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Abstract

In practice, graphs often occur as perturbed product structures|iedapproximategraph products.
The practical application of the well-known prime factorization algorithms isfioee limited, since
most graphs are prime, although they can have a product-like structure.

This work is concerned with thstrong graph product Since strong product grapl@ contain
subgraphs that are itself products of subgraphs of the underlyitgy$aaf G, we follow the idea to
develop local approaches that cover a graph by factorizable paoldesen use this information to
derive the global factors.

First, we investigate the local structure of strong product graphs aradlinde thebackboneB(G)
of a graphG and the so-calle&1-condition Both concepts play a central role for determining the
prime factors of a strong product graph in a unique way. Then, we siisseveral graph classes,
in detail, NICE, CHIC andlocally unrefinedgraphs. For each class we construct local, quasi-linear
time prime factorization algorithms. Combining these results, we then derive dogelvprime
factorization algorithm for all graphs.

Finally, we discuss approximate graph products. We use the new lotatifation algorithm to
derive a method for the recognition of approximate graph products. drurtire, we evaluate the
performance of this algorithm on a sample of approximate graph products.
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Introduction

Graphs and in particular graph products arise in a variety of diffex@rtexts, from computer science
to theoretical biology, computational engineering or in studies on sociabnlesw

In practical applications, we observe perturbed product structapesalledapproximategraph
products, since structures derived from real-life data are notoridgnishmplete and/or plagued by
measurement errors. As a consequence, the structures need tdyzedma a way that is robust
against inaccuracies, noise, and perturbations in the data.

The problem of computing approximate graph products was posed bgeara ago in a theoret-
ical biology context [56]. The authors provided a concept concgrttie topological theory of the
relationships between genotypes and phenotypes. In this frameworkala “character” (trait or
Merkma) is identified with a factor of a generalized topological space that desditilgevariational
properties of a phenotype. The notion of a character can be undgest@property of an organism
that can vary independently of other traits from generation to genera@biaracters thus are not
necessarily the same as observable properties such as arms, legs, &irggenal chord, etc, although
such observables of course often are instantiations of characteesimplrtant biological distinc-
tion is whethersuch measurable attributes (or combinations thereof) form a “coordiristeatong
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which the character states (e.g. the lengths of arms or fingers) can dapeindently of other traits,
or whether the underlying genetics dictates dependencies among theatibse{41].

This question can be represented as a graph problem in the following®ansider a seX of
“phenotypes”, that is, representations of distinct organisms, eaclnichvis characterized by a list
of properties such as body shape, eye color, presence or alifereréain bones, etc. If one knows
about the phylogenetic relationships between the membétswé can estimate which combinations
of properties are interconvertible over short evolutionary time-scalds.evolutionary “accessibility
relation” introduces a graph-structure Br{7, 17, 18, 52].

In particular, a phenotype space inherits its structure from an undedgugence space. Sequence
spaces are Hamming graphs, that is, Cartesian products of complets,ggaplilO, 11]. The struc-
ture of localized subsets turns out to be of particular interest. GavrilefsGt8ner [21], and Reidys
[48], for example, describe subgraphs in sequence spaces thasmamnd to the subset of viable
genomes or to those sequences that give rise to the same phenotypeudiuessof these subgraphs
is intimately related to the dynamics of evolutionary processes [30, 54]. Wowsince characters
are only meaningfully defined on subsets of phenotypes it is necessasg #local definition [56]:

A character corresponds to a factor in a factorizable induced sutgigipnon-empty interior (where
X is an interior vertex oH C G if x and all its neighbors withi are inH).

Other applications of graph products can be found in rather differeasas computer graphics and
theoretical computer science. In [1, 2], the authors provide a frankewalledTopoLayoutto draw
undirected graphs based on the topological features they containlogjaiab features are detected
recursively, and their subgraphs are collapsed into single nodesinpa graph hierarchy. The final
layout is drawn using an appropriate algorithm for each topologicalfedt]t Graph products have
a well understood structure, that can be drawn in an effective wagcéjdor an extension of this
framework in particular approximate graph products are of interest.

Reasons and motivations to study graph products or graphs that havduiplike structure can
be found in many other areas, e.g. for the formation of finite element modelsnstraction of
localized self-equilibrating systems in computational engineering [35-3er@notivations can be
found in discrete mathematics. A natural question is what can be said algpapla invariant of
an (approximate) product if one knows the corresponding invariartseofactors. There are many
contributions, treating this problem, e.qg. [4, 6, 22, 23, 26, 42].

In all applications of practical interest, the graphs in question have to ber etitained from
computer simulations (e.g. within the RNA secondary structure model as iff [18)) or they need
to be estimated from measured data. In both cases, they are known ordyiaggiely. In order to



deal with such inaccuracies, a mathematical framework is needed that abawsleal with graphs
that are only approximate products.

Given a graplG that has a product-like structure, the task is to find a giaphat is a nontrivial
product and a good approximation®fin the sense thad can be reached fro@ by a small number
of additions or deletions of edges and vertices. In fact, a very smallrpation, such as the deletion
or insertion of a single edge, can destroy the product structure completdyfying a product graph
to a prime graph [13, 58].

In this thesis, we are in particular interested in the so-calteshggraph product, that is one of
the four standard products. The observation that strong produghg@ontain subgraphs that are
themselves products of subgraphs of the underlying factors, so-cailbgfoducts, leads to the idea
to factorize those subgraphs and to use the local factorizations for tisérection of a global one.

First, we introduce the necessary basic definitiorBhapter 2. Moreover, we deal with two graph
products, theCartesianand thestrong product and show how one computes the prime factors of a
graph with respect to both products. In the last part of this chapter, welirce several other graph
classes that will become powerful tools in later considerations.

In order to cover a grap@ by its subproducts and to use the information provided by the factoriza-
tion of those subgraphs to construct the factor&pive are concerned with several important tools
and techniques that will help us to realize this purpos€lapter 3. As it turns out, the so-called
S1-conditiorand thebackboneB(G) of a graphG, that is a subset of the vertex set@fwill play a
central role.

After this, we are concerned with a local approach that recognizegithe factors of a graph by
covering it with induced neighborhoods that satisfy certain properti€hapter 4. In particular, the
term thinnessof graphs is essential. A graphtisin if any two of its vertices can be distinguished
by their respective neighborhoods. We introduce the clagsIGE and CHIC graphs and show
that the information provided by the local factorization of thin induced neaigiiods of backbone
vertices is sufficient to determine the prime factors of those graphs. Menege derive quasi-linear
time algorithms that determine the prime factors of NICE and CHIC graphs usiiginlvorhood
information only.

As it turns out, not all graphs have this property.dhapter 5, we therefore consider graphs that
cannot be covered by those thin neighborhoods only and extend theysevork to graphs that
have a local factorization that is not finer than the global one. We call tbigeptylocally unrefined
We then show how one can cover such a graph by its neighborhoodslginto determine its prime



4 1. Introduction

factors. As results we derive polynomial-time algorithms to check whetheydngs locally unrefined
and to compute its prime factor decomposition.

In Chapter 6, we use the previous findings and provide a general local approatttefprime factor
decomposition for all kinds of graphs. The algorithm makes use of deliffeaent subproducts. As
it turns out, in this approach we have to enlarge the subproducts, engnfighborhoods to unions
of neighborhoods, for the general case. We explain how the gdoeghlapproach works and show
that time complexity of this approach is quasi-linear in the number of vertic€s of

Finally, we discuss approximate graph productCimpter 7. We use the new local factoriza-
tion algorithm to derive a method for the recognition of approximate graptiysts. At the end,
we perform experimental tests and we evaluate the performance of thittalyon a sample of
approximate graph products.



The Basics

We begin this chapter with basic definitions that are quite similar to those onds \Wg&roceed to
introduce two graph products, ti@artesianand thestrongproduct. In particular we are interested in
the strong product, but as it turns out, the Cartesian product is closatgddo the strong product
and plays a central role in the prime factor decomposition of strong prgdaphs. We then explain
how one decomposes a given graph into its prime factors with respect tgptmhcts and give
an overview of the well-known prime factorization algorithms. In the last phthis chapter we
introduce several graph classes, llkamming graphsSubproductsand S-prime graphsthat will
become powerful tools in later considerations.

2.1 Graphs

The cardinality of a seX, i.e. the number of its elements, is denoted ¥y The abbreviatiorycd
stands for thegreatest common divisoA set. 2™ = {X,...,X,} of nonempty, disjoint subsets of a
setX is called gpartition of X, if U'_ ;X = X. Logarithms are taken to the base 2, denoted by log.

A graphG = (V,E) is an ordered pair of sets consisting of a\éeif vertices and a sé& of edges,
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that are 2-element (unordered) subsetg oSuch graphs are also calladdirectedgraphs.Note that
by definition graphs cannot have edgewith |e) = 1. A simplegraph is an undirected graph such
that there is at mosineedge between any two different vertices.

To avoid ambiguity, we always assume thia E = 0. If there is a risk of confusion we refer to the
vertex set ofG asV (G) and to its edge sdf asE(G). A vertexv is incidentwith an edgeeif v € e.
The two vertices incident with are itsendpointsande joinsits endpoints. An edgéx,y} € E(G) is
usually written agx,y) and the vertices andy are said to badjacentor neighbors Furthermore we
say two edges aiiecidentif they share a common endpoint.

A pathis a graphP = (V, E) of the formV = {vi,...,vn} andE = {(v1,V2), (V2,V3),...(Va—1,Vn) },
where the vertices; are all distinct. Acycle C= (V,E) is aclosedpath, i.e, a graph of the form
V ={vi,...,n} andE = {(v1,V2), (V2,V3),...(Vn—1,Vn), (Vn,V1) }. A pathP, respectively a cycl€,
with n vertices will be denoted bly,, respectively byC,. A cycleC, is calledsquare The length of a
path is defined as the number of its edges. dikance &(x,y) in G between two verticegy € V(G)
is defined as the shortest path, connecting them. If no such path exisét degsy) := . If there
is no risk of confusion we writel(x,y) instead ofdg(x,y). The largest distance between any two
vertices inG is thediameterof G.

A graphG is connectedf for any two of its vertices there is a path connecting them.

Remark 2.1. From here on we always deal with connected, undirected and simplesgsap (V,E)
with finite vertex sev.

Figure 2.1: Shown is a finite, connected, undirected and simple graph.

GivenG = (V,E), we will write G (u, V) for the graph with vertex s&t and edge seE F (u,v) for
each of the set operations={\,U,N}.

If all vertices of a graplG = (V,E) are pairwise adjacen is completeand denoted bi(y,. The
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graphKj; is callededgeandKs3 is calledtriangle. A graph isnontrivial if it has at least two vertices.
Hence, the complete grapdy is trivial.

The openneighborhood\(v) of a vertexv € V is the set of all vertices that are adjacentvto
We define thek-neighborhoodf vertexv as the setNy[v] = {x € V(G) | ds(v,x) < k}. We call a
1-neighborhoodN; [v] = N(v) U {v} alsoclosedneighborhood or just neighborhood, denoted\y,
unless there is a risk of confusion. To avoid ambiguity, we sometimes Nfifg to indicate that
N[v] is taken with respect tG.

The degree deg) of a vertexv is the number of adjacent vertices, or, equivalently, the number of
incident edges. For a given gragh= (V,E) the average degreeq G) is defined ag%fqv). The
maximum degree is denoted Ay

If for two graphsH andG holdsV(H) C V(G) andE(H) C E(G) thenH is a called asubgraph
of G, denoted byH C G. H is aspanningsubgraph of5 if V(H) =V(G). If H C G and all pairs of
adjacent vertices i are also adjacent iH thenH is called a(vertex) inducedgubgraph. Aredge
inducedgraphH of G is a subgraph with edge s&{H) C E(G) and vertex sé¥ (H) = Ugcg ()€ The
subgraph of a grap® that is induced by a vertex sét C V(G), respectively an edge setC E(G)
is denoted byW), respectively(F).

A subsetD of V(G) is adominating sefor G, if for all vertices inV(G) \ D there is at least one
adjacent vertex fror®. We callD connected dominating séft D is a dominating set and the subgraph
(D) is connected.

A homomorphisnyp: V(G) — V(H) is an adjacency preserving mapping, i.e(xify) € E(G) then
(p(x),@(y)) € E(H). We call two graphss andH isomorphi¢ and writeG ~ H, if there exists a
bijectiong:V(G) — V(H) with (x,y) € E(G) < (¢(x),9(y)) € E(H) for all x,y € V(G). Such a
map ¢ is called arisomorphismif G = H, it is called arautomorphism

Throughout this contribution we often use an algorithm, cabeshdth-first search (BFS}hat
traverses all vertices of a gragh= (V,E) in a particular order. We introduce the ordering of the
vertices oV by means of breadth-first search as follows: Select an arbitraryxwed® and create a
sorted listBF Sv) of vertices beginning with; append all neighborg, ..., Vgeqy) Of v; then append
all neighbors of/1 that are not already in this list; continue recursively withvs, ... until all vertices
of V are processed. In this way, we build levels where edoHeveli is adjacent to some vertexin
leveli — 1 and verticeslin leveli+ 1. We then call the vertex theparentof v, denoted byareniv),
and vertexv achild of w.
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2.2 Product Graphs

Defining graph products can be done in various ways. Usually one wamiifine a product that
satisfies the three basic properties:

1. The vertex set of a product is the Cartesian product of the vertexf&the factors.
2. The product of a simple graph is a simple graph.

3. Adjacency in the product depends on the adjacency properties pfdiextions of pairs of
vertices into the factors.

As shown in [31], there are 256 possibilities to define such a graph prdolut only six of them
are commutative, associative and have a unit, see [32]. If one wish@satiect to depend on the
structure of both factors and if the homomorphism property of the projextiun the factors, that
will be defined later on, plays a role, the number of products decreadedrnichis contribution we
are concerned with two of these 4 products, the Cartesian and the stozhgep In particular, we are
interested in the strong product, but as it turns out the Cartesian plisdilmsely related to the strong
product and plays a central role in the prime factorization of strong ptaghaphs. Consequently,
we will also deal with the Cartesian product.

Definition 2.2. The vertex set of th€artesian product @G, and thestrong product GX G, of
two graphg5; andGs; is the set

V(G)xV(H)={(v1,v2) |v1 €V(G),v2 € V(H)},

that is, the Cartesian product of the vertex sets of the factors.

Two vertices(x1,X2), (Y1,Y2) are adjacent in the Cartesian prod@f1G; if one of the following
conditions is satisfied:

(i)  (x1,y1) € E(G1) andxx = Y-
(i) (X2,¥2) € E(G2) andxy = y1

Two vertices(x,X2), (y1,Y2) are adjacent in the strong produgt X G, if one of the following
conditions is satisfied:

()  (%1,Y1) € E(G1) andxz =y
(i) (X2,Y¥2) € E(G2) andxy = y1
(i)  (x1,y1) € E(G1) and(x2,¥2) € E(Gy)
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The definition of the edge sets shows that the Cartesian product is clesstigd to the strong
product and indeed it plays a central role in the factorization of the spooducts. Consequently,
the edges of a strong product that satisfy (i) or (ii) are calladtesian the othersion-Cartesian

0O o o 2]

al

b0,

Figure 2.2: Left: A Cartesian Product graph. Right: A strong producipgra

The one-vertex complete gragh serves as a unit for both productska§1H = H andK; XH = H
for all graphsH. It is well-known that both products are associative and commutative[32¢e
Hence a vertex of the Cartesian produ€i ,G;, respectively the strong produgf' ,G; is properly
“coordinatized” by the vectaz(x) := (c1(X), .. .,Cn(X)) whose entries are the vertiogéx) of its factor
graphsG;. Two adjacent vertices in a Cartesian product graph, respectivdpoarts of a Cartesian
edge in a strong product, therefore differ in exactly one coordinateenQve will write (X1, ...,Xn)
for the coordinates of unless there is a risk of confusion.

The mapping; (x) = x; of a vertexx with coordinategx, . .., X,) is calledprojectionof x onto the
j —thfactor. For a sedV of vertices of 1! ,G;, resp.X' ;G;, we definep; (W) = {p;(w) | w e W}.
Sometimes we also writga if we mean the projection onto factéx

In both productdT! ;G; and X" ,G;, a Gj-fiber or G;-layer through vertexx with coordinates
(X1,...,X%n) is the vertex induced subgralﬁij‘ in G with vertex set{(Xs,...Xj—1,V,Xj11,...,%n) €
V(G) | veV(Gj)}. Thus, Gj is isomorphic to the factoG; for everyx € V(G). Fory € V(GJ)
we haveG} = G‘l-’, while V(G}) NV(Gf) = 0 if z¢ V(G}). With a horizontalfiber we mean the
subgraph ofG induced by vertices of one and the same fiber, i.e., we mean a part&t:kiver
without mentioning this particularly, if there is no risk of confusion. Wptrallel G;-fibers we mean
all fibers with respect to a given factG. Edges of (not necessarily differei@)-fibers are said to be
edgesf one and the sanfactorG;.

Note, the coordinatization of a product is equivalent to a (partial) edg®ieg of G in which
edges(x,y) share the same colax if x andy differ only in the value of a single coordinakei.e.,
if X; =Vi, i # kandxg # yk. This colors theCartesian edgesf G (with respect to th@ivenproduct
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representation). It follows that for each cotothe sete; = {e € E(G) | c(e) = c} of edges with color
c spansG. The connected components(@;) are isomorphic subgraphs Gf

We state now some well-known lemmas concerning several propertieschfgbrgraphs that will
be used throughout this contribution. The first lemma deals with the conmes®edf graphs and
their product.

Lemma 2.3 ([32]). Let G be a Cartesian produci! ;G;, respectively, a strong produéf ,G;.
Then G is connected if and only if every factqri§sconnected.

For later reference we note that the distance of two vertices in a prodauh ¢s determined by
distances within the factors:

Lemma 2.4([32]). LetG=0",G; and uv e V(G). Then it holds:

dG(U,V) = .idei (Ui,Vi).

Lemma 2.5([32]). Let G=X" ,Gj and uv € V(G). Then it holds:

dg(u,v) = 1T§)r(,dei (Ui, Vi).

2.3 Prime Factor Decomposition (PFD)

In this section, we are concerned with tReme Factor Decompositigrfor shortPFD, of graphs
with respect to the Cartesian and the strong product. For this purpodiesistate when a graph is
said to be prime.

Definition 2.6. A graphG is prime with respect to the Cartesian, respectively the strong product, if
it cannot be written as a Cartesian, respectively a strong product, afidwiivial graphs, i.e., the
identity G = G1 x G, (» = [0, X)) implies thatG; ~ K; or G, ~ Kj.

2.3.1 The Cartesian Product

As shown by Sabidussi [49] and independently by Vizing [55], all finbarected graphs have a
unique prime factor decomposition with respect to the Cartesian product.
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Theorem 2.7([49, 55]). Every connected graph has a unique representation as a Cartesidngiro
of prime graphs, up to isomorphisms and the order of the factors.

A well-known counterexample for the non-uniqueness of the PFD of disxted graphs is based
on results of Nakayama and Hashimoto [47]. It is not hard to see that thityde

(Ky+ Ko+ K2)O(Ky +K3) = (Ky + K2 +KHO(K1 +Ko)

holds, wheret denotes the disjoint union and where powers are taken with respect tattesian
product. Moreover, an easy proof that the factors on the left- and-higid side are indeed prime
can be found in [32].

In 1985, Feigenbaum et al. [15] developed the first polynomial time algmoriitiat finds the prime
factorization of connected graphs with respect to the Cartesian proglucing in O(|V [*°) time.
Later, Winkler [57] presented aB(|V |*) time algorithm which is based on a method of isometrically
embedding graphs into Cartesian products by Graham and Winkler [20&rIF1L2] continued with an
algorithm that require®(|V| - |[E|) time. The latest and fastest approach is due to Imrich and Peterin
that runs inO(|E|) time, see [33].

However, the main idea for the PFD of a Cartesian pro@ustto compute an equivalence relation
1, defined on the edge s€{G), also callegproduct relation LetG =" ;G; be a Cartesian product,
where the factors are not necessarily prime. With respect to this repaésa we define a product
relationl onE(G), as follows:

el f if there is an such thatpi(e)| = |pi(f)| = 2.

Expressed in word®l1 f if the projection of the endpoints of both edgesnd f maps onto the same
factorG;.

The finest product relatiofl leads to the prime factorization of a connected graph, i.e., a prime
factor is isomorphic to one connected componenGdhat is induced by the edges that are in the
same relation.

A well-known property of the Cartesian product is the following one.
Lemma 2.8(Square Property [34])Let G be a Cartesian product. If e and f are incident edges of
different fibers, then there exists exactly one square without diagoralsdhtains e and f.

Furthermore any two opposite edges of a diagonal-free square aresefigm copies of one and
the same factor.
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Every product relatiofl satisfies the square property [32]. A very important feature of etprica
relations defined on the edge set of a given gi@pé stated in the next lemma.

Lemma 2.9 ([34]). Let y be an equivalence relation on the edge séGEof a connected graph.
Supposey has the equivalence classgs. .., \,... and satisfies the square property. Then every
vertex of G meets evewy, i.e., every vertex is incident to an edge of each equivalence class.

2.3.2 The Strong Product

As shown by Dérfler and Imrich [9] and independently by McKenzie [48]finite connected graphs
have a unique prime factor decomposition with respect to the strong product.

Theorem 2.10([9, 43]). Every connected graph has a unique representation as a strong groéiu
prime graphs, up to isomorphisms and the order of the factors.

As in the case of the Cartesian product there is a counterexample fonthenigueness of the PFD
of disconnected graphs based on results of Nakayama and Hashimptd k&rfollowing identity
holds:

(K + Ko+ K3) B (Ky +K3) = (K1 + K3+ K3) ) (K1 + Kp),

where+ denotes the disjoint union and where powers are taken with respect tindhg product. A
proof that the factors on the left- and right-hand side are prime can Inel io32].

The prime factor decomposition with respect to the strong product worsisdily as follows.
Given a strong produds with specific property, one computes a subgr&pB) of G, the so-called
Cartesian skeletanThe skeletor$(G) is decomposed with respect to the Cartesian product and this
information is used to construct the prime factors of the original g@ap¥ith respect to the strong
product. However, before we proceed to explain this approach in netaéd de have to deal with the
specific property a grap8 has to havethinness

Thinness

It is important to notice that although the PFD of a strong product is uniqeecdbrdinatizations
might not be. Figure 2.3 shows that the reason for the hon-uniqueinatizdtions is the existence
of automorphisms that interchange the verticesndd, but fix all the others. This is possible because
b andd have the same closed neighborhoods. Thus, an important issue in thet odisteong graph
products is whether or not two vertices can be distinguished by their raigbbds. This is captured
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a=T1Y1 b= z1y2 a = T1y1 b = z2y9

¢ = Zay1 d = z2y> c = T2y1 d=z1Yy2

Figure 2.3: The edgga, b) is Cartesian in the left, and non-Cartesian in the right dimatization

by the relatiorSdefined on the vertex set &, which was first introduced by Ddorfler and Imrich [9].
This relation is essential in the studies of the strong product.

Definition 2.11. Let G be a given a grap® andx,y € V(G) be arbitrary vertices. The verticegnd
y are in relatiorSif N[x] = N[y|. A graph isS-thin, or thin for short, if no two vertices are in relation
S

In [16], vertices x and y with xSy are call@aterchangeableNote thatxSyimplies thatx andy are
adjacent since, by definitiow,c N[X] andy € N]y]. Clearly,Sis an equivalence relation. The graph
G/Sis the usual quotient graph, more precisely:

Definition 2.12. Thequotient graph GSof a given graplG has vertex set
V(G/S) ={S | S is an equivalence class &}
and(S,Sj) € E(G/S) whenever(x,y) € E(G) for somex € S andy € S;.
Note that the relatiors on G/Siis trivial, that is, its equivalence classes are single vertices [32].
ThusG/Sis thin. The importance of thinness lies in the uniqueness of the coordinatzatenthe

property of an edge being Cartesian or not does not depend on tlee cidhe coordinates. As a
consequence, the Cartesian edges are uniquely determined in an Sagtingge [9, 16].

Lemma 2.13. If a graph G is thin, then the set of Cartesian edges is uniquely determmdence
the coordinatization is unique.
For later usage we also defifeclasses w.r.t. subgraphs of a given gr&ph

Definition 2.14. Let H C G be an arbitrary subgraph of a given graph ThenS; (x) is defined as
the set
Si(x) = {veV(H) |N°MNV(H)=NCXNV(H)}.

If H = (NC[v]) for somev € V(G) we setS,(x) := Syep (X)
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G G/S

Figure 2.4: A graphG and its quotient graps/S. The S-classes a®;(0) = {0}, Sg(1) = {1}, ands(2) =
S(3)=1{2.3}.

Important basic properties, first proved by Ddrfler and Imrich [Qhamoning the thinness of graphs
are given now. Alternative proofs can be found in [32].

Lemma 2.15. For any two graphs @and & holds(G; X G;) /S~ G1/SK G,/S. Furthermore, for
every x= (x1,%2) € V(G) holds %(X) = Se, (1) x Sc, (%2).

This result directly implies the next corollaries, see [32].

Corollary 2.16. A graph is thin if and only if all of its factors with respect to the strong produet
thin.

Corollary 2.17. Let G be a strong product & G; X G,. Consider a vertex % V (G) with coordinates
(X1,X2). Then for every £ S5(X) holds z € S (i), i.e. the i-th coordinate of z is contained in the
S-class of the i-th coordinate of x.

The Cartesian Skeleton

As mentioned before, the key idea of finding the PFD of a g@p¥ith respect to the strong product
is to find the PFD of a subgragf(G) of G, the so-calledCartesian skeletgnwith respect to the
Cartesian product and construct the prime factoiG aking the information of the PFD &f(G).

Definition 2.18. A subgraphH of a graphG = G; X G, with V(H) = V(G) is called Cartesian
skeletorof G, if it has a representatiod = H1JH; such thav/ (H') =V (G) for all ve V(G) and
i € {1,2}. The Cartesian skeletd# is denoted bys(G).

In other words, theH;-fibers of the Cartesian skelet&iiG) = Hi[OH, of a graphG = G X G,
induce the same partition as tg-fibers on the vertex se¥s(S(G)) =V(G).

This concept was first introduced by Feigenbaum and Schéaffer [nlfLéhis approach, edges are
marked as Cartesian if the neighborhoods of their endpoints fulfill sometliggtmaximal conditions
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Figure 2.5: A prime graphG and its Cartesian Skelet&{G) induced by thick-lined edges. Thin-lined edges
are marked as dispensable in the approach of Hammack anchin®n the other hand, the thick-lined edges
are marked as Cartesian in the approach of Feigenbaum aidfeSciHowever, in both cases the resulting
Cartesian skeletofi(G) spansG. Hence, the vertex sets of t8¢G)-fiber (w.r.t. Cartesian product) and the
G-fiber (w.r.t. strong product) induce the same partit($(G)) = V(G) of the respective vertex sets.

in collections of neighborhoods or subsets of neighborhoo@s ifhis approach is technically tricky

and complex.

A more transparent and also the fastest and latest approach is due to Elammmdalmrich, see
[24]. In distinction to the approach of Feigenbaum and Schéffer eslganarked as dispensable. All
edges that are dispensable will be removed ffanThe resulting grapB(G) is the desired Cartesian
skeleton and will be decomposed with respect to the Cartesian producanfample see Figure
2.5.

Definition 2.19. An edge(x,y) of G is dispensabléf there exists a vertex € V(G) for which both
of the following statements hold.

1. (@N[X]NN[y] C N[x]NN[Z] or (b)N[x] € N[Z C N[y]
2. (@N[X)NNJy] C N[yJnN[z or (b)N[y] C N[z C N[X]
Some important results, concerning the Cartesian skeleton are summarizedaliaiving theo-

rem.

Theorem 2.20([24]). Let G= G; X G, be a strong product graph. If G is connected, ti#1®) is
connected. Moreover, if Zand & are thin graphs then

S(GL K G,) = S(Gy)IS(Gy).

Any isomorphisng : G — H, as a map (G) — V(H), is also an isomorphisr : S(G) — S(H).
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Remark 2.21. Notice that the set of all Cartesian edges in a strong prad@uei , G; of connected,
thin prime graphs are uniquely determined and hence its Cartesian skeletmeowdr, since by
Theorem 2.20 and Definition 2.18 of the Cartesian skel&(@) = [0 ;S(G;) of G we know that
V(S(G)Y) =V(G)) for all ve V(G). Thus, we can assume without loss of generality that the set of

all Cartesian edges in a strong prodGct= X! ;G; of connected, thin graphs is the edge set of the
Cartesian skeletof(G) of G w.r.t. this factorization, see [32].

Algorithm

Now, we are able to give a brief overview of the global approach thetrdeoses given graphs into
their prime factors with respect to the strong product, see also Figure @B an

G —

o—0—0 o—0—0

o—0—90 O—Q
PFD of S(G/S) — PFD of G

Figure 2.6: lllustrated are the basic steps of the PFD of strong produagiits, see Algorithm 1.

Given an arbitrary grap, one first extracts a possible complete fa¢tpof maximal size, result-
ing in a graph@’, i.e.,G ~ G' K K|, and computes the quotient gragh= G'/S. This graphH is thin
and therefore the Cartesian edgeS@f ) can be uniquely determined. Now, one computes the prime
factors ofS(H) with respect to the Cartesian product and utilizes this information to determine the
prime factors ofG’ by usage of an additional operation stated in the next lemma.

Lemma 2.22.[32] Suppose that it is known that a given graph G that does not adrgicamplete
graphs as a factor is a strong product graph & G, and suppose that the decompositionSs=
G1/SX G,/S is known. Then Gand G can be determined from G 1S and G/S.
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S(G/S)

PFD of S(G/S) — PFD of G

Figure 2.7: lllustrated are the basic steps of the PFD of strong prodwagiits, see Algorithm 1.

In fact, if D(x1,x2) denotes the size of the S-equivalence class of G that is mapped into
(x1,X2) € G1/SK G,/S, then the size () of the equivalence class ofi@apped into xe G1/S is
gcd{D(x1,y) | y € V(Gz)}. Analogously for Dxp).

By repeated application of Lemma 2.22 one can determine the prime fact@s ske [32].
Notice thatG ~ G’ X K,. The prime factors o6 are then the prime factors &' together with the
complete factor«p,, ..., Ky, wherep; ... p; are the prime factors of the intederThis approach is
summarized in Algorithm 1 and 2.

Algorithm 1 PFD of graphs w.r.tX
1: INPUT: a graphG

ComputeG = G' X K|, whereG' has no nontrivial factor isomorphic to a complete gr&ph

Determine the prime factorization &f, that is, ofl;

computeH = G'/S,

compute PFD and prime factor, . .., H, of H with Algorithm 2

: By repeated application of Lemma 2.22 find all minimal subded§l = {1,2,...,n} such that
there are grapha andB with G = AXIB, A/S= KjsH; andB = X3 H;. SaveA as prime
factor.

7. OUTPUT: The prime factors o6;

o9 kR e
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Algorithm 2 PFD ofthin graphs w.r.tX

1: INPUT: athin graphG
compute the Cartesian skelet®(G);
factorS(G) = O Hi and assign coordinates to each vertex;
J—1;
fork=1,...,|I| do
for eachSc J with |§ =k do
computeA = DicsV (Hi) andA’ = Dy sV (Hi);
computeB; = (pa(G)) andB; = (pa (G));
if B X By ~ G then
saveB; as prime factor;
J—J\S
end if
13:  end for
14: end for

15: OUTPUT: The prime factors o6;

e =
N 2o

However, Algorithm 1 and 2 just give an overview of the top level corgtalcture to determine
the PFD of a given graph. Applying some smart ideas together with slight matitiins on those
Algorithms one can bound the time complexity as stated in the next lemma.

Lemma 2.23([24]). The PFD of a given graph & (V,E) with bounded maximum degréecan be
computed in QE|A?) time.

2.4 Graph Classes

In this section, we will introduce some special kinds of graphs that will be itapband useful in
the sequel. We start to defilkamming graphsnd will proceed to describe particulsubproducts

of given graphs. At the end of this section so-caleg@rimegraphs are introduced, that are a special
class of prime graphs and will become a powerful tool for later condidesa

2.4.1 Hamming Graphs

We state here the definition of so-calldamming graphsthat have comprehensively been studied,
see e.g. [3, 44-46].
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Definition 2.24. A graphG is aHamming graphff G can be written in the form
G = 01K,
wherek; > 2 for alli. If k; = 2 for alli thenG is called ahypercubeof dimensiom.

Note that the distance between two vertices in a Hamming graph coincides withirtiteen of
positions, in which they differ, which is also known as Hamming distance [25].

2.4.2 Subproducts

As already mentioned, the aim of this contribution is to provide algorithms thatremd decompose
given graphs by usage of so-calleabproductsalso known ad®oxegq53].

Definition 2.25. A subproducbof a productGXH, resp.GH, is defined as the strong product, resp.
the Cartesian product, of subgraphs&ndH, respectively.

As shown in [28], it holds that 1-neighborhoods are subproducts:

Lemma 2.26([28]). For any two graphs G and H holdN®*H[(x,y)]) = (NC[x]) & (NH[y]).

Figure 2.8: The 1-neighborhoodN[(x,y)]) = (N[X]) K (N[y]) is highlighted by thick lined edges

For applications to approximate products it would be desirable to use smploslutets. Unfor-
tunately, it will turn out that 1-neighborhoods, which would be small ehoiag our purpose, are
not sufficient to cover a given graph in general while providing ehdanfprmation to recognize the
global factors. However, we want to avoid to use 2-neighborhoditeegh they are subproducts as
well, they have diameter 4 and are thus quite large. Therefore, we willedfither subgraphs, that
are smaller than 2-neighborhoods, and prove that these subgraphsaroducts.



20 2. The Basics

Definition 2.27. Given a graphG and an arbitrary edgés,w) € E(G). The edge-neighborhoodf
(v,w) is defined as

(N[V]UN{w])
and theN;,-neighborhoods defined as
Nw=( U NI)
XeN[V|NN{w]

If there is no risk of confusion we will denots;,,-neighborhoods just bi*-neighborhoods. We
will show in the following that in addition to 1-neighborhoods also edge-rmigioods of Cartesian
edges andN*-neighborhoods are subproducts and hence, natural candidat@getoacgiven graph
as well. We show first, given a subprodttof G, that the subgraph that is induced by vertices
contained in the union of 1-neighborhoddl/] with v e V(H), is itself a subproduct d&.

0—0 . -

Figure 2.9: Shown is a strong product graph of two paths. Notice that thei@hborhoodNz[(by)]) of vertex
(by) is isomorphic tdG.
Ihs.: The edge-neighborhoa@N[(a,y)] UN[(b,y)]) = ((N[a] UN[b])) X (N[y]).
rhs.: TheN*—neighborhood\l{ay)’(by) = (Uzenjajnnip]N[Z) X (UzenyN[Z)).
Lemma 2.28. Let G= G; K G, be a strong product graph and H Hi X H, be a subproduct of G.
Then

H" = <UveV(H)NG[V]>
is a subproduct of G with H= H; X H;, where H is the induced subgraph of factor Gn the vertex
set V(H;") = Uyev) NG ], i =1,2.

Proof. It suffices to show thaV¥ (H*) =V (H;) x V(H;). For the sake of convenience, we denote
V(Hi) by M, fori =1,2. We have:

VH = |J N°v= |J NCW.

veV(H) veVr x\Vo
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Since the induced neighborhood of each vextex(vi,Vv2) in G is the product of the corresponding
neighborhood®®:[v;] X N©2[v,] we can conclude:

V(H") = U (NC2[v] x N©2[vy]) = |J N® ] x [ J N®[vg]

{v1eV1} X (v2eVL} ViEVL VoV,

=V(H1) xV(Hz)
O

Lemma 2.29. Let G be a nontrivial strong product graph arid w) be an arbitrary edge of G. Then
(N®[v] N N€[w]) is a subproduct.

Proof. Let v andw have coordinate$vy,v,) and (wq,w,), respectively. Sinc®&l®[v] = NC:[vy] x
NC2[v,] we can conclude that

NG[V] ﬁNG[W] = (NGl[Vl] x N®2 [V2]) N (N® [va] X NGZ[VZ])

= (NGl[Vl] NN® [wy]) x (NG2 [V2] N NGZ[WZ]).

Lemmas 2.26, 2.28 and 2.29 directly imply the next corollary.

Corollary 2.30. Let G be a given graph. Then for alle/V (G) and all edgegv,w) € E(G) holds:
(N2[v]) and N,
is a subproduct of G. Moreover, if the edgew) is Cartesian than the edge-neighborhood
(N[VUN[wW])
is a subroduct of G.

Notice that(N[v] UN|w]) could be a product, i.e., not prime, ever(\fw) is non-Cartesian i®.
However, the edge-neighborhood of a single non-Cartesian edgeassnbproduct, in general.

2.4.3 S-prime Graphs

In this section so-calle8-primegraphs are considered. This graph class is a subset of prime graphs
with special properties and will be used later on for the designed covalgiogithms. The results of
this subsection have been submittediscrete Mathematicg27].
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Definition 2.31. A graph Sis S-prime(S stands for “subgraph”) if for all graph& andH with
SC GxH holds:SC H or SC G, wherex denotes an arbitrary graph product. A grapBisomposite
if it is not S-prime.

The class of S-prime graphs was introduced and characterized fordog groduct by Sabidussi
in 1975 [50]. He showed that the only S-prime graphs with respect to thetgliroduct are complete
graphs or complete graphs minus an edge. Analogous notions of S-paptesgrith respect to other
products are due to Lamprey and Barnes [39, 40]. They showed #hantis S-prime graphs w.r.t.
the strong product and the lexicographic product are the single verdgh K1, the disjoint union
K1 UKj7 and the complete graph on two vertid€s

Remark 2.32. In this section we will consider the Cartesian product only. Therefor téhms
S-prime and S-composite refer to this product from here on.

Not much is known about the structure of S-prime graphs, although Kiavzd. [38] and BreSar
[5] proved several characterizations of S-prime graphs. For ogroges, the characterization of S-
composite graphs in terms of particular colorings [38] is of most direct isteBefore we proceed,
we introduce some notation, that is only needed in this section.

A k-coloringof G is a surjective mapping : V(G) — {1,...,k}. This coloring need not be proper,
i.e., adjacent vertices may receive the same color. A BathG is well-coloredby F if for any two
consecutive vertices andv of P we haveF (u) # F(v). Following [38], we say thaF is apath-k-
coloringof G if F(u) # F(v) holds for the endpoints of every well-coloradi-pathP in G. Fork =1
andk = |V| there are trivial patlik-colorings: Fork = 1 the coloring is constant and hence there are
no well-colored paths. On the other hand, if a different color is useeMery vertex, then every path,
of course, has distinctly colored endpoints. A pktbeloring is nontrivial if 2< k < |V(G)| — 1.

Theorem 2.33([38]). A connected graph G is S-composite if and only if there exists a nontrivial
path-k-coloring.

The next corollary, which follows directly from Theorem 2.33, will be fusén the subsequent
discussion.

Corollary 2.34. Consider an S-prime graph S and let F be a path-k-coloring of S. Ibthex two
distinct vertices w € V(S) with F(u) = F(v) then F is constant, i.e., % 1.

Now consider a product graph;G;. We say that all verticewithin the G;-layer G have the same
color if F(a) = F(b) holds for all vertices, b € V(G). Note that this does not imply that vertices of
differentG;-layer receive the same color.



2.4. Graph Classes 23

The main topic of this section atBagonalizedCartesian product graphs.

Definition 2.35. A graphG is called adiagonalizedCartesian product, whenever there is an edge
(u,v) € E(G) such thatH = G\ (u,v) is a nontrivial Cartesian product andandv have maximal
distance irH.

For an example of a diagonalized Cartesian product see Figure 2.10.

Figure 2.10: A diagonalized Cartesian Product of the gra@hiK,0Ks.

We will show that diagonalized Cartesian products of S-prime Graphs-prere. Moreover, we
will give a necessary and sufficient condition for p&thelorings of Cartesian products of S-prime
graphs.

Path- k-colorings of Cartesian Products of S-prime graphs

Let us start with a brief preview of this paragraph. We first establisheterty nontrivial Cartesian
productG; G, has a nontrivial pattk-coloring. For instance, chooge= |V (G; )| and assign to every
vertexx with coordinategx;, x») the colorx;.

Given a Cartesian produ@ = [0 ;§ of S-prime graphs with a nontrivial patieoloringF, first
we will show that there is af-layer on whichF is constant. Next, we prove that is true for §H
layers. We then proceed to show tirats constant even on ariy-layer withH = [J;¢;S;, provided
that certain conditions are satsfied. This eventually leads us to necesghspfficient conditions
for pathk-colorings. This result, in turn, will be demonstrated to imply that diagonaliztieS€ian
products of S-prime graphs are S-prime.

We start our exposition with a simple necessary condition:

Lemma 2.36. Let H C G and suppose F is a path-k-coloring of G. Then the restrictigpf-of F
on V(H) is a path-k-coloring of H. Moreover, if \H) =V (G) and F is a nontrivial path-k-coloring
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of G, then it is also a nontrivial path-k-coloring of H.

Proof. SupposeH is not pathk-colored. Then there is@ v-pathPR, in H that is well-colored, buti
andv have the same color. This p&®y is also contained i, contradicting the assumption tHat
is a pathk-coloring of G. The second statement now follows directly frod{G)| = [V (H)|. O

Lemma 2.37.Let F be a nontrivial path-k-coloring of G. Then there are adjacentiges uv eV (G)
with F(u) = F(v).

Proof. Sincek < |V(G)|— 1 it follows that there are at least two vertices of the same colorx sayl

y. Assume now there is a palthy from x toy, such that all consecutive vertices have different colors.
ThenPyy would be well-colored. But the endpoints Bf, satisfyF (x) = F(y) so thatF cannot be

a pathk-coloring, a contradiction. Thus there are consecutive, and helj@eead, vertices with the
same color. O]

For later reference, we state the following observation that can be ddsifiexplicitly enumerating
all colorings, see Figure 2.11 for a subset of cases.

Lemma 2.38. The hypercube &= K>[K> has no path3-coloring. Every pati2-coloring has adja-
cent vertices with the same color.

1

Figure 2.11: Possible patlk-coloring of a squar€), for k = 1,2, 4. A possible well coloring that is not a
path-3-coloring is shown on the right-hand side graph

We next show thafF is constant on eac;-layer whenever there is org-layer that contains two
distinct vertices with the same color. More precisely:

Lemma 2.39. Let G= [ ;S be a given Cartesian product of S-prime graphs and let F be a
nontrivial path-k-coloring of G. Furthermore let,w € V(S}) be two distinct vertices satisfying
F(u) = F(w). Then Rx) = F(y) holds for all vertices xy € V(S) in each $-layer §.

Proof. Corollary 2.34 and Lemma 2.36 imply that all vertices of the Ia@jéhave the same color.
For b € V(S]) there is nothing to show. Thus, assuing V(S)), i.e., S # Sﬁ’ and an arbitrary
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edgee= (u,v) € E(S]). LetUe V(S*j’) be the vertex with coordinates(l) = c;(u). Moreover, let

Pua = (U= ug,Up,..,u = () be a path fromu to U such that;(ux) = cj(u) forallk=1,...,I. None

of the edgegu,ux,1) is contained in argj-layer. By definition of the Cartesian product there is
a unique squareu, uz,V2,v) wherev, has coordinates;(v2) = ¢j(uz) for i # j andcj(vz) = ¢j(v).
Lemma 2.38 now implies that the orfiyon the square is either constant or a path-2-coloring, i.e., the
assumptiorF (u) = F(v) impliesF (uz) = F(v2).

5
v (% Vi—1 U]
u Ug h ;3; ; - w1 a
NN NN

Figure 2.12: Idea of the proof of Lemma 2.39. The pd&y connects verticesanduy (k= 2,...,1) of distinct
Sj-layers. IfF (ug—1) = F (w-1) then the square@i_1, Uy, Vk, Vk—1) located in adjacerfj-layers must admit a
path-1-coloring or a path-2-coloring, enforcing thigtandvi must have the same color. This, in turn, is used
to show thaf is constant on the entire IayS]’“.

By induction on the length of the path, g we see thakE (ux) = F(vi), wheneverc;(vi) = Ci(Uk)
for alli # j andcj(vk) = cj(v). The assumption & V(Sjb) and our choice of the coordinates implies
(u,vi) = (G,v) € E(Sﬁ?). We apply Lemma 2.38 to the squaf@_1,0,vi,vi_1) with F(u_1) =
F(vi_1) toinferF () = F(v). Corollary 2.34 and Lemma 2.36 imply that for all vertioeg € V(Sj’)
holdsF (x) = F(y). O

It is imporant to notice that Lemma 2.39 only implies tlrais constant or§;-layers, but it does

not imply that allSj-layers receive the same color.

Corollary 2.40. Let G= [ ;S be a given product of S-prime graphs and let F be a nontrivial
path-k-coloring of G. Then there is agjl, such that, for every & V(G), F is constant on }s

Proof. The assertion follows directly from Lemma 2.37, Lemma 2.39, and the definitittre @arte-
sian product. O

Lemma 2.41. Let F be a nontrivial path-k-coloring of the Cartesian productG1! ;S of S-prime
graphs & Let H = [j;S; be the product of a subset of factors of G, where I, denotes an
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arbitrary subset of indices. Moreover, lefHbe an H-layer such that F is constant ori¥?). Then
F is constant within each H-layer.

Proof. Let H2 be anH-layer defined as above and assurfe HP. By assumptionE is constant on
V(H?). ThusF is also constant on ea@-layerS; C H?, j € J, and Lemma 2.39 then implies that
F is also constant within ever§;-layer with j € J. Now choose two arbitrary verticesy ¢ V(HD).
By connectedness ¢4 there is a pathPy from x to y consisting only of vertices of thisl-layer
HP. Notice that any two consecutive verticgsxc+1 € Py are contained in som§;-layer such that

j € J and thereford=(xx) = F(Xk+1). Therefore, the coloringr must be constant along, hence
F(x) = F(y). ThusF is constant o (H®). O

Next we consider two (not necessarily prime) factblisH, of a Cartesian product of S-prime
graphs and ask under which conditions a gatteloring on(H;[JHz)-layers must be constant.

Lemma 2.42. Let F be a nontrivial path-k-coloring on the Cartesian productG]}! ;S of S-prime
graphs § Let Hy = Ojc3S; and H = Dkek S be two distinct Cartesian products of factorsdb G,
where JK C I, and JNK = 0. Then F is constant on eadlii[0H;)-layer whenever F is constant
on some ht-layer H2 and on some Hlayer Hg

Proof. Let Hf andHY as constructed above. Lemma 2.41 implies that all vertices within ach
layer and within eaclid,-layer, resp., have the same color. For all vertizesV (H$) there is an
Ho-layer H3, Thus for all verticesx,y € V (H3) holdsF(x) = F(y) = F(z) = F(a). By definition

of the Cartesian product, this implies in particular that all vertices within the IgygriH,)? have

the same coloF (a). Hence we can apply Lemma 2.41 and conclude that all vertices within each
(H1OH2)-layer have the same color. O

Now we are in the position to characterize nontrivial peitelorings.

Lemma 2.43. Let F be a nontrivial path-k-coloring of the Cartesian productG1! ;S of S-prime
graphs § and consider two distinct verticeswe V (G) satisfying Ku) = F(v). Let J={]j | ¢j(u) #

¢j(v)} C I denote the index set of the coordinates in which u and v differ, and 4etH;S; be the
Cartesian product of the corresponding factoso8G. Then F is constant within each H-layePH

Proof. First assume thate V(S') for somel, which implies thatl = {I} by definition of the Carte-
sian product. In this case, the statement follows directly from Lemma 2.39.
Now assume that there is hauch that € V(§'). Lemma 2.39 and Corollary 2.40 together imply
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that there is an indeksuch that all vertices within ea-layer have the same color. In particular,
this is true for§' andS'. Together with Lemma 2.39, this observation implies that, sieg = F (v),

F is constant oV (S') UV(S'). Now letu e V(') be the vertex with coordinates(u) = ¢;({) and
denote byJ; = {j | ¢;(u) # ¢;(0)} = J\ {i} the set of indices in which the coordinatesw#nd u’
differ. Notice thatJ\ {i} =J, if v=1.

Let Ryg := (u=ug,u,..,ux = 0) be a path fromu to G such that for all vertices € R, holds

¢ (X) =¢(u) for all r € 15\ J1. In other words, no edge of @-layer,r ¢ J;, is contained in the
pathPR, 5, and hence in particular no edge of §dayer. FromF (u) = F(0) and the fact thaG is
pathk-colored, we can conclude that there is an edggy 1) € R, g of some layer different frong
such thaf (u)) = F (uj;1).

P’U,.fl,

Figure 2.13: Idea of the proof of Lemma 2.43. The pdtg connects a pair of vertices with the same color
in §'to §'. It therefore must contain two consecutive vertioeandu 1 with the same color. It follows that
all vertices within the Iayeﬁ“' andeJ'l have the same coldét(u;) and finally one shows that all vertices within
eachH;-layer withH; = SOS;, have the same color.

These consecutive verticasandu, 1 differ in exactly one coordinate;, for somej; € J;, hence
U anduy41 are contained in sont§, -layer. Lemma 2.39 implies that all vertices of this Ia%rand
therefore all vertices within eac$,-layer have the same color. Lemma 2.42 now implies Eha
constant on eacHi-layer withH; = SOS;,, and in particular, all verticesy € V (Hj') UV (Hy) have
the same color, we have again two different layers that have the same dadbras before we will
construct a path between these layers, which implies that the endpoints pathisave the same
color. SinceG is pathk-colored, this path must contain an edgeg u1) with F () = F (Ut1).

More precisely, letibe a vertex of this new;-layerH; such that; (i) = ¢;(u) andc;j, (G) = cj, (u).
Again we choose a Paf®, g constructed as above, whelgis replaced by, = J; \ {j1}. In other
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words for all verticesx € R, g holds ¢;(x) = ¢ (u) for all r € I\ J, i.e. in particular no edge of
R.a is contained in any;-layer. Notice thatJy| = |J;| — 1. Again we can conclude that there are
consecutive vertices, U1 € P, g such that= () = F(u1), sinceF (i) = F(u) andG is pathk-
colored. Let these consecutive vertiegsandu1 differ in coordinatec;, for somej, € J,. Using
the same arguments as before we can infer that all vertices in betweeHeadl§S;,00S;, )-layer
must have the same color.

Repeating this procedure generates, in each step, a new indéxwih |Js| = [Js_1| — 1 for
s=2,...,|J1, and all vertices within eacHs-layer withHs = SO (0;c;,\2.S; ) OSj, for somejs € Js
are shown to have the same color. Bor= |J;| we have|Js:| = 1. Moreover the patt®, g with
Cr(0) =c(u) forallr € 1n\ {j*} with j* € Js consists only of vertices that are included in t8js-
layerS.. SinceF (u) = F(0) andu,l € Sj. we can conclude that all verticase S}. have the same
colorF (u). From Lemma 2.41 and Lemma 2.42 it follows tRaits constant on eadHs -layer, where
He = (SO(Ojes3, $)0S;). Since{it U3\ ) U{j*} = {1 U@\ {iP\{i*Hu{j*} =3, we
conclude that all vertices within ea¢hljc;S;)-layer have the same color, completing the proof of the
lemma. O

Since two vertices with maximal distance contained in a Cartesian produchoivial factors
differ in all coordinates we can conclude the following corollary.

Corollary 2.44. Let F be a path-k-coloring of the Cartesian product=G1" ;S of S-prime graphs
S and suppose,w € V(G) are two vertices with maximal G-distance that have the same color. Then
F isconstanton G, i.e., ¥ 1.

Characterization

We are now in the position to give a complete characterization of lpatilerings of Cartesian prod-
ucts of S-prime graphs.

Theorem 2.45(Pathk-coloring of Cartesian products of S-prime Graphisgt G= D’j‘:lsj be a
Cartesian product of S-prime graphs. Then F is a path-k-coloring dfaad only if there exists an
index set IC I, such that the following two conditions hold for the graph H defined asH¢| S for

| #0and H= Ky for | = 0.

1. F(a) =F(b) foralla,b e V(H*) for all x € V(G) and

2. F(a) # F(b) for all a € V(H¥) and be V (HY) with HX £ HY.
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The coloring F consists ofk |V (G)|/|V (H)| distinct colors. F is nontrivial if and only if # I, and
| #0.

Proof. Let F be an arbitrary patk-coloring of G. If F is trivial, then it follows thatk = 1 ork =

|V (G)| and thus we can conclude tHat I, or | = 0, respectively. In both cases, conditions (1) and
(2) are satisfied. IF is nontrivial, therk < |V (G)| — 1 and there are two vertices with the same color.
Conditions (1) and (2) now follow directly from Lemma 2.42 and Lemma 2.43.

We will prove the converse by contraposition. Thus assumeRtsatisfied properties (1) and (2)
for somel C I, andF is not a pathk-coloring of G. Thus, there must be a well colored p&hy
between two vertices andv with F(u) = F(v). If there is an edgga,b) € R, such that(a,b) is
contained in at-layerH* for somex € V(G) we would contradict Condition (1). Thus assume there
is no edgga, b) € R,y that lies in anyH-layer. Notice that this implies thatandv are not contained
in the sameH-layer, otherwise some edga,b) € R,y must be an edge of an-layer, by definition
of the Cartesian product. Sin¢, is a well colored path betweanandv with F(u) = F(v) and
HY £ HY, we contradict Condition (2).

It remains to show th&t consists ok = |V (G)|/|V (H)| different colors. Fot = I, andl = 0 this
assertion is trivially true. Therefore assuing |1, andl # 0. Condition (2) implies that all pairwise
differentH-layers are colored differently and from Condition (1) we can conctheeall vertices in
between eacHl-layer have the same color. Thus we have just as many coldtslagers exists. In a
Cartesian produdd = HOOH' the number of differenti-layers is|V(H')| = [V(G)|/|V (H)| and thus
k= V(G)|/IV(H)].

Finally, we have to show thdt is nontrivial if and only ifl # I, andl # 0. If F is nontrivial
the assumption is already shown at the beginning of this proof. Thus agsmnthatl = I, i.e.,
H =0 S = G. Condition (1) implies that all verticeg < V(G) have the same color and hence
k = 1, contradicting thaF is nontrivial. Now letl = 0, i.e. H = K;. As for all verticesv,x € V(G)
holdsv € V (KY) if and only if v= x, we can conclude that(a) # F(b) for all a,b € V(G). Hence
k= |V(G)|, again contradicting that is nontrivial. O

In the following, letR denote a patlk-coloring F of a Cartesian produc® of S-prime graph§
that satisfies the conditions of Theorem 2.45 with index séte can now proceed proving the main
result of this subsection.

Theorem 2.46. The diagonalized Cartesian Product of S-prime graphs is S-prime.

Proof. LetG=HU(u,v) be a diagonalized Cartesian product of grafihse.,H = ;S is a Carte-
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Figure 2.14: Sketch of the proof of Theorem 2.46. THe-layersH!' andH’ are connected by a well-colored
pathR, g with distinct colors at the endpoint, (u) # F (). The pathP* = R, U (u,Vv) is well colored, but
F (u) =F(v), i.e.,FR is not a pathk-coloring.

sian product of S-prime graphs and the vertiveendv have maximal distance iH. Lemma 2.36
shows that any nontrivial patk-coloring of G gives rise to a nontrivial patk-coloring of H, which
in turn implies that there is a nontrivial subset I,, and an according nontrivial patkeoloring /
such that the conditions of Theorem 2.45 are satisfiedfoMe can conclude thd (u) # F (v),
since otherwise the coloring &f is trivial with k = 1 according to Corollary 2.44 arfd would be
constant. Let; denote the Cartesian produgic| S of prime factors ofG and letH," andH,’ be the
H, — layer containingu andv, respectively. ClearlyH" # HY, sincel # {1,...,n}, by definition of
the Cartesian product and sinaeandv have maximal distance iH. Let i e V(S') be the vertex
with coordinates; () = ¢;(u) for all i € I. Note thatv # (, because; () = ¢;(u) # ci(v) foralli e,
otherwiseu andv would not have maximal distance.

Let R, g be a path betweemandu'such that for all vertices € P, g holdsc;(x) = ¢i(u) foralli e 1.
Thus no edge of ani;-layer is contained in this pat, 5. From Theorem 2.45 and the fact tiats
nontrivial, it follows thatF (a) # F (b) for all a € V (HX) andb € V (H}) with HX # HY. This is true
in particular also for any two distinct verticasandb in the pathR, g, sinceH? # H,b by choice of the
coordinates. ThuB, g is well colored. Moreover it holdg; (u) # F (0).

Now consider the patR* = R, gU (u,Vv) in G, which is by construction a well colored path fram
to U. HoweverF (v) = K (0). Thusk is not a pathk-coloring of G for any nontriviall C I,,. Theorem
2.33 and Lemma 2.36 imply th& = H U (u,V) is S-prime, from which the statement follows. [

Corollary 2.47. Diagonalized Hamming graphs, and thus diagonalized Hypercube$§-aréme.

We conclude this section with an example that shows that not every diagah@lartesian product
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is S-prime, see Figure 2.15.

Figure 2.15: Shown are two diagonalized Cartesian products that havetaivial path-4-coloring. Therefore
these graphs are S-composite.






The Local Way to Go

One easily realizes that almost all graphs are prime, see [13]. Even apartalibation of a product

graph, such as the deletion or insertion of a single edge, often leads itm&gnaph, although the
graph still has a product-like structure. Hence, naturally arising questien How can one recover
the structure of a disturbed product? Is it possible to recover the oritantirs of a disturbed

product? How can at least some parts of a disturbed product be izedgs a product?

As shown in Section 2.4.2, there are several subgraphs of a givdngirgraphG that are itself
products of subgraphs of the factors@f This leads directly to the following idea: We try to cover
a given disturbed produc by subproducts that are itself undisturbed, see Figure 3.1. If the graph
G is not too much disturbed, we would expect to be able to cover most of itisidhiborhoods or
other small subproducts and to use these information for the constructstaing product that
approximates$s. The graphG will be calledapproximategraph product.

In this chapter we introduce several important tools for the realization ofdba We first start
with the so-calleds1-conditionthat is a property of an edge, that allows us to determine Cartesian
edges, even if the given graph is not thin. We then introduce the so-tal#dboned(G) of a given
graphG that is defined on the cardinality of equivalence classes of a particldéioreS. In the last

33
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Figure 3.1: One covers a given disturbed prod@by undisturbed subproducts and try use the information
provided by the PFD of those subproducts for the constmafa global PFD.

part of this chapter we are concerned with the so-calt@dr-continuation that is a condition that
has to be met in order to identify different local fibers as related to copiesinociding or different
global factors.

3.1 Tools

3.1.1 The Sl1-condition

The main idea of our approach is to construct the Cartesian skeletétpiconsidering only PFDs
of suitable subproducts. The main obstacle is that even th@ughthin, this is not necessarily true
for subgraphs, Fig. 3.2. Hence, although the Cartesian edges atelyrigtermined i, they need
not to be unique in those subgraphs. In order to investigate this issue inrsoreedetail, we also
definedS-classes w.r.t. subgraphksof a given grapltG, Definition 2.14. Remind:

Si(x) ={veV(H) NV NV(H)=N°XNV(H)}

As mentioned, iH = (N®Jy]) we set
S/(X) == Sy (X) = {ve N®y] N®[V]NNC[y] = N®[x "NC[y} } .
In other words S,(x) is the S-class that contains in the subgrapi{N[y]). Notice thatN[x] C N[v]|
holds for allv € S((x). If G is additionally thin, themN[x] C N[v].

Since the Cartesian edges are globally uniquely defined in a thin graphhahenge is to find
a way to determine enough Cartesian edges from local information, eyBiivi§ is not thin. The
following property will play a crucial role for this purpose:
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Figure 3.2: A thin graph where/N[v]) is not thin. The S-classes ifN[v]) areS,(v) = {v}, S/(2) = {z} and
S(x) = S,(y) = {xy}.

Definition 3.1. Given a graphG. An edge(x,y) € E(G) satisfies theS1-conditionin an induced
subgraptH C G if

1. x,yeV(H) and

2. 1S4(x)| =1 or|Sy(y)| = L.

Note tha Sy (x)| = 1 forallxe V(H), if H is thin. From Lemma 2.15 we can directly infer that the
cardinality of anS-class in a product grap@ is the product of the cardinalities of the corresponding
S-classes in the factors. Applying this fact together with Lemma 2.26 to the apib@fG induced
by a closed neighborhood§v|] immediately implies Corollary 3.2.

Corollary 3.2. Consider a strong product & G; X G, and two vertices,x € V (G) with coordinates
(v1,v2) and (X1, %), S.t. v, X € V(G;) and v € N[x] fori = 1,2. Then §(X) = S, (x1) x S;,(X2) and
thereforelS,(X)| = Sy, (x1)] - [Si, (x2) -
Lemma 3.3. Let G= X' ,G; be a strong product graph containing two S-classe&g Ss(y) that
satisfy

() (Ss(x),Ss(y)) is a Cartesian edge in G5 and

(i) [Ss(¥)| = Lor |Se(y)| = 1.

Then all edges in G induced by vertices g{§ and $&(y) are Cartesian and copies of one and the
same factor.

Proof. For simplicity, we writeS(.) for Sg(.). We may assume w.l.0.g. thgg(x)| = 1. Corollary
3.2 implies that for every factds; of G, 1 <i < n, holds

S (%) =1
In the following, S(v)m denotes then-th coordinate of verte§(v) in G/S. Being a Cartesian edge

means tha$(x) andS(y) coincide in every, but one, say thieh coordinate w.r.t. the factorization of
G/S i.e.Vi # j holdsS(x)i = S(y)i. By Lemma 2.15 this i§g, (Xi) = Sg,(Vi)-
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Corollary 2.17 implies that thieth coordinatei(# j) of every vertex inS(x) US(y) is in Sg; () U
S (Vi) = Sg (%), which is a set of cardinality 1. Hence, all verticesSix) U S(y) have the samith
coordinate. This is equivalent to the claim of the lemma. O

G G/S Cartesian edges of G that
satisfy the Sl-condition

Figure 3.3: Determining Cartesian edges that satisfy 8fecondition Given a graphG, one computes its
quotient grapl/S. SinceG/Sis thin the Cartesian edges@f Sare uniquely determined. Now one factorizes
G/Sand computes the prime factors®@fwith Algorithm 1. Apply Lemma 3.3 to identify all Cartesiadges
with respective colors (thick and dashed linediGithat satisfy theS1-condition

Remark 3.4. Whenever we find a Cartesian edgey) in a neighborhoodN|z]) such that one end-
point of (x,y) is contained in &-class of cardinality 1 inN[z])/S i.e., such thaG,(x) = {x} or
S(y) = {y}, we can therefore conclude that all edgeghiiz]) induced by vertices d&,(x) andS,(y)
are also Cartesian and are copies of one and the same factor, see3f3gure

Note, even if(N[z]) /Shas more factors thafiN[z]) Algorithm 1 indicates which factors have to be
merged to one factor. Again we can conclude that all edgéN|[m) that satisfy theS1-conditiorare
Cartesian and are copies of one and the same factor, see Figure 3.4.

Moreover, sincéN(z]) C Gis a subproduct of a strong product graphit follows that any Carte-
sian edge ofN([Z]) that satisfy theS1-conditioris a Cartesian edge @.

3.1.2 The Backbone B(G)
We consider here a subset\6fG) that is essential for our algorithms.
Definition 3.5. Thebackboneof a thin graphG is the vertex set

B(G) = {veV(G)[[S(v)[=1}.

Elements of3(G) are calledbackbone vertices
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G G/S Cartesian edges of G that
satisfy the S1l-condition

Figure 3.4: Determining Cartesian edges that satisfy 8fecondition We factorizeG/S and compute the
prime factors ofG with Algorithm 1. Notice that it turns out that the factorslirced by thick and dashed lined
edges have to be merged to one factor. Apply now Lemma 3.2tdifgl all Cartesian edges @ that satisfy

the S1-condition In this case it is clear that the ed@® 3) has to be Cartesian as well and belongs to the single
prime factorG.

Clearly, the backbon®(G) and theS1-conditionare closely related, since all edgesy) that
contain a backbone vertex, saysatisfy theS1-conditiorin (N[x]). If the backboné(G) of a given
graphG is nonempty then Corollary 3.2 implies that no factook isomorphic to a complete graph,
otherwise we would havis,(v)| > 1 for all v e V(G). The last observations lead directly to the next
corollary.

Corollary 3.6. Given a graph G with nonempty backbdbgs) then for all ve B(G) holds: all edges
(v,X) € E((N]v])) satisfy theS1-conditionin N[v|.

We start exploring properties of the backbdhéG) of thin graphs. Our immediate goal is to
establish that the backboi&G) of thin graphsG is a connected dominating set. This allows us to
cover the entire graph by closed neighborhoods of the backboneegedidy. Moreover, we prove
that it suffices to exclusively use information about the neighborhodzhokbone vertices, to find
all Cartesian edges that satisfy tB&-conditionn arbitrary closed neighborhoods, even those edges
(x,y) with x,y ¢ B(G)

Lemma 3.7. Let G be a thin, connected simple graph and V(G) with |S,(v)| > 1. Then there
exists a vertex ¥ S,(v) s.t. [S/(y)| = 1.

Proof. Let |S,(v)| > 1. SinceG is finite we can choose a vertgx S,(v) that has a maximal closed
neighborhood irG among all vertices i%,(v). MoreoverN[y] is maximal inG among all vertices of
V(G). Assume not. Then there is a verteg.t. N[y] C N[z, but thenz € S,(v), a contradiction to the
maximality of N[y] among all vertices i1%,(v). SinceG is thinN[y] is strictly maximal.
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Figure 3.5: Examples of backbones. The induced subgraph of the backlmtiees of each graph is high-
lighted by the dashed lines.

FurthermorgS,(y)| = 1, otherwise there is ac S/(y), z# y s.t. N[zZ N N[y] = N[y]. SinceG is
thin, there is a € N[Z] with x ¢ N[y] and thusN[y] C N[z, but this is a contradiction to the fact that
N[y] is strictly maximal. O

Lemma 3.8. Let G be a thin graph and v an arbitrary vertex of G. Thea®(G) if and only if Nv|
is a strictly maximal neighborhood in G.

Proof. If N[v] is a strictly maximal neighborhood i@ then|S,(v)| = 1 which is shown analogously
to the last part of the last proof.

Let nowv € B(G). AssumeN|v] is not strictly maximal. Then there is a vertex V (G) different
from v such thatN[v] C N[Z. Thus,N[v]NN[Z] = N|v], z€ S,(v) and|S,(v)| > 1, contradicting that
ve B(G). O

Lemma 3.9. Let G be a thin connected simple graph. Then the backiBd@® is a dominating set
for G.

Proof. We have to show that for allc V (G) there exists a vertex € N|v] s.t. |Sy(w)| = 1. If (N[v])
is thin or|S,(v)| = 1, there is nothing to show. |§,(v)| > 1, then the statement follows from Lemma
3.7. O

Lemma 3.10. Let G be a thin connected simple graph. Then the set of adjacent vartcebw with
|Sw(w)| = 1 or |S,(v)| = 1inducesoneconnected subgraph H of G.

Proof. AssumeH consists of at least two components anddetenote the set of these components.
SinceG is connected we can choose componé€ht@’ € ¢ s.t. there are verticese C, y € C’ that
are adjacent i5. SinceG is finite andx,y € N[x] there is a maximal closed neighborhdsft] in G
containingx andy. The thinness o& implies thatN|Z] is strictly maximal. This implies, analogously



3.1. Tools 39

Figure 3.6: A thin graphG with backboneB(G) = {v}. Thus there is no vertew € N(v) s.t. |Sy(w)| = 1.
Moreover notice thaS, (x)| = 1 butx,Z ¢ B(G). Lemma 3.14 implies that there is a verex B(G) such that
|S:(x)| = 1. In this example holdz=v.

as in the proof of Lemma 3.7, thi&,(z)| = 1 contradicting thak andy are in different components
of H. O

Lemma 3.11. Let G be a thin connected graph. Then the set of adjacent vertices wanmith
|Sw(w)| = 1and|S,(v)| = 1 inducesoneconnected subgraph H of G, i.e. the backb@&) induces
a connected subgraph H of G.

Proof. AssumeH consists of at least two connected component. Cdie any such connected
component. From Lemma 3.10 we can conclude that the subdviaph G induced by all ver-
tices of edgeqv,w) with |Sy(w)| = 1 or |S,(v)| = 1 is connected. Hence, ikl there is path
P={X=X0,X1,X2,...,%n—1,% =y} fromx e Ctoy € C', whereC' is any other connected component.

W.l.o.g., we may assume thBNV (C) = {x}. (Otherwise we replack by {Xm,Xm+1,-..,Xn =Y},
wherem = max{i | i € PNV(C)}.) This implies thatx; is not inB(G). But thenx, must be in a
component” # C from B(G), since every edge ikl contains at least one vertex which isB(G).

Notice that neithek nor x, are inS,, (x1), otherwise(x,xz) € E(G) andC andC” would be con-
nected. By Lemma 3.7 we can choose @ S, (x1),Z # X, X With |S,(z)| = 1. ThusC andC” are
connected. Contradiction. O

From Lemma 3.9 and Lemma 3.11 we can directly infer the next Theorem.

Theorem 3.12.Let G be a thin graph. Then the backbdb@s) is a connected dominating set for G.

Notice that if G is thin and|B(G)| > 1, theneveryvertex has an adjacent vertex that is in the
backbone. Clearly this is not true whene\B(G)| = 1, as the example in Figure 3.6 shows.
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Lemma 3.13. Let G be a thin graph with a backbone consisting of a single vé#t€)) = {v}. Then
|S/(w)| =1forallw eV (G).

Proof. Theorem 3.12 implies thgiN|[v]) ~ G and thusS,(w) = Ss(w) for all w € V(G). SinceG is
thin everySclass inG is trivial and therefore also itN|[V]). O

Lemma 3.14. Let G be a thin graph andx,y) an arbitrary edge in EG). If there exists a vertex
Z € N[X] N N[y] with |S;(x)| = 1 then there exists even a vertex N[x] N N[y] with the following
properties:

ze B(G) and|S,(x)| = 1.

Proof. If Z € B(G) there is nothing to show.

Now supposeéS,(Z)| > 1. By Lemma 3.7 we can choose a versx S, (Z) with |S;(z)| = 1. Since
ze S4(Z), we can conclude th&d[Z] C N[z and thusx,y € N[z and therefore € N[x] " N[y].

It remains to show thafiS,(x)| = 1. Assume|S,(x)| > 1 then there is a vertew € S,(x) different
from x. The definition ofS,(x) impliesN[w|] N N[z = N[x] " N[z}, which implies thatv € N[Z], since
Z € N[x]NN[Z]. Moreover we can conclude

N[w] N"N[ZNN[Z] = N[X "N[Z NN[Z]. (3.1.1)
SinceN[Z] C N[z, we can cancel the intersection witiz] in equation 3.1.1 to obtain
N[w] N N[Z] = N[ "N[Z].
But thenw € Sy(x) and thus'S, (X)| > 1, contradictingSy (x)| = 1. HencelSy(x)| = 1. O

Lemma 3.15. Let (x,y) € E(G) be an arbitrary edge in a thin graph G such th&(x)| > 1. Then
there exists a vertexz B(G) s.t. ze N[x] N N[y].

Proof. Since|S«(x)| > 1 and by applying Lemma 3.7 we can choose a verte$,(x) with z€ B(G).
Sincez € S(x) it holdsN[x] C N[z} and henceg € N[z], and the claim follows. O

Corollary 3.16. Let G be a thin graph an¢i,y) an arbitrary edge in EG) that does not satisfy the
S1-conditionin any 1-neighborhood. Then there exists a vertex(G) s.t. ze N[x] N NJy], i.e. the
edgeqz x) and(zy) satisfy theS1-conditionn (N[Z]).
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We prove now that if at least one edge of a fit&rsatisfies th&S1-conditiorin a 1-neighborhood,
then all vertices contained & have an endpoint in an edge E(G)) that satisfies th81-condition
in a 1-neighborhood.

Lemma 3.17. Let G=X_,G; be the strong product of thin graphs agdy) € E(G) be a Carte-
sian edge, where x and y differ in coordinate i. Moreover(bely) satisfy theS1-conditionin a
1-neighborhood. Then for all edgéa, b) € E(G}) at least one of the following statements is true:

1. (a,b) satisfies the&s1-conditionin a 1-neighborhood.

2. There are edge, a), (Z,b) € E(G)) that satisfy theS1-conditiona 1-neighborhood.
In this case, knowing thaiz a), (Z,b) belong to G implies that(a,b) is necessarily also an
edge of G.

Furthermore, the vertices incident with edges d&ftat satisfy theS1-conditionin 1-neighborhoods
induce a single connected subgraphGY.

Proof. By associativity and commutativity of the strong product it suffices to sh@¥dhthe product
G = G; X G; of two thin (not necessarily prime) graphs. Notice 63t= G/, sincex andy differ only

in coordinate. Furthermore letx;, x2) denote the coordinates rf The notation of the coordinates
of a, b, andy is analogous. W.l.o.g. assume= 2 and|S,(x)| = 1 with z= (z1,2) € N[x] N N[y].
Corollary 3.2 implies|S; (x1)| = 1 and|S,(x2)| = 1. The idea of the rest of the proof is to shift
properties of az, b,), the projection ofa, b) into the factorGy, to (a,b).

Case (a)ay, by) satisfies thes1-conditionin a 1-neighborhood w.r.tG,. Then we may assume
w.l.o.g. that there is & € Gy with |S,,(a2)| = 1 anday, by € N|vz]. Sincex; = a;, Corollary 3.2
implies |S, v,)(@)] = 1. Lemma 2.5 shows that b € N[(z,Vv2)]. Hence(a,b) satisfies theS1-
conditionin N[(z1,v2)].

Case (b)az,by) does not satisfy th81-conditiora 1-neighborhood w.r.G,. Then Corollary 3.16
implies the existence of a vertex € G, such that both{v,,az) and (v, by) satisfy theS1-condition
in N®2[v,]. Case (a) shows thétas,v),a) and((ay,Vv»),b) satisfy theS1-conditiorin the respective
1-neighborhood.

SinceB(G;) is a connected dominating set f@p, the subgraph o6, induced by all vertices of
edges that satisfy th81-conditionin 1-neighborhoods w.r.tG, is connected. Since we can shift

every edge that satisfies tlgd.-conditionn a 1-neighborhood w.r.tG, to an edge that satisfies the
S1-conditiorin a 1-neighborhood w.r.G in G}, H is connected. O

From Lemma 3.14 and 3.17 we can directly conclude the next Theorem. théghtg the impor-
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tance ofBB(G) for the identification of Cartesian edges.

Theorem 3.18. All Cartesian edges that satisfy tIsd-conditionin an arbitrary induced neighbor-
hood also satisfy th81-conditionin the induced neighborhood of a vertex of the backlib((®).

If at least one edge of {Gn G = X_,G; satisfies theS1-conditionin a 1-neighborhood, then all
vertices of @ are contained in edges of‘@nat satisfy theS1-conditionin 1-neighborhoods.

This result implies that it makes sense to give the following definition:

Definition 3.19. An entire G'-fiber satisfies th&1-conditionin 1-neighborhoods, whenever one of
its edges does.

Taken together, the latter results allow us to identify all Cartesian edg€g-fiber that satisfy
theS1-conditiorin 1-neighborhoods, using exclusively information about the 1-neigdtdwmls of the
backbone vertices.

Last, we will show that for a given subprodudtof a thin graphG that entirely contains at least
one 1-neighborhood of a backbone vertex B(G), the set of Cartesian edgesHdfthat satisfy the
S1-conditionin H, induce a connected subgraphtbf This holds even iH is not thin. For this we
need the next two lemmas.

Lemma 3.20. Let G be a given thin graph,& B(G) and HC G an arbitrary induced subgraph such
that N[x] CV(H). Then|S4(x)| = 1and xe B(H).

Proof. First notice that Lemma 3.8 and= B(G) implies that(N[x]) is strictly maximal inG. Since
(N[x]) € H C G we can conclude thaN[x]) is strictly maximal inH. Hence, it hold§S4(x)| = 1
and in particulax € B(H), applying Lemma 3.8 again. O

Lemma 3.21. Let G be a given thin graph and H G be a subproduct of G such that there is a vertex
x € B(G) with N[x] CV(H). Then the set of all Cartesian edges of H that satisfySheonditionn
H induce a connected subgraph of H.

Proof. Let X" ;H; be any factorization off and(a,b) be an arbitrary Cartesian edgekbf(w.r.t. to
this factorization) that satisfies ti$d-conditiorin H. W.l.0.g we assume th¢, (a)| = 1. We denote
the coordinates ad with (ay,...,a,) and the ones of with (x,...,%,). Clearly, the coordinatization
need not to be unigque, sinékis not supposed to be thin. However, we will construct a atiom
ato x that consists of Cartesian edg@sw) such thaiSy(v)| = 1 and|Sy(w)| = 1. Those Cartesian
edges are uniquely determinedHn independently from the coordinatization.
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Notice that Lemma 3.20 implies th#hy(x)| = 1, sinceN[x] C V(H). Moreover, from Corol-
lary 3.2 we can conclude th#$ (x)| = 1 for all i. Analogously,|Sy(&)| = 1 for all i. The in-
dex setl denotes the set of position wheaeandx differ. W.l.o.g we assume that= {1,2,... k}.
The pathP has edge seft(x,v}), (V2,\®),..., (V1 a)} with verticesv! that have respective coordi-
nates(as,ay,...,aj,Xj+1,..-,%), j = 1,...,k—1. Corollary 3.2 implies that for all those vertices
holds|S4 (V)| = 1 and hence in particular for all edgasw) € {(x,v}), (v?,V3),..., (V"1 a)} holds
|SH(u)| =1 and|S4(w)| =1, i.e., those Cartesian edges are uniquely determinkld Finally, since
all edges have endpoints differing in exactly one coordinate all edge€antesian and hence all
those Cartesian edgéa,b) are connected to vertexby a path of Cartesian edges that satisfy the
S1-conditionfrom what the statement follows. O

Corollary 3.22. Let G be a given thin graph,& B(G) and let HC G denote one of the subproducts
(N[x]), Ny or (N[x]UN[y]). In the latter case we assume that the elgg) is Cartesian in H. Then
the set of all Cartesian edges of H that satisfy $feconditionin H induce a connected subgraph of
H.

3.1.3 The Color-Continuation

The concept of covering a graph by suitable subproducts and to degethgirglobal factors needs
some additional improvements. Since we want to determine the global facerged to find their
fibers. This implies that we have to identify different locally determined fibgtssdonging to differ-
ent or belonging to one and the same global fiber. For this purpose,rmalfze the ternproduct
coloring, color-continuationandcombined coloring

Definition 3.23. A product coloringof a strong procuct grap8 = X! ;G; of n> 1 (not necessarily
prime) factors is a mappings from a subseE’ C E(G), that is a set of Cartesian edges@finto a
setC={1,...,n} of colors, such that all such edgesGxfibers receive the same colior

Definition 3.24. A partial product coloringof a graphG = X! ;G; is a product coloring that is only
defined on edges that additionally satisfy 8ie-conditiorin G.

Note, in a thin graplt a product coloring and a partial product coloring conincide, sincedgks
statisfy theS1-conditionn G.

Definition 3.25. Let H1,H, C G andRy,, resp. By,, be partial product colorings dfl;, resp. H.
ThenR,, is acolor-continuationof By, if for every colorc in the image of,, there is an edge iH>
with color c that is also in the domain ¢, .
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Figure 3.7: Shown is a thin grapl® that is a strong poduct of two pathes. If one computes the ARBeo
neighborhood(N[X]) one receives a (partial) product coloring with colaisandcs. The (partial) product
coloring of (N[y]) has colors; andcs. Since on edgéx,y), resp.(x,1), both colorsc; andcy, resp.cs andcy
are represented we can identify those colors and merge themetcolor. Hence, the product coloriRg )
is a color-continuation oy and vice versa.

Thecombined coloringn H1 U H; uses the colors d&, onH; and those oRy, onHy \ H.

In other words, for all newly colored edges with colbin H,, which are Cartesian edgeslit»
that satisfy theS1-conditionn Hy, we have to find a representative edge that satisfsthreondition
in H; and was already colored . If H; andH; are thin we can ignore th&l-conditionsince all
edges satisfy this condition iH; andH,, see Figure 3.7.

In Chapter 5 we are concerned with so-calledally unrefinedgraphs. For this we introduce a
particular product coloring that is a restricted version of the previofisitiens. Here we claim only
that all edges of a particul&;-fiber GX receive the same color. For an example see Figure 3.8.

Definition 3.26. Let G>j‘ be a fiber of an arbitrary factds; of G. An (X, j)- product coloring of a
graphG = X! ;G; is a mappind= from a subseE’ of the set of Cartesian edges®finto a seC of
colors, such that all edges in this particulﬁﬁ*-fiber receive the same color.

Definition 3.27. Let G| be a fiber of an arbitrary factds; of G. An (x, j)- partial product coloring
((x,j)-PPC)of a graphG = X" ;G; is a(x, j)- product coloring that is only defined on edges that
additionally satisfy th&s1-conditiorin G.

Definition 3.28. LetH1,H2 € GandRy, be a(x, j)-PPC ofH;. Thenky, is a(x, j)-color-continuation
of Ry, if there is a colorc in the image of, that is also in the domain &#,. More formally:

3 edgee € Dom(Fy,) NDom(Fy,) NE(G))

that satisfies th&1-conditionin bothH; andHs,.
The combined(x, j)-PPC on Hi UH, uses the color oy, onH; and colors all edge$ of Hy with
Fu, (f) = c with the colorRy, (e).
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Figure 3.8: Shown is a thin grapks that is a strong poduct of a path and a path containing a tearthe
backboneB(G) consists of the vertices andy. Both neighborhood$N[x]) and (N[y]) are not thin. After
computing the PFD ofN[x]), resp. of{N[y]) one receives a partial product coloring with colorgndcs, resp.

with colorsc; andc;. In this example the partial product coloringRfy is not a color-continuation d? )
since no edge with cola is colored in{N[x]). If we denote the factor induced by one component of dashed-
line fibers byG; we can observe that th, 1)- partial product coloringr ) is a(x, 1)-color-continuation of
Finpg) and vice versa.

We will now provide several properties of (partial) product coloringse next Lemma, which was
stated for equivalence classes w.r.t. to a product relation in [34], idateesent of Lemma 2.9.

Lemma 3.29([34]). Let G be a thin strong product graph and let Be a product coloring of G.
Then every vertex of \&) is incident to at least one edge with color c for all colors c in the image of
Pe.

Lemma 3.30. Let G be a thin strong product graph, H G be a non-thin subproduct of G and
x€V(H) be a vertex withS4(x)| = 1. Moreover let B be a partial product coloring of H. Then
vertex X is contained in at least one edge with color ¢ for all colors ¢ in the énadd.

Proof. Notice thatH does not contain complete factors, otherwise Corollary 3.2 implies that
|S4(X)| > 1. Now, the statement follows directly from Lemma 3.3, Corollary 3.6 and Lemn®a 3.2

We show in the following that in a given thin strong product gr&pla partial product coloring
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R4 of a subproducH C G is always a color-continuation of a partial product colorig,, of any
neighborhood\[x] with N[x] C V(H) andx € B(G) and vice versa.

Lemma 3.31. Let G be a thin graph and & B(G). Moreover let P and P be arbitrary partial
product colorings of the induced neighborho@d|x]).

Then P is a color-continuation of Pand vice versa.

Proof. LetC! andC? denote the images & andP?, respectively. Note, that the PFD @[x]) is the
finest possible decomposition, i.e. the number of used colors becomes maWionabver every fiber
with respect to the PFD @N|x]) that satisfies th&1-conditionis contained in any decomposition of
(N[x]). In other words any prime fiber that satisfies 8feconditioris a subset of a fiber that satisfies
the S1-conditiorwith respect to any decomposition @i[x]).

Moreover sincex € B(G) it holds that|Sc(x)| = 1 and thus every edge containing vertesatisfies
the S1-conditionin (N[x]). Lemma 3.3 implies that all Cartesian eddgesv) can be determined
as Cartesian ifN[x]) Together with Lemma 3.30 we can infer that each colo€bf resp. C? is
represented at least on ed@gsv) contained in the prime fibers, which completes the proof. [J

Lemma 3.32. Let G= X' ,G; be a thin strong product graph. Furthermore let H be a subproduct of
G with partial product coloring B and (N[x]) C H with xe B(G).

Then R is a color-continuation of the partial product coloringy®f (N[x]) and vice versa.

Proof. First notice that Lemma 3.20 implies tha& B(H ) and in particulaiS4(x)| = 1. Thus every
edge containing vertex satisfies thes1-conditionin H as well as ikN[x]). Moreover Lemma 3.30
implies that every color of the partial product coloriRg, resp.Ry, is represented at least on edges
(X,V).

Since(N[x]) is a subproduct of the subprodutiof G we can conclude that the PFDIdfinduces a
local (not neccessarily prime) decompositionNfx]) and hence a partial product coloring(®f[x]).
Lemma 3.31 implies that any partial product coloringfx|) and hence in particular the one induced
by Py is a color-continuation ofy.

Conversely, any product coloririgy of (N[x]) is a color-continuation of the product coloring in-
duced by the PFD ofN[x]). Since(N[x]) is a subproduct oH it follows that every prime fiber of
(N[x]) that satisfies th&1-conditionis a subset of a prime fiber &f that satisfies th&1-condition
This holds in particular for the fibers through vertexsince|Sc(x)| = 1 and|S4(Xx)| = 1. By the
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same arguments as in the proof of Lemma 3.31 one can infer that everycpomdoring ofH is a
color-continuation of the product coloring induced by the PFBipfvhich completes the proof.[]

We can infer now the following Corollaries.

Corollary 3.33. Let G= X' ;G; be a thin strong product graply,w) € E(G) be a Cartesian edge
of G and H denote the edge-neighborhodfv] UN[w]). Then the partial product coloringPof
H is a color-continuation of the partial product coloring,§ of (N[V]), resp. of the partial product
coloring Ry of (N[w]) and vice versa.

Corollary 3.34. Let G= X' ,G; be a thin strong product graph and@,w) € E(G) be an arbitrary
edge of G. Then the partial product coloring Bf the N,,-neighborhood is a color-continuation of
the partial product coloring Ry, of (N[v]), resp. of the partial product coloringy, of (N[w]) and
vice versa.






NICE and CHIC Graphs

Given a grapl we want to recognize its prime factors by coveragy suitable subproducts C G.

If those subproductd are thin and hencé$y(v)| = 1 for allv e V(H), thenall Cartesian edges id

are uniquely determined. Thus, a first natural way to c@would be covering it by thin subproducts

H only. Graphs that can be covered by thin 1-neighborhoods only wilabedthin-N coverable As

it turns out not all graphs have this property, but we will introduce latgsses of thin-N coverable
graphs, so-calletliICE andCHIC graphs and show that the information provided by the local PFDs
is sufficient to determine the prime factors of those graphs. Moreovewilvderive quasi-linear
time algorithms that determine the prime factors of NICE and CHIC graphs usireighborhood

information only.

4.1 Thin-N coverable Graphs
Definition 4.1. A graphG is thin-N coverabldf there is a dominating set of G such that for all

v e o holds(N[v]) is thin. We callo athin dominating set. I is ordered, we denote it with™ and
call it covering sequence

49
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We give now a characterization of thin-N coverable graph.

Lemma 4.2([28]). Let G= KX ,G; be a strong product. G is thin-N coverable if and only if all of its
factors are thin-N coverable.

Proof. By associativity and commutativity of the strong product it suffices to shsdahthe product
G = G; X Gy of two (not necessarily prime) graphs.

Suppose every factor is thin-N coverable. Hence there are thin domisatisg C V (G;), i =1,2.
Then, the neighborhoods of verticesdn x o, coverG. To see this we choose= (v1,V2) € V(G)
arbitrarily. By the choice ob; there are thin neighborhoodi§V;] that contairnv; and from Corollary
2.16 and Lemma 2.26 we can conclude g, V)] is a thin neighborhood containing

For the converse let; € V(G;) be arbitrarily chosen. Let € V(G) with i-th coordinatev;. By
assumption it is in the thin closed neighborhood of some veftekus by Lemma 2.26 vertex is
contained inN[v{], the neighborhood of thieth coordinate of/ in G;. Corollary 2.16 implies that
N[v]] is thin. O

Clearly, ifve o then|S,(v)| = 1 and hence € B(G). Therefore, it holdsr C B(G). Notice that
thin-N coverable does not imply that all edges®é&re covered by thin induced neighborhoods, see

Figure 4.1.

Figure 4.1: Shown is a thin-N coverable graghwith thin dominating seo = {1,2,3,4}. Notice, that in this
example holde = B(G). The thick edgéx,y) cannot be covered by thin neighborhoods, since neitkiéq)
nor (N[y]) is thin.

The class of NICE, respectively CHIC graphs are defined as s@eslas thin-N coverable graphs
that satisfy some conditions. NICE graphs were first introduced in [EJr the recognition of
the prime factors of a given NICE graph, the introduced algorithm regjreovering sequence
o~ = {vi,...,V} that guarantees that the color-continuation frdjvi]) to (N[vi1]) never fails.
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However, recognizing whether such a covering sequence exists @anayemd if so determining it,
is not provided by this algorithm and indeed a disadvantage and the maircleb®taa fast and
constructive approach.

For CHIC graphs we do not need such an ordering obut we claim, in distinction from NICE
graphs, that the induced subgrajat) is connected. However, we will show how to solve the problem
if the color-continuation fails.

As it turns out, the class of NICE and CHIC graphs has a non-empty iotensdut nevertheless
they are not identical. For an example of a graph that is NICE and CHIEigaee 4.1.

4.2 NICE

In this section we briefly summarize the results of [28]. We start with the definitidNICE graphs.

Definition 4.3. A graphG is thin-N intersection coverabjen shortNICE, if it has a covering se-
quenced”™ = {vi,...,V} such that for alli = 1,...,k— 1 the product coloring ofN[vi;1]) is a
color-continuation of the combined coloring @szlE(<N[Vj]>) defined by the product colorings of
each(N|[v;]).

Figure 4.2: A prime graphG with o = {a,c} andB(G) = {a, b, c,d} that can be covered by thin neighborhoods
only. Both thin neighborhoodd\[a]) and(N|c]) are prime and thus all edges receive the same color. Therefor
the single color used in each neighborhood can be continndldeoedge (b,d). Hendg is NICE. Notice that
the induced subgrap{o) is not connected.

As shown in [28] the product of NICE graphs is a NICE graph.
Lemma 4.4. Let G= K ;G; be a strong product graph for which all factors are NICE. Then G is
NICE.

We give now a short overview of Algorithm 3 that decomposes NICElgapth given covering

sequenc@~ into its prime factors.
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Algorithm 3 NICE graph decomposition

1: INPUT: a NICE graphG with a covering sequenag™ = {vy,...,V}

2: compute PFD ofN|v;]|) and properly color its Cartesian edges;

3: for i=2,...,kdo

4.  Compute PFD ofN|v;]) and properly color its Cartesian edges;

5. compute the combined coloring (Jﬂij;llN[ij and(N[vi]);

6: end for

7. | —{1,...,num comp;

8 J«—1I;

9: for k=1 tonum compdo

10: for eachSc Jwith |[§ =kdo

11: compute two connected compone#itsA’ of G induced by the colored edges Gfwith
colori € S andi € I\S resp;

12:  computeH; = (pa(G)) andHz = (pa (G));

13: if HHXH, =~ G then

14: saveH; as prime factor;
15: J— IS

16: end if

17:  end for

18: end for

19: OUTPUT: The prime factors o6;

In the first part (line 2 — 6) every induced neighborhood of verticeserotider of their appearance
in the covering sequena@@™ is decomposed with respect to the strong product, all the product color-
ings of the induced neighborhoods are combined in order to obtain a gaddlct coloring ofG. It
might happen that the coloring returned by the first part of the algorithmes fhan the coloring of
the global PFD of5, for an example see Figure 4.3. Every induced neighborkibied) is a strong
product of two factors, but the graph itself is prime. Another example ea®bn in Figure 4.5. Thus,
colors may need to be combined to determine the factors of the global PFD iwlpieiformed in the
second part of the algorithm (line 7 — 18). Finally, the algorithm returns tineepfactors ofG.

As shown in [28], Algorithm 3 computes the PFD of NICE graphs in quasalitiene.

Theorem 4.5. For a NICE graph G= (V,E) with bounded maximum degréeand given covering
sequence Algorithm 3 determines the prime factors of G w.r.t. the strongqrodQ(|V |A%) time.
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Figure 4.3: A so-calledtwistedproduct with covering sequenee= {x,y,z}, with product coloring (induced
by tick and dashed edges) after running the first part of Allgor 3. The components are combined in the
second part.

4.3 CHIC

As mentioned before, the main disadvantage of the approach for NI@hEgiathat a covering se-
guence must be provided, which guarantees that the color-continubtiaysavorks. Unfortunately,
there is no algorithm known that determines if a graph is NICE and computbsastovering se-
qguence. Clearly, one could exhaustively enumerate all possibilities ¢br&sequence™ and test

if the color-continuation works, but this is not efficient at all. To solve thbpem we introduce the
class of CHIC graphs that is a subclass of thin-N coverable grapluistinction from NICE graphs
we abandon that the vertices of the covering sequence can be ovd#redspect to Definition 4.3.
Thus, the color-continuation does not need to work as for NICE grdpbktead, we suppose that the
thin dominating set is aconnectedlominating set.

Definition 4.6. A graphG is connected thin-N coverahlén shortCHIC, if it has aconnectedhin

dominating set, i.e., the subgraph induced layis connected.

Notice that we can order the verticesmfia a BFS-ordering applied in the induced subgréagh
since(o) is connected. In the sequel we assume thatis ordered in this way. We show now that
the product of CHIC graphs is again a CHIC graph.

Lemma 4.7. Let G= X! ;G; be a strong product graph for which all factors are CHIC. Then G is
CHIC.

Proof. Since the strong product is commutative and associative it suffices totkisofor the product
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G = G1 X Gy of two CHIC (not necessarily prime) graphs. From Lemma 4.2 we can cda¢hatG

is thin-N coverable. Let; = {Xq,...,X} andoz = {y1,...,ym} be connected thin dominating sets
of G, resp.G,. Corollary 2.16 and Lemma 2.26 imply that the induced neighborHdd) with
coordinates = (x;,yj) andx; € 01, yj € 0z is thin. Moreover, by definition of the strong product and
since each factor can be covered by respective neighborhoodslof & g; and eacly; € o> we can
infer that the whole grap is covered by the neighborhoods of those vertices(x;,y;). Thus, the
seto consisting of all vertices = (x;,y;) with x; € o1 and eacly; € 0, is a thin dominating set. Since
(01) and (o) induce connected subgraphs in each fa@grrespectivelyG, we can apply Lemma
2.3 and conclude that the product(@f;) and (o) is connected. Thus = {vij | vi,j = (X, y;),i =
1,...,k,j=1,...,m} is a connected thin dominating set fér O

4.3.1 Solving the Color-Continuation Problem

As argued, we do not demand that the covering sequericguarantees that the color-continuation
always works. Indeed, there are examples where the color-contindatis, see Figure 4.4. In the
following we discuss this problem and show how to solve it. First we provenanke for later usage.

Lemma 4.8. Let G=X]'_,G, be a thin strong product graph ang,w) € E(G) a non-Cartesian
edge. Let J denote the set of indices where v and w differ aadMdG) be the set of vertices u with
coordinates u=v;, ifi ¢ J and u € {v;,w; }, ifi € J. Then the induced subgragt) C S(G) on U
consisting of Cartesian edges of G only is a hypercube of dimefdion

Proof. Notice that the coordinization d& is unique, sinces is thin. Moreover, since the strong
product is commutative and associative we can assume w.l.0.gl +hdt, ..., k}. Note, thatk > 1,
otherwise the edges,w) would be Cartesian.

Assume thak = 2. We denote the coordinates\gfresp. ofw, by (vi, vz, X), resp. by(wz, wp, X).
By defintion of the strong product we can conclude tvatw;) € E(G;) for i = 1,2. Thus the set of
vertices with coordinated/i, vz, X) (v1,Wz, X),(w1,V2, X), and(wz,wp, X) induce a complete graph
K4 in G. Clearly, the subgraph consisting of Cartesian edges onlQis a

Assume now the assumption is true foe= m. We have to show that the statement holds also for
k=m+1. LetJ={1,...,m+1} and let; andU, be a partition olJ with U; = {u e U | up1 =
Vm+1} andUp = {u € U | umy1 = Wms1}. Thus each; consists of vertices that differ only in the
first m coordinates. Notice, by definition of the strong product and by congiruof both setdJ;
andU, there are verticea, b in eachU; that differ in allm coordinates that are adjacent@and
hence non-Cartesian iB. Thus, by induction hypothesis the subgragbls induced by each;
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consisting of Cartesian edges only iQa. Let (U) be the subgraph with vertex ddtand edge set
E((U1)) UE((U2)) U{(a,b) € E(G) | a= (X,Vm+1,Y) andb = (X,Wm+1,Y)}. By definition of the
strong product the edgésa, b) with a = (X,vm+1,Y) andb = (X,wWm+1,Y) induce an isomorphism
between(U;) and(U,) which implies thatU) ~ QnK2 ~ Qmy1. O

Figure 4.4: In the lower part a grap is shown witho = {3,4} and backbon®(G) = {1,3,4,7}. Since(o)

is a thin connected dominating set we can conclude@iatCHIC. Notice that neithe¢N[1]) nor (N[7]) are
thin.

Consider the induced neighborhoa@3]) and(N[4]), depicted in the upper part. The colorings of the edges
w.r.t. the PFD of each neighborhood are shown as thick daesthges, thick-lined edges and double-lined edges,
respectively. If we cover the graph froM[3] to N[4] the color-continuation fails, e.g. on ed¢&4), since
(1,4) is determined as non-Cartesian{M[3]). This holds for all edges ifN[3]) that received the color "thick
dash" in(N[3]). The same holds for the color "double-lined" if we cover thapy fromN[4] to N[3]. Hence

the color-continuation always fails and theref@es not NICE. If we force the edgél,4) to be Cartesian

in (N[3]) Lemma 4.9 implies that the colors "thick-lined" and "douliteed" have to be merged to one color,
since the subgraph with edge $€90,1),(0,4),(1,3),(3,4)} U{(1,4)} is a diagonalized hypercultg.

Consider now a strong product graghand two given thin subproductd;,H, C G. Let the
Cartesian edges of each subgraph be colored with respect to a peotiuag ofHq, respectivelyH,
that is at least as fine as the product coloringso#.r.t. to its PFD. As stated in Definition 3.25 we
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have a proper color-continuation froh to H, if for all colored edges with coloc in H; there is a
representative edge that is colorecHp Assume the color-continuation fails, i.e., there is a calor
in Hy such that for all edges; € E(H,) with color ¢ holds thate is not colored irH;, for an example
see Figure 4.4.

The open question is: "What can we do if the color-continuation fails?"drsdguel we assume
that such an edge. with color c is contained inE(H1). The strategy will then be as follows. As
claimed, the product colorings ®1; andH, are at least as fine as the one@fandH;, H, are
subproducts o5, which implies that colored Cartesian edges in eldclare Cartesian edges &
Notice thate. is determined as non-CartesiarHg, otherwise it would have been colored. But since
& is determined irH, as Cartesian, we can infer thetmust be Cartesian i®. Thus we can force
the edges;, that is non-Cartesian iH;, to be Cartesian ifl;. The now arising questions is: "What
happens with the factorization bf;?" The answer is given in the next lemma.

Lemma 4.9. Let G= X', G| be a thin strong product graph, where each G=1,...,nis prime. Let
H =X ,H C G be athin subproduct of G such that there is a non-Cartesian édgg € E(H) that
is Cartesian in G. Let J denote the set of indices where v and w differ w.r.te tootbrdinatization of
H. Then the factol-;H; of H is a subgraph of a prime factor,®f G.

Proof. In this proof factors w.r.t. the Cartesian product and the strong procisgtectively, are called
Cartesian factors and strong factors, respectively. First notice #rtg<ian edges i@ as well as irH
are uniquely determined, since both graphs are thin. Therefore, ss@artzige oG = X!, G that
is a non-Cartesian edge in a subproddet X" ; H; of G implies thatm > n, i.e., the factorization of
H is a refinement of the factorization induced by the global PFD. Sthega thin subproduct o
with a refined factorization, it follows that Cartesian edgeklafre Cartesian edges &f Therefore
we can conclude that strong factorstbfare entirely contained in strong factors@f

We denote the subgraph ef that consists of all Cartesian edgestbfonly, i.e., its Cartesian
skeleton, byS(H), henceS(H) = O" ;H,. LetU C V(H) be the set of vertices with coordinates
u =V, if i ¢ Jandu; € {vi,w; }, if i € J. Notice that Lemma 4.8 implies that for the induced subgraph
w.r.t. the Cartesian skeletdld) C S(H) holds(U) ~ Q3. Moreover, the distanagy (v, w) between

vandw in (U) is |J|, that is the maximal distance that two vertice can hav@in If we claim that

(v,w) has to be an edge ifty) we receive a diagonalized hypercufa#) 429, Corollary 2.47 implies
that (U )99 s S-prime and henc) )92 must be contained entirely in a Cartesian faéiaf a graph
H* = HOH’ with S(H) U (v,w) C H*. This implies tha{U )49 € HY for all u € V (H*), i.e., (U429

is entirely contained in afiU-layer inH*. Note that alH-layerH" contain at least one edge of every
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Hi-layerH" of the previously determined factoirk, i € J of H.

Now, all Cartesian factors &(H) = " ;H, coincide with the strong factors éf = X" ;H, and
hence, in particular the factok, i € J. Moreover, sincéd is a subproduct of and the factorization
of H is a refinement o6 it holds that Cartesian factots, i € J of S(H) must be entirely contained
in strong prime factors . This implies that for all € J theH;-layerH" must be entirely contained
in the layer of strong factors @. We denote the set of all already determined strong fattgrse J
of H with J7.

Assume the grapH™ = [I5_; Kj with S(H) U (v,w) C H* andV (H*) =V (S(H)) has a factorization
such thatdic;H;i U (v,w) € K; for all Cartesian factor;. SinceS(H) U (v,w) C H*, we can conclude
that (U )99 C H*. Since(U )99 is S-prime it must be contained in a Cartesian fagjoof H*. This
implies that(U)429 C K for all u € V(H*), i.e., for allK;-layer of this particular factoK;. Since
OiegHi U (v,w) Z K;, we can conclude that there is an already determined fagtuch that" ¢ K¢
for all u € V(H*). Furthermore, alK;-layerK' contain at least one edge of eddhlayer H" of the
previously determined factotd;, i € J of H. We denote witte the edge of thed;-layer H" that is
contained in the;-layer K{'. This edgee cannot be contained in ar;-layer, j # r. This implies
thatH" Z K’ for anyK;-layer,j=1,....s.

Thus, there is an already determined fadtpre 72 with H" ¢ K}‘, u e V(H*) for all K-layer,
j=1,...,s. Therefore, none of the layer of this particurare subgraphs of layer of any Cartesian
factor Kj of H*. This means thaH* is not a subproduct oG or a refinement oH, both cases
contradict that; € 7.

Therefore, we can conclude th(&i>d‘a9 CDiegHiu (vyw) C H for a Cartesian factadl of H*. As
argued, Cartesian factors are subgraphs of its strong factors and, tvee can infer thdf-;H; and
henceXi-;H; must be entirely contained in a strong factortbfand hence in a strong factor &,
sinceH is a subproduct. O

4.3.2 Recognition and PFD of CHIC Graphs

We give now a short overview of the approach that recognizes ifghgbds CHIC and that decom-
posesG into its prime factors ifG is CHIC, see Algorithm 4.

One first computes the backboBi€G) of the given grapl@. The seto consists then of all vertices
x € B(G) that have a thin 1-neighborhood. To determin&ifs CHIC one has to check ifo) is
a connected dominating set. If this is the case the verticesare ordered via BFS applied in the
induced subgrapto) C G. This ordered set is denoted by”.
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Algorithm 4 Recognition and Decomposition of CHIC graph

=

N N NNRERRRRRRBRR R R
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24:
25:
26:
27:
28:
29:

30
31

INPUT: a graphG
compute the backbori&(G);
0 — {xe B(G) | (N[x]) is thin};
if o is not a connected dominating seén
STOP and returnG is not CHIC";
end if
computeg™ = {v1,..., v} via BFS along(o);
compute PFD ofN|v4]) and properly color its Cartesian edges;
for i=2,... kdo
H — (UZAN[v;))
compute PFD ofN|vi]) and properly color its Cartesian edges;
compute the combined coloring Bf and(N|vi]);
if color-continuation fronH to (N[vi]) fails then
C < {color c | color-continuation foc fails}
W «— {Vl, . ,Vi,]_}

Solve-Color-Continuation-Problem(KI\N[vi]), W, C);
end if
: end for
o1 —{1,...,num comp;
cJ—1;

: for k=1 tonum compdo
for eachSc J with |§ =k do

colori € S andi € I\S resp;
computeH; = (pa(G)) andHz = (pa (G));
if HiXHy « Gthen
saveH; as prime factor;
J—J\S
end if
end for
: end for

: OUTPUT: Prime factors ofs and product colored Cartesian Skel

compute two connected compone#itsA’ of G induced by the colored edges Gfwith

eton of G w.r.t. to this PFD;
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After that, one cover§ by the neighborhoods of the verticese 0> according to their BFS-
ordering. Let; be an arbitrary vertex a~. We compute the prime factorization @4[v;]), properly
color its Cartesian edges and compute the combined colorihg:@Uij;ll<N[ij and(N[v]). If the
color-continuation fails we use Algorithm 5 to solve this problem by applicatiohemnma 4.9.
Hence, all product colorings of the used induced neighborhoodscemdined in order to obtain a
product coloring ofG.

As in the case of NICE graphs, it might happen that the coloring retumeidebfirst part of the
algorithm is finer than the coloring of the global PFD®#fnd thus colors may need to be combined
to determine the factors of the global PFD. This is performed in the secondfphe algorithm

Finally the algorithm returns the prime factors@f

Algorithm 5 Solve-Color-Continuation-Problem

1: INPUT: a product colored graphd, a product colored graphiN|[v]), a set of vertices
{v1,...,Vi_1}, a selC of colors;

. takev e {vi,...,vi_1} with (v,v;) e E(H);

: compute coordinates @¢N[v]) with respect to the combined product coloring-tf

. {differ in "i"* if color "i"}

. for all colorsc € C {color-continuation fails}do

take on representant = (v,w) € E((N[vi]));

merge all colors itH wherev andw differ to one color;

: end for

: compute the combined coloring bf and (N [vi]);

: OUTPUT: colored graph H, colored grag|[vi]);

© ® N o U~ W N

=
o

Lemma 4.10. Let G be a given graph. Then Algorithm 4 recognizes whether G is CHiiGfab is
CHIC it determines the prime factors of G w.r.t. the strong product.

Proof. Given an arbitrary grapls the algorithm recognizes whether the set of vertices with thin
induced neighborhoods is a connected dominating set and thus deterrheibems is CHIC or not.

If Gis CHIC the ordered set~ is computed via a breadth-first search(@) which can be done
sinceo is aconnectedlominating set.

Let (N[vi]) be a neighborhood where the color-continuation fails fidr Uij_:]i<N[Vj]> to (N[vi]).
Notice that there is a vertexe {vi,...,vi_1} with v € N|vj], sinceg™ implies a BFS-ordering of
the vertices ofo. Thus it holds(N[v]) C H. Letc denote the color ifN[v;]) such that for all edges
e € E((N]v])) with color c holds thate was not colored irH. Since the combined coloring id
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implies a product coloring ofN[v]) we can compute the coordinates of the verticegNfv]) with
respect to this coloring. Notice that the coordinizatior{iitjv]) is unique sinc&N|[v}) is thin. Now
Lemma 3.29 implies that there is at least one edge(N[v;]) with color ¢ that contains vertex.

Let us denote this edge & = (v,w). Clearly, it holds(v,w) € E((N[v])). Hence, this edge is not
determined as Cartesian kh, and thus in particular not ifN[v]) otherwisee; would have been
colored in(N[v]). But sincee; is determined as Cartesian {N[v;]) and moreover, sincéN|v;])

is a subproduct of5, we can infer that, must be Cartesian i6. Therefore, we claim that the
non-Cartesian edger,w) in (N[v]) has to be Cartesian ifN[v]). Notice that the product coloring
in (N[v]) induced by the combined colorings of aN[vj]), j = 1,...,i — 1 is as least as fine as the
product coloring ofG. Thus, we can apply Lemma 4.9 and together with the unique coordinization
of (N[v]) directly conclude that all colotis= C, whereC denotes the set of coordinates whesndw
differ, have to be merged to one color. This is done in Algorithm 5. This impliaswe always get

a color-continuation for each colerthat is based on those additional edgesv) as defined above.
Hence, we always get a proper combined coloring, even if the coluirt@tion previously failed.
We end with a combined colorirfgs on G = Uyeq(N[v]) where the domain dfg consists of all edges
that were determined as Cartesian edges in the previously(bd§eldl with v € g. By construction

of Fg and the combined colorings used at each step ffldi]) to (N[vi;+1), Vi,Vi+1 € 0~ we know
that the number of colors in the image & is at most as many colors that were used in the first
neighborhoodN|v1]). This number is at most IggA), because every product kihontrivial factors
must have at leastertices.

Notice that the Cartesian edges of evéijv]), v € g, together with their endpoints, form a con-
nected spanning subgraph(®f|v]), ve o. Since any two vertices @ are connected via it follows
that the edges in the domainfed, together with their endpoints, form a connected spanning subgraph
of G.

Let now G; be a prime factor of the input gragh. We have to show that it is returned by our
algorithm. It is trivial that for some subs8&tC J, Swill contain all colors that occur in a particular
Gi-fiber G2 which contains vertex. Every vertexy € N[x] is incident to an edge with every color
used in the PFD ofN[x]), and hence also with every color B on the same edge set. Thus the set
of S-colored edges G spansG?.

Since the global PFD induces a local decomposition, every layer in anedalmsed neighborhood
with respect to a local prime factor is a subset of a layer with respect tdoalgdoime factor. Thus
we never identify colors that occur in copies of different global prinedes. In other words, the
number of colors in the image &% might be larger than the number of prime factor&cdnd hence
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the coloringFg is a refinement of the product coloring of the global PFD. This guararttes a
connected component of the graph, induced by all edges with a corimduces a graph that is
isomorphic toG;. The same arguments show that the colors n&lend to the appropriate cofactor.
ThusG; will be recognized. O

Lemma 4.11. Given a graph G= (V, E) with bounded maximum degree th&eilgorithm 4 recog-
nizes whether G is CHIC in @V - A3) time.

Proof. For determining the backboi G) we have to check for a particular vertex V (G) whether
there is a vertexv € N[v] with N[w] N N[v] = N[v]. This can be done i®(A?) time for a particular
vertexw in N[v]. Since this must be done for all verticesNifv] we end in time-complexitD(A3).
This step must be repeated for M| vertices ofG. Hence the time complexity for determinifigG)
isO(|V|-A3).

Checking if(B(G)) is connected can be done via a breadth-first sear€i{|M| + |[E|) time. Since
the number of edges is bounded ®y|V| - A) we can conclude that this task ne€adigV| - A) time.
Checking ifB(G) is a dominating set can be @(|V|) time.

Hence we end in an overall time complexity®f|V | - A%). O

Lemma 4.12. Let G be CHIC graph and™> = {v,...,Vn} be its ordered covering sequence. Fur-
thermore, let H= <U‘j;11N[vj]> with v; € 0 be a product colored subgraph of G ari|vi]) be a
product colored neighborhood with as the next vertex iod>. Assume the color-continuation from
H to (N]v]) fails and let C denote the set of colors where it fails. Given the latter items asimpu
Algorithm 5, then Algorithm 5 computes the combined coloring of H @&Hd]) in O(A?) time.

Proof. Taking a vertex € {v1,...,vi_1} with (v,vi) € E(H) can be done in linear time in the number
of edges oflN[v;]) that is inO(A?) time.

Computing the coordinates of the product colored neighborkibideg) can be done via a breadth-
first search inN[v]) in O(|N[V]| + |E({N[V]))|) = O(A+A?) = O(A?) time.

Notice that by the color-continuation propetty can have at most as many colors as there are
colors for the first neighborhoo@|v1]). This number is at most I¢g), because every product kf
non-trivial factors must have at least Zertices. Thus the for-loop is repeated at mostAggimes.

All tasks in between the for-loop can be don&) time and hence the for-loop tak&glog(A) - A)
time.
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Computing the combined color can also be done linear in the number of edg¥p/0f and thus
in O(A?) time.

Therefore, the total time complexity G(A?). O

Lemma 4.13. Given a graph G= (V, E) with bounded maximum degréethen Algorithm 4 recog-
nizes whether G is CHIC and if G is CHIC then it determines the prime factdgsvaf.t. the strong
product in Q(|V|-A%) time.

Proof. Determining the backborig(G) and checking whethei3(G)) is a connected dominating set
can be don®(|V|-A3%) time, see Lemma 4.11.

Computingo™ = {vi,..., W} via the breadth-first search takeg|V| + |E|) time. Since the num-
ber of edges is bounded ljy| - A we can conclude that this task ne€a(3V | - A) time.

Each neighborhood has at mdst- 1 vertices and hence at ma#&+ 1) - A edges. Together with
Lemma 2.23 we can conclude that the PFD each neighborhood and teehtef@omputation in Line
8 needO((A+1)-A-A?%) = O(A%) time.

The first for-loop will be repeated at most |V| times. Computihgn Line 10, i.e., adding a
neighborhood tdH, can be done in linear time in the number of edges of this neighborhood, that is
in O(A?) time. The PFD ofN[vj]) in Line 11 takesO(A*) time and the combined coloring f and
(N[vi]) in Line 12 can be done in constant time. For checking if the color-continugtiealid, one
has to check at most for all edges(df[v;]) if a respective colored edge was also coloreH jrwhich
can be done iD(A?) time. As shown in Lemma 4.12, the complexity of Algorithm Big\?). Thus,
the time complexity of the first for-loop ®(|V|-A%).

For the second part (Line 19 — 30) we observe that the siteésothe number of used colors. By
the same arguments as in the proof of Lemma 4.12 we can conclude that thisrnsiimdaended by
log(A). Hence we also have at mdssetsS, i.e., color combinations, to consider. In Line 24 we have
to find connected components of graphs and in Line 25 we have to pesforsomorphism test for a
fixed bijection. Both tasks take linear time in the number of edges of the grapheateO(|V|-A)
time. Thus the total complexity of this part@|V|-A%) time.

The overall time complexity of Algorithm 4 is therefo@ |V | - A%) time. O
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4.4 Relation between NICE and CHIC graphs

In this section, we treat the relation between NICE and CHIC graphs. @meloserve that the
classes of NICE and CHIC graphs have a non-empty intersection, alttloeigare not identical. For
an example of a graph that is NICE and CHIC see Figure 4.1 and 4.5. A grapis CHIC but not
NICE is shown in Figure 4.4. Conversely, a graph that is NICE but ndiQJkl depicted in Figure
4.2.

Figure 4.5: A graph with covering sequena@e= {x,y} that is NICE and CHIC. After running the first part of
both Algorithms the assigned coloring consists of two cglatthough the graph is prime. The components are
combined in the last part of both Algorithms.

As shown in [28] we have:

Lemma 4.14. Let G= X' ;G; be the strong product of n triangle-free nontrivial connected graphs
different from k. Then G is thin.

Lemma 4.15. Every triangle-free nontrivial connected graph G different fromi&NICE.

We show that the latter lemma holds for CHIC graphs, too.

Lemma 4.16. Every triangle-free nontrivial connected graph G different frogisKCHIC.

Proof. First notice that sinc& # K, and sinceG is connected that for every vertexc V(G) with
deqv) = 1 there is vertexv € V(G) with degw) > 1.

Letw € V(G) be a vertex with degv) > 1. Assume(N[w]) is not thin. Then there are vertices
x,y € N[w] with N[x] " N[w|] = N[y] " N[w] and hence there are edgesy), (x,w), (y,w) € E(G),
contradicting thaG is triangle-free. Hence for all verticeswith degw) > 1 holds(N[w]) is thin.
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Notice that this implies thatr = B(G). Lemma 4.14 implies thas is thin. From Theorem 3.12
we can conclude that is a connected dominating set. O

Theorem 4.17.LetX!" ; G; be the PFD of the connected thin graph G. If G does not contain a clique
Km with m> 3-2"1 then G is NICE and CHIC.

Proof. By the thinness ofs we know that no factor oG is isomorphic toK,. If G is the strong
product ofn prime factors, where at least one of them contains a triangle Greamtains a complete
graphK, with m > 3-2"-1, Hence every prime factor is triangle-free. The statement follows now
directly from Lemma 4.2, 4.4, 4.7, 4.15 and Lemma 4.16 O

We conclude this section with the observation that thin graphs need neithé€kenor CHIC nor
thin-N coverable. For examples compare Figures 4.6 and 4.7.

Figure 4.6: A graphG that can be covered by thin neighborhodq8ix]) and (N[y]). The graph is thin-N
coverable, but neither NICE nor CHIC, because there is neriioy sequence.

Figure 4.7: A thin graph with the property that all induced neighborh®a@de not thin, consequently no
covering sequence exists. The fibers of the prime factors are marked with thiutk @ashed edges
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In this chapter, we are concerned with graphs that cannot be coventih 1-neighborhoods only
and extend the work of the last chapter to a new class of graphs, whécraphs whose local
factorization is not finer than the global one. Will call this propéotally unrefined

Definition 5.1. Let G be a given graph. We denote the number of prime facto@ lof |PF(G)|

The graph clas¥ of locally unrefined graphgonsists of allS-thin graphs with the property that
|PF(G)| = |[PF((N[v]))| for all v € B(G).

The graph clas¥, is the set of all graph& € Y with |PF(G)| = n.

Note, there are also NICE and CHIC graphs that are locally unrefingd,tiee graph in Figure
3.7. See Figure 4.3 and 4.4 for examples of graphs, that are NICE ai@, ®tt not locally un-
refined. However, in this chapter we are interested in an approachahati®o deal with non-thin
neighborhoods, which is another step towards a local covering algattiidirmvorks forall graphs.

We show in the following, how the prime factors of a locally unrefined gr&otan be deter-
mined, by coverinds by 1-neighborhoods of the backbone vertices only. Moreover, wederilve
polynomial-time local algorithms for computing the product coloring and the €arieskeleton of
G, and for recognizing whethé&3 is locally unrefined.

65
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Remark 5.2. We want to emphasize that in this chapter the te®irconditionrefers to 1-
neighborhoods, if not stated explicitly differently. This means, in this capteedggx,y) satisfies
the S1-conditionif there is a vertex € V(G) with x,y € N[z such thatS,(x)| = 1 or |S,(y)| = 1.

5.1 Determining the Prime Factorsof GeY

Note, we can identify at least one ed@ey) of each prime factor that belongs to the backbone of
G, i.e. x€ B(G) ory € B(G), even if the decomposition of subproducts is finer than the global one.
Applying Theorem 3.18 we can do much more in the case of locally unrefirsgthgG € Y: Once

we have found an edde,y) of a G]-fiber that satisfies th81-conditiorwe can identifyall edges of
that G-fiber as Cartesian.

Therefore it remains to show, how to coloG&-fiber of a given product grapB € Y with x € B(G)
in a way that all edges of th@&-fiber receive the same color. For this we will need the restricted
version of a partial product coloring to individuaf-fibers, the(x, j)- partial product coloring (X, j)-
PPC), see Definition 3.27.

We start with the definition of &x, j)-covering sequence

Definition 5.3. A finite sequenceyy ;) = (vi)k_, of vertices ofG is a(x, j)-covering sequendé
1. forallv e V(GJ) there exists a vertew € 0(y j, with v.€ N[w] and

2. if for all i > 0 every PPC ofN[vi11]) is a (X, j)-color-continuation of the combine(, j)-
coloring of Ul_; E((N[v])) defined by thex, j)-PPC of eachN[v]).

In this chapter we call &, j)-covering sequencgimply covering sequencié there is no risk of
confusion.

In our approach we will use the breadth-first search algorithm, exglam®ection 2, in a slightly
modified way. Letv € B(G) be the start vertex. We then decompose the neighborhovavoft. to
its strong prime factor decomposition. Then we fix one colof one fiber, saysy, and append only
those neighborg; of v to the current lisBF Sv) if

1. they are not already in this list and
2. vj € B(G) and
3. the edgéyv,v;) has the coloc of the corresponding;-fiber.

This will be done recursively for the remaining verticgsixing the color in each neighborhood
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(N[w]) of the underlyingG/-fiber. ThereforeBFSv) is a sortedBF Slist on the vertex seB(G) N
V(G).

First we show that in a prime grajgghe Y such aBF §x) ordering on the vertices @(G) leads to
a(x,1)-covering sequence @.

Lemma 5.4. Let Ge Y be prime and let x be an arbitrary vertex of the backbdE) =
{wa,...,wm}. Then BF$X) on the vertices dB(G) is a (x, 1)-covering sequence.

Proof. By Theorem 3.12 holds that for alle V(G) there is a vertew € BFSX) such that € N[w].
Thus item(1) of Definition 5.3 is fulfilled.

Notice that|PF((N[v]))| = 1 for all v € BFSx) sinceG € Y. Thus all edges in suctN|[v]) are
Cartesian and get exactly one color.

Now, take two arbitrary consecutive verticgsvi ;1 from BFSx). If v andvi; are adjacent then
vit1 Is a child ofv; and the edgév;, vi,1) satisfies th&1-conditiorin (N[v;]) as well as iKN[vi1]),
sincevi, Vi1 € B(G). Therefore the edg@y;,Vi+1) is colored in the neighborhoods of both adjacent
vertices and we get a propex, 1)-color-continuation from(N[x]) U Ul _; (N[vi]) to (N[vi{1]).

If v andvi;1 are not adjacent (thug # x) then there must be parenisw € BFSx) of v; and
Vi1, respectively and we can apply the latter argument. Ther&B&X) is a proper(x, 1)-covering
sequence. O

We will now directly transfer that knowledge to (non prime) product gsapFRor this we will
introduce in Algorithm 6 how to get a proper coloring on@fHiber withx € B(G). The correctness is
proved in the following lemma. Remind thét C Y denotes the set of grap@s= Y with |PF(G)| =n.

Lemma 5.5. Let Ge Y;, and x be an arbitrary vertex d&(G). Then Algorithm 6 properly colors all
edges of each &fiber fori=1,...,n.

Proof. We show in the sequel that tlB# Scovering of vertices oB(G) NV (G)), i.e of vertices along
Cartesian edge@, b) of G with a,b € B(G), leads to a propex,i)-covering sequence.

First notice that for eack € B(G) holds|PF((N[X]))| = |PF(G)| = n, sinceG € Y;,,. Moreover,
all Cartesian edgegs,w) with vw € B(G) NV (GY) satisfy theS1-conditionand therefore can be
determined as Cartesian, by applying Lemma 2.26 and Lemma 3.3. Hencechradgi&(v, w) was
properly colored both ifN[w]) and in(N[v]). Applying Theorem 2.10 leads to the requested PPC.

We show next that for all verticege G there is a vertexv € N[y|] with w € BFSx), implying
that item (1) of Definition 5.3 is fulfilled. SincB(G;) is a connected dominating set for fac®r
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Algorithm 6 Color G}-fiber

1: INPUT: a graphG € Y, and a vertex € B(G)

2: compute PFD of(N[x]) and properly color the Cartesian edges(ix|) that satisfy theS1-
conditionwith colorscy,...,cp;
3 L<—0,i=1,...,n
4. fori=1,...,ndo
5. markx;
6: add all neighbors € B(G) of x with colorc; in list L; in the order of their covering;
7. whileL; #0do
8: take first vertex from the front ofL;;
9: deletev from L;;
10: if vis not markedhen
11: marky;,
12: compute PFD ofN|v]) and properly color the Cartesian edgegiv]) that satisfy the
S1-condition
13: combine the colors on eddgparentv),v);
14: add all neighborsv € B(G) of v with color ¢; to the end of listL; in the order of their
covering;
15: end if
16:  end while
17.  for all edgeqv,w) that do not satisfy th&1-conditiordo
18: if there are edgez, v) and(z w) that have coloc; then
19: mark (v,w) as Cartesian and assign cotpto (v,w);
20: {Notice that these edg€g,v) and(z w) satisfy theS1-conditioh
21 end if
22:  end for
23: end for

24: OUTPUT: G with coIoredG]-(-fiber, i=1,...,m
25: {Notice that everyG’j‘-fiber is isomorphic to one prime factor G}
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we can conclude that for all verticgsc V(G;) there is a vertexv; € N[y;] such thatw; € B(G;).
Suppose that the coordinates for the chosen verkice® (x1,...,X,). Then,w € N[y] has coordi-
nates(xu, ..., X—1,Wi,Xi+1,...,%n). Corollary 3.2 impliesis(j (xj)] =1for j=1,...,n. Furthermore,
we haveS,(w) = |‘|ij;11|8,<j (X)) - 1Sw (Wi)] - 152141 1S (%)) = 1. Thusw € V(G) NB(G) and conse-
quentlyw € BFSx).

Moreover, since all those edgéw,y) with y ¢ B(G) satisfy theS1-conditionand the fact that
G € Y, we can conclude that these edges are properly colored in the neigbddNiav]). Therefore
BF Sx) along vertices oB(G) NV (GY) constitutes a propgk,i)-covering sequence;.

Finally, consider Line 17 — 22 of the algorithm. Theorem 3.12 and Lemma 3.17 ithatythe
remaining edgeséy,y’) of GX that do not satisfy th&1-conditiorare induced by vertices of Cartesian
edges(z y) and(zY') that do satisfy thes1-condition As shown above, all those edgesy) and
(z,y') are already colored with the same color in sofNév]) with w e V(G) NB(G). It follows that
we obtain a complete coloring @&

This procedure is repeated independently for all catpins (N[x]), i = 1,...,n. This completes the
proof. O

Lemma 5.6. Algorithm 6 determines the prime factors w.r.t. the strong product of a givaphg
G = (V,E) € Y with bounded maximum degraen time complexity QV | -log,(A) - (A)°).

Proof. The time complexity of Algorithm 6 is determined by the complexity of the breadth-firs
search and the decomposition of each neighborhood in each step.

Notice that the number of vertices of every neighborhbidg is at mostA+ 1. Thus the number of
edges of every neighborhogN|v]) is bounded byA+ 1)A and hence the PFD of each neighborhood
can be computed i®(A%) , see Lemma 2.23. The number of colors is bounded by the number of
factors in each neighborhood, which is at most,[dg+ 1). The breadth-first search takes at most
O(|V| + |E|) time for each color. Since the number of edgesGiis bounded byV|-A we can
conclude that the time complexity of the breadth-first sear@{g |+ |V|-A) = O(|V|-A). Thus we

end in an overall time complexity @((|V|-A) -log,(A) - (&)%) which isO(|V|-log,(4) - (4)°). O

Remark 5.7. If G €Y, itis sufficient to use Algorithm 6 to identify a sing@&-fiber through exactly
one vertexx € B(G) in order to determine the corresponding prime facto&oforG € Y we would
therefore be ready at this point.

There is, however, no known sufficient condition to establish that Y, except of course by
computing the PFD of. Moreover, as discussed in [28], it will be very helpful to determine asyma
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identificable fibers as possible for applications to approximate graph guodtlowever, this task
will be treated in the next section.

5.2 Detection and product coloring of the Cartesian skeleton

As shown before, we can identify and even cdBjfiber that satisfy th&1-conditionin a way that

all edges of this fiber receive the same color, wheneweB(G). We will generalize this result for all
fibers that satisfy th&1-conditiorin Lemma 5.8. This provides that we get a big part of the Cartesian
skeleton colored such that all edges of identif&¥efibers received the same color. Moreover we will
show how to identify colors of different colore@;-fibers. Furthermore we introduce a method to
determine Cartesian edges of fibers that do not satisf§g theondition

RE =)

)

N

Figure 5.1: The Backbone of the factors is depicted as green dashedTimebackbone of the product graph
G is sketched as a green rectangle. Starting with some vereR®(G) we go along backbone vertices Gf
with fixed color, i.e. we apply the BFS algorithm only on vees ofB(G) N G} for all i. Applying Lemma 5.5,
5.8 and 5.9 we can color &B;-fibers that satisfy th&1-conditiorin this way.

5.2.1 Identify Colors of all G-fibers that satisfy the ~S1-condition

Lemma 5.8. Let Ge Y, and G with y ¢ B(G) be an arbitrary fiber that satisfies tf&l-condition
Let ze B(G) such thatS,(a)| = 1 or |S,(b)| = 1 for some edgéa, b) € G. Then the(z,i)-covering
sequencey; is also a(y,i)-covering sequence.

Proof. The existence of such a vertexollows directly from Lemma 3.14. W.l.o.g. lé§,(a)| =1,
otherwise switch the labels of verticasandb. If G = G? then the assertion follows directly from
Lemma 5.5. Thus we can assume @it~ G-
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W.l.0.g. let vertexz have coordinateqz,...,z,...,z,) and vertexa have coordinates
(ag,...,a,...,an). In the followingZwill denote the vertex ifsY with coordinate = a; for j # i
andZ = z, in short with coordinate&y, . .., z,...,a,). Thus we can infer tha(l‘Ei2 = Giy. For the sake
of convenience we will denote all vertices with coordinatas. .., w;,...,z,) and(as,...,Wi,...,a)
with w andwi, respectively. Note, that andw are adjacent, by choice of their coordinates and by
definition of the strong product.

Moreover, sincea € N[z and because of the coordinates of the vertiza® € G’ we can infer
that U € N[w] holds for all verticesu’c N|W| by definition of the strong product. More formally,
N[W] NV (G’) C N[w], see Figure 5.2.

Figure 5.2: N[W| NV (G’) C N[w]

Letay; = (zV4,...,v") be a propefz,i)-covering sequence, based on the BFS approach explained
above, consisting of all backbone vertices®€ontained inG;. Furthermore letv be any vertex of
0z;. Notice that for all such vertices holds|Sy(w)| = 1 and therefore in particula®y, (w;)| = 1, by
applying Corollary 3.2. Thus for all such verticesh6lds

n

i—1
‘SIV(W)’:I_L|SE(ai)|'|SIVi(Wi)|' [1 [S(@) =1,
J:

j=i+1
by applying Corollary 3.2 again. Hence all edgési) € E((N[W])) NE(G}) satisfy theS1-condition
in the closed induced neighborhood of the ventexsinceN[W] NV (G’) C Njw]. Moreover since
B(Gi) is a connected dominating set we can infer that it@jrof Definition 5.3 is fulfilled.

It remains to show that we also get a proper color-continuation. The malleobe now is to show
that for all verticegparen{v),v) contained inBF Sz) there is an edgéa, b) € G/ that satisfies the
S1-conditionin both (N[parentv)]) andN[v]). This implies that we can continue the color of the
G/-fiber on that edgé¢a, b).

Therefore, levandw be any two adjacent vertices Gf with coordinates as mentioned above such
thatvi,w; € B(G;j). Thus by choice of the coordinatesndw are adjacent vertices such th&f(v)| =
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|Sw(w)| = 1 and hence/,w € BFSz). As shown aboveS,(V)| = 1 and|Sy(W)| = 1. Therefore
the edge(V, W) satisfies thes1-conditionin both (N[v]) and (N[w]), sinceN[¥] NV (G) € N[v] and
N[W] NV (G) € N[w]. The connectedness BfG;) andG € Y;, implies that any such edge is properly
colored withc by means of the color-continuation. SinBéG;) is also a dominating set it holds that
all verticesuwith |S,(0)| > 1 have an adjacent vertexwith |S,(W)| = 1. SinceN[W| NV (G!) C N[wi,
we can infer thati € N|w] and therefore all these edges satisfy $ieconditiorand are colored with
c. Hence, property2) of Definition 5.3 is satisfied. O

Lemma 5.9. Let Ge Y, and G with y ¢ B(G) be an arbitrary fiber that satisfies tf&l-condition
Furthermore let = B(G) with |S,(a)| = 1 or |S,(b)| = 1 for some edgéa, b) € G’. Then Algorithm
6 properly colors all edges of each suclﬁ-t?ber with vertex z as an input vertex.

Proof. Lemma 3.14 implies that there iszac B(G) such thatS,(a)| = 1 or |S,(b)| = 1 for some
edge(a,b) € G'. As shown in Lemma 5.8 each su-fiber that satisfies th&1-conditionwith

y ¢ B(G) can be covered and colored via the correspongirng-covering sequence, . By the way,
sinceG € Y;, and Theorem 2.10 we can directly color all edgeﬁbfwith the same coloc as the
GZfiber. Furthermore, by applying Lemma 3.17 all remaining edgeg,df) € E(GY) are induced
by vertices of Cartesian edgés, ?), (b,2) € E(G/) which are satisfying th&1-conditionand thus
already colored with colar. Thus all these edgéa, b) must be Cartesian edges®f (by definition
of the strong product) and thus also obtain calor O

5.2.2 I|dentification of Parallel Fibers

As shown in the last subsection we are able to identify all edgesGtfiber that satisfies th&1-
conditionas Cartesian in such a way that all these edgésiget the same color. An example of
the colored Cartesian edges of a product graph after coloring alldmaizfibers that satisfy the
S1-conditionis shown in Figure 5.3.

It remains to show how we can identify colors of different colo@efibers. For this the Square
Property (Lemma 2.8) is crucial. In the following, we investigate how we cahtfie necessary
squares and under which conditions we can identify colors of differenttyred fibers that belong to
one and the same factor.

Before stating the next lemma, we explain its practical relevanceGLe&! ;G € Y be a strong
product graph. In this case, different fibers of the same factor maploeed differently, see Figure
5.3 for an example. We will show that in this case there is a square of Cartajas containing one
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aa

Figure 5.3: Cartesian skeleton of a strong product graph. Its fact@snaluced by one thick and one dashed
colored component. Application of Algorithm 6 identifiesr@sian edges in three distinct color classes in-
dicated by thick lines and the two types of dashed lines. Tuee drawn as thin lines are not identified as
Cartesian because they do not satisfy$fiecondition The backbone of consists of the verticesandy.

Cartesian edge of each of the fib&@%andG, if these fibers are connected by an arbitrary Cartesian
edge of somé&s;-fiber. The other two Cartesian edges then belong to two dis(ﬂmdﬁ)ersG’j* and

G‘j':*, both of which satisfy th&1-condition The existence of such a square implies Batand G!

are copies of the same factor. Thus we can identify the fibers that beldhg same factor after
computing a proper horizontal fiber coloring as explained in previousesgion. Moreover we will
show in Lemma 5.11 that all parallel fibers that satisfy #ieconditiorare connected by a path of
Cartesian edges. This provides that we can calloG;-fibers with the same color applying Lemma
2.8 and 5.10.

Lemma 5.10. Let G= X' , G| be the strong product of thin graphs. Let there be two different fiber
G2 and G that satisfy thes1-condition

Furthermore let there exist an indexcj{1,...n} s.t. (pj(a), pj(X)) € E(Gj) and p(a) = pk(x) for

allk #1i, j.

Then there is a squareABB in G with

1. (A/A) € E(GY) and (B,B) € E(G?) and

2. (AB)€E(G)) and(A,B) e E(G’J-X), whereby G # G/J-S and at least one edge of{@nd at least
one edge of ésatisfies th&1-condition

Proof. Since the strong product is commutative and associative it suffices totersdier the product
G = G X G, X Gz of thin (not necessarily prime) graphs. W.l.o.g. choosel, j =2 andk =
3. W.l.o.g., letx have coordinate$x;, x2,X3) anda have coordinate§a;,ay, x3). Now we have to



74 5. Locally unrefined Graphs

distinguish the following cases for the three different graphs.

Before we proceed we fix a particular notation for the coordinates tdhioevertices and edges,
which we will maintain throughout the rest of the proof.

e ForG:

1. |B(G1)| > 1, i.e. there is an edge,V1) € E(G1) with vq,V1 € B(G) and

2. not (1):[B(Ga)| = [{va}| = 1.
e ForG;:

A. the edgeday, x2) satisfies thé&1-conditionin G,

B. not (A).

Notice that in case (A) there is by definition a verxe N[ay] N N[xz] with |S,,(a2)| = 1 or

IS, (%2)| = 1. In the following we will assume w.l.0.g. that in this case hagg(xy)| = 1.

Case (B) implies thaliS,,(x2)| > 1. By Theorem 3.12 we can conclude that there is a vertex
X2 € Nixg] with |S;,(X2)| = 1, which implies that the edgex, %) satisfies th&s1-conditionn

Gy.

e ForGs:

i. X3€ ]B(Gg,)

ii. not (i): x3 ¢ B(G3).

For the sake of convenience defipg=x3 if we have case (i). In case (ii) lgh = z3 with z3 €
Nix3] s.t. |S;(x3)| = 1. Notice that such a vertez has to exist inGs, otherwise|S,, (x3)| > 1
for all z; € N[xg]. But then for allz,x € V(G) with z € N[x] with coordinatez = ( , ,z3) and
x=(, ,%s), resp., holdgS,(x)| = [12.;|S;(x)| > 1. Hence none of the edges Gf and G}
satisfies thé&1-conditioncontradicting the assumption. However, notice thgis thosen such
that|Ss, (x3)| = 1.
In all cases we will choose the coordinates of the vertices of the sq\x&i@ as follows: A =
(V1,X2,X3), B = (v1,82,%3) With v; € B(G1) andA = (V1,X2,X3), B= (V1,a2,X3), V1 # V1. By choice
holds (A, A) € G, (B,B) € E(G2), (A,B) € GA and (A, B) € E(GA) wherebyGA + GA, see Figure
5.4.
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GY Gt

GA  o--- A = (v1,x9,23) B = (_U_l’_‘f%l's)
2

A= (iy,20,23) | B= (01, az, z3)

Figure 5.4: General notation of the chosen squAﬁﬁB.

It remains to show that at least one edge of both fikBrand G§ satisfies thes1-condition This
part of the proof will become very technical.
In Figure 5.5 and 5.6 the ideas of the proofs are depicted.

Gy e el e

oA e A= (vy,wg,73) | B = (v1,0a,73) o - A= (v, @2,23) | B = (v1,a2,33)
2 2
C = (v1, T2, x3)
z = (v1,22,P3) 2= (v1, %9, P3)
Py fl:('ﬁ'pl’z,mg) B= (_iv_l,_c_LQ,x;;) J S A= (01,22, 3) B= (_ﬁ_llqz’mfi)
2 3

2 = (01, 22, P3)
Figure 5.5: Left: Case 1A.i. andii.. Right: Case B.i. andii.

Cases 1.A.iand 1. A.ii :
Letvy, vy € B(Gy) with (v1,V1) € E(Gy). Letz € N[xp] with |S,,(X2)| = 1 in Gz. Choosez € V(G)
with coordinategvi, 2, fis).

By definition of the strong product the edgésA) and (z,B) do exist inG and thereforez €

N[A] N N[B]. Moreover Corollary 3.2 implies tha$,(A)| = 1. Therefore the edge, B) is satisfying
the S1-conditiorin G in both cases (i) and (ii).

75
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The same argument holds for the ed@eB) by choosingz € V (G) with coordinatesVs, z», fa).
Case 1.B.iand 1.B.ii:
Letvy, V1 € B(Gq) with (vi,V1) € E(G1) and letG; € N[xp] with S, (%2)| = 1. Choose € V (G) with
coordinategvy, X2, fis). By definition of the strong product holds th@A) € E(G).

In case (i) we can conclude from Corollary 3.2 th8fz)| = 1. Moreover, in case (i) holds by
definition of the strong product thét, A) € G5 and we are ready.

Otherwise in case (ii) choose the vertexvith coordinategvi, %2,X3). Thenz € N[A]nN|C] and
|S(C)| = 1. Since(A,C) € G5 the assertion fo65 follows.

The same arguments hold f@§ by choosingz € V(G) with coordinategVs, %2, fiz) andC with
coordinategVvy, X2, X3).
Cases 2.A.iand 2.A.ii :
Gi Gt GY Gt

A A= (v, 22,23) | B=(v1,09,23) A A= (v1,22,23) | B=(v1,a2,3)
7 — SR 7 — SR
C = (v1, %2, 23)
z = (v1, 22| D3) 2 = (v1,T2,[P3)
6”24 o __ B= (01, az, x3) G§ N\ A= (b1,20,23) | B= (01, az, x3)
A= (o) C|= (01, 32,23)

Figure 5.6: Left: Case 2A.i. andii.. Right: Case B.i. andii.

Letvs € B(G1) andvi € N|vy]. Letz € N[xz] NN[ap] with |S,,(X2)| = 1 in Gz. Choosez € V(G) with
coordinategvi, z, pz).

In order to show that the conditions are fulfilled fGtz“ we proceed as in cases in (1.A.i) and
(2.A.ii):

By definition of the strong product there are non-Cartesian e(]tg&) and (z,B) and thusz e

N[A]NN[B]. Now, Lemma 3.13 implies th&§,, (V1)| = 1 and therefore by applying Corollary 3.2 we
can conclude thd&,(A)| = 1, and the assertion follows f@'g.

Case 2.B.iand 2.B.ii :
Letvy; € B(G1) andvi € N[vi]. Let Xz € N[x] with |S,(X2)| = 1 Choosez € V (G) with coordinates

(v1,%2, P3).



5.2. Detection and product coloring of the Cartesian skeleton 77

That the conditions are fulfilled fc@é can be shown analogously, as in cases in (1.B.i) and (1.B.ii).

To show that the conditions are also fulfilled in case (2.B.i) and (2.B.ii)3§nchoosez eV (G)
with coordinates(vy, %o, fi3) and a vertexC with coordinategVi,%2,x3). Clearly (ﬂ,é) € E(Gg).
Furthermore, by definition of the strong produze N[A] andz € N[C], and thusz € N[A] N N[C]. By

applying Corollary 3.2 we conclude thgg,(C)| = 1, using that Lemma 3.13 impligS§,, (V1)| = 1.
Thus the edgéA, C) satisfies th&1-conditionand the assertion follows f@é. O

It is important to notice that the squaﬁe,‘A\ﬁB in the construction of Lemma 2.8 is exclusively
composed of Cartesian edges. The lemma can therefore be applied to detetmther two fibers
G2 and GY, which have been colored differently in the initial steps, are copies ofahee dactor,
and hence, whether their colors need to be identified. As we shall see llekapproach is in fact
sufficient to identify all fibers belonging to a common factor.

Lemma5.11.Let G= &’j‘:lGj be the strong product of thin graphs. Furthermore Iét,G . Giym be
all Gj-fibers in G satisfying th&1-condition Then there is a connected path in G consisting only
of vertices of2” = {Xq,...,Xm} With X; € V(Giyj) s.t. each edgéx, x ) € & is Cartesian.

Proof. Since the strong product is commutative and associative it suffices totblsoier the product
G = G1 X G; of two thin (not necessarily prime) graphs. W.l.0.g.ilet1. Moreover, we can choose
w.l.0.g. the verticesy, ..., Xm such thatp; (x) = xfor k=1,...,m. Moreover by applying Theorem
3.12 we can choosesuch thak € B(G;).

Consider first all vertices with coordinategx,v») such thatv, € B(Gz). From Theorem 3.12
follows thatB(Gy) is connected. Thus there is a connected pathconsisting only of such vertices
v. Moreover, each edg@, b) with a,b € V(%) and thus with coordinatex, az) and(x,by), resp.,
is Cartesian. Furthermore, all correspond@igfibers are satisfying th81-conditionsince for each
edge(v,w) holds|S,(v)| = 1, by applying Corollary 3.2. Therefore all verticesvith coordinates
(x,v2) with v, € B(G,) are also contained it?". Hence all thos&)-fibers are connected by such a
path 22, withV(£2,) C 2.

Let nowV be any vertex in2"\V (#2). Hencepy(V) ¢ B(G2). Theorem 3.12 implies that for all
those verticep, (V) ¢ B(Gy) there is an adjacent vertgs(v) in G, s.t. p2(v) € B(Gz). Thus we can
conclude that for all verticeg € 27\V (27,) with coordinategx, pz(V)) there is an adjacent vertex
v € V(Z2) with coordinategx, p2(Vv)), what from the assertion follows. O
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5.2.3 Detection of unidentified Cartesian Edges

One open question still remains: How can we identify a CarteSigy) edge that does not satisfy
the S1-conditionin any 1-neighborhood, i.e., if for ale N[x] " N[y], we have bothS,(x)| > 1 and
|S(y)| > 1? Figures 5.7 and 5.8 show examples of product graphs, in which nfibet$ were
determined by the approach outline in the previous two sections.
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Figure 5.7: Cartesian Skeleton of the strong prodGcof two prime factors induced by the dashed and bold
lined fibers. Application of Algorithm 6 to all fibers detenmais a part of the Cartesian Skeletdhat consists
only of the edges drawn as dashed or bold lines. While the baodddashed fibers identify the true factors,
we miss the copies shown by thin lines. None of these edgesfisattheS1-conditionin an induced 1-
neighborhood. The backboii€G) consists of the vertices 0,2 and 3.

Unfortunately, we do not see an efficient possibility to resolve the missisgsday utilizing only
the information contained in the fibers that already have been identified smdathe structure of
1-neighborhoods. We therefore introduce a method which relies on théfiction of Cartesian
edges withirlN*-neighborhoods.

Of course, it would be desirable if smaller structure were sufficient. ldbtandidates would be to
exploit theS1-conditiorin edge-neighborhoods of the forfN[x] UN[X]), where(x,x) is a Cartesian
edge. However, the example in Figure 5.8 shows that the information coshiaitteese subproducts
is still insufficient.

Note, that we refine the already known results of [29], where anakgesults were stated for
2-neighborhoods. We will show that every Cartedialy) edge that does not satisfy tBé&-condition
can be determined as Cartesian inijg-neighborhood.
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Figure 5.8: Cartesian skeleton of a thin strong product graph whoser&etre induced by one thick and
dashed component. The fiber whose edges are drawn as thirdties not satisfy th®1-condition Moreover,
even in the subgraph induced by the neighborhoodsasfdx’, which is the product of a path and<a, the
S1-conditionis violated for the Cartesian edge.

Lemma 5.12. Let G be a thin graph andv,w) be any edge of G. Let Ndenote the [{,-
neighborhood. Then it holds th#y: (v)| = 1 and |[Sy+-(w)| = 1, i.e., the edgév,w) satisfies the
S1-conditionin N*.

Proof. Assume thatSy-(v)| > 1. Thus there is a vertexe Sy-(v) different fromv with N[x] "\N* =
N[v] " N*, which implies thatv € N[x] and hencex € N[v| 1 N[w]. SinceN[v] C N* andN[x] C N*
we can conclude tha[v] = N[v]NN* = N[x] N N* = N[x], contradicting tha is thin. Analogously,
one shows that the statement holds for vertex O

Next, we prove that the PFD of an arbitrasy-neighborhood is not finer than the PFD of a given
graphG € Y,. This implies that each Cartesian edgeGrhat is contained ilN* and satisfies the
S1-conditionin N* can be determined as Cartesiamih

Lemma 5.13. Let Ge Y, and let(x,y) be an arbitrary edge in B5). Then|PF((N;,))| = n.

Proof. Notice that|PF(G)| = n and |[PF(N[x])| = n, sinceG € Yn. SinceNy, is a subproduct of
G (Corollary 2.30) we can conclude that the PFDNJf, has at leastPF(G)| factors. Futhermore,
since(N([x]) is subproduct oN;, we can infer thatN[x]) has at least as many prime factors/ds,.
Therefore we have

n=[PF(G)[ < [PF(Ngy)| < [PF((NDJ))| =n,

and thugPF(N;, )| = n. O
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From Lemma 5.12 and 5.13 we can conclude that any Cartesiar(egg®f some fiber that does
not satisfy theS1-conditioncan be determined as Cartesian inNgg-neighborhood. Thus, we can
identify all Cartesian edges @.

The last step, we have to consider is to identify such fibers as copy abtressponding factor. This
can be done in a simple way. Consider that we have now idenéfigCiartesian edges @. Notice
that for all new identifieds?-fibers holdsa ¢ B(G), otherwise each edge containing vergeaf this
fiber would satisfy thes1-conditionin (N[a]) and we would have identified this fiber. However, for
each such vertea there is a vertex € N[a] with x € B(G), sinceB(G) is a connected dominating
set. Thus, the correspondi@j-fiber satisfies th&1-conditiorand is therefore already identified and
colored a$5;-fiber. Hence, again we can apply the square property to determina sighidentified
G2-fiber belonging to a copy of the fact@; by identifying the colors of th&?-fiber with the color
of the G}-fiber.

5.2.4 Algorithm and Time Complexity

We will now summarize the algorithm for determining the colored Cartesian sked&étogiven graph
G € Yw.r.t. to its PFD and give the top level control structure, which are provée tworrect in the
previous subsections. Furthermore , we will determine the time complexity, idgtated in the
following lemma.

Algorithm 7 Cartesian skeleton and Product Coloringof

1: INPUT: GraphGeY.
Compute the backborig(G);
for all xin B(G) do
Color all G-fibers (and3}-fibers that satisfy th&1-conditio with Algorithm 6;
end for
Determine unidentified Cartesian edgedirrneighborhoods;
Compute all squares in the induced Cartesian skeletdd afd identify the colors of parallel
fibers applying Lemma 2.8;

8: OUTPUT: Product coloring of5 with respect to its PFD;

N a kR e

Lemma 5.14. Algorithm 7 determines the colored Cartesian skeleton with respect to its PlED o
given graph G= (V,E) € Y with bounded maximum degrédn O(|V|?-log,(A) - A®) time.

Proof. 1. Determining the backboneB(G): we have to check for a particular vertexc V(G)
whether there is a vertax € N[v] with N[w] "N[v] = N[v]. This can be done i®(A?) for a particular
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vertexw in N[v]. Since this must be done for all verticesNifv] we end in time-complexitD(A3).
This step must be repeated for | vertices ofG. Hence the time complexity for determinifitgG)
isO(|V|-A3).

2. For-Loop. The time complexity of Algorithm 6 i€(|V| - log,(A) - (A)®). The for-loop is re-
peated for all backbone vertices. Hence we can conclude that the timdestitypf the for-loop is
O(V|-|V|-log, (&) - 49).

3. Determine unidentified Cartesian edges inN*-neighborhoods. Notice that eachN*-
neighborhood has at most#A - (A — 1) vertices. Therefore the number of edges in ebch
neighborhood is bounded Kyt +A- (A—1))-A. By Lemma 2.23 the computation of the PFD of
eachN* and hence the assignment to an edge of being Cartesian is bounded (by A - (A —

1)) -A) -A%) = O(A®). Again, this will be repeated for all vertices and thus the time complexity is
O(|V|-Bd).

4. Compute all squares. Take an edgéx,y) and check whether there is an edggy;) for all
neighborsxy,...,x # y of xandy,..., Yk # x of y. Notice thatl,k < A— 1. This leads to all squares
containing the edgéx,y) and requires at mog — 1)2 comparisons. Since we need diagonal-free
squares we also have to check that there is no (Cartesian)eggeand no edgéx;,y). This will be
done for all|E| edges. Thus we end in time complex@y|E|- (A — 1)3), which isO(|V| - A%), since
the number of edges i@ is bounded byV| - A.

Considering all steps we end in an overall time comple®itiV |2 - log,(A) - A%). O

5.3 Recognition of Graphs GeY

In this section we will provide an algorithm that tests whether a given gragtersent ofY in
polynomial time.

Lemma 5.15. Algorithm 8 recognizes if a given graph G is in class

Proof. Lemma 2.26 implies that the PFD of any neighborhood in a g@gias at leastPF(G)|
factors and henc®AX > |PF(G)|. Thus if MAX = |PF(G)| then none of the decomposed neigh-
borhoods was locally finer. If in addition the isomorphism test is true we oanlgde that we have
found the correct factors and thate Y. O

Lemma 5.16. Algorithm 8 recognizes if a given a given graph=GV, E) with bounded maximum
degreeA is in classY'in O(|V|?-log,(A) - A®) time.
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Algorithm 8 Recognition ifG € Y
1: INPUT: thin GraphG.
2: compute the colored Cartesian skeletoroiith Algorithm 7 and remind the number of prime
factors in each decomposed neighborhood;
: MAX «— maximal number of prime factors of decomposed neighborhoods;
: compute the possible prime factdgs, ..., Gy, of G by taking one connected component of the
Cartesian skeleton of each colar. 1, m;
:if XM, G« G andMAX = mthen
IS_IN_Y « true;
else
IS_IN_Y « false;
- end if
10: OUTPUT: IS_INLY;

» W

© @ N o’

Proof. Algorithmus 7 take©(|V |?-log,(A) - A°) time. Computing the maximuid AX of the number
of prime factors of each decomposed neighborhood can be done in timeain the number of
vertices. By the same arguments as in the proof of Lemma 4.13 we can cotidi@tracting the
possible factors and the isomorphism test for a fixed bijection can be d@»gvn-A) time. Thus
we end inO(|V|?-log,(A) - A%) time. O



A General Local Approach

In this chapter, we use and summarize the previous results and provigemadecal approach for
the PFD of thin graph&. Notice that even if the given graghis not thin, the provided Algorithm
works onG/S. The prime factors o can then be constructed by using the information of the prime
factors ofG/Sas shown in Section 2.3.2.

The new algorithm makes use of several different subproducts. As# twt it will not be enough
to use 1-neighborhoods only. We also need edge-neighborhood¢ ameighborhoods. Notice that
edge-neighborhoods are not always proper subproducts ofea graph. Therefore, we treat this
problem first and show how the local information that is provided by am-e@ggghborhood can be
used to determine if this edge-neighborhood is a proper subprodudt.orTinen, we proceed to
explain how the general local approach works as well as to give & pfabe correctness of this
algorithm. In the last part of this chapter, we show that the time complexity ofdiveatgorithm is
guasi-linear in the number of vertices Gf
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6.1 Dispensability

As mentioned, the general local approach needs in addition to l-nelgitdmy also edge-
neighborhoods antl*-neighborhoods. Notice that Corollary 2.30 implies that for each ¢rge

the respectivé\*-neighborhood\y , is a subproduct, while this is not true for the edge-neighborhood
(N[x]UNIy]) if (x,y) is non-Cartesian i5. Notice that a non-Cartesian edge®imight be Carte-
sian in its edge-neighborhood. Therefore, we cannot use the informativided by the PFD of
(N[x] UNTJy]) to figure out if(x,y) is Cartesian irG. On the other hand, an edge that is Cartesian in
a subproducH of G must be Cartesian i6. To check if an edgéx,y) is Cartesian inN[x] UNIy])

that is Cartesian i® as well we use thdispensablgroperty provided by Hammack and Imrich, see
[24] and Section 2.3.2.

We show that an edgé,y) that is dispensable i6 is also dispensable itN[x] UN[y]). Con-
versely, we can conclude that every edge that is indispensatipnu N[y]) must be indispensable
and therefore Cartesian . This implies that every edge-neighborho@d[x] U NJy]) is a proper
subproduct of5 if (x,y) is indispensable iKN[x] UNIy]).

Recall, an edgéx,y) of G is dispensabléf there existsz € V(G) for which both of the following
statements hold, Definition 2.19.

1. (@N[X]NN[y] C N[xJN N[z or (b)N[x] C N[z] C Ny]

2. (@N[X)NNJy] € N[yJnN[z or (b)N[y] C N[z C N[X]
Remark 6.1. As mentioned in [24] we have:

* N[x] € N[z  N]y] impliesN[x] " N[y] C N[y]NN[zZ.

* NJy] € N[Z  N[x] impliesN[x] " N[y] C N[x]"N[Z].

* If (x,y) is indispensable theN[x] "N[y] € N[x] " N[z andN[x] "N[y] C N[y] " N[z cannot
both be true.

Lemma 6.2. Let(x,y) be an arbitrary edge of a given graph G and-H(N[x] UN[y]) Then it holds:
N[X]N[y] € N[x]NN[Z]

if and only if

N[XN"N[y]nH C N[X]N N[z N H.
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Proof. First notice thalN[x] " N[y] "H = N[x] " N]y]. Furthermore, sincBl[x N"N[Z] C N[x] CV(H)
we can conclude thaiN[x] "N[z]) "H = N[x] " N[Z], from what the assertion follows. O

Lemma 6.3. Let(x,y) be an arbitrary edge of a given graph G and=H(N[x] UN[y]). If
N[X] € N[z C N[y]

then
N[X]NH Cc N[Z7NnH C N[y]nH

Proof. First notice thalN[x]"H = N[x], N[y|nH = N[y], andN[ZnH = (N[ZlnN[x]) U (N[ZlAN[y]).
SinceN[x] € N[z] C N[y] we can conclude thaiN[z] " N[x]) U (N[z] N ) :
ThereforeN[x] "H = N[x] C N[Z] = N[z nH andN[Z nH = N[z € N[y] =N[y]nH. O

Notice that the converse does not hold in general, difjgenH C N[y]nH = N[y| does not imply
thatN[z] C N[y]. However, by symmetry, Remark 6.1, Corollary 2.30, Lemma 6.2 and 6.3 we can
conclude the next corollary.

Corollary 6.4. If an edge(x,y) of a thin strong product graph G isdispensablén (N[x] UN[y]) and
therefore Cartesian in G then the edge-neighborh@dpk] UNJy]) is a subproduct of G.

One aim of our new approach will be to detect all Cartesian edges of thiesiZen skeleto§[G|
of a given graphG. As already shown, only Cartesian edges that satisfyStheonditioncan be
identified locally as Cartesian. In some cases it might happen that evemeidgdorhoodd =
(N[x] UNTJy]) of globally Cartesian edges,y) do not provide enough information to identify those
edges as Cartesian edgegine.g., if|S4(X)| > 1 and|S4(y)| > 1, see Figure 6.1 and 6.2. However,
Lemma 5.12 implies thaveryedge(x,y) € E(G) satisfies th&S1-conditionin its N -neighborhood
if Gis thin.

6.2 Algorithm and Time Complexity

First, we give an overview of the algorithm. Then, we proceed to provedhectness of the new
local approach and in the last part of this section, we treat its time complexity.
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Figure 6.1: Depicted is the colored Cartesian skeleton of the thin gtpyoduct grapl@ after running the first
while-loop of Algorithm 9 with different BFS-orderingBgrs of the backbone vertices. The backbd@g)
consists of the vertices 0,2 and 3.

Ihs.: Bgrs=2,1,3,0. In this case the color-continuation frdwj2] to N[1] fails. hence we compute the PFD of
the edge-neighborhoa@N[2] UNJ[1]). Notice that the Cartesian edgesy) and(y,z) satisfy theS1-condition
in (N[2] UN[1]) and will be determined as Cartesian. In all other steps the-continuation works.

rhs.: Bers=3,0,2,1. In all casesN[3] to N[0], N[3] to N[2], N[0] to N[1]) the color-continuation works.
However, after running the first while-loop there are migstartesian edgds, y) and(y, z) that do not satisfy
the S1-conditionin any of the previously used subprodudtf3], N[O], N[2] andN[1]. Moreover, the edge-
neighborhoodgN[x] UN[y]) as well as{(N[z] UN[y]) are the product of a path andka and theS1-condition
is violated for the Cartesian edges in its edge-neighbathddhese edges will be determined in the second
while-loop of Algorithm 9 using the respectit¢ -neighborhoods.

Given an arbitrary thin grap@, first the backbone vertices are ordered vialiteadth-first search
(BFS) After this, the neighborhood of the first vertgfrom the ordered BFS-lisBgrs is decom-
posed. Then the next vertgc N[x] N Bgesis taken and the edges (f[y]) are colored with respect
to the neighborhoods PFD. If the color-continuation does not fail, theAldr@rithm proceeds with
the next vertexy € N[X| NBges. If the color-continuation fails, the Algorithm proceeds with the
edge-neighborhoofN[x] UN[y]). If it turns out that(x,y) is indispensable itiN[x] UN[y]) and hence,
that (N[x] UN]Jy]) is a proper subproduct (Corollary 6.4) the algorithm proceeds to dexsemgnd
to color (N[x] UNJy]). If it turns out that(x,y) is dispensable ifiN[x] UN[y]) the N*-neighborhoods
Ny is factorized and colored. In all previous steps edges are marketieské" if they satisfy the
S1-conditionindependent from being Cartesian or not.

After this, theN*-neighborhoods of all edges that do not satisfy $#ieconditionin any of the
previously used subproducts, i.e, 1-neighborhoods, edge-nelyidms orN*-neighborhoods, are
decomposed and again the edges are colored.
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Figure 6.2: The Cartesian skeleton of the thin product gr&pbf two prime factors induced by one connected
component of thick and dashed lined edges. The backB¢B¢ consists of the vertices, z, andzs. In none

of anyedge-neighborhooH holds|S4(xi)| = 1,i = 1,2,3. Hence the fiber induced by verticesx, andxs
does not satisfy th€1-conditionn any edge-neighborhood. To identify this particular fitiés necessary to
useN*-neighborhoods. By Lemma 5.N*-neighborhoods are also sufficient.

Finally, the Algorithm checks which of the recognized factors have to bgedeinto the prime
factorsGg,...,G, of G.

Theorem 6.5. Given a thin graph G then Algorithm 9 determines the prime factors of G w.r.t. the

strong product.

Proof. We have to show that every prime factéyrof G is returned by our algorithm.

First, the algorithm scans all backbone vertices in their BFS-order storBgrs, which can be
done, sincés is thin and henceéB(G)) is connected (Theorem 3.12).

1. Starting with the first neighborhootigx] with x as first vertex iBggs, we proceed to cover the
graph with neigborhoodN[y] with y € Bgrs andy € N[x]. If the color-continuation does not
fail, we can apply Lemma 3.21 and Lemma 3.30 and conclude that the determirtedi&a
edges in(N[x]), resp. in{(N[y]), i.e., the Cartesian edges that satisfy $#ieconditiorin (N[x]),
resp. in(N[y]), induce a connected subgraph(difx] UNIy]).

2. If the color-continuation fails, we check {N[x]) and(N[y]) are thin. If both neighborhoods
are thin we can use Algorithm 5 to get a proper color-continuation ffNi®]) to (N[y]), see
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Algorithm 9 General Approach

1:
2: compute backbone-vertices Gf order them in BFS and store themBggs;
3: X « first vertex ofBggs;

4: W —X;

5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:

INPUT: a thin graphG

FactorSubgraphi[x]));

. while Bgrs# 0 do

H — (UnewN[W]);
for ally € N[x] N Bgrsdo
FactorSubgrapkiN[y]));
compute the combined coloring Bif and(N[y]);
if color-continuation fails froniH to N[y] then
if (N[x]) and(N[y]) are thinthen
C — {colorc| color-continuation foc fails};
CombineFactors(H\N[y]), W, C); (Algorithm 5)
mark all vertices and all edges (fl[y]) as "checked";
else if(x,y) is indispensable iiN[x] UN[y]) then
FactorSubgraphiN[x] UNIy]));
else
FactorSubgrapii;,);
end if
compute the combined coloring Bf and(N[y]);
end if
end for
deletex from Bggs;
X « first vertex ofBggs;
end while
while there exists a vertexec V(H) that is not marked as "checkedd
if there exists edgds,y) that are not marked as "checkeatién
FactorSubgrapii;,);
else
take an arbitrary edgex,v) € E(H);
FactorSubgrapii;,);
end if
end while
for each edgec E(H) do
assign color ot to edgee € E(G);
end for
check and merge factors with Algorithm 11;

OUTPUT: G with coloredG;j-fiber, and Factors d&;
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Algorithm 10 FactorSubgraph

a Hw bR

: INPUT: a graphH

compute the PFD dfi and color the Cartesian edgedHrthat satisfy thes1-condition
mark all verticex with |S4(X)| = 1 as "checked";
mark all edges that satisfy ti&l-conditioras "checked";

Return partially coloredH;

Algorithm 11 Check Factors

1:
2:
3:
4:
5:
6:
7

10:
11:
12:
13:

14:

INPUT: a thin colored grapls
take one connected componé&it ..., G/ of each color 1...,1 in G;
I —{1,...,1}
J—1;
for k=1tol do
for eachSc J with |§ =k do
compute two connected componedtsA’ of G induced by the colored edges Gfwith
colori € S andi € I\S resp;
computeH; = (pa(G)) andHz = (pa (G));
if HiXHy « Gthen
saveH; as prime factor;
J—A\S
end if
end for

end for
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Section 4.3.2. Since both neighborhoods are thin, for all vertigesN[x|, resp. N[y|, holds
IS((v)| = 1, resp.|S,(v)| = 1. Hence all edges i(N[x]), resp.(N[y|), satisfy theS1-condition
Therefore, the Cartesian edges spilix]) and(N[y]) and thus, by the color-contiuation prop-
erty, (N[x] UN[y]) as well.

3. If one of the neighborhoods is not thin then we check whether the dgeis dispensable
or not w.r.t. (N[x] UN[y]). If this edge is indispensable then Corollary 6.4 implies tiNk] U
N[y]) is a proper subproduct. Moreover, Lemma 3.20 implies Bagqunyy) (X)| = 1. and
ISnungyy (V)| = 1. From Lemma 3.21 we can conclude that the determined Cartesian edges
of (N[x] UN[y]) induce a connected subgraph(bfix] UN[y]).

4. Finally, if (x,y) is dispensable ifN[x] UN[y]) we can not be assured th@i[x] UN[y]) is a
proper subproduct. In this case we factofigg. Again, Lemma 3.20 implies thehy; ()| =1
and|Sy;, (y)| = 1. Moreover, from Lemma 3.21 follows that all Cartesian edges that stttisfy
S1-conditioron N, induce a connected subgraphNyf, .

Assume now thaH = (UncwN[w]). Clearly, the previous four steps are valid for all consecutive
backbone vertices y € Bgrs. We have to show that we always get a proper color-continuation from
H to N[y] after these four steps (Line 21). This follows immediately from Lemma 3.32 anadli@ries
3.33 and 3.34 sincl[x] C H. Moreover, since we always get a proper color-continuation frbto
N[y] using these four steps and the latter arguments concerning induceashsebgraphs we can
conclude that all determined Cartesian edges induce a connectedmubfia = (Uycpc)N[W]).
Notice thatH = (Uyep(c)N[W]) = G, sinceB(G) is a dominating set. The first while-loop will termi-
nate sincégesis finite.

Therefore, those edges have been identified as Cartesian or if thepdizheen identified as Carte-
sian they are at least connected to Cartesian edges that satig}-twndition To see this assume
that the edgév,w) satisfies thes1-conditiorbut is non-Cartesian. W.l.o.g. we assu(Bg(v)| = 1.
Hence all Cartesian edges containing vextsatisfy theS1-condition Lemma 3.30 implies that each
color of each Factor is represented on edges containing vert€rus, edges$v,w) that satisfy the
S1-conditionbut are not determined as Cartesian are connected to Cartesian edgeisiya the
S1-condition

In all previous steps verticesare marked as "checked" if there is a used subprodusatch that
|Sk (X)| = 1. Edges are marked as "checked" if they satisfyShecondition In the second while-loop
all vertices that are not marked as "checked", |%.(x)| > 1 for all used subproducts, are treated.
For all those vertices the*-neighborhood#\;, are decomposed and colored. Lemma 5.12 implies
that|Sy;, (x)| = 1 and|Sy;, (y)| = 1. Hence all Cartesian edges containing verex y satisfy the
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S1-condition Lemma 3.30 implies that each color of every Factor is represented on @ulgaming
vertexx, resp.,y. Lemma 3.21 implies that all Cartesian edges that satisfystheonditiom Ny,
induce a connected subgraph of LemNjg,.

It remains to show that we get always a proper color-continuation. $8g®)| > 1 for all used
subproduct¥, we can conclude in particular th@&(x)| > 1. Therefore, we can apply Lemma 3.15
and conclude that there exists a vertex B(G) s.t.z€ N[x] N N[y| and hencgN(z]) C N;,. This
neighborhoodN([z]) was alreay colored in one of the previous steps sineéB(G). Lemma 3.20
implies that|Sy; (z)| = 1 and thus each color of each factoMN, is represented on edges containing
vertexz and all those edges can be determined as Cartesian vialteendition We get a proper

color-continuation from the already colored subgrépto N, sinceN|[z] C H andN[Z] C Ny, which

Xy
follows from Lemma 3.32 and Corollary 3.34.

Finally, as argued before all edges that satisfy$tieconditionare connected to Cartesian edges
that satisfy thes1-condition Notice that this arall edges ofG after the while-loop has terminated.
Thus, the set of determined Cartesian edges induce a conrspetedingsubgraphG. By the color-
continuation property we can conclude that the final number of colos @at most the number
of colors that were used in the first neighborhood. This number is atlogAt since every product
of k non-trivial factors must have at least Zertices. Let’s say we havecolors. As shown before,
all vertices are "checked" and thus we can conclude from Lemma 3.3tharzblor-continuation
property that each vertexe V(G) is incident to an edge with colarfor all c € {1,...,1}. Thus,
we end with a combined colorings on G where the domain dfg consists of all edges that were
determined as Cartesian in the previously used subproducts.

It remains to verify which of the possible factors are prime factoiG.of his task is done by using
Algorithm 11. Clearly, for some subs8tcC J, Swill contain all colors that occur in a particul&;-
fiber G which contains vertea. Together with the latter arguments we can conclude that the set of
S-colored edges i spangG?. Since the global PFD induces a local decomposition, even if the used
subproducts are not thin, every layer that satisfieStheonditiorin a used subproduct with respect
to a local prime factor is a subset of a layer with respect to a global printerfathus, we never
identify colors that occur in copies of different global prime factorsottmer words, the coloringg
is a refinement of the product coloring of the global PFD, i.e., it might hapipat there are more
colors than prime factors @. This guarantees that a connected component of the graph induced by
all edges with a color irBinduces a graph that is isomorphic@. The same arguments show that
the colors that are not ilead to the appropriate cofactor. Th@swill be recognized.

O
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Remark 6.6. Algorithm 9 is a generalization of the previous results and computes the PNIT&,
CHIC and locally unrefined thin graphs. Moreover, even if we do natcthat the given grapl is
thin one can compute the PFD Gfas follows: We apply Algorithm 9 o/S. The prime factors of
G can be constructed by using the information of the prime facto®/&as shown in Section 2.3.2.

In the last part of this section, we show that the time complexity to decomposmangcted thin
graphG into its prime factors with respect to the strong produ(#/ | - A®) time

Lemma 6.7. Given a thin graph G= (V,E) with bounded maximum degrége then Algorithm 9
determines the prime factors of G w.r.t. the strong product (VO A°®) time.

Proof. For determining the backboi G) we have to check for a particular vertex V (G) whether
there is a vertexv € N[v] with N[w] N N[v] = N[v]. This can be done i®(A?) time for a particular
vertexw in N[v]. Since this must be done for all verticesNifv] we end in time-complexitD(A3).
This step must be repeated for §| vertices ofG. Hence, the time complexity for determinifigG)

is O(|V|-A%). ComputingBgrs via the breadth-first search takegV | + |E|) time. Since the number
of edges is bounded HY | - A we can conclude that this task ne€dgV |- A) time.

We consider now the Line 6 — 26 of the algorithm. The while-loop runs at fiostmes. Com-
putingH in Line 7, i.e., adding a neighborhood Itb can be done in linear time in the number of
edges of this neighborhood, that is@{A?) time. The for-loop runs at mog times. The PFD of
(N]y]) can be computed i®(A%) time, see Lemma 2.23. The computation of the combined coloring
of H and(N[y|) can be done in constant time. For checking if the color-continuation is vatichaa
to check at most for all edges ON[v;]) if a respective colored edge was also coloretHinwhich
can be done iD(A?) time. Notice that all "if* and "else" conditions are bounded by the complexity
of the PFD of the largest subgraph that is used and therefore by thdeatyjpf the PFD ofN; .

As shown in the proof of Lemma 5.14, the number of edges in dieheighborhood is bounded by
(1+A-(A—1))-A. Lemma 2.23 implies that the PFD of eah-neighborhood take®(A®) time.
Considering all steps of Line 6 — 26 we end in an overall time compl&Xity |- A-A%) = O(|V| - A8).

Using the same arguments, one shows that the time complexity of the secondoopils-
O(|V|-A%). The last for-loop (Line 35-37) needX|E|) = O(V -A) time.

Finally, we have to consider Line 38. Using the same arguments as in thegfrbefnma 4.13
we can conclude that extracting the possible factors and the isomorphisfartasfixed bijection
(Algorithm 11) can be done i@(|V|-A) time. Considering all steps of Algorithm 9 we end in an
overall time complexityO(|V |- A®). O



Approximate Graph Products

In this chapter we discuss approximate strong graph products. Firsthalgza the complexity to
determine such products. We then explain how Algorithm 9 can be modifiedier tw recognize
approximate products. In the last part of this chapter, we evaluate tf@mance of this algorithm
on a sample of approximate graph products and try to answer the followasiigns:

1. How often do we find both original factors in the disturbed producedding on the percentage
of perturbation, respectively the ratio of backbone prime 1-neighloai$f®

2. Depending on the percentage of perturbation how fast does the naibackbone prime
1-neighborhoods grow?

3. How large is the maximal factorized subgraph of the disturbed prodysrdling on the per-
centage of perturbation, respectively the ratio of backbone prime hip&igoods?

7.1 Complexity

For a formal definition of approximate graph products we begin with the itlefirof the distance
between two graphs. We say ttlistance dG, H) between two graphG andH is the smallest integer

93
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k such thatG andH have representatior®’, H’ for which the sum of the symmetric differences
between the vertex sets of the two graphs and between their edge sets is lat Tinag is, if

V(@) AV(H)| + [E(G) AEHY)| <k

A graphG is ak-approximate graph produdtthere is a producH such that

d(G,H) <k.

Now, we investigate the complexity of recognizikgapproximate graph products. We first show
thatk-approximate graph products can be recognized in polynomial time fotardnglues ok. To
this end, we begin with a bound on the number of graphs of distafroen a given connected graph
G.

Lemma 7.1. Let G be a connected graph on n vertices. Then the number of codrgreiehs of
distance< k from G is @n).

Proof. We bound the number of graphs (including also disconnected grapbgjlistance< k from

G. First letV(H) =V(G) andE(H) = E(G). We modify the edge seE(H). We have(3) =
(n)(n—1)/2 = O(r?) ways to select a pair of verticesVi(G). If a selected pair is an edge Bf{G)
we delete it fromE(H), otherwise we add the corresponding edge. We doittilmes and obtain
O(n?) graphs. Summing over &lfrom 0 tok, this yieldsO(n?) graphs, and in particular all graphs
will distance of at mosk from G that have the same vertex set@s

Now we allow the vertex set to change. Suppose we onlyjaddk isolated vertices. We proceed
with V(H) =V(G) U {v1,...,v;} andE(H) = E(G). Now we have(n+ j)(n+ j —1)/2 = O(n?)

ways to select pairs ¥ (H). Hence we can re-use the argument above to see that this generates no

more tharO(n?) distinct graphs.

Finally, suppose we add and deletd, vertices. Of course, we have+ I, < k. For a fixedl,
we know from the previous paragraph that there a no more @{af) distinct graphs. In each of
them, we have at moiﬁ) € O(n2) ways to delete vertices that were already ther¥ (). (Note
that deleting a newly inserted vertex is equivalent to redubiremnd hence need not be considered).
For fixedl; andl,, we can proceed by adding or deleting edges. Now we HH\}l;"Z) € O(n?) ways
to select, and we can repeat this no more thark — I, — |, times, giving us access to no more than
O(n%) graphs. There ar®(k?) ways of choosind; andl,, hence we have no more th@xk? - n).

The lemma follows by treatinlg as a prescribed constant. O
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Lemma 7.2. For fixed k all strong and Cartesian k-approximate graph productslmamecognized
in polynomial time.

Proof. For a given grapl@ the number of graphs of distance at mkss O(n%). The observation
that every one of these graphs can be factored in polynomial time completesot. O

Without the restriction ork the problem of finding a product of closest distance to a given graph
G is NP-complete for the Cartesian product. This has been shown by Feigeraral Haddad [14].
They proved that the following problem is NP-complete:

Problem 1 (Smallest Factorable Extensiorijiput: A graphG and positive integens andm.
Question: Is there a factorizable graghsuch thaiG € H and|V(H)| < nand|E(H)| <m.

Problem 2 (Largest Factorable Subgraphhput: A graphG and positive integens andm.
Question: Is there a factorizable graghsuch thaH C Gand|V(H)| > nand|E(H)| > m.

We conjecture that this also holds for the strong product.

7.2 Recognition of Approximate Graph Products

In this section, we will show how Algorithm 9 can be modified and be used tréze approximate
products and how one can get a suggestion of the structure of the fdotmak. We do not claim that
the given Algorithm finds an optimal solution in general.

First, consider the grapB of Figure 7.1. It approximate® X PJ, whereP; denotes a path that
contains a triangle. Suppose we are unaware of this fact. Clea@yisihon-prime, then every sub-
product is also non-prime. We factor every suitable subproduct d&hlmae vertices (1-neighborhood,
edge-neighborhood¥*-neighborhood) that is not prime and try to use the information to find a prod-
uct that is either identical t& or approximates it.

The graphG is thin and thus the backbone is a connected dominating set. The badkbGie
consists of the vertices, 0,...,5 and all vertices marked with "x". The induced neighborhood of
all "x" marked vertices is prime. We do not use those neighborhoods buirtes of the vertices
0,1,...,5, factor their neighborhoods and consider the Cartesian edges tisft g S1-condition
in the factorizations. There are two factors for every such neighloaraad thus, two colors for the
Cartesian edges in every neighborhood. If two neighborhoods h@egtasian edge that satisfy the
S1-conditionin common, we identify their colors. Notice that the color-continuation fails if we g
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>
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Figure 7.1: An approximate produds of the product of a path and a path containing a triangle. €kalting
colored graph after application of the modified Algorithnsighlighted with thick and dashed edges. We set
P =1, i.e., we do not use prime subproducts and hence only thiee®Q1,...,5 are used. Taking out one
maximal component of each color would lead to appropriapg@pmate factors ofs.

from (N[2]) to (N[3]). Since(N[2] UNI3]) is not prime we factor the edge-neighborhood and get a
proper color-continuation. In this way we end up with two colors altogethve, for the horizontal
Cartesian edges and one for the vertical one&.iff a product, then the edges of the same color span
a subgraph with isomorphic components, that are either isomorphic to orleeasaime factor or that
span isomorphic layers of one and the same factor.

Clearly, the components are not isomorphic in our example. But, underghmpton thats is an
approximate graph product, we take one component for each colors lextiimple it would be useful
to take a component of maximal size, say the one consisting of the horizdgtsd through vertex 2,
and the vertical ones through vertex 3. This components are isomorphi doiginal factord: and
P7T. It is now easily seen th& can be obtained frorig; X P7T by the deletion of edges.

As mentioned, Algorithm 9 has to be modified for the recognition of approxinratdugtsG. First
note that we might possibly find fibers of the original prime factors, ever iflarnot cover the whole
input graph by our algorithm.

Deleting or adding edges in a product graghresulting in a disturbed product gra@ usu-
ally makes the graph prime and also the neighborhdbif$v]) that are different fron{N" [v]) and
hence the subproducts (edge-neighborhdéidneighborhood) that contaiN®[v]). We call such
subproductslisturbed
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Figure 7.2: Shown is a prime grap@, also known as twisted product, wi(G) = {0, 1,2,3}. Each PFD of
1-neighborhoods leads to two factors. Notice fBatan be considered as an approximate product of afath
and a cycleC,. After application of the modified Algorithm 9 with = 1 we end with the given coloring (thick
and dashed lines). Taking one minimal component of each eaald lead to appropriate approximate factors
of G.

In Algorithm 9 we therefore only use those subproducts of backborieee that are at least not
prime. Moreover, we can restrict the set of allowed backbone verticeb more and use only those
subproducts that have more than> 1 prime factors and limit therefore the number of allowed sub-
products. Hence, no prime regions or subproducts that have lessaitiegnP prime factors are used
and therefore we don'’t identify colors of different locally determine@t#oto onlyP colors. After
coloring the graph one would take out one component of each color tondetethe (approximate)
factors. For many kinds of approximate products the connected comgaferaphs induced by the
edges in one component of each color will not be isomorphic. In our, @asere the approximate
product was obtained by deleting edges, it is easy to see that we shoeilthéatnaximal connected
component of each color. Some examples for approximate products caeben Figure 7.1, 7.2,
and 7.3.

The isomorphism test (line 38) in Algorithm 9 will not be applied. Thus, in primephsG
we would not merge colors if the product of the corresponding apprdgimpame factors is not
isomorphic toG.

We summarize the modifications we apply to Algorithm 9:

1. We do not claim that the given (disturbed) product is thin.
2. Theorem 3.12 and item. Implies that we can not assume that the backbone is connected.
Hence we only compute a BFS-ordering on connected components inbdydcetkbone ver-
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Figure 7.3: An approximate produds of the prime factors shown in Figure 7.1. In this examlis not thin.
Obviously, this graph seems to be less disturbed than thénoRigure 7.1. The thick vertices indicate the
backbone vertices with more thén= 1 prime factors. Application of the modified Algorithm 9 @&without
computingG/S), choosingP = 1 and using only thick vertices backbone vertices leads wa&iog with the
four colorscy, ¢y, c3 andcy. This is due to the fact that the color-continuation failgjetr would not be the case
if we would allow to use also prime regions.

tices.

3. We only use those subproducts (1-neighborhoods, edge-neigitahN*-neighborhood) that
have more tha® > 1 prime factors, wherP is a fixed integer.

4. We do not apply the isomorphism test (line 38).

5. After coloring the graph, we take one minimal, maximal, or arbitrary condexdmponent of
each color. The choice of this component depends on the problem ane twde solved.

Remark 7.3. In the remaining part of this chapter Algorithm 9 together with the applied motidita
1. — 5. will be calledmodified Algorithm 9

7.3 Experimental Results

To complete this chapter, we perform in this section experimental tests oimgéne recognition of
approximate products. To disturb a product gr&pbne can apply several modifications @rlike
deleting edges, deleting vertices, adding vertices and edges, shiftiag etitg Here, we focus on the
first kind of perturbation, i.e., deleting edges, and investigate how the nobdilg@rithm 9 behaves.
Moreover, we try to answer the following questions:

1. How often do we find both original factors in the disturbed producedding on the percentage
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of perturbation, respectively the ratio of backbone prime 1-neighloai$®

2. Depending on the percentage of perturbation how fast does the naibackbone prime
1-neighborhoods grow?

3. How large is the maximal factorized subgraph of the disturbed prodystraling on the per-
centage of perturbation, respectively the ratio of backbone prime himgilgoods?

7.3.1 A Measure of Perturbation by Deleting Edges

When deleting an edd@, b) in a given product graph one disturbs more than only the 1-neigboshood
(N[a]) and(N[b]) in general, see Figure 7.4. In fact, all neighborho@dz]) with z< (N[a] " N[b])
are disturbed.

Figure 7.4: Deleting the edgéa,b) in the given strong product graph disturbs all neighborhooddN®[Z])
with z€ N®[a]"N®[b] = {a,b,0,1,2,3}

Definition 7.4. Let G = (V,E) be a given graph aralb € V. We callU,, = N[a] N N[b] thecommon
environmenbf a andb or environmenbf a andb for short.U g denotes the average number of vertices
contained in environments of any two connected closed neighborho@gls.ef,

Z(a,b)eE |Ua,b‘
E|

Cl

G =

Clearly, if for some graph&; andG; holdsUg, > Ug, then the probability to disturb more neigh-
borhoods inG; as inG, by deleting an edge is higher. Notice tlbt becomes maximal among all
graphs withn vertices ifG ~ K.

We show in the following how for a given product grah= G; X G, the valueJ g depends on the
valuesUg, andUg,. For this, we first state a well-known lemma concerning the number of vertices
and edges in a strong product graph and treat afterwards the exdgigee of strong product graphs.



100 7. Approximate Graph Products

Lemma 7.5([32]). Let G= G; X G, be a strong product graph. Then it holds:
V(G)| = V(G| V(G2)|

and
[E(G)| = [V(G1)|- [E(G2)| + [V (G2)| - [E(G1)| + 2[E(G1)| - [E(G2)]-

By definition of the strong product we can directly infer the next lemma.

Lemma 7.6. Let G= G; X G, be a strong product graph and=v (v1,v2) € V(G) be an arbitrary
vertex. Then it holds:

degv) = degv1) +deg Vo) +degvy) degvz)

We show now that the average degree of a given strong produdh giggends on the average
degrees of its factors.

Lemma 7.7. Let G= (V,E) = G1 X G, be a strong product graph of two graphs & (Vi,E;) and
G, = (W2, E2), then it holds:

degG) = deg G1) +deg Gy) + ded G1)ded Gz)

Proof

e Svevdegv) Y iwev deq((v1,v2))

9edC) =TTy v
_ Yuews Yvev,(degva) +degvz) +degvy) degvz))
B V[ - V2|
_ 2vieVr Jwes degvi) | Yvievi Yvev, d€dV2) | Tviev Yvoev, degvi) degvz)
N V|- Ve V|- V2l V1| - V2|
. |V2| zvlevl deqvl) |Vl‘ szevz dquZ) Zvlevl deqvl) szevz dquZ))
B V1| - V2 V1] - V2| V1| - Ve

=deq Gy) +£Q(G2) —}—@Gﬂ@Gz)
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Definition 7.8. Let G = (V, E) be a given graph. We denote witly; the average number of vertices
contained in closed neighborhoods®&fi.e.,

Sy INM
Np = &£vev it
¢ M

Lemma 7.9. Let G= (V,E) be a given graph anlig be the average number of vertices in each
closed neighborhood of G. Then it holds:

NG = dGQG) +1

Proof. Note that/N[v]| = degv) + 1.

N ZVEV |N M | ZVEV (deqv) + 1) ZVEV deqv) + ’V‘ ZVEV deg(v) Tan
o= v v v Timdede)®

O

Lemma 7.10. Let G= (V,E) = G1 X G, be a strong product graph of two graphs & (V1,E;) and
G, = (Vo, E2). LetNg be the average number of vertices in each closed neighborhood dfié i
holds:

Ng =Ng, -Ng,

Proof. Lemmas 7.7 and 7.9 imply that
Ng = deg G;) + ded G;) +deg G )deg Gy) + 1.
Sinceded Gj) = Ng, — 1,i = 1,2 we can infer that
Ng=Ng, —1+Ng, —1+(Ng, —1)(Ng, — 1) + 1.
HenceNg = Ng, - Ng,. O

Lemma 7.11. Let G= (V,E) = G1 X G, be a strong product graph of two graphs & (V1,E;) and
G2 = (Vo,E2). Then it holds:

_ [Mil-|E2|-Ng, -Ug, + V2| - |[E| - N, -Ug, +2|E4 - || -Ug, -Ug,

Us
E|
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Proof. The coordinates of verticasare denoted byvi,v,) and 1-neighborhoods in a factG are
denoted byN' for i = 1,2. Applying Lemma 2.26 and basic set theory the following equations can be
inferred.

|E| 'UG = Z(a,b)eE ‘Ua,b| = Z(a,b)eE |N[a] N N[b”

= D (an.20),(buby) E |(N*[ag] x N?[ag]) N (N*[by] x N?[ba])]

= Z((a17a2)7(b17b2))€|; ’(Nl[al] N Nl[bl]) X (Nz[aﬂ N Nz[bz])|

= 3 fon e oo N8 Nl - [NZla N[ |

=D yevs 2 ((any). oy N 8] INToa] [ IN*[y) |+

A=
ZXEV1 Z((X,az),(x,bz))EE ‘Nl[X” : |N2[a2] N NZ[bZH +
B:

z((al-,az)v(bl«,bz))eE,al?éblbe?ébZ |N1[al] n Nl[bl” ' ‘Nz{az] n Nz[bz]‘

C.=
First, we consider terrA.

1 1
A=Y e, (@) oryyee N [B] INoi] [ INYY]
_ 2 1 1
= 2 yev INI Y (1), (b IN 1@l N7 [ba|

=2 yev, IN*IY]| 2 (b INYaa] N*[by]|

RIS IN2[Y]| S (g by, IN*[a2] MNE[by]|
V2| E4|

= V2| - |Ea|-Ng, -Ug,
Analogously it can be shown thBt= |V4|- |Ez| - Ng, - Ug,.

C= z((al,az)7(b1,b2))€Eyal#b1,az#b2 ‘Nl[al] n Nl[bl” ' ‘Nz[az] n Nz[bz]‘

=2y (s be)€Ex > (e b2)<E2 INY[ag] N N[y ]| - [N2[az] NN2[bg]|

 2|E1]|E2| 3 (ay by)e; INYEL] ANE[Ba]| S (g, 0,)c, [N?[B2] NN [by]|
a |Ea||E2]

= 2‘E1’ : ‘EZ‘ 'UGl 'UGz

Hence,

_ A+B+C _ ’V1| . |E2| 'NGl‘UG2+|V2‘ . ‘El‘ 'NGg -UGl—|-2|E1| . |E2| ’UGl'UGg
I E|

Uc
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As already mentioned, if for some grapBs andG; holdsUg, > Ug, the chance to disturb more
neighborhoods i, as inG; by deleting an edge is higher. As shown the valu& gfof a product

graphG depends on the respective val\g, |Ei|, Ng,, andUg, of its factorsG;. We will use this fact

when examining the experimental results.

7.3.2 Data Set

We now give an overview of the data set and the resulting product gtaghare used in our experi-
ments.

Prime Graph Data Set  For the experiment a small basic data set containing four different prime
graphsP, C, T, andl is chosen, see Figure 7.5.

Figure 7.5: Four prime graph®, C, T and| that are used to compute different product graphs as test set
Backbone vertices are highlighted as thick dots.

The graph denoted by is a path and the grafbis a closed path. These graphs have the simplest
structure. Both graphs are NICE and CHIC and can therefore beembby thin 1-neighborhoods
only. The backbone vertex set G6fcontains all vertice¥ (C) while the backbone vertex set Bf
contains only the "interior" vertices as shown in Figure 7.5. The giiajdha path that contains 7
triangles. This graph cannot be covered by thin 1-neighborhoodsce;éor a (non-trivial) product
graphG = H KT the edge-neighborhoods aNd—neighborhoods will become crucial when comput-
ing the PFD ofG with the modified Algorithm 9. The graphhas the densest structure, ileis the
graph where the most edges have to be removed such betomes disconnected. Moreover, the
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respective value®/ (1)|, |E(1)|, U, andN; are the largest ones among the values of the other graphs.

P C T |
G)| 10 10 17 18
9 10 23 35

g m <
©

BG) | 8 10 8 8
Us 2 2 291 337
Ne |28 3 371 489

Table 7.1: Depicted are the value¥ (G)|, |[E(G)|, |B(G)|, Us, andNg of the respective prime graphs that are
used to compute the product graphs of out test data set.

In Table 7.1 the number of vertices and edges as well as the average mafmertices in
neighborhood®Ng and the average number of vertices in environments of adjacent velticésr
G e {PC,T,I} are represented. One can observe Matc Nc < Nt < N; and furthermore that
Up =Uc < Ut < Uj. As an example consider graphandl. Deleting one edgéa,b) in P would
disturb exactly the two neighborhoodN|[a]) and (N[b]) only. On the other hand, in graghone
averagely disturbs.37 neighborhoods when deleting an edge. Moreover, deleting an aylgtige
in graphl would averagely disturb more neighborhoods than in all other gréphgP,C, T }.

Product Graph Data Set  Our test set of product graphs consists of all possible combinations of
products of two of the prime graphs C, T, andl. As shown in Lemma 7.10 and 7.11 the values
of Ng andUg of a product grapl@ depend on the number of vertices, the number of edges, and the
respective valueBlg, andUg, of the factors. Hence, it is easy to see Wy andN;x becomes
maximal and whyJ pzp andNpxzp becomes minimal among all other products and why the values of
the other products range between them.

Procedure The (modified) Algorithm 9 was implemented @++. In addition, theBoost Graph
Library was used [51]. Given one of the computed strong product gr@pks randomly disturb the
product by removing edges from it. The number of edges that will be rechtbbemG in each step
depends on the number of edges |E(G)boflo be more precise, in each step we dell.%5¢E(G)| of
edgeswiti =0.5,1,1.5,...,20. After randomly deletingf of edges we use the modified Algorithm
9 with P =1, i.e., we do not allow to use subproducts that are prime, to compute a pattiegat
subgraph of5. Each step is repeated 200 times for each graph in the product grapdetata
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PXP PXC CKC PXT CXT PXI CXI TXT TKXI IKXI
V(G)| | 100 100 100 170 170 180 180 289 306 324
E(G)| | 342 370 400 797 860 1142 1230 1840 2619 3710

B(G)|| 64 80 100 64 80 64 80 64 64 64
Us 484 492 5 680 692 8 815 947 1113 13.1
Ne 784 84 9 1038 1112 1369 14.67 13.73 18.12 23.90

Table 7.2: The used products and their respective val\é&)|, |E(G)|, |B(G)|, Ug andNg.

7.3.3 Experiment and Results
Recovering both original factors

To investigate how often both factors of the original graph product earetovered in dependence of
the ratio of perturbation we proceed as follows. After randomly deletingea fpercentage of edges
of each graph, we apply the modified Algorithm 9 to color the disturbed ptoditen, one maximal
connected component of each color is taken, to determine the approxinmagéefactors ofG. After
this, we check whether two of the determined factors are isomorphic to thirariges.

So as not to bias the results we must apply an additional step when checkirectignized ap-
proximate factors. Note, that it might happen that we get different batasphic factors although
the corresponding layers of the original graph are parallel fibetthidrcase we do not allow to treat
those factors as different. As an example consider the colored grapyure.3. Here we would
check if the factor that corresponds to a fiber with zigzag lines and thehahecorresponds to a
fiber with dotted lines are in parallel fibers of the original graphs. As itsuut they do and hence,
they would not be treated as different and only one approximate factardh@sponds to the pak
would have been determined as an original factor. In particular, thi®appis important for the four
strong product graphBX P, CXIC, TXIT, andl X I. Using this additional step, we can be assured
that we found two isomorphic factors that do not appear in parallel fansishence, we do not bias

the results.

Figure 7.6 shows the relative frequency of instances where bothgaafttire original graph product
were recovered in dependence of the ratio of perturbation.

One immediately observes that the ratio of disturbed product graphs tbikrenderlying factors
were recovered decreases very fast and that there is a remariffdrlende between the different
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Figure 7.6: The plot shows the relative frequency of instances where fagtors of the original graph product
are recovered in dependence of the ratio of perturbation.

product graphs. The most "successful" candidate is the @¢&p@, followed by PXIC, andPX P.
The least "successful" ones are the instances of the giiaphs T X T, andl X 1. In the latter three
graphs even a perturbation of only 1% disturbs the product graphs sl that it was not possible
to recover the original factors. Likewise in the other graphs the chandetéwsmine the underlying
factors decreases also very fast, e.g., for the gr&isT, CX I, PX T, andPX 1| only 2% of
perturbation is needed such that the percentage of instances withnextowvelerlying factors is less
than 20%. Even in the most "successful" candid@&sC, PXIC, andPX P, a disturbance of 5 7%
leads to approximate graph products where onlyih0% of the instances the original factors were
recognized.

Thus, there arise two questions:
1. Why do these graphs behave differently?

2. Why does the number of disturbed graphs with recovered origin@arfadecreases so fast?

Why do these graphs behave differently? To explain this, we take the valublks into account.
Indeed, one can observe that the most "successful" candidates gmgihs with smallest valuekg
that areCXC, PXIC, andPX P. The least "successful" candidates are the grapghd’, T X1, and

| X1 that have largest valuéss. Clearly, if for some graph&; andG; holdsUg, > Ug, then the
probability to disturb more neighborhoods®j as inG; by deleting an edge is higher. Moreover, the
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graphsT X T, T X, andl X | have also the largest number of edges. Thus, for a fixed percerftage o
removed edges, the number of removed edges in the latter three graphsiibighar as in the other
ones. Taking together the latter arguments, we can conclude that fodggxeentage of removed
edgesinf XIT, TXI, andl XI more neighborhoods are disturbed as in the other graphs. Hence, even
for a small ratio of perturbation the product structure of these graphsaigils disturbed and thus,

the underlying original factors cannot be recovered. The last angisnaéso explain why the plots of

the instances of the other graphs are arranged in such a way.

Furthermore, one can observe that there is a remarkable differemesdoethe graphSXC, PXC,
andPX P, although the valuddcxc = 5,U pxc = 4.92, andJ pp = 4.84 and the number of removed
edges for a fixed ratio of perturbation are quite similar. For example, fertanpation of 5% there
are 645% of instances iI€X C, 29% of instances iRXIC, and 7% of instances iAX P where both
underlying factors where recognized.

To understand this phenomena we also take the ratio of backbone vertcesdount. Notice
thatV(CXC)| = |V(PXC)| = |[V(PXP)| = 100. Therefore, the ratio of backbone vertices are as
follows: |B(CXC)|/100= 1, |[B(PXC)|/100= 0.8, and|B(PX P)|/100= 0.64. Note, the main
obstacle for determining the prime factors is to obtain a proper color-cotitnuay usage of the
respective subproducts. Hence, if one want to recover the undgfators, there must be connected
subgraphs in the perturbed product, that can be covered by nongulmpeoducts and that contain at
least one entire fiber of each factor. Moreover, one must ensuratthesst one fiber of each factor
gets exactly one color. Now, the ratio of 1-neighborhoods that candmkin€ XIC is higher than in
PXC as well as it is higher ifPXIC than inPX P. Hence, one can assume that the chance to find
some connected undisturbed regions that contain an entire fiber of theabfartors and thus, to
determine at least one fiber of each factor, becomes higher for thexamate products oE X C as
for PKC andPX P and higher folPX C as forPX P.

In general, all instances of graphs with nearly the same valggare more "successful" if they
have a cycle as factor. One can see that the valggare similar for all productsi XC andH X P,
for a fixed factoH € {P,C, T,|}. As argued, the ratio of backbone vertices plays an important role.
But in addition, the structure of the factors and therefore the structubtedtlisturbed) products has
to be taken into account. Consider the prime facRasndC. Note, the deletion of a single edge in the
pathP would decompose it into two disconnected subgraphs. If one deletegarirethe cycleC,
this graph remains connected. Now, after application of the modified Algoftiine disconnected
path would have been colored with two different colors, one color fohe&mnnected component,
while the disturbed cycle can entirely be covered by 1-neighborhoatisnaneover, all of its edges
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receive the same color. This gives rise to the assumption, that for a xedrmiage of removed edges
in approximate products d¢f X C, there are usually more "ways" to get a proper color-continuation
than in approximate products BfX P with H € {P,C, T, 1}, see Figure 7.7.

P X Ps

Figure 7.7: Shown are the colored graphs of disturbed produc& &t P; andP; X P after applying modified
Algorithm 9. In both graphs nearly the same percentage oé®dge removed (left 31% and right 27%). The
set of backbone verticé® consists of all thick-dotted vertices. For all backbondiees that are marked with
an "X" the induced neighborhood is prime and hence, theyatnesed to cover the graph. Although the number
of backbone vertices in the disturbed proddg&X R is larger as in in the disturbed prodWRiX P the ratio

of prime 1-neighborhood is nearly the same, i.e., the nurabbackbone prime 1-neighborhoods divided by
|B| is 0.42 in the left and @1 in the right graph. However, in the left graph there are npossibilities to cover

it with undisturbed connected neighborhoods than in thiet igaph. Hence, by taking a maximal connected
component of each color in the disturbed prodDglK P; the underlying factors would be recovered but not in
the disturbed produd® X P;. Note, one can regard the right graph as an approximate grofiCs X P;. In
this case, the right graph is much more disturbed than thegiaph.

Why does the number of disturbed graphs with recovered origin al factors decreases

so fast? Figure 7.8 shows the ratio of prime 1-neighborhoods (number of primebbaekl-
neighborhoods divided by the number of all backbone 1-neighbdghob the disturbed product)
in dependence of the ratio of perturbation.

One can see that in all disturbed products the average number of prinfdodigods increases
fast, e.g. in the grapBX P,PX C, andCX C only 5% of perturbation results in about 65% of prime
1-neighborhoods. More prime 1-neighborhoods can be found in tlee gthphs where only 5% of
perturbation results in more than 90% prime 1-neighborhoods. Clearly, thelmwighborhoods are
prime the fewer 1-neighborhoods can be used to recover the undefdgitoys. Taking into account
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Figure 7.8: The plot shows the (relative) ratio of prime 1-neighbort®ag., the number of backbone prime 1-
neighborhoods divided by the number of all backbone 1-rmigioods of the disturbed product, in dependence
of the ratio of perturbation.

the respective valuedg, one can easily see why the average number of prime 1-neighborhoods
increases very fast. For example, consider the g&piCXC with U = 5. If we delete 1% of edges,
i.e., four edges, we would have about®= 20 disturbed 1-neighborhoods. It hol@G)| = 100
for this particular graph. Hence, on average 20% of used 1-neighbds are disturbed, even if we
delete only four edges. As observable in Figure 7.8, the average ratiomté 1-neighborhoods with
a measured value of 186 is slightly less than.@, which might be explained with the circumstance
that in some cases edges are removed from already disturbed neightieriMoreover, the plot in
Figure 7.8 shows that the ratio of prime 1-neighborhoods does not seclieaarly. Again, we argue
that with an increasing percentage of deleted edges the probability to remewdge from an already
disturbed neighborhood increases. Note, in these test cases usuailying one edge from a 1-
neighborhood leads to a prime neighborhood and removing additionas éoge this neighborhood
preserves the property of being prime.

In addition, as one can see the graphs are grouped correspondiagimitarity of their valuet) g
and the number of their edges. The graphsP, PXIC, andCXC are in one cluster. Their respective
valuesU g € {4.84,4.92 5} and the number of removed edges for a fixed percentage perturbaion ar
similar. The same holds f&XT,CXT with U € {6.80,6.92} andPX,CX| withUg € {8,8.15}.
Clearly, if the value&J s, andUg, for two graphs are similar and moreover, the number of removed
edges for a fixed percentage perturbation is alike, then almost the samemuofmieighborhoods in
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Figure 7.9: Shown is the relative frequency of instances where botlofacif the original graph product are
recovered in dependence of the relative ratio of prime tisrhoods.

both graphs will be disturbed, after deleting a fixed percentage of eflhesemaining grapiBX T,
TXI, andl K1 are all clustered within a single group.

Figure 7.9 shows the relative frequency of instances where bothgaafttire original graph product
were recovered in dependence of the ratio of prime 1-neighborhoods.

With an increasing number of prime 1-neighborhoods the number of grajlese the underlying
factors can be recovered, decreases. As observable-i#89 of used 1-neighborhoods are prime
then in more than 68% of the respective instances the underlying factoesremvered. 1P X C
andCXC there are even more; iR 99% of the instances the original factors were determined in the
disturbed product graphs. If more than 70% of used 1-neighboehapsl prime then the chance
to recover the original factors is less than 30% in all samples and if more ®fndd used 1-
neighborhoods are prime then in no case the underlying factors wagnieed. Again, it can be
seen that in graphs, that have almost coinciding valligsthe chance to find the original factors in
those graphs that have a cycle as factor is slightly better.

Maximal Factorized Subgraphs

In the remaining part of this section we will discuss maximal factorized sphgra-or this purpose,
we analyze the ratio of the maximal factorized subgraph in the disturbedigirgcaph. Note that
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Figure 7.10: An approximate product graph of the product of two patResnd P; with a perturbation of
19%, i.e., 20 edges are removed. All backbone vertices vathprime 1-neighborhoods are highlighted by
thick dots. The computed subgraph of the Cartesian skeldtenapplication of modified Algorithm 9 is not
connected. Four different colors are used. The maximabfeetd subgrapi is the one induced by the
vertices that are incident to the thick-lined and dasheddiedges. In this particular example holds: Rbtie

% (R//%I‘ \E%D = % (%—ng 15—016) = %(0.54+ 0.48) = 0.51. Notice tha{B(G)| = 15 if the graph would not
be disturbed. In the disturbed product only 6 of 15 backbeneighborhoods are not prime. However, even if
only 40% of originally non-prime neighborhoods can be useel @an factorize more than 51% of the original

graph in this example.

the recognized Cartesian skeleton of the disturbed product after amplich modified Algorithm 9
need not be connected, see Figure 7.10.

Therefore, we take one maximal connected component of the computessi@arskeleton, i.e.,
a connected component with a maximal number of vertices and among all thmg@sshs the ones
having a maximal number of edges. The edges of the maximal factorizedaphibig the disturbed
product are then the edges of the subgraph of the Cartesian skeletail anon-Cartesian edges
between those edges. Udtbe such a subgraph of a disturbed prodacand letG be the original
undisturbed product. We calculate the ratio of a maximal factorized subgsafollows:

V(H)| | [E(H)]
NG |E<G>|>

. 1
RatioH = ~
atio 2<

Figure 7.11 and 7.12 show the relative ratio of maximal factorized subgiapglependence of the
ratio of perturbation, respectively in dependence of the relative rafioimie 1-neighborhoods.

In both plots, one can see that with an increasing ratio of perturbationearte: hwith an increasing
number of prime 1-neighborhoods, the size of maximal factorized subg@gcreases. For a fixed
percentage of removed edges in all graphs the size of maximal factotibgdaphs decreases in
accordance with the decrease of the respective valgeAs observable, for a disturbance of 2% in
the graphsT XIT, T X1, andl X1, the maximal factorized subgraphs averagely represet@% of
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Figure 7.11: The plot shows the relative ratio of maximal factorized sap@s in dependence of the ratio of
perturbation.

the original product graph. If one removes 2% of the edges in the g@phl, CX I, PX T, and

PX 1, the maximal factorized subgraphs averagely represent@B% of the original product. The
graphsCXC, CX P, andPX P can be disturbed much more. If 10% of their edges were deleted it
was possible to factorize at least 2@B0% of their subgraphs, but only-04% in the other samples.

As already argued, the valublss and cardinalities of the edge sets, explain why the percentage of
maximal factorized subgraphs in the graghsl T, T X I, andl X | decreases faster than in the other
graphs and whg XIC, CX P, andPX P are more robust against perturbation. Again, it can be seen
that the algorithm performs on graphs with almost coinciding valligghat have a higher ratio of
backbone vertices or that have a cycle as factor slightly better.

In Figure 7.12 it is observable that for a fixed ratio of used prime l-neigidmds the algorithm
performs worst on the grapghiX T. Note, in order to receive a proper color-continuation in approx-
imate products of this graph X T, it is crucial to use edge-neighborhoods afidneighborhoods,
since none of its 1-neighborhoods are thin. Thus, due to the structthre gfaphl X T, the compu-
tation of a proper color-continuation is much harder compared to othehgir&ven if parts of the ap-
proximate product of X T can be factorized with 1-neighborhoods, in each step edge-neigidash
andN*-neighborhoods have to be factorized, to receive a proper coidirc@tion. Hence, in ad-
dition to the information provided by the PFD of 1-neighborhoods, we muestusre "non-local”
information. Therefore, it might happen that in the disturbed product mamgighborhoods can
be factorized, but not the respective edge-neighborhood&Néandeighborhoods. Hence, the color-
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Figure 7.12: The plot shows the relative ratio of maximal factorized salpgs in dependence of the relative
ratio of prime 1-neighborhoods.

continuation fails and thus, the maximal factorized subgraphs become smaller.

A remarkable result that can be observed in Figure 7.12 is that for alhgraxcept the graph
TXT, that have a measured ratio of prime 1-neighborhoods 80%, at least 30% 50% of the
original graphs was recovered. EveniB5% of used 1-neighborhoods were prime it was possible to
recover 7%- 16% of the underlying graph. The latter result is promising and shows #aatgbrithm
for the recognition of approximate products computes suitable results etodfas large parts of the
disturbed products even if a large amount of 1-neighborhoods is prinmedver, we have only
countedmaximalfactorized subgraphs and there might be more factorized subgrapiefdre, one
would expect that the ratio is larger if we take all factorized subgraphsiotount.

Summary

Starting with the question: "How often do we find both original factors in théudied product
depending on the percentage of perturbation?” We found that the ratistafbed product graphs,
where both underlying were recovered, decreases very fast ahth#re is remarkable difference
between the different product graphs.

To understand the latter observation we took the vallies the ratio of the backbone vertices
and also the structure of the graphs into account. For grépdnsdH with Ug > Uy the chance to
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recover the underlying factors fét is higher than foiG. Modified Algorithm 9 performs on graphs
with almost coinciding valueld g that have a higher ratio of backbone vertices or that have a cycle as
factor slightly better.

However, even a small percentage of perturbation leads to disturbddgbrgraphs, where only
few instances of the data set have a structure, for which it was possidieteéomine the original
underlying factors. To understand why the ratio of disturbed prodagtits, where both underlying
factors were recovered, decreases so fast the relation betwdarbption and the ratio of prime
1-neighborhoods was investigated. In general it was observed thatlight perturbations lead
to a high ratio of prime 1-neighborhoods. A perturbation of 6% leads to more 0% prime 1-
neighborhoods in all graphs of the data set. Clearly, the more 1-neiybdxds are prime the fewer
1-neighborhoods can be used to recover the underlying factorsngrdie latter observations into
account we can empirically conclude why only few instances of slightly distiproducts have a
structure where it was possible to determine the original underlying factors

In the last part of this section we investigated maximal factorized subgeamhsied to find how
large maximal factorized subgraph of disturbed product are in depeadm the ratio of disturbance,
and therefore, in dependence on the ratio of prime 1-neighborhoods.

We observed that with an increasing percentage of perturbation ame heith an increasing
number of prime 1-neighborhoods, the size of maximal factorized subhg@gcreases. We found
that for almost all graphs with measured ratio of prime 1-neighborhoods880%, at least 30- 50%
of the original graphs was recovered. Ever-i95% of 1-neighborhoods were prime, it was possible
to recover 8- 16% of the original underlying product graph. Moreover, only maxinaatdrized
subgraphs were counted, it is expected that this ratio is larger if we takeetltized subgraphs into
account. The latter result is promising and shows that the algorithm for¢dbgméion of approximate
products computes good results.



Summary and Outlook

Motivated by the fact that, in practical applications, graphs often ocgyreaturbed product struc-
tures, we investigated the local structure of strong product graphdeuaiioped various new algo-
rithms that work on a local level, i.e, by usage of suitable subgraphs, trgexse strong product
graphs into their prime factors.

We realized that the terrthinnessplays a central role. The major task for the prime factor de-
composition of a strong product graph is to determine its Cartesian skeldtah iw only uniquely
determined in thin graphs. We observed that, although a graph can be ihimolidts not necessarily
for its subproducts. To treat this problem we introduced the con&ptsonditionand theback-
boneB(G) of a graphG. These tools turned out to be essential for uniquely determining parts of the
Cartesian skeleton, even if the used subproducts are not thin.

We then introduced the graph classe®NOCE, CHIC, andlocally unrefinedyraphs. Moreover, we
investigated various local structural properties and derived polyndimalalgorithms that work on
a local level for the PFD of those graphs. After all, we used these rasuttsnstruct a new local,
quasi-linear time algorithm that computes the PFD of all graphs.

Finally, approximate graph products were discussed. To derive arnthigdor the recognition

115
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of approximate graph products the new local algorithm was modified. Atrntiethe performance
of this algorithm was evaluated on a sample of approximate products. Welmsttgiven strong
product graphs by deleting edges. We found that even a small pegeesitgerturbation leads to
disturbed product graphs, where only few instances of the data getehatructure, for which it
was possible to determine the original underlying factors. We explained hieisopnena with the
observation that only slight perturbations lead to a high ratio of prime 1-herploods. After this,
maximal factorized subgraphs were investigated. We observed that witicr@asing percentage of
perturbation and hence, with an increasing number of prime 1-neightistbe size of maximal
factorized subgraphs decreases. We found that for almost allgyveiiha measured ratio of prime
1-neighborhoods of- 80%, at least 36- 50% of the original graphs was recovered. Ever 95%
of 1-neighborhoods were prime, it was possible to recovel 8% of the original underlying product
graph. We concluded that the algorithm for the recognition of approxinragiupts computes good
results.

The future research should be focused on providing and developimgstics for approximately
factorizable graphs based on the new local decomposition algorithm. Moréow can the problems
be solved even if the used subproducts are approximate products?

Furthermore, one should generalize the current problem to the fadtonizz directed graphs,
weighted graphs or hypergraphs and ask under which conditions phodect graphs have unique
prime factors and how they could be computed fast. Moreover, how qaoxdmate graph products
of those graphs be recognized?

In addition, one should also treat other graph products, e.g. the Cartdséadirect, and lexi-
cographic product, and ask under which conditions it is possible to nezmg@pproximate products
using local working approaches of those products.

It is the current state of the art to decide whether a graph is prime or nobrioputation of its
prime factorization. Also the new developed algorithms need non-prime aqplfigyr Therefore, one
should develop a graph preprocessing from which (at least) negassaditions can be derived to
decide whether a prime graph is very similar to a product graph or not, gstigtical approaches,
e.g. degree distributions or shortest paths distributions. Those appsoaould be very important to
consent or invalidate several theories, that make explicit statementsthbquibduct-like structure
of graphs, in different contexts, as e.g. in theoretical biology [56].
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