Larger distances basically result from

larger subtrees as discussed above. Overall, no unexpectedly large distances were

observed.

Prediction quality

During tests with several species the annotation pipeline worked well. Annotations

of protein coding genes were nearly complete regarding the available data from NCBI.

Especially, overlapping and very short coding regions were often missed. However,

the filtering of manifold predicted areas is not very sophisticated and can be im-
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Figure 5.18: Subtree distances: Average distance between the located subtree and
the species’ original location. Measure were the nodes between the subtree leafs and
the original location of the investigated species. Closer is better.

proved. The motifs estimated for Shine-Dalgarno sequence and −10-box largely

differ in plausibility and conservation. In Escherichia coli K12 substr. DH10B for

example the −10-box was reported to have the putative consensus sequence GATAAA

which is obviously wrong. The reason is easily traceable. Between coding region

and −10-box are often stretches of A. These mislead the expectation maximization

approach. Manually removing them results in properly annotated motifs. However,

the method is fully automated and does not claim to replace individual prediction

approaches. Results have to be regarded as quick overview which can aid further

investigations.
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Conclusion

The annotation pipeline allows achieving a quick and compact overview to newly

sequenced bacterial genomes. This includes a preliminary taxonomic classification

based on species with similar reference proteins, annotation of protein coding genes

and conservation of transcriptional and translational elements (namely promoter,

Shine-Dalgarno sequence and terminator). However, derived sequence motifs are

not satisfying in every case. A special benefit is the improved accuracy (in compar-

ison to the gene prediction method glimmer3 as stand-alone program) with respect

to genomic features such as typical start and stop codons. Their relative frequen-

cies are estimated from the initial prediction based on homologous genes in related

species. The information allows preferring putative open reading frames with typical

start and stop codons. In this way, predictions are enhanced especially for ’exotic’

genomes where these features differ largely from model organisms. Furthermore,

it provides putative functional annotation for many protein coding genes which is

reasonable as it is based on the conserved counterparts within related genomes. The

method is fully automated and capable to handle even partially sequenced genomes.

Normally, results are returned in less than 120 minutes. Small genomes can be fin-

ished considerably faster. The tool was written to benefit from multiple CPU cores

by using treads. Thus, it scales well with their number.
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Conclusion and outlook

The tool for orthology prediction can be used for multiple types of analysis in small

ad-hoc as well as in large-scale projects. However, the amount of proteins which

are clustered in overstated large groups is not satisfactory. This problem will be

addressed in the future, for instance by additional filtering steps. This would prob-

ably yield more proteins for the investigation of domain-wide commons. Possible

approaches have been discussed in Section 3.4.

An application for comparative operon detection is planed. These units can help

to identify the function of genes and thus, are a desirable part of genome annota-

tion [169]. By now, this detection is achieved by comparing positions of anciently

related genes in related species [135, 170]. A conserved arrangement indicates an

operon unit. However, the definition of related genes between species is done by

blast or by concluding homologous groups based on their textual annotation. Both

approaches are reasonable but error-prone with respect to missed groups and overes-

timated relationships. For this purpose orthosets reported by Proteinortho should

represent a more reliable basis. Figure 6.1 presents a simplified sketch. Further-

more, an integration to the annotation pipeline is imaginable. It already makes

use of conserved groups within related species for an initial annotation of putative

proteins. This approach can be extended to conserved locations as well.

Additionally, the concept of orthology could be transferred to non-coding RNAs

as well. Whereas it is difficult to assume appropriate relationships from sequence

data of these genes themselves, it is possible to use assignments from flanking pro-

teins for this purpose. In this case, orthology can refer RNAs which are consistently

located next to a protein of a certain orthoset through multiple species. It is rea-

sonable to assume related functions from this correlation. Thus, RNA relationships

can derived from protein relationships and synteny information.
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Figure 6.1: Simplified operon prediction approach: The order of all protein coding
genes in two or more genomes is determined first. Based on orthology predictions
from Proteinortho and their genomic locations, conserved groups can be estimated.
In this example, genes of the orthosets a, b, c and e are located in a conserved order.
Even if d is not present in species B, a putative operon unit can be derived [135, 170].

Clusters of interesting proteins and non-coding RNAs could be analyzed in more

detail. Especially, orthologs provide useful information on the rate of evolution

within different lineages. Gene trees can be derived which may improve phyloge-

netic classification for sophisticated situations. The information of orthologous and

paralogous genes can be used to reduce the amount of data in interaction partner

analysis for target prediction as well. Assume the unknown interaction partner of

a protein a is of interest which also interacts in some other organisms in the same

way. Normally, all proteins of the certain species would come into consideration.

Proteinortho on the other hand, allows to detect consistent genes within all species

where homologs of protein a are known likewise within short time. Even though

these species are not known, the tool is able to detect candidates itself as these

are orthologous to a. Finally, the resulting set of common proteins is reasonably

reduced. More complex subsequent analysis are enhanced as they can operate on a

smaller set. The same method would be feasible for encoded RNAs if the previously

mentioned orthology approach on non-coding RNAs is implemented.

Domain-wide common proteins were searched within 710 fully sequenced species

in Chapter 4. Figure 4.2 revealed that a large amount of common proteins was

not annotated within many species. The number of proteins occurring in at least

50% of all analyzed species could be doubled by reblasting them against species

where they were not found beforehand. They were missed in many ’old’ genome

annotations. Thus, a replenishment based on common proteins or even using the

annotation pipeline’s homology based approach to initially predict proteins, would

gain additional candidates for genes with high confidence. In the set of 710 species,
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one third of all protein coding genes were marked as ’putative’ or ’hypothetical’

already. Hence, a semi-automated replenishment could improve the predicted anno-

tations without much effort while it would not significantly increase the amount of

putative genes.

The annotation pipeline reveals a far-reaching application of Proteinortho.

However, it still offers many capabilities. Besides the −10, the −35-box could be

considered as well. The −35 box is located in the region 18−26 bp upstream of the

−10-box. For this purpose the expectation maximization approach which is used to

estimate the −10 sequence motif, can be applied once more to this region. Addi-

tionally, promoters from different σ-factors could be considered. In Subsection 5.2.3

upstream regions of putative protein coding genes are used to find promoters which

match the most utilized σ-factor. A possible approach is to remove all sequences

where a putative promoter was detected and repeat the expectation maximization

approach. In this way, sequence motifs for less frequent but conserved elements

could be detected in addition.

In order to enhance the predictions further, putative promoters and terminators

could be used as additional descriptors for protein coding genes. By now, this is

done for the estimated Shine-Dalgarno sequence motif solely. However, open reading

frames which are lead by a promoter or followed by a terminator are likely candidates

for additional protein coding genes as well. Likewise, this should aid in detection

of very small proteins. The problems with overlapping proteins should be solvable

by applying a more sophisticated filter for overlapping predictions. On the other

hand, the presence of promoter and terminator could indicate the existence of non-

coding RNAs in between. These sequences represent good candidates for subsequent

prediction approaches for genes of this kind. An example approach is presented in

literature [171].

Furthermore, the reliability of protein coding gene predictions can be estimated

by using a scoring schema based on the presence of certain properties. Genes which

are surrounded by promoter, Shine-Dalgarno sequence and terminator would gain

the highest score while genes without any of this features would receive the lowest

score. This can be refined by annotating putative operon structures. Therefore, a

promoter in front of the first operon gene may be sufficient to increase the score of

the contained genes. The same holds for terminator and Shine-Dalgarno sequence.
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Moreover, this score can be refined by the estimated quality of the predicted sequence

motifs. As revealed in Section 5.4, the expectation maximization approach which

is used for promoter and Shine-Dalgarno estimation, can easily be mislead by addi-

tional conserved sequences or a fuzzy dataset. In this case the estimated sequence

motifs can become misguided. However, their quality can be approximated like it is

done for quality of terminator scores. By comparing the frequency of their presence

within shuffled genomes and the real genome, an estimation of their relevance can

be achieved. Conserved motifs should be present more often within the real genome

than in the shuffled versions. Thus, the quotient # of matches in real genome
# of matches in shuffled genome

can be

used as automatically retrievable information for the quality of sequence motif es-

timation. Summing up, a scoring function of this kind would allow to distinguish

reliable from questionable gene predictions. However, the scores would highly de-

pend on the certain organisms and thence, not be comparable over different species.

Another logical step would be to annotate 5’- and 3’-UTRs (untranslated re-

gions). This is feasible as the position of the coding sequence as well as putative

promoter and terminator is known for many genes. Even though this approximations

could be inaccurate if the estimation of sequence motifs was mislead, it still yields

reasonable candidates for target prediction approaches and detection of binding sites

on RNA level.

86



Appendix A

Manuals

A.1 Proteinortho

Name

proteinortho - Orthologous proteins finder

Syntax

proteinortho.pl [OPTION]... <FILES>... >OUTPUT

proteinortho.pl [OPTION]... <FILE> >OUTPUT

Description

This program finds orthologous proteins within different species.

It can either be started giving the intended files in fasta-format (at least two)

after the OPTIONS or just one file containing the paths to these. This is especially

useful if their number grows. Each file should represent all proteins (or the part of

it that should be investigated) of one species.

In a first step all files are blasted against each other. The hits will be evalu-

ated according to the given OPTIONS and transformed into a graph, where each

protein is represented by a node. This graph will be fragmented into its connected

components, thus proteins which are connected to each other.

Proteinortho was designed to deal with large data sets and also behave nicely

regarding the memory consumption.

To have an example: Investigating about 700 bacterial species took two weeks

using 50 CPU-cores, 300 GB hard disk space and less than 2.5 GB of RAM per
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contributing workstation. Small sets are done within minutes. Only megabytes of

hard disk and RAM are needed.

Important: Protein ids must be globally different! You should also consider that

blast may cut the ids on a whitespace using the first part only.

Output Format

The OUTPUT is a tab separated matrix.

First line starts with # followed by the file names. Second line starts with #

followed by the corresponding number of proteins in the files.

From here each line represents a connected component and therefore the ids of

determined orthologous proteins.

Options

-e=<E-VALUE> <E-VALUE> for blasts

[default: 1e-10]

-a=<THREADS> number of <THREADS> to make use of dual- and multi-core

CPUs

[default: 1]

-p=blastp|blastn; defines the blast program

[default: blastp]

-r=0|1; enables or disables reciprocal the blast condition

[default: 1 (enabled)]

-m=(0..1); minimum similarity of best blast hits allowed are doubles within the

interval (0..1) all hits with (bestscore+ new)/bestscore− 1 < m are included

0 takes all hits into account, 1 only the best (maybe more with equal bitscore)

useful to handle paralogous better

[default: 0.95 (nearly equal)]
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-selfblast applies an additional blast for every species against itself

this may increase the detection of paralogs, but is normally not necessary a

similar hits are found if -m is not set to 1

-f force blastall (even if blast output is found)

-ff force formatdb (even if databases are found)

-remove removes blast outputs after use

-verbose gives information about what happens, including a progress report and

a lasting time approximation

-dir[=<DIRECTORY> ] defines the <DIRECTORY> for the blast outputs

[default directory: working directory]

-cmat includes putative paralogous proteins to the output

sets which contain such proteins are not reported otherwise

paralogous protein ids are separated by ”,”

[default file: cc.matrix]

-debug keeps temporary files for debugging

-plog[=<FILE> ] logfile for pairwise blast hits

[default file: pb.log]

-plog[=<FILE> ] logfile for connected components

[default file: cc.log]

-ulog[=<FILE> ] ultimate logfile, this is actually a post-process of plog and clog

the creation is very time intensive and not recommended if more than 10,000

proteins are involved

[default file: ultimate.log]
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Multiple Machine Options

The main part of Proteinortho consists of blasting each species against each other.

This can take several hours up to days if hundreds of species are involved - even on

multi-core machines. For this purpose a mechanism has been implemented which

allows to distribute that workload over multiple machines.

Every option aside from -a=<THREADS> needs to be the same. This is espe-

cially important for the directory in which the blasts are stored. A file named sync

will be created their and used to synchronize the processes. As flock is not capable

for network file systems a temporary directory named lock/ is used for locking.

Both may need to be removed if Proteinortho was interrupted or crashed and a

restart is intended.

Run all scripts using the option

-blastonly

As the scripts synchronize themselves the order or time you start it on different

machines does not matter. You can even stop certain processes if needed. See

SIGNALS for more details to that topic. After the blasts are done, all started

scripts will be terminated.

If that happened, you can grab the results and finish the calculations. Start the

script again on one machine using the same options as before. Instead of -blastonly

use the option

-blastdone

this will lead to skip database creation and blasts and thus speed up the beginning

of the connected component calculation.

Signals

Sending signal INT or TERM to a Proteinortho process will lead to a clean

stop which allows a later continuation at this point. If used on MULTIPLE MA-

CHINES this allows to stop certain processes without interference with the on

going calculation. As going blast jobs need to be finished first, the termination may

take a while.
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However, sending the signal twice (or using KILL) will lead to an immediate

stop and may result in corrupted data. It is advisable to remove all files from the

blast out directory and not use the data any further. This is also the case if the the

blasts were distributed over multiple machines.

Furthermore, if a full stop of all processes on MULTIPLE MACHINES is

intended, a file named stop can be placed in the blast out directory. This will lead

to clean stop as described above for all running scripts.

Examples

To run this program the standard way comparing two or more species type:

proteinortho.pl speciesA.faa speciesB.faa >orthologs.out

If you want to define the number of threads, have live progress report and store

blast files in a separate folder, type:

mkdir blastout/ proteinortho.pl -a=4 -verbose -dir=blastout/ files.list >orthologs.out

Copyright

Copyright c©2009 Free Software Foundation, Inc. License GPLv2+: GNU GPL

version 2 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Reporting Bugs

Marcus Lechner <marcus@bioinf.uni-leipzig.de>

Authors

Written by Marcus Lechner, Lydia Steiner and Sonja J. Prohaska

Bioinformatics Group, Department of Computer Science, and Interdisciplinary

Center for Bioinformatics, University of Leipzig
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See Also

orthomatrix2tree.pl a tool which allows to generate trees based on the shared

proteins

A.2 Treebuilder

Name

orthomatrix2tree - treebuilder based on shared proteins

Syntax

orthomatrix2tree.pl ORTHOMATRIX >OUTTREE

Description

This program generates pseudo phylogenetic trees based on shared proteins.

It requires an output file from Proteinortho. Clustering works like UPGMA.

However, a min-operation instead of average for scoring of clusters is used. In this

way, relations of similar characteristics, habitats, phylogeny and, as the case may be,

horizontal gene transfer are reflected. It allows to view species relationship from the

perspective of shared proteins and might give an insights to evolutionary regards.

Important: Protein ids must be globally different! You should also consider that

blast may cut the ids on a whitespace using the first part only.

Output Format

OUTTREE is a tree in Newick format. Lengths represent the number of shared

proteins within the group. Comments show the number of additional proteins with

respect to the superior group.
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Comments

The program is optimized for SSE2 (Streaming SIMD Extensions 2) capable CPUs.

Even large calculation should take less than two minutes on these machines.

Examples

To run this program type: orthomatrix2tree groupA.mat >groupA.tree

Copyright

Copyright c©2009 Free Software Foundation, Inc. License GPLv2+: GNU GPL

version 2 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Reporting Bugs

Marcus Lechner <marcus@bioinf.uni-leipzig.de>

Authors

Written by Marcus Lechner, Lydia Steiner

Bioinformatics Group, Department of Computer Science, and Interdisciplinary

Center for Bioinformatics, University of Leipzig
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Appendix B

Data

Genomes

Species Accession number(s) Last updated

Acaryochloris marina MBIC11017 NC 009925 2007/11/20

Acholeplasma laidlawii PG 8A NC 010163 2008/03/18

Acidiphilium cryptum JF-5 NC 009484 2007/05/23

Acidithiobacillus ferrooxidans ATCC 53993 NC 011206 2008/09/08

Acidobacteria bacterium Ellin345 NC 008009 2007/01/23

Acidothermus cellulolyticus 11B NC 008578 2007/01/23

Acidovorax avenae citrulli AAC00-1 NC 008752 2007/01/05

Acidovorax JS42 NC 008782 2007/01/11

Acinetobacter baumannii AB0057 NC 011586 2008/11/18

Acinetobacter baumannii ACICU NC 010611 2008/06/11

Acinetobacter baumannii ATCC 17978 NC 009085 2007/03/07

Acinetobacter baumannii AYE NC 010410 2008/03/19

Acinetobacter baumannii SDF NC 010400 2008/03/14

Acinetobacter sp ADP1 NC 005966 2007/01/23

Actinobacillus pleuropneumoniae L20 NC 009053 2007/02/26

Actinobacillus pleuropneumoniae serovar 3 JL03 NC 010278 2008/01/24

Actinobacillus pleuropneumoniae serovar 7 AP76 NC 010939 2008/06/13

Actinobacillus succinogenes 130Z NC 009655 2007/07/25

Aeromonas hydrophila ATCC 7966 NC 008570 2007/01/23

Aeromonas salmonicida A449 NC 009348 2007/04/18

Aeropyrum pernix NC 000854 2007/01/23

Akkermansia muciniphila ATCC BAA 835 NC 010655 2008/07/27

Alcanivorax borkumensis SK2 NC 008260 2008/01/07

Aliivibrio salmonicida LFI1238 NC 011312, NC 011313 2008/10/21

Alkalilimnicola ehrlichei MLHE-1 NC 008340 2007/01/23

Alkaliphilus metalliredigens QYMF NC 009633 2007/07/03

Alkaliphilus oremlandii OhILAs NC 009922 2007/10/17

Alteromonas macleodii Deep ecotype NC 011138 2008/08/15

Anabaena variabilis ATCC 29413 NC 007413 2007/01/23

Anaeromyxobacter dehalogenans 2CP-C NC 007760 2007/01/23

Anaeromyxobacter Fw109-5 NC 009675 2007/07/25

Anaeromyxobacter K NC 011145 2008/08/23

Anaplasma marginale St Maries NC 004842 2007/04/25

Anaplasma phagocytophilum HZ NC 007797 2007/01/23

Anoxybacillus flavithermus WK1 NC 011567 2008/11/14

Aquifex aeolicus NC 000918 2005/12/04

Archaeoglobus fulgidus NC 000917 2007/01/23

Arcobacter butzleri RM4018 NC 009850 2007/09/29

Arthrobacter aurescens TC1 NC 008711 2006/12/28

Aster yellows witches-broom phytoplasma AYWB NC 007716 2006/01/19

Azoarcus BH72 NC 008702 2008/01/07

Azoarcus sp EbN1 NC 006513 2007/01/23

Azorhizobium caulinodans ORS 571 NC 009937 2007/10/19

Bacillus amyloliquefaciens FZB42 NC 009725 2007/08/04

Bacillus anthracis Ames 0581 NC 007530 2007/01/23

Bacillus anthracis Ames NC 003997 2007/01/23

Bacillus anthracis str Sterne NC 005945 2005/12/04

Bacillus cereus ATCC 10987 NC 003909 2007/01/23
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Bacillus cereus ATCC14579 NC 004722 2005/12/04

Bacillus cereus cytotoxis NVH 391-98 NC 009674 2007/07/25

Bacillus cereus ZK NC 006274 2007/01/23

Bacillus clausii KSM-K16 NC 006582 2007/01/23

Bacillus halodurans NC 002570 2007/01/23

Bacillus licheniformis ATCC 14580 NC 006270 2007/12/26

Bacillus licheniformis DSM 13 NC 006322 2007/12/26

Bacillus pumilus SAFR-032 NC 009848 2007/09/27

Bacillus subtilis NC 000964 2008/02/19

Bacillus thuringiensis Al Hakam NC 008600 2007/01/24

Bacillus thuringiensis konkukian NC 005957 2005/12/04

Bacillus weihenstephanensis KBAB4 NC 010184 2008/03/18

Bacteroides fragilis NCTC 9434 NC 003228 2007/01/23

Bacteroides fragilis YCH46 NC 006347 2005/12/04

Bacteroides thetaiotaomicron VPI-5482 NC 004663 2005/12/04

Bacteroides vulgatus ATCC 8482 NC 009614 2007/06/29

Bartonella bacilliformis KC583 NC 008783 2007/01/11

Bartonella henselae Houston-1 NC 005956 2005/12/04

Bartonella quintana Toulouse NC 005955 2005/12/04

Bartonella tribocorum CIP 105476 NC 010161 2007/12/26

Baumannia cicadellinicola Homalodisca coagulata NC 007984 2006/05/08

Bdellovibrio bacteriovorus NC 005363 2007/01/23

Beijerinckia indica ATCC 9039 NC 010581 2008/04/12

Bifidobacterium adolescentis ATCC 15703 NC 008618 2006/12/08

Bifidobacterium longum DJO10A NC 010816 2008/06/06

Bifidobacterium longum infantis ATCC 15697 NC 011593 2008/11/22

Bifidobacterium longum NC 004307 2007/01/23

Bordetella avium 197N NC 010645 2008/05/07

Bordetella bronchiseptica NC 002927 2007/01/23

Bordetella parapertussis NC 002928 2007/01/23

Bordetella pertussis NC 002929 2007/01/23

Bordetella petrii NC 010170 2008/02/08

Borrelia afzelii PKo NC 008277 2007/01/24

Borrelia burgdorferi NC 001318 2007/06/13

Borrelia duttonii Ly NC 011229 2008/09/18

Borrelia hermsii DAH NC 010673 2008/09/11

Borrelia recurrentis A1 NC 011244 2008/09/18

Borrelia turicatae 91E135 NC 008710 2008/07/25

Bradyrhizobium BTAi1 NC 009485 2007/05/23

Bradyrhizobium japonicum NC 004463 2005/12/04

Bradyrhizobium ORS278 NC 009445 2008/01/07

Buchnera aphidicola Cc Cinara cedri NC 008513 2007/01/23

Buchnera aphidicola NC 004545 2005/12/04

Buchnera aphidicola Sg NC 004061 2005/12/04

Buchnera sp NC 002528 2007/01/23

Burkholderia cenocepacia J2315 NC 011000, NC 011001,

NC 011002

2008/09/24

Burkholderia xenovorans LB400 NC 007952, NC 007953 2008/09/10

Caldicellulosiruptor saccharolyticus DSM 8903 NC 009437 2007/05/08

Caldivirga maquilingensis IC-167 NC 009954 2007/11/08

Campylobacter concisus 13826 NC 009802 2007/09/14

Campylobacter curvus 525 92 NC 009715 2007/07/31

Campylobacter fetus 82-40 NC 008599 2007/01/24

Campylobacter hominis ATCC BAA-381 NC 009714 2007/07/31

Campylobacter jejuni 81116 NC 009839 2007/09/22

Campylobacter jejuni 81-176 NC 008787 2007/01/11

Campylobacter jejuni doylei 269 97 NC 009707 2007/07/27

Campylobacter jejuni NC 002163 2005/12/04

Campylobacter jejuni RM1221 NC 003912 2007/01/23

Candidatus Amoebophilus asiaticus 5a2 NC 010830 2008/07/15

Candidatus Azobacteroides pseudotrichonymphae genomovar CFP2 NC 011565 2008/11/15

Candidatus Blochmannia floridanus NC 005061 2005/12/04

Candidatus Blochmannia pennsylvanicus BPEN NC 007292 2007/01/23

Candidatus Carsonella ruddii PV NC 008512 2007/01/23

Candidatus Desulfococcus oleovorans Hxd3 NC 009943 2007/10/23

Candidatus Desulforudis audaxviator MP104C NC 010424 2008/03/18

Candidatus Korarchaeum cryptofilum OPF8 NC 010482 2008/03/19
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Candidatus Methanoregula boonei 6A8 NC 009712 2007/07/31

Candidatus Pelagibacter ubique HTCC1062 NC 007205 2005/12/04

Candidatus Phytoplasma australiense NC 010544 2008/08/27

Candidatus Phytoplasma mali NC 011047 2008/07/15

Candidatus Ruthia magnifica Cm Calyptogena magnifica NC 008610 2007/01/23

Candidatus Sulcia muelleri GWSS NC 010118 2007/12/10

Candidatus Vesicomyosocius okutanii HA NC 009465 2007/05/23

Carboxydothermus hydrogenoformans Z-2901 NC 007503 2007/01/23

Caulobacter crescentus NC 002696 2005/12/04

Caulobacter K31 NC 010338 2008/03/18

Cellvibrio japonicus Ueda107 NC 010995 2008/06/24

Chlamydia muridarum NC 002620 2005/12/04

Chlamydia trachomatis 434 Bu NC 010287 2008/01/26

Chlamydia trachomatis A HAR-13 NC 007429 2007/01/23

Chlamydia trachomatis L2b UCH 1 proctitis NC 010280 2008/01/26

Chlamydia trachomatis NC 000117 2007/01/23

Chlamydophila abortus S26 3 NC 004552 2007/01/23

Chlamydophila caviae NC 003361 2005/12/04

Chlamydophila felis Fe C-56 NC 007899 2006/03/16

Chlamydophila pneumoniae AR39 NC 002179 2005/12/04

Chlamydophila pneumoniae CWL029 NC 000922 2007/01/23

Chlamydophila pneumoniae J138 NC 002491 2005/12/04

Chlamydophila pneumoniae TW 183 NC 005043 2005/12/04

Chlorobaculum parvum NCIB 8327 NC 011027 2008/07/01

Chlorobium chlorochromatii CaD3 NC 007514 2007/04/25

Chlorobium limicola DSM 245 NC 010803 2008/09/11

Chlorobium phaeobacteroides BS1 NC 010831 2008/06/10

Chlorobium phaeobacteroides DSM 266 NC 008639 2007/07/31

Chlorobium tepidum TLS NC 002932 2005/12/04

Chloroflexus aurantiacus J 10 fl NC 010175 2008/03/18

Chloroherpeton thalassium ATCC 35110 NC 011026 2008/07/01

Chromobacterium violaceum NC 005085 2005/12/04

Chromohalobacter salexigens DSM 3043 NC 007963 2007/01/23

Citrobacter koseri ATCC BAA-895 NC 009792 2007/09/14

Clavibacter michiganensis NCPPB 382 NC 009480 2007/05/23

Clavibacter michiganensis sepedonicus NC 010407 2008/03/26

Clostridium acetobutylicum NC 003030 2007/01/23

Clostridium beijerinckii NCIMB 8052 NC 009617 2007/06/29

Clostridium botulinum A3 Loch Maree NC 010520 2008/03/24

Clostridium botulinum A ATCC 19397 NC 009697 2007/07/27

Clostridium botulinum A Hall NC 009698 2007/07/27

Clostridium botulinum A NC 009495 2008/01/07

Clostridium botulinum B1 Okra NC 010516 2008/03/24

Clostridium botulinum B Eklund 17B NC 010674 2008/05/10

Clostridium botulinum E3 Alaska E43 NC 010723 2008/09/11

Clostridium botulinum F Langeland NC 009699 2007/07/27

Clostridium difficile 630 NC 009089 2008/01/07

Clostridium kluyveri DSM 555 NC 009706 2007/07/27

Clostridium novyi NT NC 008593 2007/01/24

Clostridium perfringens ATCC 13124 NC 008261 2007/01/23

Clostridium perfringens NC 003366 2005/12/04

Clostridium perfringens SM101 NC 008262, NC 008265 2007/04/25

Clostridium phytofermentans ISDg NC 010001 2008/03/18

Clostridium tetani E88 NC 004557 2005/12/04

Clostridium thermocellum ATCC 27405 NC 009012 2007/02/17

Colwellia psychrerythraea 34H NC 003910 2007/01/23

Coprothermobacter proteolyticus DSM 5265 NC 011295 2008/09/27

Corynebacterium diphtheriae NC 002935 2007/01/23

Corynebacterium efficiens YS-314 NC 004369 2005/12/04

Corynebacterium glutamicum ATCC 13032 Bielefeld NC 006958 2007/04/30

Corynebacterium glutamicum ATCC 13032 Kitasato NC 003450 2007/01/23

Corynebacterium glutamicum R NC 009342 2007/04/18

Corynebacterium jeikeium K411 NC 007164 2007/01/23

Corynebacterium urealyticum DSM 7109 NC 010545 2008/04/04

Coxiella burnetii CbuG Q212 NC 011527 2008/11/07

Coxiella burnetii CbuK Q154 NC 011528 2008/11/07

Coxiella burnetii Dugway 7E9-12 NC 009727 2007/12/14
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Coxiella burnetii NC 002971 2007/01/23

Coxiella burnetii RSA 331 NC 010117 2008/03/18

Cupriavidus taiwanensis NC 010528, NC 010530 2008/07/17

Cyanobacteria bacterium Yellowstone A-Prime NC 007775 2006/03/23

Cyanobacteria bacterium Yellowstone B-Prime NC 007776 2006/03/23

Cytophaga hutchinsonii ATCC 33406 NC 008255 2006/08/30

Dechloromonas aromatica RCB NC 007298 2007/01/23

Dehalococcoides BAV1 NC 009455 2007/05/18

Dehalococcoides CBDB1 NC 007356 2005/12/04

Dehalococcoides ethenogenes 195 NC 002936 2007/01/23

Deinococcus geothermalis DSM 11300 NC 008025 2006/05/09

Delftia acidovorans SPH-1 NC 010002 2008/03/18

Desulfitobacterium hafniense Y51 NC 007907 2006/03/16

Desulfotalea psychrophila LSv54 NC 006138 2005/12/04

Desulfotomaculum reducens MI-1 NC 009253 2007/03/30

Desulfovibrio desulfuricans G20 NC 007519 2007/01/23

Desulfovibrio vulgaris DP4 NC 008751 2007/01/05

Desulfovibrio vulgaris Hildenborough NC 002937 2007/01/23

Dichelobacter nodosus VCS1703A NC 009446 2007/05/09

Dictyoglomus thermophilum H 6 12 NC 011297 2008/09/27

Dinoroseobacter shibae DFL 12 NC 009952 2007/11/08

Ehrlichia canis Jake NC 007354 2005/12/04

Ehrlichia chaffeensis Arkansas NC 007799 2007/01/23

Ehrlichia ruminantium Gardel NC 006831 2005/12/04

Ehrlichia ruminantium str. Welgevonden CIRAD NC 006832 2005/12/04

Ehrlichia ruminantium Welgevonden UPSA NC 005295 2007/01/23

Elusimicrobium minutum Pei191 NC 010644 2008/07/30

Enterobacter 638 NC 009436 2007/05/08

Enterobacter sakazakii ATCC BAA-894 NC 009778 2007/09/07

Enterococcus faecalis V583 NC 004668 2007/01/23

Erwinia carotovora atroseptica SCRI1043 NC 004547 2007/01/23

Erwinia tasmaniensis NC 010694 2008/11/20

Erythrobacter litoralis HTCC2594 NC 007722 2006/01/20

Escherichia coli 536 NC 008253 2006/07/24

Escherichia coli APEC O1 NC 008563 2007/01/24

Escherichia coli C ATCC 8739 NC 010468 2008/05/09

Escherichia coli CFT073 NC 004431 2007/01/23

Escherichia coli E24377A NC 009801 2007/09/14

Escherichia coli HS NC 009800 2007/09/14

Escherichia coli K 12 substr DH10B NC 010473 2008/04/22

Escherichia coli K12 substr MG1655 NC 000913 2008/05/19

Escherichia coli O157 H7 EC4115 NC 011353 2008/10/11

Escherichia coli O157H7 EDL933 NC 002655 2007/01/23

Escherichia coli O157H7 NC 002695 2007/01/23

Escherichia coli SE11 NC 011415 2008/10/24

Escherichia coli SMS 3 5 NC 010498 2008/07/30

Escherichia coli UTI89 NC 007946 2007/01/23

Escherichia coli W3110 AC 000091 2006/03/02

Exiguobacterium sibiricum 255 15 NC 010556 2008/04/06

Fervidobacterium nodosum Rt17-B1 NC 009718 2007/07/31

Finegoldia magna ATCC 29328 NC 010376 2008/03/14

Flavobacterium johnsoniae UW101 NC 009441 2007/05/08

Flavobacterium psychrophilum JIP02 86 NC 009613 2008/01/07

Francisella philomiragia ATCC 25017 NC 010336 2008/02/13

Francisella tularensis FSC 198 NC 008245 2008/02/07

Francisella tularensis holarctica FTA NC 009749 2008/04/17

Francisella tularensis holarctica NC 007880 2008/01/07

Francisella tularensis holarctica OSU18 NC 008369 2007/01/23

Francisella tularensis mediasiatica FSC147 NC 010677 2008/05/10

Francisella tularensis novicida U112 NC 008601 2007/01/23

Francisella tularensis tularensis NC 006570 2007/01/23

Francisella tularensis WY96-3418 NC 009257 2007/03/30

Frankia alni ACN14a NC 008278 2008/01/07

Frankia CcI3 NC 007777 2007/01/23

Frankia EAN1pec NC 009921 2007/10/17

Fusobacterium nucleatum NC 003454 2005/12/04

Geobacillus kaustophilus HTA426 NC 006510 2005/12/04
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Geobacillus thermodenitrificans NG80-2 NC 009328 2007/04/03

Geobacter bemidjiensis Bem NC 011146 2008/08/23

Geobacter lovleyi SZ NC 010814 2008/06/07

Geobacter metallireducens GS-15 NC 007517 2007/01/23

Geobacter sulfurreducens NC 002939 2007/01/23

Geobacter uraniumreducens Rf4 NC 009483 2008/05/08

Gloeobacter violaceus NC 005125 2007/01/23

Gluconacetobacter diazotrophicus PAl 5 NC 010125 2007/12/10

Gluconobacter oxydans 621H NC 006677 2005/12/04

Gramella forsetii KT0803 NC 008571 2006/12/30

Granulobacter bethesdensis CGDNIH1 NC 008343 2007/01/24

Haemophilus ducreyi 35000HP NC 002940 2005/12/04

Haemophilus influenzae 86 028NP NC 007146 2007/12/26

Haemophilus influenzae NC 000907 2008/02/19

Haemophilus influenzae PittEE NC 009566 2007/06/14

Haemophilus influenzae PittGG NC 009567 2007/06/14

Haemophilus somnus 129PT NC 008309 2007/01/24

Haemophilus somnus 2336 NC 010519 2008/03/25

Hahella chejuensis KCTC 2396 NC 007645 2005/12/15

Halobacterium salinarum R1 NC 010364 2008/03/14

Halobacterium sp NC 002607 2005/12/04

Haloquadratum walsbyi NC 008212 2006/08/25

Halorhodospira halophila SL1 NC 008789 2007/01/13

Helicobacter acinonychis Sheeba NC 008229 2006/07/03

Helicobacter hepaticus NC 004917 2005/12/04

Helicobacter pylori 26695 NC 000915 2007/01/23

Helicobacter pylori G27 NC 011333 2008/10/04

Helicobacter pylori HPAG1 NC 008086 2006/06/07

Helicobacter pylori J99 NC 000921 2007/01/23

Helicobacter pylori P12 NC 011498 2008/10/31

Helicobacter pylori Shi470 NC 010698 2008/10/12

Heliobacterium modesticaldum Ice1 NC 010337 2008/02/13

Herminiimonas arsenicoxydans NC 009138 2008/01/07

Herpetosiphon aurantiacus ATCC 23779 NC 009972 2008/03/18

Hydrogenobaculum Y04AAS1 NC 011126 2008/08/07

Hyperthermus butylicus NC 008818 2007/01/25

Hyphomonas neptunium ATCC 15444 NC 008358 2007/01/23

Idiomarina loihiensis L2TR NC 006512 2005/12/04

Ignicoccus hospitalis KIN4 I NC 009776 2007/09/07

Jannaschia CCS1 NC 007802 2007/01/23

Janthinobacterium Marseille NC 009659 2007/07/25

Kineococcus radiotolerans SRS30216 NC 009664 2007/07/25

Klebsiella pneumoniae 342 NC 011283 2008/09/24

Klebsiella pneumoniae MGH 78578 NC 009648 2007/07/25

Kocuria rhizophila DC2201 NC 010617 2008/07/29

Lactobacillus acidophilus NCFM NC 006814 2007/11/08

Lactobacillus brevis ATCC 367 NC 008497 2006/10/23

Lactobacillus casei ATCC 334 NC 008526 2006/10/23

Lactobacillus casei NC 010999 2008/06/25

Lactobacillus delbrueckii bulgaricus ATCC BAA-365 NC 008529 2006/10/24

Lactobacillus delbrueckii bulgaricus NC 008054 2006/06/14

Lactobacillus fermentum IFO 3956 NC 010610 2008/05/08

Lactobacillus gasseri ATCC 33323 NC 008530 2006/10/24

Lactobacillus helveticus DPC 4571 NC 010080 2007/12/04

Lactobacillus johnsonii NCC 533 NC 005362 2005/12/04

Lactobacillus plantarum NC 004567 2005/12/04

Lactobacillus reuteri F275 JGI NC 009513 2007/06/04

Lactobacillus reuteri F275 Kitasato NC 010609 2008/11/15

Lactobacillus sakei 23K NC 007576 2007/01/23

Lactobacillus salivarius UCC118 NC 007929 2008/01/07

Lactococcus lactis cremoris MG1363 NC 009004 2007/02/14

Lactococcus lactis cremoris SK11 NC 008527 2006/10/24

Lactococcus lactis NC 002662 2007/01/23

Lawsonia intracellularis PHE MN1-00 NC 008011 2006/05/09

Legionella pneumophila Corby NC 009494 2007/05/29

Legionella pneumophila Lens NC 006369 2007/01/23

Legionella pneumophila Paris NC 006368 2007/01/23
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Legionella pneumophila Philadelphia 1 NC 002942 2007/01/24

Leifsonia xyli xyli CTCB0 NC 006087 2005/12/04

Leptothrix cholodnii SP 6 NC 010524 2008/03/28

Leuconostoc citreum KM20 NC 010471 2008/03/18

Leuconostoc mesenteroides ATCC 8293 NC 008531 2006/10/24

Listeria innocua NC 003212 2007/01/23

Listeria monocytogenes 4b F2365 NC 002973 2007/01/23

Listeria monocytogenes NC 003210 2007/01/23

Listeria welshimeri serovar 6b SLCC5334 NC 008555 2008/01/07

Lysinibacillus sphaericus C3 41 NC 010382 2008/03/13

Magnetococcus MC-1 NC 008576 2007/01/23

Magnetospirillum magneticum AMB-1 NC 007626 2005/12/07

Mannheimia succiniciproducens MBEL55E NC 006300 2005/12/04

Maricaulis maris MCS10 NC 008347 2007/01/23

Marinobacter aquaeolei VT8 NC 008740 2007/01/10

Marinomonas MWYL1 NC 009654 2007/07/25

Mesoplasma florum L1 NC 006055 2005/12/04

Mesorhizobium BNC1 NC 008254 2007/01/23

Mesorhizobium loti NC 002678 2005/12/04

Metallosphaera sedula DSM 5348 NC 009440 2007/05/08

Methanobacterium thermoautotrophicum NC 000916 2007/05/09

Methanobrevibacter smithii ATCC 35061 NC 009515 2007/06/06

Methanococcoides burtonii DSM 6242 NC 007955 2007/01/23

Methanococcus aeolicus Nankai-3 NC 009635 2007/07/03

Methanococcus jannaschii NC 000909, NC 001732,

NC 001733

2008/02/19

Methanococcus maripaludis C5 NC 009135 2007/03/26

Methanococcus maripaludis C6 NC 009975 2008/03/18

Methanococcus maripaludis C7 NC 009637 2007/07/03

Methanococcus maripaludis S2 NC 005791 2007/01/23

Methanococcus vannielii SB NC 009634 2007/07/03

Methanocorpusculum labreanum Z NC 008942 2007/02/07

Methanoculleus marisnigri JR1 NC 009051 2007/02/26

Methanopyrus kandleri NC 003551 2007/01/23

Methanosaeta thermophila PT NC 008553 2007/01/23

Methanosarcina acetivorans NC 003552 2005/12/04

Methanosarcina mazei NC 003901 2007/01/23

Methanosphaera stadtmanae NC 007681 2007/01/23

Methanospirillum hungatei JF-1 NC 007796 2007/01/23

Methylacidiphilum infernorum V4 NC 010794 2008/07/10

Methylibium petroleiphilum PM1 NC 008825 2007/01/30

Methylobacillus flagellatus KT NC 007947 2006/04/11

Methylobacterium 4 46 NC 010511 2008/03/26

Methylobacterium extorquens PA1 NC 010172 2008/03/18

Methylobacterium populi BJ001 NC 010725 2008/09/11

Methylobacterium radiotolerans JCM 2831 NC 010505 2008/03/24

Methylococcus capsulatus Bath NC 002977 2007/01/23

Microcystis aeruginosa NIES 843 NC 010296 2008/03/18

Moorella thermoacetica ATCC 39073 NC 007644 2007/01/23

Mycobacterium avium 104 NC 008595 2006/11/30

Mycobacterium avium paratuberculosis NC 002944 2005/12/04

Mycobacterium bovis BCG Pasteur 1173P2 NC 008769 2007/01/11

Mycobacterium bovis NC 002945 2007/01/24

Mycobacterium gilvum PYR-GCK NC 009338 2007/04/16

Mycobacterium JLS NC 009077 2007/03/01

Mycobacterium KMS NC 008705 2006/12/23

Mycobacterium leprae NC 002677 2007/01/23

Mycobacterium marinum M NC 010612 2008/04/22

Mycobacterium MCS NC 008146 2007/01/23

Mycobacterium smegmatis MC2 155 NC 008596 2006/11/30

Mycobacterium tuberculosis CDC1551 NC 002755 2005/12/04

Mycobacterium tuberculosis F11 NC 009565 2007/06/15

Mycobacterium tuberculosis H37Ra NC 009525 2007/06/06

Mycobacterium tuberculosis H37Rv NC 000962 2007/01/23

Mycobacterium ulcerans Agy99 NC 008611 2007/01/23

Mycobacterium vanbaalenii PYR-1 NC 008726 2006/12/29

Mycoplasma agalactiae PG2 NC 009497 2008/03/18
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Mycoplasma arthritidis 158L3 1 NC 011025 2008/06/28

Mycoplasma capricolum ATCC 27343 NC 007633 2007/01/23

Mycoplasma gallisepticum NC 004829 2005/12/04

Mycoplasma genitalium NC 000908 2008/02/19

Mycoplasma hyopneumoniae 232 NC 006360 2005/12/04

Mycoplasma hyopneumoniae 7448 NC 007332 2005/12/04

Mycoplasma hyopneumoniae J NC 007295 2005/12/04

Mycoplasma mobile 163K NC 006908 2005/12/04

Mycoplasma mycoides NC 005364 2007/03/09

Mycoplasma penetrans NC 004432 2005/12/04

Mycoplasma pneumoniae NC 000912 2005/12/04

Mycoplasma pulmonis NC 002771 2005/12/04

Mycoplasma synoviae 53 NC 007294 2005/12/04

Myxococcus xanthus DK 1622 NC 008095 2007/01/23

Nanoarchaeum equitans NC 005213 2007/01/23

Natranaerobius thermophilus JW NM WN LF NC 010718 2008/09/11

Natronomonas pharaonis NC 007426 2007/01/23

Neisseria gonorrhoeae FA 1090 NC 002946 2005/12/04

Neisseria gonorrhoeae NCCP11945 NC 011035 2008/07/12

Neisseria meningitidis 053442 NC 010120 2007/12/13

Neisseria meningitidis FAM18 NC 008767 2007/01/11

Neisseria meningitidis MC58 NC 003112 2005/12/04

Neisseria meningitidis Z2491 NC 003116 2005/12/04

Neorickettsia sennetsu Miyayama NC 007798 2007/01/23

Nitratiruptor SB155-2 NC 009662 2007/07/26

Nitrobacter hamburgensis X14 NC 007964 2007/01/23

Nitrobacter winogradskyi Nb-255 NC 007406 2007/01/23

Nitrosococcus oceani ATCC 19707 NC 007484 2007/01/23

Nitrosomonas europaea NC 004757 2007/01/23

Nitrosomonas eutropha C71 NC 008344 2007/01/23

Nitrosopumilus maritimus SCM1 NC 010085 2008/03/18

Nocardia farcinica IFM10152 NC 006361 2005/12/04

Nocardioides JS614 NC 008699 2006/12/22

Nostoc punctiforme PCC 73102 NC 010628 2008/06/11

Nostoc sp NC 003272 2008/03/18

Novosphingobium aromaticivorans DSM 12444 NC 007794 2007/01/23

Oceanobacillus iheyensis NC 004193 2008/03/18

Oenococcus oeni PSU-1 NC 008528 2006/10/23

Oligotropha carboxidovorans OM5 NC 011386 2008/10/23

Onion yellows phytoplasma NC 005303 2005/12/04

Opitutus terrae PB90 1 NC 010571 2008/04/12

Orientia tsutsugamushi Boryong NC 009488 2007/05/24

Orientia tsutsugamushi Ikeda NC 010793 2008/06/02

Parabacteroides distasonis ATCC 8503 NC 009615 2007/06/29

Parachlamydia sp UWE25 NC 005861 2005/12/19

Parvibaculum lavamentivorans DS-1 NC 009719 2007/07/31

Pasteurella multocida NC 002663 2005/12/04

Pediococcus pentosaceus ATCC 25745 NC 008525 2006/10/23

Pelobacter carbinolicus NC 007498 2006/04/01

Pelobacter propionicus DSM 2379 NC 008609 2007/01/23

Pelodictyon luteolum DSM 273 NC 007512 2007/01/23

Pelodictyon phaeoclathratiforme BU 1 NC 011060 2008/07/21

Pelotomaculum thermopropionicum SI NC 009454 2007/05/18

Petrotoga mobilis SJ95 NC 010003 2008/03/18

Phenylobacterium zucineum HLK1 NC 011144 2008/08/22

Photorhabdus luminescens NC 005126 2007/01/23

Picrophilus torridus DSM 9790 NC 005877 2007/01/24

Pirellula sp NC 005027 2007/01/23

Polaromonas JS666 NC 007948 2007/01/23

Polaromonas naphthalenivorans CJ2 NC 008781 2007/01/11

Polynucleobacter necessarius STIR1 NC 010531 2008/04/01

Polynucleobacter QLW-P1DMWA-1 NC 009379 2007/04/25

Porphyromonas gingivalis ATCC 33277 NC 010729 2008/06/12

Porphyromonas gingivalis W83 NC 002950 2005/12/04

Prochlorococcus marinus AS9601 NC 008816 2007/01/23

Prochlorococcus marinus CCMP1375 NC 005042 2005/12/04

Prochlorococcus marinus MED4 NC 005072 2007/01/23
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Prochlorococcus marinus MIT 9211 NC 009976 2008/03/18

Prochlorococcus marinus MIT 9215 NC 009840 2007/09/22

Prochlorococcus marinus MIT 9301 NC 009091 2007/03/07

Prochlorococcus marinus MIT 9303 NC 008820 2007/01/24

Prochlorococcus marinus MIT 9312 NC 007577 2007/01/23

Prochlorococcus marinus MIT9313 NC 005071 2007/01/23

Prochlorococcus marinus MIT 9515 NC 008817 2007/01/23

Prochlorococcus marinus NATL1A NC 008819 2007/01/24

Prochlorococcus marinus NATL2A NC 007335 2007/12/26

Propionibacterium acnes KPA171202 NC 006085 2005/12/04

Prosthecochloris aestuarii DSM 271 NC 011059 2008/07/21

Prosthecochloris vibrioformis DSM 265 NC 009337 2007/04/16

Proteus mirabilis NC 010554 2008/08/27

Pseudoalteromonas atlantica T6c NC 008228 2007/01/23

Pseudoalteromonas haloplanktis TAC125 NC 007481 2008/10/01

Pseudomonas aeruginosa NC 002516 2006/07/24

Pseudomonas aeruginosa PA7 NC 009656 2007/07/25

Pseudomonas aeruginosa UCBPP-PA14 NC 008463 2007/01/24

Pseudomonas entomophila L48 NC 008027 2008/01/07

Pseudomonas fluorescens Pf0 1 NC 007492 2008/09/19

Pseudomonas fluorescens Pf-5 NC 004129 2007/01/23

Pseudomonas mendocina ymp NC 009439 2007/05/08

Pseudomonas putida F1 NC 009512 2007/06/04

Pseudomonas putida GB 1 NC 010322 2008/03/18

Pseudomonas putida KT2440 NC 002947 2007/01/23

Pseudomonas putida W619 NC 010501 2008/03/25

Pseudomonas stutzeri A1501 NC 009434 2007/05/08

Pseudomonas syringae phaseolicola 1448A NC 005773 2005/12/04

Pseudomonas syringae pv B728a NC 007005 2005/12/04

Pseudomonas syringae tomato DC3000 NC 004578 2005/12/04

Psychrobacter arcticum 273-4 NC 007204 2005/12/04

Psychrobacter cryohalolentis K5 NC 007969 2007/01/23

Psychrobacter PRwf-1 NC 009524 2007/06/06

Psychromonas ingrahamii 37 NC 008709 2006/12/27

Pyrobaculum aerophilum NC 003364 2007/01/23

Pyrobaculum arsenaticum DSM 13514 NC 009376 2007/04/25

Pyrobaculum calidifontis JCM 11548 NC 009073 2007/03/01

Pyrobaculum islandicum DSM 4184 NC 008701 2006/12/23

Pyrococcus abyssi NC 000868 2005/12/04

Pyrococcus furiosus NC 003413 2007/01/23

Pyrococcus horikoshii NC 000961 2007/01/23

Ralstonia solanacearum NC 003295 2007/01/23

Renibacterium salmoninarum ATCC 33209 NC 010168 2007/12/26

Rhizobium etli CFN 42 NC 007761 2007/01/23

Rhizobium etli CIAT 652 NC 010994 2008/06/21

Rhizobium leguminosarum bv trifolii WSM2304 NC 011369 2008/10/17

Rhizobium leguminosarum bv viciae 3841 NC 008380 2008/01/07

Rhodobacter sphaeroides ATCC 17025 NC 009428 2007/05/08

Rhodococcus RHA1 NC 008268 2006/07/31

Rhodoferax ferrireducens T118 NC 007908 2007/01/23

Rhodopseudomonas palustris BisA53 NC 008435 2007/01/23

Rhodopseudomonas palustris BisB18 NC 007925 2007/01/23

Rhodopseudomonas palustris BisB5 NC 007958 2007/01/23

Rhodopseudomonas palustris CGA009 NC 005296 2007/01/23

Rhodopseudomonas palustris HaA2 NC 007778 2007/01/24

Rhodopseudomonas palustris TIE 1 NC 011004 2008/06/24

Rhodospirillum centenum SW NC 011420 2008/10/25

Rhodospirillum rubrum ATCC 11170 NC 007643 2007/01/24

Rickettsia akari Hartford NC 009881 2007/10/04

Rickettsia bellii OSU 85-389 NC 009883 2007/10/04

Rickettsia bellii RML369-C NC 007940 2007/01/24

Rickettsia canadensis McKiel NC 009879 2007/10/03

Rickettsia conorii NC 003103 2007/01/24

Rickettsia felis URRWXCal2 NC 007109 2007/01/24

Rickettsia massiliae MTU5 NC 009900 2007/10/10

Rickettsia prowazekii NC 000963 2007/01/24

Rickettsia rickettsii Iowa NC 010263 2008/01/19

XVI



Data

Rickettsia rickettsii Sheila Smith NC 009882 2007/10/04

Rickettsia typhi wilmington NC 006142 2007/01/24

Roseiflexus castenholzii DSM 13941 NC 009767 2007/09/05

Roseiflexus RS-1 NC 009523 2007/06/06

Roseobacter denitrificans OCh 114 NC 008209 2006/07/25

Rubrobacter xylanophilus DSM 9941 NC 008148 2007/01/24

Saccharophagus degradans 2-40 NC 007912 2007/01/24

Saccharopolyspora erythraea NRRL 2338 NC 009142 2007/03/26

Salinibacter ruber DSM 13855 NC 007677 2007/01/24

Salinispora arenicola CNS-205 NC 009953 2007/11/08

Salinispora tropica CNB-440 NC 009380 2007/04/25

Salmonella enterica arizonae serovar 62 z4 z23 NC 010067 2008/03/18

Salmonella enterica Choleraesuis NC 006905 2007/01/24

Salmonella enterica Paratypi ATCC 9150 NC 006511 2007/01/24

Salmonella enterica serovar Agona SL483 NC 011149 2008/08/26

Salmonella enterica serovar Dublin CT 02021853 NC 011205 2008/09/06

Salmonella enterica serovar Enteritidis P125109 NC 011294 2008/10/02

Salmonella enterica serovar Gallinarum 287 91 NC 011274 2008/09/20

Salmonella enterica serovar Heidelberg SL476 NC 011083 2008/07/25

Salmonella enterica serovar Newport SL254 NC 011080 2008/07/25

Salmonella enterica serovar Paratyphi A AKU 12601 NC 011147 2008/09/04

Salmonella enterica serovar Paratyphi B SPB7 NC 010102 2008/03/18

Salmonella enterica serovar Schwarzengrund CVM19633 NC 011094 2008/07/31

Salmonella enterica serovar Typhi Ty2 NC 004631 2007/01/23

Salmonella typhimurium LT2 NC 003197 2005/12/04

Salmonella typhi NC 003198 2005/12/04

Serratia proteamaculans 568 NC 009832 2007/09/20

Shewanella amazonensis SB2B NC 008700 2006/12/22

Shewanella baltica OS155 NC 009052 2007/02/26

Shewanella baltica OS185 NC 009665 2007/07/25

Shewanella baltica OS195 NC 009997 2008/03/18

Shewanella denitrificans OS217 NC 007954 2007/01/24

Shewanella frigidimarina NCIMB 400 NC 008345 2007/01/24

Shewanella halifaxensis HAW EB4 NC 010334 2008/03/18

Shewanella loihica PV-4 NC 009092 2007/03/09

Shewanella MR-4 NC 008321 2007/01/24

Shewanella MR-7 NC 008322 2007/01/24

Shewanella oneidensis NC 004347 2005/12/04

Shewanella pealeana ATCC 700345 NC 009901 2007/10/10

Shewanella piezotolerans WP3 NC 011566 2008/11/14

Shewanella putrefaciens CN-32 NC 009438 2007/05/08

Shewanella sediminis HAW-EB3 NC 009831 2007/09/20

Shewanella W3-18-1 NC 008750 2007/01/05

Shewanella woodyi ATCC 51908 NC 010506 2008/03/25

Shigella boydii CDC 3083 94 NC 010658 2008/05/09

Shigella boydii Sb227 NC 007613 2005/12/04

Shigella dysenteriae NC 007606 2005/12/07

Shigella flexneri 2a 2457T NC 004741 2007/01/24

Shigella flexneri 2a NC 004337 2007/01/24

Shigella flexneri 5 8401 NC 008258 2006/07/28

Shigella sonnei Ss046 NC 007384 2005/12/04

Silicibacter pomeroyi DSS-3 NC 003911 2005/12/04

Silicibacter TM1040 NC 008044 2007/01/24

Sinorhizobium medicae WSM419 NC 009636 2007/07/03

Sinorhizobium meliloti NC 003047 2007/01/24

Sodalis glossinidius morsitans NC 007712 2006/01/18

Solibacter usitatus Ellin6076 NC 008536 2007/01/24

Sorangium cellulosum So ce 56 NC 010162 2007/12/14

Sphingomonas wittichii RW1 NC 009511 2007/06/04

Sphingopyxis alaskensis RB2256 NC 008048 2007/01/24

Staphylococcus aureus aureus MRSA252 NC 002952 2007/01/24

Staphylococcus aureus aureus MSSA476 NC 002953 2007/01/24

Staphylococcus aureus COL NC 002951 2007/01/24

Staphylococcus aureus JH1 NC 009632 2007/07/03

Staphylococcus aureus JH9 NC 009487 2007/05/23

Staphylococcus aureus Mu3 NC 009782 2007/09/07

Staphylococcus aureus Mu50 NC 002758 2007/01/24
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Staphylococcus aureus MW2 NC 003923 2005/12/04

Staphylococcus aureus N315 NC 002745 2007/01/24

Staphylococcus aureus NCTC 8325 NC 007795 2006/02/18

Staphylococcus aureus Newman NC 009641 2007/07/07

Staphylococcus aureus RF122 NC 007622 2007/01/24

Staphylococcus aureus USA300 NC 007793 2007/01/24

Staphylococcus aureus USA300 TCH1516 NC 010079 2008/03/18

Staphylococcus epidermidis ATCC 12228 NC 004461 2005/12/04

Staphylococcus epidermidis RP62A NC 002976 2007/01/24

Staphylococcus haemolyticus NC 007168 2005/12/04

Staphylococcus saprophyticus NC 007350 2006/03/02

Stenotrophomonas maltophilia K279a NC 010943 2008/06/18

Stenotrophomonas maltophilia R551 3 NC 011071 2008/07/23

Streptococcus agalactiae 2603 NC 004116 2007/01/24

Streptococcus agalactiae A909 NC 007432 2007/01/24

Streptococcus agalactiae NEM316 NC 004368 2007/01/24

Streptococcus equi zooepidemicus MGCS10565 NC 011134 2008/10/01

Streptococcus gordonii Challis substr CH1 NC 009785 2007/09/14

Streptococcus mutans NC 004350 2005/12/04

Streptococcus pneumoniae CGSP14 NC 010582 2008/04/12

Streptococcus pneumoniae D39 NC 008533 2006/10/24

Streptococcus pneumoniae G54 NC 011072 2008/07/24

Streptococcus pneumoniae Hungary19A 6 NC 010380 2008/03/18

Streptococcus pneumoniae R6 NC 003098 2005/12/04

Streptococcus pneumoniae TIGR4 NC 003028 2008/07/12

Streptococcus pyogenes M1 GAS NC 002737 2007/01/24

Streptococcus pyogenes Manfredo NC 009332 2008/01/07

Streptococcus pyogenes MGAS10270 NC 008022 2006/05/09

Streptococcus pyogenes MGAS10394 NC 006086 2005/12/04

Streptococcus pyogenes MGAS10750 NC 008024 2006/05/09

Streptococcus pyogenes MGAS2096 NC 008023 2006/05/09

Streptococcus pyogenes MGAS315 NC 004070 2007/01/24

Streptococcus pyogenes MGAS5005 NC 007297 2007/01/24

Streptococcus pyogenes MGAS6180 NC 007296 2005/12/04

Streptococcus pyogenes MGAS8232 NC 003485 2007/01/24

Streptococcus pyogenes MGAS9429 NC 008021 2006/05/09

Streptococcus pyogenes NZ131 NC 011375 2008/10/17

Streptococcus pyogenes SSI-1 NC 004606 2007/01/24

Streptococcus sanguinis SK36 NC 009009 2007/02/16

Streptococcus suis 05ZYH33 NC 009442 2007/05/08

Streptococcus suis 98HAH33 NC 009443 2007/05/08

Streptococcus thermophilus CNRZ1066 NC 006449 2005/12/04

Streptococcus thermophilus LMD-9 NC 008532 2006/10/24

Streptococcus thermophilus LMG 18311 NC 006448 2005/12/04

Streptomyces avermitilis NC 003155 2007/12/26

Streptomyces coelicolor NC 003888 2007/01/24

Streptomyces griseus NBRC 13350 NC 010572 2008/04/12

Sulfurihydrogenibium YO3AOP1 NC 010730 2008/06/12

Sulfurovum NBC37-1 NC 009663 2007/07/26

Symbiobacterium thermophilum IAM14863 NC 006177 2005/12/04

Synechococcus CC9311 NC 008319 2007/01/24

Synechococcus CC9605 NC 007516 2007/01/24

Synechococcus CC9902 NC 007513 2005/12/04

Synechococcus elongatus PCC 6301 NC 006576 2005/12/04

Synechococcus elongatus PCC 7942 NC 007604 2007/01/24

Synechococcus PCC 7002 NC 010475 2008/03/18

Synechococcus RCC307 NC 009482 2007/05/23

Synechococcus sp WH8102 NC 005070 2007/01/24

Synechococcus WH 7803 NC 009481 2007/05/23

Synechocystis PCC6803 NC 000911 2007/01/24

Syntrophobacter fumaroxidans MPOB NC 008554 2007/01/24

Syntrophomonas wolfei Goettingen NC 008346 2007/01/24

Syntrophus aciditrophicus SB NC 007759 2006/04/19

Thermoanaerobacter pseudethanolicus ATCC 33223 NC 010321 2008/03/18

Thermoanaerobacter tengcongensis NC 003869 2007/01/24

Thermoanaerobacter X514 NC 010320 2008/03/18

Thermobifida fusca YX NC 007333 2007/01/24
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Thermococcus kodakaraensis KOD1 NC 006624 2005/12/04

Thermococcus onnurineus NA1 NC 011529 2008/11/07

Thermodesulfovibrio yellowstonii DSM 11347 NC 011296 2008/09/27

Thermofilum pendens Hrk 5 NC 008698 2006/12/22

Thermoplasma acidophilum NC 002578 2007/01/24

Thermoplasma volcanium NC 002689 2006/12/21

Thermosipho melanesiensis BI429 NC 009616 2007/06/29

Thermosynechococcus elongatus NC 004113 2007/01/24

Thermotoga lettingae TMO NC 009828 2007/11/20

Thermotoga maritima NC 000853 2007/01/24

Thermotoga petrophila RKU-1 NC 009486 2007/05/23

Thermotoga RQ2 NC 010483 2008/06/02

Thermus thermophilus HB27 NC 005835 2005/12/04

Thermus thermophilus HB8 NC 006461 2007/01/24

Thiobacillus denitrificans ATCC 25259 NC 007404 2007/01/24

Thiomicrospira crunogena XCL-2 NC 007520 2007/01/24

Thiomicrospira denitrificans ATCC 33889 NC 007575 2008/01/26

Treponema denticola ATCC 35405 NC 002967 2005/12/04

Treponema pallidum NC 000919 2007/01/24

Treponema pallidum SS14 NC 010741 2008/06/12

Trichodesmium erythraeum IMS101 NC 008312 2007/01/24

Tropheryma whipplei TW08 27 NC 004551 2007/01/24

Tropheryma whipplei Twist NC 004572 2005/12/04

uncultured Termite group 1 bacterium phylotype Rs D17 NS 000191 2008/11/22

Ureaplasma parvum serovar 3 ATCC 27815 NC 010503 2008/03/26

Ureaplasma urealyticum NC 002162 2005/12/04

Ureaplasma urealyticum serovar 10 ATCC 33699 NC 011374 2008/10/17

Verminephrobacter eiseniae EF01-2 NC 008786 2007/01/11

Vibrio harveyi ATCC BAA-1116 NC 009783 2008/09/26

Vibrio vulnificus CMCP6 NC 004459 2008/09/25

Wigglesworthia brevipalpis NC 004344 2007/01/24

Wolbachia endosymbiont of Brugia malayi TRS NC 006833 2005/12/04

Wolbachia endosymbiont of Culex quinquefasciatus Pel NC 010981 2008/11/20

Wolbachia endosymbiont of Drosophila melanogaster NC 002978 2007/01/24

Wolinella succinogenes NC 005090 2005/12/04

Xanthobacter autotrophicus Py2 NC 009720 2007/07/31

Xanthomonas campestris 8004 NC 007086 2007/01/24

Xanthomonas campestris ATCC 33913 NC 003902 2007/01/24

Xanthomonas campestris B100 NC 010688 2008/09/08

Xanthomonas campestris vesicatoria 85-10 NC 007508 2007/01/24

Xanthomonas citri NC 003919 2007/01/24

Xanthomonas oryzae KACC10331 NC 006834 2005/12/04

Xanthomonas oryzae MAFF 311018 NC 007705 2007/01/24

Xanthomonas oryzae PXO99A NC 010717 2008/09/11

Xylella fastidiosa M12 NC 010513 2008/03/24

Xylella fastidiosa M23 NC 010577 2008/04/12

Xylella fastidiosa NC 002488 2007/01/24

Xylella fastidiosa Temecula1 NC 004556 2005/12/03

Yersinia enterocolitica 8081 NC 008800 2008/01/07

Yersinia pestis Angola NC 010159 2008/03/18

Yersinia pestis Antiqua NC 008150 2007/01/24

Yersinia pestis biovar Microtus 91001 NC 005810 2008/09/11

Yersinia pestis CO92 NC 003143 2005/12/03

Yersinia pestis KIM NC 004088 2005/12/03

Yersinia pestis Nepal516 NC 008149 2007/01/24

Yersinia pestis Pestoides F NC 009381 2007/04/25

Yersinia pseudotuberculosis IP 31758 NC 009708 2007/07/27

Yersinia pseudotuberculosis IP32953 NC 006155 2007/01/24

Yersinia pseudotuberculosis PB1 NC 010634 2008/07/31

Yersinia pseudotuberculosis YPIII NC 010465 2008/03/18

Table B.1: Data sources: The protein sets of these species were downloaded from

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ and used within the domain-wide

common approach in Chapter 4.
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Benchmark

Species Class

Bacillus halodurans Bacilli (Gram-positive)
Bacillus subtilis Bacilli (Gram-positive)
Lactococcus lactis Bacilli (Gram-positive)
Listeria innocua Bacilli (Gram-positive)
Streptococcus pneumoniae TIGR4 Bacilli (Gram-positive)
Streptococcus pyogenes M1 GAS Bacilli (Gram-positive)
Buchnera sp. APS Gamma proteobacteria
Escherichia coli K12 Gamma proteobacteria
Pasteurella multocida Gamma proteobacteria
Salmonella typhimurium LT2 Gamma proteobacteria
Vibrio cholerae Gamma proteobacteria
Yersinia pestis Gamma proteobacteria
Brucella melitensis Alpha proteobacteria
Caulobacter vibrioides Alpha proteobacteria
Mesorhizobium loti Alpha proteobacteria
Rickettsia prowazekii Alpha proteobacteria

Table B.2: Species for benchmark: The protein sets of these 16 species were ob-
tained from COG (ftp://ftp.ncbi.nih.gov/pub/COG/COG/) at 2009/10/15 for the
benchmark of Proteinortho in comparison to OrthoMCL in Subsection 3.3.2.
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