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Abstract

The interaction of RNAs and their ligands strongly depends on folding
kinetics and thus requires explanations that go beyond thermodynamic
effects. Whereas the computational prediction of minimum energy sec-
ondary structures, and even RNA–RNA and RNA–ligand interactions,
are well established, the analysis of their kinetics is still in its infancy.
Due to enormous conformation spaces, the exact analysis of the combined
processes of ligand binding and structure formation requires either the
explicit modeling of an intractably large conformation space or—often
debatable—simplifications. Moreover, concentration effects play a crucial
role. This increases the complexity of modeling the interaction kinetics
fundamentally over single molecule kinetics.

This work presents a novel tractable method for computing RNA–ligand
interaction kinetics under the widely-applicable assumption of ligand excess,
which allows the pseudo-first order approximation of the process. It
rigorously outlines the approach and discusses model parametrization
from empirical measurements. Furthermore, the kinetics of the designed
theophylline riboswitch RS3 are studied at different ligand concentrations
and with respect to co-transcriptional effects. Additionally, the concept
of canonical landscapes is put on a solid theoretical foundation, defining
a symmetrical move set yielding a connected landscape as well as direct
paths in these. Furthermore, a heuristic approach for partially exploring
energy landscapes around a given structure of interest is described. All
results are implemented as usable software tools.
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Chapter 1.

Introduction

Riboswitches are regulatory RNA elements usually located in the 5′-UTR
of genes. They enable the specific response to the presence of ligands,
i. e. small molecules that can bind to the RNA, by transcriptional or
translational control of gene expression. Their ability to switch genes on or
off depending on small molecules such as theophylline or tetracycline makes
them valuable biotechnological tools. The design of tailored riboswitches for
specific applications and advanced control logic is therefore an attractive
endeavor in synthetic biology (Wachsmuth et al. 2013). A riboswitch
can be understood as the composition of its aptamer and its actuator
domain. It senses the ligand by binding it to a binding pocket of the
aptamer domain; this influences the conformations of the actuator domain
and thereby leads to a measurable response to ligand binding, e. g. by
terminating transcription (off switch) or suppressing the terminator hairpin
(on switch).

The computational design of artificial riboswitches requires a sufficiently
accurate model of the ligand binding process and the structural response
of the RNA to ligand binding. The equilibrium thermodynamics of RNA–
ligand binding have been studied for RNA–RNA interactions e. g. in Bern-
hart et al. (2006) and Dimitrov and Zuker (2004), and for small molecule
binding in RNA–ligand (Espah Borujeni et al. 2015). As in the case of
single molecule RNA folding, purely thermodynamic models are sometimes
insufficient because they disregard the dynamics of the process. This can
cause dramatic mis-predictions. Various approaches have analyzed the
kinetics of single molecule RNA folding (Flamm et al. 2000; Hofacker
et al. 2010; Mann et al. 2014; Wolfinger et al. 2004). For tractability the
continuous process is decomposed into elementary steps, simplified based
on heuristic assumptions, and approximated by a coarse-grained process.
One especially important simplification is the restriction of a RNA’s

conformation space to canonical structures, which are going to be de-
fined as the structures that do not contain any isolated base pairs. This
greatly reduces the conformation space of secondary structures and makes
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computations feasible for RNAs of sizes that could not have been han-
dled before. Though the notion of canonical structures is well-known
(Bompfünewerer et al. 2007) and basic support for this approximation is
implemented in some computer programs (e. g. barriers, Flamm et al.
2002), these implementations are incomplete and lack a solid theoretical
foundation. Therefore, a symmetric move set for canonical RNA land-
scapes is introduced formally. Furthermore, the well-known notion of direct
paths (Flamm et al. 2000) is extended to canonical landscapes, allowing
for a highly efficient approximation of path searches and barrier height
estimations between arbitrary canonical structures.
Another important simplification is the pruning of RNA landscapes

to structures that lie within an energy band of defined width above the
minimum free energy of the given RNA. This radical heuristic is essential
because of the enormous number of secondary structures which grows
exponential with the RNA’s length. However, as a consequence, structures
of interest might be removed from the landscape, too. Therefore a heuristic
has been developed that tries to remedy this dilemma by exploring only
parts of an energy landscape and connecting them to the other structures,
yielding a connected landscape again.

This work is structured as follows. In Chapter 2, the biochemical
background of structure and function of RNA and especially riboswitches
is explained. Next, in Chapter 3, mathematical formalizations of these
concepts are given, which will be used throughout this work. This chapter
also states important natural laws that are used to derive the folding
model later on. Chapter 4 defines canonical RNA landscapes and shows
important properties of these. Further, the notion of direct canonical
paths is introduced and their existence is proved. The partial, heuristic
exploration of energy landscapes is considered in Chapter 5. Finally, a
tractable model of riboswitch folding kinetics is developed in Chapter 6.
The results of this thesis are concluded in Chapter 7.

Publication of the results. Parts of this work, especially Chapter 6,
have been used in the preparation of the manuscript (Kühnl et al. 2016)
which was accepted for publication in the Proceedings of the International
Symposium on Bioinformatics Research and Applications (ISBRA) (2016).
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Chapter 2.

Biochemical Background

This chapter outlines the basic biochemical background of this thesis. The
structure and function of RNA will be explained. Special emphasis is
put on riboswitches, a class of regulatory RNA elements that is highly
interesting for synthetic biology. That is because a riboswitch allows
an external regulation of the expression of genes and functional RNAs
depending on the presence of a certain ligand. Therefore, riboswitches may
proof to be a useful tool to analyze the function of specific genes.

2.1. The structure of DNA and RNA
Both DNA and RNA are important biomolecules present in any known life
form. They are chains of nucleobases, namely adenine, guanine, cytosine,
thymine and uracil, which are connected by a sugar–phosphate backbone
(Vollhardt and Schore 2003, p. 1179). While thymine is only present
in DNA, uracil can only be found in RNA. The nucleobases are often
abbreviated using their initial letters A, G, C, T and U, respectively. The
structural difference between DNA and RNA can be inferred from their
names: DNA stands for deoxyribonucleic acid and RNA for ribonucleic
acid, indicating that DNA is missing a hydroxyl (OH) group that is present
in the sugar of RNAs, cf. Fig. 2.1 on the following page. Because of that
missing reactive group, DNA is more stable than RNA. The nucleobases
in both RNA and DNA have a strong tendency to form pairs connected
by hydrogen bonds. This pairing, however, is not arbitrary: the very
stable canonical or Watson-Crick base pairs are A−T, A−U and G−C,
and the less stable wobble pair is G−U. Other pairings are energetically
unfavorable and seldom observed. Each nucleobase can pair with at most
one other base. The canonical base pairing schema induces a notion of
complementarity: for a given sequence of nucleobases, its complementary
sequence is defined as the sequence consisting of the canonical pairing
partner of each nucleobase in the original sequence.
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Figure 2.1.: Top: Structure of 2-deoxyribose and ribose as found in DNA
and RNA, respectively. Note the missing hydroxyl group at
the second C atom. Bottom: Structure of the five nucleobases.
In RNAs, the nucleobase thymine is not present but replaced
with uracil and vice versa. Source: McQuarrie and Simon (1997).

The sugar–phosphate backbone of RNA consists of ribose molecules with
an attached phosphate group (cf. Fig. 2.2 on the next page). In DNA, as
mentioned before, a hydroxyl group is missing, so instead of ribose, the
sugar is called deoxyribose. The sugar molecule consists of a ring of four
carbon atoms and an oxygen atom, additional groups attached to it, and a
fifth dangling carbon atom. The carbon atoms in the ring are numbered in
clock-wise order, beginning after the oxygen atom. The fifth carbon atom
is attached to the fourth one. The phosphate group is attached to the third
carbon atom of its associated ribose as well as the fifth carbon atom of the
next ribose. Therefore, the sugar-phosphate backbone gives the sequence
of nucleobases attached to it a direction. By convention, and because this
is the direction of DNA transcription (cf. Section 2.2 on page 15), DNA
and RNA sequences are written from 5′ to 3′, where n′ refers to the n-th
carbon atom. The first and the last nucleobase of a sequence represent its
5′ and 3′ end, respectively, and the terms upstream and downstream are
used to refer to nucleobases that lie further in the direction of the 5′ end
or 3′ end, respectively, w. r. t. to some reference nucleobase.
The most notable structural difference between DNA and RNA is that

the former usually occurs as a double-stranded molecule, i. e. two chains
of nucleobases paired with each other wind into a helical structure. The
two strands pair in opposite directions such that the first base of the
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Figure 2.2.: Part of a DNA molecule. The 2-deoxyribose molecules are
connected by phosphate groups. Together they form the sugar–
phosphate backbone of DNA. The structure of RNAs is similar,
but the sugar molecule is ribose instead. The “base” place-
holder stands for one of the nucleobases from the bottom of
Fig. 2.1 on page 12. The top of the chain represents the 5′-end,
the bottom is the 3′-end. Source: McQuarrie and Simon (1997).
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first strand pairs with the last base of the second strand, the second
base with the second-last one etc. RNA, in contrast, most often has as
a single-stranded form. Since the expression of stable base pairs reduces
the molecules’ free energy and any physical system prefers states of low
energy, the nucleobases of the open RNA chain begin to pair with each
other within the same molecule. This process is referred to as folding
of the RNA, leading to a specific combination of base pairs called its
secondary structure. Every structure the molecule can fold into according
to the pairing rules specified above is called a structural conformation
of this specific RNA. For typical sequences, the combinatorial nature of
the structure gives rise to an enormous amount of possible conformations.
The entirety of conformations for a given RNA sequence is referred to as
this RNA’s structure ensemble. In a sample of a specific RNA, there are
usually many different conformations from the ensemble, though certain
structures are very dominant while other ones are extremely rare.

Of course, the given definition of structure and conformation based on the
base pairs present within the RNA molecule is a simplification. The folded
RNA chain in a solution has a certain three-dimensional structure that
can be vital for the functionality it provides. However, there is evidence
that the secondary structure is a sensible approximation to describe the
RNA structure and reason about its function (Flamm et al. 2000). Often,
the secondary structure of related functional RNAs (cf. Section 2.2 on the
next page) found in different species is conserved while its sequence differs.

An additional assumption is usually made when dealing with RNA
secondary structures. According to the definition above, base pairs in
an RNA could also cross each other, e. g. the first nucleobase may pair
the fifth one and the third one with the eighth one, forming a knot-like
structure called pseudo-knot. It is common to exclude conformations
containing pseudo-knots from algorithms and methods since they often
make them much more difficult, rendering many approaches infeasible for
larger molecules. An example is the thermodynamic RNA folding problem
(with respect to the usual energy models) that is polynomial for pseudo-
knot free structures (Zuker and Stiegler 1981) but becomes NP-hard for
arbitrary ones. (Akutsu 2000). Because of that, the same assumption
will be made throughout this work, disregarding any structure containing
pseudo-knots. Additionally, it is assumed that the minimal loop length in
any structure is three, i. e. between any base pair there must lie at least
εloop = 3 unpaired nucleobases. This is to account for the stiffness of the
sugar–phosphate backbone which cannot be bent into arbitrary angles.
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2.2. Functions of DNA and RNA
Despite their structural similarities, DNA and RNA perform very different
functions in organisms. The purpose of DNA is to store the entirety of
information of a cell that is passed on to its ancestors. This information
is encoded as a nucleobase sequence on double-stranded DNA molecules.
A part of this information encodes genes, i. e. sequence snippets that are
translated into a protein that performs various functions in the cell. This
translation process, more commonly referred to as expression of genes,
consists of several steps that vary across different types of organisms,
for example between procaryotes and eucaryotes. The common steps1

across all organisms, however, are the transcription of the gene into a
so-called messenger RNA or mRNA, and the translation of this mRNA
into the protein. The translation is performed by a protein–RNA complex
called ribosome that successively reads the mRNA chain 5′-to-3′ direction.
Thereby it translates the nucleobase sequence of the mRNA into a sequence
of amino acids that form the protein using a coding scheme that is almost
generic to all living organisms. The transcription of the DNA is performed
by an enzyme called RNA polymerase. It reads off the sequence of one
DNA strand in the same direction and produces a complementary sequence
of RNA that carries this information from the DNA to the ribosome,
explaining the name “messenger RNA”. In the bacterium Escherichia coli,
the transcription proceeds with a rate of about 50 nucleobases per second
(Bremer and Dennis 2008). During the translation, the ribosome reads off
the mRNA at a similar rate (ibid.). However, since always three nucleotides
encode a single amino acid, the “output rate” of the ribosome is about
three times lower.

Beside its role as mRNA, there are numerous other classes of non-coding
RNAs (ncRNAs) that are also transcribed from the DNA and perform a
broad spectrum of tasks, many of which are related to the regulation of
gene expression. This is achieved e. g. by direct or indirect degradation of
specific mRNA transcripts, alteration of the splicing process2 in eucaryotes,
or direct interaction with the RNA polymerase or the ribosome. An
example for the latter type of RNA are riboswitches, which are the central
type of RNA that this work is about. They are introduced in greater detail
in Section 2.3 on the following page. Because of their functions, non-coding
RNAs are also referred to as regulatory RNA. Other important types of

1The following description is strongly simplified and limited to those aspects that are
relevant to this work.

2The term “splicing” means the removal of parts of a gene from the mRNA transcript.
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non-coding RNA are rRNAs, which serve as components of the ribosome,
as well as tRNAs, which provide the ribosome with the amino acids used
to build a protein during the translation of mRNA.
While the role that gene expression plays in the metabolism of cells is

known for decades, it has not been until recently that the importance of
non-coding RNAs (ncRNAs) was realized. In the past, the intergenic areas,
i. e. the parts of the DNA that are not transcribed into mRNA, have been
referred to as “junk DNA”. Today it is known that the biggest part of the
mammalian genomes are transcribed into RNA transcripts, however, to
which extend these transcripts perform biological functions is still hotly
debated (Palazzo and Lee 2015)

2.3. Riboswitches
A very interesting class of regulatory RNA elements are so-called ri-
boswitches. As their name suggests, they act as a kind of “switch” that can
turn on or off the expression of a gene or another non-coding RNA placed
immediately downstream of the switch (Breaker 2011). This function is
performed by direct interaction of the RNA with a another molecule, the
ligand. The effect is that the riboswitch inhibits or enables either the
translation through an interaction with the ribosome, or the transcription
by interacting with the DNA polymerase. This difference gives rise to
the classification of this RNA type into transcriptional and translational
riboswitches. Another type of riboswitch acts as a ribozyme, i. e. a RNA
molecule catalyzing a certain reaction, in this case a self-cleavage that
degrades the mRNA transcript.

As mentioned, riboswitches act as “genetic switches”. They are controlled
by direct interaction with an external ligand molecule that specifically
binds a certain structural area of the riboswitch. This area is called the
ligand’s binding pocket on the riboswitch, and the part of the riboswitch
containing the binding pocket is also referred to as its sensor domain.
As described in more detail in Section 3.6 on page 38, the formation of
a ligand–RNA dimer complex is an energetically favorable reaction. As
a result, in the presence of the ligand the conformations that possess
the ligand’s binding pocket dominate the RNA’s structure ensemble. In
absence of the ligand, however other structures become more likely and
the binding pocket is not expressed very often.
Beside the sensor domain, riboswitches contain a second structural el-

ement: an actuator domain containing a terminator that is capable of
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Figure 2.3.: Example of a transcription-regulating riboswitch controlled
by theophylline (top middle). The red sequence part forms
aptamer domain, and the blue parts constitute the terminator.
Note that the aptamer and the terminator overlap. Left: In
absence of the ligand, the terminator hairpin forms. Right: The
ligand binds into the binding pocket and, thereby, suppresses
the terminator formation. Source: Wachsmuth et al. (2013).

interrupting the DNA polymerase during transcription or the ribosome dur-
ing translation, depending on its type. In transcriptional riboswitches, for
example, this process is mediated by a mechanism called Rho-independent
or intrinsic termination (Wachsmuth et al. 2013), i. e. a hairpin loop (for-
mally defined in Definition 17 on page 30) forms on the mRNA transcript
immediately after it has been transcribed by the RNA polymerase. This
so-called terminator hairpin is followed by a poly-U stretch, a part of the se-
quence consisting only of uracil nucleobases, e. g. eight bases in Wachsmuth
et al. (ibid.). Figure 2.3 gives an example of such a riboswitch. As the
RNA polymerase proceeds to transcribe the poly-U stretch, its binding to
the nucleic acid sequences is less strong. The terminator hairpin, which
has already formed by this time, is able to interact with the polymerase
such that it releases the incomplete mRNA transcript. Note that this
process is highly time-critical: if the RNA polymerase has already passed
over the poly-U stretch before the terminator has formed, it can no longer
be interrupted and the transcription continues even if, in the long run, the
terminator dominates the structure ensemble.

The actual switching function of a riboswitch is mediated by an interplay
of the formation of the sensor and the actuator domain. Often, the two
domains are overlapping and competing in the sense that either only the
binding pocket or only the terminator structure can be present at a time.
For example, in an on switch, the terminator forms in the absence of the
ligand, because its energetic properties are better than that of the binding
pocket. Binding the ligand molecule, however, grants an energy bonus to
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the—by itself unfavorable—binding pocket. This way, the ligand overturns
the dominance of the terminator in the structure ensemble and “switches
on” the transcription by preventing the formation of the terminator. Again,
it is important that the switching process happens quick enough, such that
the formation of the terminator is interrupted before it can interact with
the RNA polymerase.

2.4. The design of synthetic riboswitches
Though riboswitches are naturally present gene regulatory elements in
procaryotes and, to some extent, in eucaryotes (Breaker 2011), a very
interesting idea is the design of synthetic riboswitches. Given an arbitrary
ligand molecule, one wants to be able to engineer a sequence that, when
inserted into the 5′-UTR of a gene, acts as specific type of riboswitch. To
achieve that, several problems have to be solved:

1. finding an aptamer for the given ligand, i. e. a RNA sequence that
acts as a sensor expressing a binding pocket the ligand can bind to,

2. finding an actuator structure that can interrupt or enable the tran-
scription or translation, depending on the type of riboswitch that is
to be designed,

3. combining sensor and actuator such that they can act as the intended
riboswitch type, and

4. finding a RNA sequence that folds into the required secondary struc-
tures depending on the presence of the ligand.

Step 1 cannot currently be performed in silico. Therefore, an experi-
mental method called SELEX (Tuerk and Gold 1990) is utilized to find
the desired sensor. Once an aptamer for a given ligand has been found, it
can be re-used for the design of all types of riboswitches. Repeating the
experiment is only necessary when changing the ligand.
SELEX stands for “systematic evolution of ligands by exponential en-

richment”. In short, this method starts out with many different RNAs
and filters off those that are unable to bind the ligand. The remaining
RNAs are amplified and mutated, and the filtering process is repeated
with a higher intensity. This process is repeated several times until the
strongest-binding aptamer is found. The method can be enhanced to also
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ensure a high specificity of the ligand. That means that the ligand binds
only to the ligand and not to another substance of choice.
Step 2 can be performed by analyzing natural riboswitches and has to

be performed only once for each class of riboswitch. Note that this step
yields a RNA structure, while the previous step yields a sequence.

Step 3, the combination of sensor and actuator domain, is a challenging
task. Both domains need to overlap in such a way that binding the
ligand switches the actuator on or off, depending of the type of riboswitch.
Though computational tools can aid this process, it is often performed by
hand relying on expert knowledge and intuition. The quality of the result.
Finally, in Step 4 a sequence needs to be found that folds into the

designed structures. This task is known as the inverse folding problem and
is addressed by a number of methods, e. g. the tool RNAdesign (Siederdissen
et al. 2013). Since the folding process is supposed to depend on the
presence of the ligand, additional design goals are required to make sure
the riboswitch works as intended (cf. Flamm et al. 2001; Wachsmuth et al.
2013, 2015).

After one or more riboswitches of the desired type have been designed,
it is required to verify that they are fully functional. Of course, a final
judgment can only be rendered after an in vivo experiment in the target
organism, as there are simply much more aspects involved deciding over
the functionality of a design than could be taken into account by any
feasible design method. The problem, however, is that such experiments
are time-consuming and cost a large amount of money, such that it is
highly desirable to identify malfunctioning designs before wasting resources
on their experimental evaluation. In silico approaches can help to achieve
this goal, and one important step is the analysis of the folding kinetics
of the designed riboswitches. Therefore, this work aims at developing a
tractable model of their folding process that can help to decide whether
the produced sequence will indeed perform as intended.
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Chapter 3.

Mathematical Preliminaries

This chapter introduces the reader to the basic mathematical terms and
ideas used across the chapters of this thesis. Constructions that are specific
to a certain part of this work are explained in that respective section.

3.1. General energy landscapes
This section formally describes the terminology of energy landscapes used
throughout the rest of this work.

Definition 1 (Moves and move sets). Let S be an arbitrary set. A move
setM = {µ1, µ2, . . .} w. r. t. S is a set of partial functions

µk : S 99K S, k = 1, 2, . . .

that map none of the elements of S to itself, i. e. ∀s ∈ S : µk(s) 6= s for
all k. These functions are referred to as moves.

A move µ is valid w. r. t. to an element s ∈ S if µ(s) is defined.

Moves are called that way since, given an element s ∈ S, the application
of the function µ can be interpreted as a move from s to µ(s). Move sets
can be symmetric or asymmetric:

Definition 2 (Symmetry of move sets). A move setM on a set S is called
symmetric if, for any move µ ∈ M, there is an inverse move µ−1 ∈ M
such that

∀µ(s) ∈ µ(S) : µ−1
(
µ(s)

)
= s,

where µ(S) = {µ(s) | s ∈ S and µ(s) is defined} is the image of µ on S.
Otherwise, it is called asymmetric.

Move sets induce a notion of neighborhood among the elements of S:
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Definition 3 (Neighborhood and adjacency). LetM be a move set w. r. t.
a set S. The neighborhood of an element s ∈ S w. r. t.M is the set of all
elements that can be reached from s by applying a single move fromM to
it. It is denoted as

NM(s) = {µ(s) |µ ∈M} .

If the used move set can be inferred from the context, it is left off the index.
Two elements s1, s2 ∈ S are called adjacent to each other w. r. t.M if

s1 ∈ NM(s2) or s2 ∈ NM(s1). IfM is symmetric,

s1 ∈ NM(s2) ⇔ s2 ∈ NM(s1).

In that case, define the symmetric neighborhood relation NM such that
s1 NM s2 if and only if s1 and s2 are adjacent w. r. t.M.

Using the definitions above, energy landscapes can be defined easily:

Definition 4 (Energy landscape). An energy landscape L = (X, f,M) is
a tuple consisting of:

1. a finite1 set of states X,

2. an energy function f : X → R mapping each state x ∈ X to the real
number that represents the state’s energy, and

3. a move setM w. r. t. X.

In a physical system with states that can be associated with a certain
energy, one usually assumes that states of lower energy are visited with a
higher probability, i. e. a low energy is a favorable property. If an energy
landscape is used to model such a system, it is therefore interesting to
know the state or states of minimal energy. Beside this global minimum,
local extrema can be defined in a natural way, too, and are an important
characteristic:

Definition 5 (Extrema). Let L = (X, f,M) be an energy landscape. A
state x ∈ X is called a local minimum (local maximum, resp.) if for all
y ∈ N(x) the inequation f(x) ≤ f(y) (f(x) ≥ f(y), resp.) holds.
The global minima (global maxima, resp.) are the local minima (local

maxima, resp.) with the lowest (highest, resp.) energy.
1Energy landscapes can also be defined to allow for infinite state sets, however, this
will not be required in the context of this work.
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Figure 3.1.: 3-dimensional visualization of an energy landscape. The valleys
correspond to the local minima and the peaks between them to
the rate between the states. The depth of the valley represents
the energy of its local minimum.

The term “landscape” is inspired by some parallels of this theoretical
construct to real, natural landscapes. Each state represents a spot on the
ground. One can move from one state to any of its neighbors induced by
the move set, jumping between different energy levels, just as one would
walk up and down when following a trail to cross a hill. The minima and
maxima correspond to valley bottoms and mountain peaks, respectively.
Figure 3.1 attempts to visualize an energy landscape in three dimensions.
It has been constructed by interpreting the local minima of the landscape
as nodes of a graph and the rates between them as weighted edges. A
2-dimensional, force-directed layout has been applied to the graph structure
and the third dimension was used to encode the energy of the local minima.
Though extrema always exist since X is finite, it can happen that

multiple extrema with equal energies are adjacent to each other. Such
groups of states will be referred to as plateaus. They are an example for
artifacts that one often wants to avoid when talking about landscapes,
since they cause corner cases in algorithms which can be handled but
complicate their description. It is therefore convenient to introduce some
more restrictive properties for landscapes (Flamm et al. 2002) that will
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lead to a simplified presentation of the following ideas.

Definition 6 (Degeneracy, local invertibility and non-neutrality). Let
L = (X, f,M) be an energy landscape. L is called . . .

• non-degenerate if f is injective, i. e. for all x, y ∈ X, f(x) = f(y)
implies x = y. Otherwise, L is degenerate.

• locally invertible if the implication f(x) = f(y) ⇒ x = y holds for
all x, y, z ∈ X with x, y ∈ {z} ∪N(z).

• non-neutral if f(x) = f(y) and y ∈ N(x) implies x = y for all
x, y ∈ X.

Obviously, non-degeneracy implies local invertibility: if the energy function
takes different values for all states, it especially takes different values for the
states x, y within the neighborhood of z. Also, local invertibility implies
non-neutrality as the special case x = z. Note here the subtle difference in
the definition of local invertibility in contrast to the cited reference, which
arises from the fact that, in this work, the definition of neighborhood of
a state x does not include x itself. Further, it is clear that there are no
plateaus in a non-neutral landscape, since adjacent states have distinct
energies.

A common term to describe natural landscapes is “valley”, which refers
to the part of the landscape between a single valley bottom and the
surrounding peaks. The formalization of this property is slightly more
complicated but turns out to be rather useful. First, a notion of walking
downhill is required.

Definition 7 (Path). Let L = (X, f,M) be an energy landscape. A path
Px→y from x to y is a sequence of states x = x1, x2, . . . , xn−1, xn = y ∈ X
with the following properties:

1. xk 7→ xk+1 is a valid move fromM for all k ∈ {1, . . . , n− 1}, and

2. xi 6= xj for all distinct i, j ∈ {1, . . . , n}.

As a side note, the former definition induces a notion of connectedness:

Definition 8 (Connectedness). Let L = (X, f,M) be an energy landscape
and x, y ∈ X. The structures x and y are called connected if there are
paths Px→y and Py→x in L connecting x with y and y with x, respectively.
The landscape L is called connected if any two structures x, y ∈ X are

connected.
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IfM is a symmetric move set, Py→x can, of course, be obtained by inverting
Px→y.

Returning to the formalization of valleys, one is now interested in paths
that descend towards a certain local minimum. The following definition
gives rise to a mapping of each state to a local minimum by associating it
with a certain path:

Definition 9 (Gradient walk). Let P = x1, . . . , xn be a path in an energy
landscape with energy function f . Then P is called a gradient walk if

1. xn is a local minimum, and

2. for each move xk 7→ xk+1 in P ,

f(xk+1) = min {f(x) |x ∈ {xk} ∪N(xk)}

holds.

The second property from the definition means that each move targets
one of the neighbors with the lowest energy, and that the energy of the
current structure must never increase during the walk. The path follows
the direction of the steepest descent, which is also called the gradient.

Lemma 1. Let L be a locally invertible energy landscape. Then all gradient
walks are uniquely determined by their initial state.

In such a landscape, the function that maps each state x ∈ X to the local
minimum determined by the gradient walk starting in x is denoted as
γ : X →M , where M is the set of local minima of L.

Proof. Since no two neighbors of a structure can have the same energy, the
neighbor of minimal energy and therewith the next step in the gradient
walk is uniquely determined. Since there are no plateaus, the gradient walk
ends in the first local minimum it encounters. Thus, γ is well-defined.

The preceding lemma is almost trivial, however, it finally allows the
formalization of valleys:

Definition 10 (Gradient basin). Let L = (X, f,M) be a locally invertible
energy landscape and x ∈ X. Further, let M be the set of local minima
of L and y ∈ M be the uniquely determined local minimum in which the
gradient walk starting in x ends, i. e. γ(g) = y. The gradient basin of x,
denoted as B(x), is the set of all structures whose gradient walk also ends
in y, i. e.

B(x) = {z ∈ X | γ(z) = y} .
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Definition 10 on page 25 has an important consequence: each structure of
a locally invertible landscape can be assigned to one and only one gradient
basin (or basin for short). This allows a coarse graining of the landscape
that may significantly reduce the number of states while retaining its
qualitative properties. This is an advantage if the number of states of
a landscape is so large that computations on it would otherwise become
infeasible. The following definitions are helpful to formalize the general
concept of coarse graining.
Definition 11 (Power set, partition). Let S be a set. The power set of S
is the set containing all possible subsets of S, denoted as

P(S) = {S ′ |S ′ ⊆ S} .

A partition Ξ of S is a set of subsets of S such that the elements of Ξ
are disjoint and their union is S. More formally, Ξ ⊂ P(S) with

∀α, β ∈ Ξ : α ∩ β = ∅ ∨ α = β

and ⋃
α∈Ξ

α = S.

Definition 12 (Macrostates and microstates). Let L = (X, f,M) be an
energy landscape and Ξ ∈ P(X) a partition of X. Then the elements of Ξ
are called macrostates of L, whereas the elements of X (i. e. the states of
L) are also referred to as microstates.
Even though, in general, any partition of a landscape’s state set can be
understood as a macrostate set, one is usually interested in partitions that
are considered to be “sensible”. In other words, it should be plausible from
a physical point of view that the chosen approach retains the qualitative
properties of the landscape. Ideally, this hypothesis is verified later on.

It is also necessary to transform the move set in a proper way to define
transitions between macrostates. Given macrostates α, β ∈ Ξ, the canonical
extension ofM is to allow a move from α to β if, and only if, there are
microstates x ∈ α and y ∈ β such that x 7→ y is a valid move in L (i. e. if
∃µ ∈M : µ(x) = y).
The following lemma allows the application of the notion of basins to

define a set of macrostates for an arbitrary energy landscape:
Lemma 2. Let L = (X, f,M) be a locally invertible energy landscape and
M the set of its local minima. Then the set of all basins

Ξ = {B(x) |x ∈M}
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is a partition of X and therewith a macrostate set of L.

Proof. Due to Lemma 1 on page 25, the gradient basins are well-defined.
Since all gradient walks must end in a local minimum y ∈ M and all
gradient walks are uniquely determined, each structure x ∈ X is contained
in exactly one basin. Thus, Ξ is a partition.

Using gradient basins as macrostates is a good choice for several reasons.
The move set can be extended in the canonical way. Since, as mentioned
before, a physical system prefers states of lower energy, a gradient walk
represents the most likely path in the landscape when starting in an
arbitrary microstate. Thus, one can assume that states within the same
gradient basin all tend to move towards their associated local minimum,
making it a sensible representative of this basin. This justifies the definition
of the energy of the basin B(y) as the energy Ey of its local minimum y:

Definition 13 (Gradient-induced coarse graining). Let L = (X, f,M) be
a locally invertible energy landscape. Then the gradient-induced coarse
graining of L yields an energy landscape L̂ = (Ξ, f̂ ,M̂) where:

1. Ξ = {B(x) |x ∈M} is the macrostate set induced by the notion of
basins associated with the local minima M of L,

2. f̂ : Ξ → R, B(x) 7→ f(x) is the energy function for Ξ that maps
each basin to the energy of its local minimum x, and

3. M̂ is a move set that, for α, β ∈ Ξ, allows a transition from α to β
if and only if there are microstates x ∈ α and y ∈ β for which there
is a move µ ∈M with µ(x) = y.

The definitions above can also be extended for general degenerate land-
scapes. In that case, the gradient walks are no longer unique, since a state
could have several neighbors of the same energy. This ambiguity can be
overcome by defining an arbitrary total order on the state set which defines
the preferred one of several neighbors with the same energy. In practice,
the order of reading from an input file or a lexicographical ordering may be
used. Another problem is that there may be several adjacent local minima.
Strictly applying Definition 13 would mean to split the associated valley
into multiple basins, each containing the states from which a gradient walk
descends into the same minimum. Since this is not desired, the basins of
adjacent minima are merged and a single representative is chosen among
the minima, e. g. by applying the same ordering as described above.
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This chapter introduced the notion of energy landscapes and their ele-
mentary properties such as extrema. Further, some restricting terms such
as degenerate have been defined that simplify the description of methods
involving these landscapes by preventing corner cases which are usually
easy to handle in practice. A gradient-based coarse-graining approach has
been used to reduce the number of states of a landscape by partitioning
these into macrostates. This is accomplished by performing gradient walks
on all microstates and grouping together the states that share the same
target minimum.

3.2. RNA energy landscapes
In this section, the definitions from Section 3.1 on page 21 will be applied
to the special case of RNA secondary structures to construct a model to
analyze RNA folding kinetics.
At first, a formalization of RNA is needed. Since this work is mainly

concerned with RNA at the level of secondary structures, all that is needed
is an ordered representation of the nucleobases it contains:
Definition 14 (RNA sequence). A RNA sequence s = s1 · · · sn of length
n is a string over an alphabet representing the nucleobases adenine, uracil,
guanine and cytosine, i. e. si ∈ {A,U,G,C} for all i ∈ {1, . . . , n}. Thereby,
s1 is the 5′-end and sn is the 3′-end of the RNA.

As described in Section 2.2 on page 15, a RNA sequence folds up by
forming base pairs which constitute the secondary structure of this RNA.
Thus, from a formal perspective, a secondary structure is but a set of pairs
of sequence indices at which base pairs form. Not all such sets are valid
structures, however, as there are additional constraints involved.
Definition 15 (RNA secondary structure). Let s = s1 · · · sn be a RNA
sequence. A RNA secondary structure x = {(i1, j1), . . . , (im, jm)} is a set
of ordered pairs of indices with ik, jk ∈ {1, . . . , n} and ik < jk for which
the following properties hold:

1. {sik , sjk} is either one of the Watson-Crick base pairs, namely
{A,U} , {G,C}, or the wobble base pair {G,U},

2. ik and jk pair only with each other and no other index, i. e.

@(l1, l2) ∈ x : (l1 6= ik ∧ l2 = jk) ∨ (l1 = ik ∧ l2 6= jk),

and
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3. no other base pair is crossing {sik , sjk}, i. e.

∀(l1, l2) ∈ x : ik ≤ l1 < l2 ≤ jk ∨ l1 ≤ ik < jk ≤ l2

. . . for all k ∈ {1, . . . ,m}. For convenience, each pair of indices (i, j) ∈ x
is identified with its associated base pair {si, sj} and x is interpreted as a
set of base pairs.

The third property from Definition 15 on page 28 distinguishes secondary
structures from tertiary structures. A structure that satisfies this property
is called pseudo-knot free; structures that violate it are said to contain
pseudo-knots. Though pseudo-knots do appear in vivo and are even known
to be of functional importance (e. g. as “kissing hairpin” loop, cf. Chang and
Tinoco Jr. 1997), they are hard to handle from a computational viewpoint.
At least in the very general case, they cannot be considered since they
render problems like RNA folding intractable (Akutsu 2000). Nevertheless,
secondary structures have proven to be a useful simplification. They are
evolutionary conserved and can be used to infer the function of a given
RNA or to search for unknown functional RNAs in genome, e. g. using a
tool like Infernal (Nawrocki and Eddy 2013).

As stated in Definition 15 on page 28, this work mostly uses a notation
that treats secondary structures as sets of ordered base pairs. For example,
the insertion of a base pair (i, j) into a structure x is expressed as x∪{(i, j)}
or, more briefly, as x ∪ (i, j). Analogously, removing it would be written
as x \ (i, j). To denote that a base pair (i, j) or a structural motif y is
contained in x, the notations (i, j) ∈ x or y ⊆ x would be used, respectively.
The open chain, i. e. the structure that does not contain any base pairs, is
represented by the empty set, denoted as ∅.

Identifying base pairs with indices induces spatial relations among them.

Definition 16 (Spatial relations). Let x be a secondary structure and
(i, j), (k, l) ∈ x be base pairs. If i < k < l < j holds, then (i, j) is said to
enclose (k, l), while (k, l) is enclosed by (i, j). If (i, j) encloses (k, l), one
synonymously says that (k, l) lies inside of (i, j). If (i, j) does not enclose
(k, l), then (k, l) is located outside of (i, j).

Base pair (k, l) is called directly enclosed by (i, j) if i + 1 = k and
j − 1 = l. In that case, the base pairs (i, j) and (k, l) are called adjacent.
If i < j < k < l holds for base pairs (i, j), (k, l), then (i, j) is said to lie

to the left or upstream of (k, l) and, vice versa, (k, l) is said to lie to the
right or downstream of (k, l).
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Though a secondary structure can be interpreted as a set of base pairs, it
is often necessary to describe more complex structures like loops and stems,
which may perform biological functions. Using the introduced notation,
these can be formalized.

Definition 17 (Structural RNA elements). Let x be a secondary structure
of a RNA s = s1 · · · sn of length n. A maximal set of adjacent base
pairs (i + 1, j − 1), (i + 2, j − 2), . . . , (i + k, j − k) ∈ x is referred to as
a stem of length k > 0. Here, “maximal” means that neither (i, j) nor
(i+ k + 1, j − k − 1) are present in x. The enclosed part si+k+1 · · · si−k−1
of s is called a loop. If a loop consists only of unpaired nucleobases, it is
called a hairpin loop.

It is common to define additional types of loops, however, this is not
required for this work.
As mentioned before, there is a vast number of possible structures for

each RNA sequence. Energy landscapes (Definition 4 on page 22) are
a formalism that can be used to model RNA folding kinetics, i. e. to
make predictions about the distribution of all possible structures and its
development in the course of time. To begin with, the components of the
landscape need to be defined in the context of RNAs. First, possible moves
for secondary structures are defined.

Definition 18 (Elementary RNA moves). Let s = s1 · · · sn be a RNA
sequence of length n with conformation space X and x ∈ X a secondary
structure of s. The set of insertions I = {ιij | 1 ≤ i < j ≤ n} is defined as
a set of partial mappings ιij : X 99K X with x 7→ x ∪ (i, j) if both i and j
are unpaired and (i, j) is a valid base pair in s. Else, ιij is undefined on x,
i. e. the move is invalid.

The set of deletions D = {δij | 1 ≤ i < j ≤ n} is defined as a set of
partial mappings δij : X 99K X with x 7→ x \ (i, j) if (i, j) ∈ x. Else, δij
is undefined on x.

The set of shifts S = {σi→j | 1 ≤ i, j ≤ n, i 6= j} is defined as a set of
partial mappings σi→j : X 99K X that are undefined if i is unpaired in x.
If, however, position i is paired with some position k and j and k form a
valid base pair in s, then σi→j(x) = (x \ (i, k)) ∪ (j, k). If j and k do not
form a valid base pair, σi→j is also undefined on x.

Examples for each type of move are given in Fig. 3.2 on the next page.
Now, it is easy to adapt the notion of energy landscapes to RNAs.
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i ji+1 j-1
(a) Initial structure

i ji+1 j-1
(b) Insertion move ιi+1,j−1

i ji+1 j-1
(c) Deletion move δi,j

i ji+1 j-1
(d) Shift move σj→j−1

Figure 3.2.: Elementary RNA moves

Definition 19 (RNA landscapes). A RNA landscape Ls = (X, f,M) for
a given RNA sequence s is an energy landscape where

1. the state set X is a set of secondary structures of s, usually all
structures compatible with s,

2. the energy function f is a RNA energy model with f(∅) = 0, usually
the Turner energy model, and

3. the move set M is a RNA move set, usually allowing insertions,
deletions and shift moves of single base pairs.

The global minimum of f on X is called the minimum free energy of s
w. r. t. f .

Unless explicitly stated otherwise, RNA landscapes are meant to have
the default properties mentioned in the definition above. The energy
function is usually defined to assign the open chain an energy value of zero.
This choice is arbitrary but a general convention. Common alterations
of this definition are additional structure constraints or alternative move
sets. For example, sometimes shift moves are not wanted as they are more
complicated than simple insertions and deletions and also because they void
the equivalence of move distance and base pair distance (cf. Definition 32
on page 52). Structural constraints can be used for different purposes. A
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functional reason might be the consideration of bound molecules which
force a certain structure on a part of the sequence, as is the case for
riboswitches (cf. Section 2.3 on page 16). A more pragmatic reason is
the reduction of the number of microstates to reduce the computational
complexity and thus the computation time. Of course, such constraints
are an approximation that reduces the accuracy of the model. Therefore,
it must be justified why their use is sensible and their side effects need
to be considered carefully. A simplification used extensively throughout
this work is to avoid structures that contain so-called lonely base pairs, as
described in Chapter 4 on page 41. RNA landscapes may be coarse-grained
using the gradient-based approach described in Definition 13 on page 27.

3.3. The probability of RNA secondary
structures

As mentioned before, secondary structures that possess a low energy are
energetically favored, i. e. the RNA molecule is more likely to fold into a
structure that yields a lower energy. Also, these structures are more stable
and so refolding into another structure is more unlikely.

According to the Turner energy model (Mathews et al. 2004), a widely
accepted model to reliably predict the energy of RNA molecules of mod-
erate length, the energy of the molecule is approximately the sum of the
energy contributions of its structural compounds. Stabilizing structural
elements yield a negative energy while unfavorable ones have positive
energy contributions. One example are base pair stems, which increasingly
stabilize the structure with increasing length. In contrast, small hairpin
loops have a stabilizing contribution, while larger ones destabilize the
molecule. Since there is no absolute reference value for the energy of a
molecule, the energy model is normalized such that an open RNA chain is
associated with an energy of zero.
When a RNA is transcribed from DNA (Section 2.2 on page 15), it is

synthesized as an unfolded, open chain. However, since this conformation
is energetically unfavorable, the RNA immediately begins to fold itself
while it is still being transcribed by the RNA polymerase. Even though
the folding path, i. e. the exact sequence of structures the RNA will adopt
during a certain time, is random, neighboring structures with a lower
energy are adopted much more frequently since the activation energy for
this refolding reaction is lower. Assuming that one initially has an infinite
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or at least very large amount of molecules, one can therefore describe the
distribution of the RNA molecules across all possible structures in the
course of time. This function, which is specific for each RNA sequence s,
fully describes the folding kinetics of s. After an infinite amount of time,
the distribution of the molecules in each state does not change anymore
and the dynamic equilibrium is reached. The distribution in this state is
called the equilibrium distribution of the secondary structures of s. The
equilibrium is called “dynamic” since there are still transitions from each
conformation to its neighbors, however, the rate of reaction is equal for the
forward and backward reaction such that the net change of concentrations
is zero. In practice, due to the high rate of RNA folding (cf. Section 6.1 on
page 70) the equilibrium is reached quite fast for many sequences. However,
it is possible that RNAs form suboptimal intermediate structures on their
folding path that are very stable compared to their immediate neighbors.
Such structures are called kinetic traps, since it can take a long time until
a molecule is able to leave this conformation. In the presence of kinetic
traps the equilibration process might take so long that in practice the RNA
is degraded before it is completed. Also, time-critical processes involving
RNAs may also be effected by kinetic effects. Therefore, a thermodynamical
analysis of the structure space, i. e. one based merely on the equilibrium
distribution, is not sufficient to fully explain the functionality of RNA in
biological systems.
The equilibrium distribution of a RNA sequence can be calculated

directly from the energies of the all its secondary structures.

Definition 20 (Boltzmann weight, partition function). Let X be a set
of RNA secondary structures and x ∈ X be a structure of energy Ex. Then
the term

w(x) = exp
(
− Ex
RT

)
is called the Boltzmann weight of x, where R is the universal gas constant
and T is the absolute temperature.

The sum
Z[X ] =

∑
x∈X

w(x)

is called the partition function of X.

The following theorem is an elementary result of physical chemistry
(McQuarrie and Simon 1997):
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Theorem 1. Let X be the structure ensemble of a given RNA sequence
s and Y ⊆ X. Then the probability that a RNA molecule of sequence s
randomly chosen from an infinite, equilibrated population has adopted a
structure x ∈ S is given by

Pr[ Y | X ] = Z[ Y ]
Z[X ]

In the equilibrium state, the RNA molecules are said to follow the Boltz-
mann distribution. As can be observed in Definition 20, the Boltzmann
weight and therewith the probability of a structure decreases exponentially
with its associated energy.

3.4. Enumeration of RNA landscapes
Performing computations on a RNA landscape Ls = (X, f,M) for some
RNA sequence s of length n requires knowledge about the state set X and
the moves that are valid in L. The number of different secondary structures
of s, however, grows exponentially in n (Hofacker et al. 1998) such that
an exhaustive enumeration of all possible microstates is infeasible even for
short RNAs. Note that a gradient-induced coarse graining (Definition 13 on
page 27) of the landscape is not helpful here as it requires the microstates
to be computed beforehand.

There are different approaches to alleviate this problem. A first measure
is to reduce the number of microstates by additional structural constraints.
As described in more detail in Chapter 4 on page 41, structures containing
isolated base pairs are usually energetically unfavorable when compared
to their related structure without any isolated base pairs. It is possible
and practiced throughout the implementations of this work to only include
structures in X that do not contain isolated base pairs, so called canonical
structures (Definition 23 on page 41). Of course, this also requires an
adaptation of the move set (cf. Section 4.2 on page 42). Even though
this approach dramatically reduces the size of X, there are still too many
structures too generate all of them.
Since structures with very high energies are not likely to form at all

(cf. Section 3.3 on page 32), a radical approach to reduce the size of X is
to simply discard any structures that have an energy exceeding a certain
threshold ∆E above the minimum free energy of s.
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Definition 21 (∆E-pruned state set). Let L = (X, f,M) be an energy
landscape with global energy minimum Emin = min {f(x) |x ∈ X} and
∆E > 0 a positive energy value. Then

X|∆E = {x ∈ X | f(x) ≤ Emin + ∆E}

is called the ∆E-pruned state set of L and ∆E is referred to as its explo-
ration threshold.

Since the energies of secondary structures are, at least asymptotically
and under simplifying assumptions, normally distributed (Clote et al.
2009), this measure is very effective and leads to a feasible size of X|∆E,
depending on how ∆E is chosen. It is also very efficient since X|∆E can be
fully enumerated using a dynamic programming algorithm as described by
Wuchty et al. (1999) and implemented in the tool RNAsubobt. This method
is used throughout this work, though it does have a major drawback. Due
to computational limitations, ∆E may need to be chosen so small that
interesting conformations are pruned. This problem is solved in Chapter 5
on page 59.
Of course, there are numerous other possible approaches that were not

used in this work. One example is based on the concept of a basin hopping
graph (Kucharík et al. 2014). In this stochastic method, samples are
drawn from the set of local minima which can be enumerated efficiently.
Then, the minima are connected by using an iterative direct path heuristic,
yielding a graph-like structure. Another concept is the shape abstraction
of structures that does not consider single base pairs, but more abstract
structural features like helices and loops without specifying their exact
position in the structure (Giegerich et al. 2004; Huang et al. 2012).

3.5. Basic natural laws and principles
This work relies on some fundamental natural laws and principles, e. g. to
describe the speed of chemical reactions. They are summarized in this
section.

3.5.1. The principle of detailed balance
The principle of detailed balance is a general property of many systems
that are composed of elementary processes, e. g. for reversible, elementary
chemical reactions (McQuarrie and Simon 1997). Here “elementary” means
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that the reaction occurs in a single step, without the formation of any
intermediate products. It states that, once the system is equilibrated, the
net transition rate between any two states of the system is zero, i. e. the
transition rate from state a to state b is equal to the transition rate from
state b to a. More formally,

Pr[ a | t→∞ ] · rb←a = Pr[ b | t→∞ ] · ra←b (3.1)

for any two states a and b of the system, where Pr[ ◦ | t→∞ ] is the
probability of a state after infinite time (i. e. at the equilibrium) and r◦←◦
is the transition rate coefficient for the respective transition.

3.5.2. The rate laws and their coefficients
The kinetics of chemical reactions can be described with simple relation-
ships called rate laws (McQuarrie and Simon 1997; Mortimer 2002). More
precisely, the speed of a given reaction can be inferred from the concen-
tration of the reaction’s reactants, its stoichiometry and a reaction rate
constant. In general, however, this is only possible for elementary reactions.
A reaction is called elementary if no intermediate products arise. Given a
number of reactant species R1, . . . ,Rn, the speed or rate of reaction ri for
each species can be quantified as the change of its concentration [Ri] over
the time t, i. e. ri = d[Ri]/dt = ˙[Ri].

Stated in its general form, i. e. for m reactions, the rate law is given by

˙[Ri] =
m∑
j=1

νijrj
n∏
k=1

[Rk]−νkj ·I<0(νkj), (3.2)

using the notation described above and, additionally, the constant rate
coefficients rj for reaction j as well as the stoichiometric numbers νkj,
i. e. the number of molecules of species k in a “single reaction event” of
reaction j. By convention, the stoichiometric numbers of the products
are positive numbers while the ones of the reactants are negative. The
indicator function

I<0(ν) =
1 if ν < 0,

0 else,
ensures that only the concentrations of actual reactants of that specific
reaction are taken into account. Equation (3.2) looks quite complex, but
for simple reactions like e. g.

A −−→ X B + C −−→ Y
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where all stoichiometric numbers are one, the rate law reduces to
˙[A] = r1 · [A] ˙[B] = ˙[C] = r2 · [B] · [C]

respectively. For a single reaction, the absolute value of the sum of all
the reactants’ stoichiometric numbers is referred to as the order of that
reaction. In the examples above, the order of the reactions are one and
two, respectively.
One aspect that still needs to be considered is the form of the rate

coefficients. For elementary reactions, they can be described using the
Arrhenius equation

r = c · exp
(
−EA
RT

)
, (3.3)

where R is the universal gas constant, T is the absolute temperature,
EA > 0 is the activation energy of the reaction and c is the pre-exponential
factor. The activation energy of the energy is the external energy required
to perform the necessary conformational changes, e. g. to break up chemical
bonds. If EA = 0, then no additional energy is required to start the reaction.
Put that way, the exponential term of Eq. (3.3) can be interpreted as a
probability that the reaction occurs when the required species’ particles
collide in an appropriate orientation. With higher activation energies, the
probability of the reaction decreases exponentially, e. g. because the speed
of the colliding particles is too low. The pre-exponential factor, can be
interpreted as the rate at which particles of the reactant species collide,
multiplied with a steric factor. It accounts for the fact that particles also
need to collide with a specific orientation and at certain domains of the
reactants. Both the collision rate and the steric factor are very hard to
estimate theoretically. Therefore, in practice, the pre-exponential factor
is simply used as a “fudge factor” to fit the Arrhenius equation to the
experimentally measured values.

Substance concentrations have the unit molar (1M = 1mol L−1). As the
reaction rate is the derivative of a concentration w. r. t. time, it therefore
needs to have the unit M s−1. However, for reactions of different orders, the
unit of the product of concentrations will differ. Therefore, the unit of the
rate coefficient has to be chosen adequately to cancel out the unwanted units.
This seemingly odd practice can be explained when deriving the rate law
using the more general concept of activities from chemical thermodynamics
instead of simple concentrations. This extends the applicability of the rate
law to special cases not covered by Eq. (3.2) on page 36, however, is not
necessary here and beyond the scope of this work.
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3.5.3. The law of mass action
Consider a reversible chemical reaction

α · A + β · B + . . . −−⇀↽−− σ · S + τ · T + . . .

of reactants A,B, . . . into products S,T, . . . with stoichiometric numbers
α, β, . . . and σ, τ, . . . , respectively. Both the forward and the backward
reaction have a specific reaction rates rfor and rback which depend on the
concentration of the reactants and products, respectively. After a certain
amount of time, the reaction reaches a so-called dynamic equilibrium, i. e.
a state where rfor = rback and therefore the concentrations of the species
participating in the reaction remain constant. In this state, the law of
mass action dictates

K = [A]α · [B]β · · ·
[S]σ · [T]τ · · · , (3.4)

where K is a temperature dependent constant that is characteristic for each
specific reaction (McQuarrie and Simon 1997). Further, K may also be
influenced by other conditions, e. g. the concentration of other substances,
even if they are not actively participating in the reaction.

3.6. Calculation of the ligand binding bonus
energy

The atoms in a molecule or chemical compound are being held together
by different kinds of chemical bonds between their atoms, e. g. covalent
bonds, ionic bonds or hydrogen bonds. To decompose a compound into its
components, these bonds have to be broken up which requires a certain
amount of energy. In that sense, chemical bonds store potential energy and
therewith stabilize the compound. Also, the overall energy of a compound
is often lower than the sum of energies of its components. In the case of
a riboswitch and its ligand (Section 2.3 on page 16), the formation of a
dimer complex stabilizes the riboswitch by adding a certain fixed, negative
energy contribution θL < 0 to the RNA’s free energy. Thus, for some
secondary structure x containing the ligand’s binding pocket, the energy
of the dimer complex Lx is given by

E(Lx) = E(x) + θL.

To perform computations on the riboswitch, θL needs to be determined
first. As described in Section 2.3 on page 16, a riboswitch consists of an
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aptamer and terminator sequence. For synthetic riboswitches and a given
ligand, the aptamer is often sought using an experimental approach called
SELEX (cf. Section 2.4 on page 18).

To obtain the bonus energy of binding, the aptamer can be mixed with
the ligand and the resulting concentrations of the aptamer [A], the ligand
[L] and the dimer complex [LA] be measured. From these values, the
dissociation constant KD can be calculated by applying the law of mass
action (Eq. (3.4) on page 38):

KD = [A][L]
[LA] (3.5)

The dissociation constant is the inverse of the reaction’s equilibrium con-
stant and measures how fast the ligand dissociates from the aptamer. To
obtain the binding energy, previous approaches directly used the measured
KD to obtain θL by setting

θold
L = RT lnKD.

However, a more careful approach considers that only a part of the ensemble
of the aptamer does in fact contain the binding pocket that is necessary
to bind the ligand. Write A+ for the aptamer species that contains
the binding pocket p and identify A and A+ with the respective sets of
secondary structures. Then, Eq. (3.5) can be rewritten as

KD = Z[A ] · Z[L ]
Z[LA+ ]

= Z[A ]
Z[A+ ] · exp(−bθL) .

This equality follows from the fact that, after equilibration, the structures
are distributed according to their Boltzmann weight (cf. Section 3.3 on
page 32). Furthermore, the partition function of the ligand is one since
it is assumed that there is only a single ligand conformation, which is a
simplification to keep the model simple. By rewriting the last equation,
one obtains

θL = RT

(
ln Z[A+ ]

Z[A ] + lnKD

)
,

where Z[A+ ]/Z[A ] = Pr[ p | A ] is the probability of the binding pocket p in
the ensemble of the aptamer. If this probability is low, then the ligand
has to bind the remaining structures containing p stronger to to achieve
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the same KD and thus the binding energy θL has to be higher. In practice
however, the difference between θold

L and θL is small if the aptamer is
selected by SELEX since this method maximizes the probability that the
aptamer binds the ligand and thus Pr[ p | A ] ≈ 1.
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Chapter 4.

Canonical RNA Landscapes

This chapter covers canonical RNA landscapes, a special type of RNA
landscape with additional structural constraints for its state set. These
constraints are based on the notion of isolated base pairs (Bompfünewerer
et al. 2007) which, according to the Turner energy model (Turner and
Mathews 2009), result in an energy penalty, i. e. adding them to a structure
increases its energy.

4.1. Preliminaries
The following definitions precisely describe when a base pair is said to be
isolated.

Definition 22 (Inside-loneliness, outside-loneliness, loneliness). Let x
be a RNA secondary structure. A base pair (i, j) ∈ x is called inside-
lonely if (i + 1, j − 1) /∈ x. Further, (i, j) ∈ x is called outside-lonely if
(i − 1, j + 1) /∈ x. If (i, j) is both inside-lonely and outside-lonely, it is
called lonely.

A base pair (i, j) ∈ x is said to grow lonely w. r. t. to the deletion of
one of its neighbors (i − 1, j + 1) or (i + 1, j − 1) if (i, j) is lonely in
x \ (i− 1, j + 1) or x \ (i+ 1, j − 1), respectively.

Informally, a base pair is lonely if it is not adjacent to another base pair
on either of its sides. This definition extends to secondary structures and
RNA landscapes as follows:

Definition 23 (Canonical secondary structures). Let x be a RNA sec-
ondary structure. x is called a canonical structure if it does not contain
any lonely base pairs. A structure that contains at least one lonely base
pair is said to be non-canonical.
For a set of secondary structures X, its associated set of canonical

structures is denoted as X|can = {x ∈ X |x is canonical}.
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Definition 24 (Canonical RNA landscape). Let Ls = (X, f,M) be an
RNA landscape of some RNA sequence s. Then Ls is called a canonical
RNA landscape if X exclusively contains canonical structures.

The motivation of this definition is to reduce the conformation space by
removing structures that are energetically unfavorable. The assumption
is that a non-canonical structure has merely a transient role during the
folding process from one canonical structure to another. It can therefore
be neglected without too much impact on the qualitative properties of the
landscape.
A huge fraction of the structures of a general RNA landscape are non-

canonical. Clote et al. (2009) proved that the asymptotic number of
canonical secondary structures is only 2.1614 · n−3/2 · 1.96798n. The asymp-
totic number of general secondary structures, in contrast, is given by
1.104366 · n−3/2 · 2.618034n, where n is the sequence length. Thus, ex-
cluding non-canonical structures from RNA landscapes allows feasible
computations on much larger RNA and is therefore of high interest.

4.2. Symmetrical canonical move sets
Definition 24 looks very similar to the definition of general RNA landscapes
introduced earlier (cf. Definition 19 on page 30). However, there is an
inconspicuous yet highly significant detail to be considered here. The move
setM needs to be defined in a manner that it only generates canonical
structures. Simply defining all moves that generate lonely structures to be
invalid is no sufficient solution since then e. g. the open chain is an isolated
structure. That is because the only possible moves are insertions of single
base pairs which lead to non-canonical structures. Any sensible move set
must yield a connected landscape as a RNA molecule can fold into any
conformation, so another approach is necessary.
Existing move sets for canonical landscapes, e. g. as implemented in

current versions of the tool barriers (Flamm et al. 2002), have the
described problem and also the additional issue of non-symmetry. The latter
is the result of how barriers handles the enforcement of the canonicality
constraint. To be able to remove any stems at all, any time a deletion
generates a lonely pair, it is removed from the structure, too. Since a
deletion can generate up to two lonely base pairs, this move set may remove
up to three base pairs with a single move. However, there is no counterpart
for this transition that would allow the insertion of two or even three
base pairs. This asymmetry destroys the property of detailed balance (cf.
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Section 3.5.1 on page 35) that a system of reversible chemical reactions
like RNA folding should have. This follows immediately from Eq. (3.1) on
page 36: if a move from a structure x to a structure y is valid, but the
reversed move from y to x is not, then the rate coefficient rx←y vanishes
but ry←x does not. Since in a connected RNA landscape, the equilibrium
probability of all structures is greater than zero, the equation obviously
does not hold.

4.2.1. Defining a symmetric, canonical move set
Let s = s1 · · · sn be a RNA sequence of length n and Ls = (X, f,M)
its RNA landscape. Building on Definition 18 on page 30, a canonical
move set, i. e. a move set mapping canonical structures to other canonical
structures only, is now defined.

Definition 25 (Canonical restriction). For some x ∈ X, let µ ∈M be a
move µ : X 99K X, x 7→ µ(x). Its canonical restriction is defined as the
move µ|can : X|can 99K X|can with µ

µ|can(x) =
µ(x) if µ(x) is defined and x, µ(x) ∈ X|can,

undefined else.

As mentioned, only restricting the standard moves to canonical landscapes
does not yield a connected landscape. Therefore, the following definitions
adds some additional possibilities to remedy the issue. However, care is
taken to allow these additional moves only in cases where they are necessary
to minimize the influence on qualitative properties of the landscape.

Definition 26 (Canonical insertions). Let I be the set of insertions on s.
The set of canonical insertions is defined as

Ican =
{
ιij|can

∣∣∣ ιij ∈ I} ∪ I2,

where
I2 =

{
ι2ij
∣∣∣ 1 ≤ i < j < n

}
denotes the set of canonical double insertions. These are partial mappings
ι2ij : X|can 99K X|can with ι2ij(x) = ιij(ιi+1,j−1(x)), if the following conditions
hold:

1. ιi,j and ιi+1,j−1 are valid moves on x, and

2. ιi,j|can and ιi+1,j−1|can are invalid moves on x.
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i ji+1 j-1
(a)

i ji+1 j-1
(b) Single insertion ιi,j is valid

i ji+1 j-1
(c)

i ji+1 j-1
(d) Double insertion ι2i−1,j+1 is invalid

i ji+1 j-1
(e)

i ji+1 j-1
(f) Double insertion ι2i,j is valid

i ji+1 j-1
(g)

i ji+1 j-1
(h) Single insertion ιi,j is invalid

Figure 4.1.: Canonical insertion moves. In each row, a structure is shown
before (left) and after (right) applying a move.
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Otherwise, ι2ij(x) is undefined.

Basically the above definition restricts arbitrary insertions to those
generating canonical structures. Additionally, it allows double insertions,
i. e. insertions of two consecutive base pairs (i, j), (i + 1, j − 1) at once.
However, by property 2, these are valid only if this stack of length two
will be isolated, i. e. if (i, j) will be outside-lonely and (i + 1, j − 1) will
be inside-lonely. Figure 4.1 on page 44 gives some examples of canonical
insertions. Canonical deletions can be defined in a similar way:

Definition 27 (Canonical deletions). Let D be the set of deletions on s.
The set of canonical deletions is defined as

Dcan =
{
δij|can

∣∣∣ δij ∈ D} ∪ D2,

where
D2 =

{
δ2
ij

∣∣∣ 1 ≤ i < j < n
}

denotes the set of canonical double deletions. These are partial map-
pings δ2

ij : X|can 99K X|can with δ2
ij(x) = δij(δi+1,j−1(x)), if the following

conditions hold:

1. δi,j and δi+1,j−1 are valid moves on x, and

2. δi,j|can and δi+1,j−1|can are invalid moves on x.

3. δij(δi+1,j−1(x)) ∈ X|can

Otherwise, δ2
ij(x) is undefined.

Analogously, in addition to restricting the deletions to canonical struc-
tures, the given definition allows the deletion of lonely stacks of length two.
Additionally, property 3 is required to prevent a removal of (i, j), (i+1, j−1)
in the middle of a stack of size four, in which case (i−1, j+1) and (i+2, j−2)
would grow lonely. Examples are given in Fig. 4.2 on the next page. Fi-
nally, canonical shift moves can be defined easily by simply restricting the
ordinary shifts to canonical landscapes.

Definition 28 (Canonical shifts). Let S be the set of shifts on s. The set
of canonical shifts is defined as

Ican =
{
σij|can

∣∣∣σij ∈ I} .
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i ji+1 j-1
(a)

i ji+1 j-1
(b) Single deletion δi−1,j+1 is valid

i ji+1 j-1
(c)

i ji+1 j-1
(d) Double deletion δ2

i−1,j+1 is invalid

i ji+1 j-1
(e)

i ji+1 j-1
(f) Double deletion δ2

i,j is valid

i ji+1 j-1
(g)

i ji+1 j-1
(h) Single deletion δi,j is invalid

Figure 4.2.: Canonical deletion moves. In each row, a structure is shown
before (left) and after (right) applying a move. Note that the
bases i − 2 and j + 2, which are not depicted in the figures
above, are assumed to be unpaired.
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As a side note, restricting the shifts to canonical structures reduces the
number of possible neighbor structures (w. r. t. shift moves) of a structure
x|can to at most six. This is because of the constraint of pseudo-knot
absence in secondary structures. Given a base pair (i, j), one can only . . .

• shift i to the left (i. e. decrease i) to the next enclosing base pair
(k, j + 1), k < i, if it exists (outside shift),

• shift i to the right (i. e. increase i), but keep i′ < j, to the left side
of an enclosed base pair (k, j − 1), k > i, if it exists (inside shift),

• shift i to the right of j to the next enclosing base pair (i − 1, k),
k > j, if it exists (cross shift), or

• shift j analogously.

These possibilities are shown in Fig. 4.3 on the following page.
Combining all these definitions, one finally gets a complete move set.

Definition 29 (Canonical move set). Let Ican,Dcan and Scan be the sets of
canonical insertions, deletions and shifts on a RNA sequence s, respectively.
Then the canonical move setMcan for s is given by their union:

Mcan = Ican ∪ Dcan ∪ Scan.

4.2.2. Properties of the canonical move set
In this section, the symmetry of the canonical move set will be proved.
Further, it will be shown that the canonical landscape with its associated
canonical move set is connected. But initially, it will be shown that
the canonical move set does indeed only generate canonical structures.
Throughout the section, letMcan be the canonical move set of an arbitrary
RNA sequence s with conformation space X.

Lemma 3. The canonical move setMcan exclusively generates canonical
structures when applied to X|can, i. e. ∀µ ∈Mcan : µ(Xcan) ⊆ X|can.

Proof. The canonical restriction of any move can by definition only generate
canonical structures. Therefore, the claim is trivial for canonical shift moves
and single base pair insertions or deletions and remains to be shown only
for canonical double insertions ι2ij and double deletions δ2

ij.
Since the insertion of two consecutive base pairs cannot generate a lonely

pair, the claim holds for ι2ij. By definition, for any structure x, δ2
ij(x) is

defined only if δij(δi+1,j−1(x)) ∈ Xcan.
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i jk
(a) Application of σk→i to the structure below

i jk
(b) Application of σi→k to the structure above

i j k
(c) Application of σk→i to the structure below

i j k
(d) Application of σi→k to the structure above

Figure 4.3.: Canonical shift moves
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Now, it is shown thatMcan is a symmetric move set (Definition 2 on
page 21).

Theorem 2 (Symmetry). For all structures x ∈ X|can and any valid
move µ ∈ Mcan on it, there is an inverse move µ−1 ∈ Mcan such that
µ−1(µ(x)) = x.

Proof. Let y = µ(x). By Lemma 3 on page 47, y ∈ X|can.
For µ = ιij|can, y = x∪(i, j). Obviously, the inverse move is µ−1 = δij|can

since δij|can(x ∪ (i, j)) = x. Of course, (µ−1)−1 = µ, so δij|−1
can = ιij|can.

If µ = σi→j , then1 y = (x \ {i, k})∪{j, k}, where k is the position of the
base in x pairing with position i. The shift can be reverted by applying
another shift σj→i since

σj→i(y) =
((

(x \ {i, k}) ∪ {j, k}
)
\ {j, k}

)
∪ {i, k} = x.

For µ = ι2ij, y = x ∪ {(i, j), (i+ 1, j − 1)}. It is clear that the inverse
move is µ = δ2

ij since

δ2
ij(y) =

(
x ∪

{
(i, j), (i+ 1, j − 1)

})
\
{

(i, j), (i+ 1, j − 1)
}

= x,

however, it is not obvious that δ2
ij is valid on y. To verify that, consider

that ι2ij is valid on x only if ιi,j|can and ιi+1,j−1|can are invalid on x, and
so (i− 1, j + 1), (i+ 2, j − 2) /∈ x, y. Therefore, δi,j|can and δi+1,j−1|can are
invalid on y since removing one of the base pairs (i, j), (i+ 1, j − 1) would
result in the other one growing lonely. Thus, δ2

ij is valid on y.

This result is not only a necessary condition for detailed balance, but
also significantly simplifies the proof of the next result. First, recall the
definitions of connected landscapes and paths (Definitions 7 and 8 on
page 24).

Theorem 3 (Connected, canonical landscapes). Let L = (X|can, f,Mcan)
be the canonical landscape of a RNA s. Then L is connected, i. e. for all
x, y ∈ X|can there is a path Px→y in L connecting them.

Proof. By Theorem 2,Mcan is symmetric on X|can. Therefore, if Px→y is a
valid path in L, there also is a valid path Py→x in L. Also, two paths Px→z
and Pz→y can be connected to a single path Px→z · Pz→y = Px→y. It is

1The curly braces used to denote the base pairs are supposed to indicate that here it
is not implied that i < k.
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therefore sufficient to proof the claim that for each x there is a path Px→∅
from x to the open chain ∅. Then, the desired path can be constructed as
Px→∅ · P∅→y.
The claim is proved by induction over the number of base pairs |x|.

For |x| = 0, x = ∅ and the path is trivial. Let |x| > 0. Then there is a
left-outermost base pair (i, j) ∈ x (i. e. i is minimal over all base pairs)
which is by definition outside-lonely. Therefore, also (i+ 1, j− 1) ∈ x since
x is canonical.

Now, either (i+ 1, j − 1) is inside-lonely ((i+ 2, j − 2) /∈ x) or it is not
((i+ 2, j − 2) ∈ x). In the first case, {(i, j), (i+ 1, j − 1)} is a lonely stack
of length two and can be removed by applying δ2

ij to x. In the second case,
(i+ 1, j − 1) will not grow lonely when removing (i, j) and so δij can be
applied instead. This reduces the number of base pairs in the resulting
structure x′ by two and one, respectively. By induction, there is a path
Px′→∅, and so x · Px′→∅ is a path from x to ∅.

4.2.3. Implementation
The described move set has been implemented in a prototypical form as
a Perl module. Further, it has been incorporated into the tool barriers,
which is written in C. The latter implementation also includes unit tests
to verify its correctness. The tests are implemented using the Check
framework and have been integrated into the Autotools configuration of
the project to automate the building of the testing binaries. If Check is
not found on the system, the generation of tests is skipped.
As can be seen in Fig. 4.4 on the next page, the new move set outper-

forms the old one despite the more complex logic. The reason is that it
significantly reduces the number of neighbors of each structure since many
moves, which were valid in the old move set, are invalid in the new one.

4.3. Direct canonical paths
It is sometimes useful to find a path connecting two structures x, y in an
RNA landscape, e. g. to estimate the energy barrier barrier between them
or to connect them in kinetic simulation as practiced in this work. This
task is nontrivial because of the enormous amount of secondary structures
for usual RNAs.

A well-known approach to reduce the number of paths is to only consider
the ones that run directly from the start structure x to the target structure
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Figure 4.4.: Comparison of the runtime of the old and the new canoni-
cal move set of barriers for an increasing number of input
structures.

y, i. e. in any step, the distance of the current structure to the target
structure is reduced. A more formal definition is given in the following
section. The notion of these direct paths is used, for example, in the
Morgan-Higgs algorithm (Morgan and Higgs 1998) to estimate energy
barriers between different states of a RNA landscape. A refined version
called findPath developed by Flamm and Hofacker (2008) is included
in the ViennaRNA package. It is a heuristic that, starting at x, greedily
chooses the n energetically best neighbor structures on direct paths to
y and adds them to a list. Then, each path from the list is processed
analogously, reducing the total number of structures in the next step to n
if necessary. This process is iterated until the target structure is reached.
After finding an initial upper bound, n is increased and the entire process
is repeated, rejecting paths containing structures with energies higher than
the current optimum.

The biological justification for the approximation of barrier heights only
by considering direct paths is that if structures differ only in a certain
sub-component, then the re-folding between these structures will likely only
change this sub-component and leave other structural elements unchanged.
From a practical point of view, directs paths are useful because there are
much less direct paths than arbitrary ones. Nevertheless, the number of
direct paths is still high such that an exhaustive enumeration is often

51



infeasible even for smaller RNAs. Therefore one often resorts to heuristics
as the ones described.

There is, however, a problem with this direct path approaches: they are
based on the classical RNA move set and are therefore often generates
non-canonical structures. This section aims at an adoption of the concept
of direct paths that makes it usable for canonical RNA landscapes.

4.3.1. Definitions
Let Ls = (X, f,M) be a RNA landscape of some RNA s with an arbitrary
move setM. The moves µ ∈M consist of the addition or removal of one
or many base pairs. For some x ∈ X, let B+

µ (x) = {(i1, j1), . . . (ip, jp)}
and B−µ (x) = {(k1, l1), . . . (kq, lq)} be the sets of base pairs that are added
or removed, respectively, when the move µ is applied to the structure x.
Further, for another y ∈ X, let B+(x→ y) = y \x and B−(x→ y) = x\ y,
i. e. the sets of base pairs that need to be added or removed, respectively,
to move from x to y.

Definition 30 (Directed moves and neighbors). A valid move µ ∈M on
x is called y-directed if B+

µ (x) ⊆ y and B−µ (x) ∩ y = ∅, i. e. any added
base pair is present in y, but none of the removed ones is. The neighbor
structures of x that can be reached by a single y-directed move are called
the y-directed neighbors of x.

Using the notion of directed moves, direct paths can be defined formally,
extending Definition 7 on page 24.

Definition 31 (Direct path). A path x = x1, x2, . . . , xn, xn+1 = y from
x to y w. r. t. L is called direct, if ∀i ∈ {1, . . . , n}, xi+1 is a y-directed
neighbor of xi.

The definition of direct paths is intuitively related with a notion of
distance between the structures x and y. This can be formalized as follows.

Definition 32 (Base pair distance). Let x, y ∈ X be secondary structures.
The base pair distance dBP(x, y) of x and y is defined as the number of
base pairs present in either x or y, but not in both. More formally,

dBP(x, y) =
∣∣∣(x \ y) ∪ (y \ x)

∣∣∣ .
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Walking along a direct path from x to y, the base pair distance to x
increases, while the distance to y decreases by at least one with every step2.
Therefore, the length of a direct path cannot exceed the base pair distance
dBP(x, y).
In a canonical landscape, one is usually only interested in paths that

run only through canonical structure. Therefore, the concept of canonical
paths is introduced.

Definition 33 (Canonical path). A path between two canonical structures
x, y ∈ X|can w. r. t.M is called canonical, if all structures on the path are
canonical.

When doing computations on canonical RNA landscapes, direct canonical
paths are the natural extension of direct paths to canonical landscapes.
Note that paths are, in general, only valid for a suited move set.

4.3.2. Existence of direct canonical paths
Now that direct canonical paths are formally defined, the question arises
whether they actually exist between arbitrary canonical structures. This
section gives a positive answer and proves the result. Let Ls = (X|can, f,Mcan)
be the canonical landscape of a RNA s. The following lemma is required
for the proof.

Lemma 4. Let x, y ∈ X|can and (i, j) ∈ B−(x → y). Let (i, j) not be
directly enclosed3 by an outside-lonely base pair. Then a valid, y-directed
move from the canonical move set can be applied to the part of x enclosed
by (i, j) or to (i, j) itself.

Note that the preconditions of the lemma are chosen such that by deleting
(i, j) no lonely pairs can arise outside of (i, j).

Proof. By induction over the number n of bases enclosed by (i, j). Using
the abbreviated notation B+ = B+(x → y) and B− = B−(x → y), the
following cases can be distinguished.

Case 1. n = εloop = 3, the minimal number of bases in a hairpin loop.
There are no further base pairs inside (i, j) and (i, j) is not
enclosed by a base pair that could grow lonely when removing

2For the move distance w. r. t. M, this is in general not the case if different moves
change the base pair distance by different amounts.

3Recall Definition 16 on page 29.
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(i, j) so that removing (i, j) is a valid and, since (i, j) ∈ B−,
y-directed move.

Case 2. n > εloop. If (i+ 1, j− 1) /∈ x, the removal of (i, j) is valid since
no lonely pairs arise. Else, (i + 1, j − 1) ∈ x. Now, two cases
can be distinguished:
i. (i+ 2, j − 2) ∈ x. In this case, (i, j) can be removed from

x since (i+ 1, j − 1) will not grow lonely.
ii. (i+ 2, j − 2) /∈ x. It follows that (i+ 1, j − 1) would grow

lonely when removing (i, j), rendering this move invalid.
Further distinction is needed:
a. (i + 1, j − 1) ∈ B−, so, depending on whether the

surrounding base pair (i− 1, j + 1) is present, either
removing (i, j) or the lonely stack (i, j), (i+ 1, j − 1)
is valid and y-directed.

b. (i+ 1, j− 1) /∈ B−. Figure 4.5 on the facing page gives
visual overview of this case. Since y is canonical and
(i, j) /∈ y, it follows that (i+ 2, j − 2) ∈ B+, otherwise
(i + 1, j − 1) would be lonely in y. If both i + 2 and
j − 2 are unpaired positions in x, adding (i+ 2, j − 2)
is a valid and y-directed move.
Else, at least one of the bases i+ 2 or j − 2 is paired.
If (i + 2, k) ∈ x, where necessarily i + 2 < k < j − 2,
then (i+2, k) is found in B− since it is conflicting with
the required base pair (i + 2, j − 2). Because of the
base pair (i+ 1, j − 1) ∈ x, base pair (i+ 2, k) is not
directly enclosed by another base pair: it fulfills the
preconditions of this lemma and by induction a valid
and y-directed move can be applied to the enclosed
part of the sequence, which is also enclosed by (i, j).
The case (l, j − 2) ∈ x, i+ 2 < l < j − 2, is analog.

Using this lemma, the existence of direct canonical paths can be proved.

Theorem 4 (Existence of canonical direct paths). Let x, y ∈ X|can. Then
there is a direct canonical path from x to y w. r. t. the canonical move set.
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i ji+1 j-1
Figure 4.5.: Last case of the proof of Lemma 4 on page 53.

Proof. By induction over the base pair distance n = dBP (x, y) of the
structures. If n = 0, then x = y. For n > 0, it suffices to show that a valid,
y-directed move can be applied to x since the resulting structure will have
a base pair distance of at most n − 1 w. r. t. y. The shorthand notation
from the previous lemma will be used here, too: let B+ = B+(x→ y) and
B− = B−(x→ y) such that n = |B+|+ |B−|. The following cases can be
distinguished:

Case 1. B− = ∅, i. e. x ⊆ y. Since n > 0, there is a left-outermost base
pair (i, j) = mini{(i, j) ∈ B+} that needs to be added to x.
The bases i and j must be unpaired in x since B− = ∅. Further
distinction is needed:
i. (i, j) is not lonely in x ∪ (i, j). This insertion cannot vi-

olate the “no pseudo-knot” condition: assume there is a
conflicting base pair (k, l) ∈ x. Then, because B− = ∅,
(k, l) is also present in y, so y contains a pseudo-knot. This
is contradiction, since y is a secondary structure, so there
cannot be a base pair (k, l) that conflicts with the insertion
of (i, j), and so the insertion is valid and y-directed.

ii. (i, j) is lonely in x ∪ (i, j). Since y is canonical, another
base pair in B+ needs to be added adjacent to (i, j) such
that (i, j) is no longer lonely. Because of the minimality
of i, this has to be on the inside, so (i + 1, j − 1) ∈ B+.
If (i + 1, j − 1) is inside-lonely, inserting the lonely stack
(i, j), (i+ 1, j − 1) is a valid move, if not, one can add only
(i+ 1, j − 1). Pseudo-knots cannot arise due to the same
argument as in the previous case.

Case 2. ∃(i, j) = mini{(i, j) ∈ B−}. If removing (i, j) does not yield a
lonely pair, remove it. Else, there is a lonely-growing base pair.
i. (i− 1, j + 1) is not in x or not outside-lonely. By Lemma 4
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i j kj+2
Figure 4.6.: Last case of the proof of Theorem 4 on page 54.

on page 53, there is a valid, y-directed move that can be
applied to the substructure enclosed by (i, j).

ii. (i− 1, j + 1) ∈ x is outside-lonely. Since (i, j) needs to be
removed, (i− 2, j + 2) ∈ B+ since otherwise (i− 1, j + 1)
would be lonely in y. The nucleobase at position i − 2 is
unpaired because of the minimality of i. Nucleobase j + 2
can be paired or unpaired in x:
a. If j+ 2 is unpaired, (i− 2, j+ 2) can be inserted and is

not lonely in x′ = x∪(i−2, j+2) since (i−1, j+1) ∈ x′.
b. If j + 2 is paired, it must pair with a k > j + 2

(cf. Fig. 4.6). The reason is that the pair (j + 2, k)
conflicts with the necessary insertion of (i−2, j+2), so
(j + 2, k) ∈ B−, and i is minimal in this set. Further,
(j+ 2, k) is not enclosed by a base pair since j+ 1 pairs
to the left. Therefore, the preconditions of Lemma 4
on page 53 are fulfilled and a y-directed move can be
applied to the substructure of x enclosed by (j + 2, k).

4.3.3. Re-implementation of findPath

According to Lemma 4 on page 53, direct canonical paths exist between
any two canonical structures. Therefore, direct paths in canonical RNA
landscapes can be utilized for the same purposes as in general RNA
landscapes. Since it is useful for connecting basins to each other, the
findPath heuristic has been re-implemented as a Perl function, including
support for canonical paths and shift moves that can be toggled on or off
independently.

The implementation uses a max queue to keep track of the n energetically
best structures. Additionally, a hash of all structures currently in the queue
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is used to prevent that the same structure, reached by a different path, is
inserted multiple times. In such cases, only the best structure is kept in
the queue.
The performance of the Perl implementation is, of course, much lower

than the C variant. Given the same input, it requires about ten times
as long. When performing the direct path search on many basins this
becomes a bottleneck in the kinetics pipeline implemented in this work.
Therefore, a re-implementation in C or another fast compiled language
would be a beneficial future task.
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Chapter 5.

Partial Exploration of Energy
Landscapes

In this chapter, the partial exploration of energy landscapes is discussed.
More specifically, what follows is a generic description of an approach to,
starting at a specific state of the landscape, enumerate neighbor states of
this element and find one or multiple paths to the low energy states of the
landscape. This method is then applied to RNA energy landscapes and
has also been implemented as a ready-to-use Perl script.

5.1. Motivation
To analyze the folding kinetics of a RNA sequence s, it is necessary to
construct its RNA energy landscape Ls (cf. Definition 19 on page 30).
To keep the size of the structure space feasible, the full space X can be
pruned to an energy band of width ∆E as described in Section 3.4 on
page 34, yielding a microstate set X|∆E. This, however, might have the
consequence of pruning away interesting structures as e. g. the open chain,
which is usually assumed to be the start structure of a kinetic simulation.
For example, the synthetic riboswitch RS4 designed by Wachsmuth et al.
(2013), which has a minimum free energy of −26.70 kcalmol−1 at 37K,
yields ∣∣∣X|25 kcal mol−1

∣∣∣ = 2,034,217,895.

This is by far infeasible and does not even include the open chain.
The example above raises the question of how to include additional

structures to a pruned energy landscape. Note that it is insufficient to
simply add additional candidate structures to X|∆E since, in general, they
will not have any neighbors and, thus, be isolated. In a kinetic simulation,
the isolated state would never be visited or left. One therefore needs to
connect the candidate structure to the enumerated part of the landscape.
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There are different solutions to this problem. An easy way would be
to use a direct path heuristic as implemented in findPath (Flamm et al.
2000), which, however, has several drawbacks. Direct paths give only a
rough estimate of the actual barrier height, introducing errors into the rate
computation. This effect aggravates in the context of a gradient-based
coarse graining (cf. Definition 13 on page 27) since a direct path might
introduce several new basins consisting of very few or even only a single
structure. To attenuate the error, several direct paths to different target
structures need to be computed, reducing the performance of this approach.
It is also necessary to repeat the entire process for each additional structure
that is supposed to be connected to the landscape.
This chapters aims at introducing a general algorithm for the partial

exploration of energy landscapes based on the notion of basins (Definition 10
on page 25) and gradient walks (Definition 9 on page 25), which tries to
avoid the problems mentioned above.

5.2. Concepts and definitions
Throughout this section, let L = (X, f,M) be an energy landscape. Fur-
ther, let ∆E > 0 an exploration threshold and x ∈ X a candidate structure
that is not found in the ∆E-pruned state set X|∆E (cf. Definition 21 on
page 34).

The heuristic is based on the goal to enumerate structures in the basin
of x, searching for structures leading to other basins and following them
until the explored part X|∆E of the landscape is reached. This is made
more precise with the following definitions.

Definition 34 (Contact state). Let x ∈ X be a local minimum of L and
B(x) its associated basin. A state y ∈ X is called a contact state w. r. t.
B(x) if B(y) 6= B(x) and there is a structure x′ ∈ B(x) such that y and x′
are neighbored. Let C(B(x)) denote the set of all contact states of basin
B(x).

The idea now is to explore a part of the basin of x and repeat this
process for the basins of all encountered contact states that lead to basins
of lower energy. However, since states with a high energy are less likely,
it is sensible to only flood each basin up to a certain energy threshold η.
Therefore, the following definition, related to concepts in Flamm et al.
(2002) is useful:
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Definition 35 (η-basin). Let x ∈ X be a local minimum of L and Ex be
its energy. Then the η-basin Bη(x) of x for some energy value η > 0 is the
set of structures from B(x) with an energy not more than Ex + η, i. e.

Bη(x) = {y ∈ B(x) |Ey ≤ Ex + η} .

Note that Bη is always connected: if y ∈ B(x), then there is a gradient
walk P = y, z1, . . . , zk, x leading from y to x. Of course, z1, . . . , zk ∈ B(x)
since P is also a gradient walk from each these states. Since P is a gradient
walk, Ey ≤ Ez1 ≤ · · · ≤ Ezk ≤ Ex. Therefore, if Ey ≤ Ex + η, then
Ezi ≤ Ex + η for all 1 ≤ i ≤ k, so all zi are also found in the η-basin
and P connects y to x. The notion of contact states naturally extends to
η-basins.

To improve the heuristic’s ability to overcome basins that are surrounded
only by basins with higher minimal energies, the notion of an extended
basin is introduced. It also includes states from neighboring basins up to
the same energy value η.

Definition 36 (extended η-basin). Let x ∈ X be a local minimum of L
and Ex be its energy. Then the extended η-basin of x for some energy
value η > 0 is the set

B∗η(x) =
⋃

y∈C(Bη(x))∪x
Eγ(y)≥Ex

Bη−(Ey−Ex)(y),

where Ey and Eγ(y) are the energy of state y and the energy of the target
state of the gradient walk starting in y, respectively.

5.3. Description of the algorithm
Building on Definition 36, the heuristic can finally be described precisely.
The extended η-basin of the initial structure x is flooded for increasing
values of η. For all encountered contact states, the procedure is repeated
until the explored part of the landscape X|∆E is reached. This way, a
significant part of the structures in the encountered basins are enumerated
while excluding structures the lie in a different part of the landscape.

The algorithm is given as pseudo-code listing (cf. Algorithm 1 on page 64).
It begins by performing a gradient walk from x, yielding the local minimum
x′ = γ(x). Next, the extended Einc-basin B(x′) is flooded up to an energy
level of Ex′ + Einc, storing all encountered contact states in a list. If less
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than nmin contact states y′ with γ(y′) < Ex′ where found, increase Einc
and repeat the process until either enough contact states where found
or some Emax is reached and the heuristic bails out for this basin. For
each contact state, continue if γ(y′) ≤ Ethresh, where Ethresh = ∆E + Emfe,
else add γ(y′) to a queue. Until this queue is empty, repeat the described
process for each state in it. At all times, keep a hash of visited states to
prevent processing parts of the landscape more than once. The algorithm
returns a list of each state it has encountered, which can then be added to
the pruned state set X|∆E. Figure 5.1 on the next page shows an example
run of the algorithm.
To flood an extended basin B∗η(x) to an energy level of η, initialize a

queue Q with the local minimum x′ = γ(x). During the flooding, mark
any structures that are pushed into the queue and prevent inserting them
a second time. While the queue is not empty, pop an element x from Q
and compute all neighbors N(x) with an energy of Ex′ + η or less. For
each such neighbor y, check whether it lies in the same extended basin
as x, and if so, push it to the queue. Else, add y to the returned list of
contact states. A pseudo-code representation is given in Algorithm 2 on
page 65.
The described method can easily be extended for more than a single

candidate state. Therefore, they simply need to be added to the queue.
Since the algorithm remembers any visited state, multiple similar states
will be processed quickly.

5.4. Implementation and application
The described algorithm has been implemented prototypically for RNA
secondary structures. It was implemented as a Perl module, relying on the
ViennaRNA Perl bindings to compute the energy of secondary structures.
The program expects a RNA sequence and one or more secondary structures
in dot-bracket notation as input. If no structures are provided, the open
chain is used. Of course, the parameters from the algorithmic description
can be specified by the user via command line arguments. This allows for
an easy adaption of the program for different energy landscapes in the case
that a run should take too long or that no path down to structures from
the pruned state set are found. The following options are available:

-T: folding temperature in ◦C, which is required to compute the energy of
secondary structures
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(d) The flooding level is increased
until contact states are found.

Figure 5.1.: Example run of one iteration of Algorithm 1 on the next page.
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Algorithm 1: Partially explore an energy landscape.
Input : structures of interest x1, x2, . . . ; absolute exploration

threshold Ethresh, flooding energy increment value Einc,
maximum per-basin flooding energy Emax, minimum number
of contact states nmin

Output : list of all visited structures
Data: integer n, queue Q, list L, hash of queued structures H
Q← (x1, x2, . . . )
while Q 6= ∅ do

x← pop(Q)
x′ ← γ(x)
if Ex′ < Ethresh or H[x′] = “queued” then

continue

n← 0
repeat

n← n+ 1
(L,Hbasin)← floodBasin(x′, Ex′ + n · Einc, nmin, Emax)

until |L| ≥ nmin or n · Einc ≥ Emax

foreach z ∈ {z′ ∈ L |H[z′] 6= “queued”} do
push(z → Q)

merge Hbasin into H

return keys of H
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Function 2: floodBasin: Flood extended basin of a given structure up
to a specified energy level.
Input : structure x, absolute exploration threshold Ethresh,

minimum number nmin of contact states to find, maximum
flooding level Emax

Output : list L of contact states
Data: queue Q, local hash H to mark queued structures
x′ ← γ(x)
push(x′ → Q)
H[x′]← “queued”
while Q 6= do

y ← pop(Q)
foreach neighbor z of y with Ez ≤ Ethresh do

if H[z] 6= “queued” then
H[z]← “queued”
if z ∈ B(x′) or Eγ(z) ≥ Ex′ then

push(z → Q)
else

push(z → L)

return L,H
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-E: exploration threshold in kcalmol−1 above the minimum free energy in
which the landscape is already enumerated (Ethresh − Emfe)

-m: maximum flooding level for a single basin (in kcalmol−1) (Emax)

-i: flood energy increment value in kcalmol−1 (Einc)

-n: minimum number of contact states to search for (nmin)

-l: allow lonely pairs, i. e. do not exclude non-canonical structures (cf.
Section 4.2 on page 42)

-o: output file name in which all encountered structures and their respec-
tive energies are stored

-v: enable verbose output, printing out progress for each basin and en-
countered contact states

-q: be quiet, do not print found structures that lie below exploration
threshold

-h: show the program help

For the synthetic riboswitches designed by Wachsmuth et al. (2013),
each of 70 to 80 nucleotides long, flooding from the open chain until an
exploration threshold of 15 kcalmol−1 above the minimum free energy was
reached took approximately 20 minutes on an Intel Core i7-4770 CPU
(4×3.4GHz). Thereby, each basin was flooded up to 5 kcalmol−1, searching
for at least five contact states. The folding temperature was set to 37 ◦C.

5.5. Discussion
Obviously, the runtime strongly depends on the length and the composition
of the input sequence as well as on the specified structures of interest and
the passed parameters. In the worst case, the entire landscape has to
be flooded and so the runtime is exponential in the sequence length. On
the other hand, the algorithm will never enumerate structures with an
energy higher than Ein + Emax, where Ein = max {Ex1 , Ex2 , . . .} is the
maximum energy of all input structures. An upper bound for the value of
Emax required to be able reach the pruned part of the landscape may be
estimated with a direct path search (Flamm et al. 2000).
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Until now, the implementation is not parallelized. Using a thread-
safe implementation of the hash data structure, this should be possible
without difficulties, yielding significant performance improvements. For
this work, the current performance was sufficient since the computation
of the additional structures needed to be performed only once for each
riboswitch at any given temperature. Therefore, the improvement of this
valuable tool is an unresolved task that remains for future work.

67





Chapter 6.

Folding Kinetics of Riboswitches

As explained in Section 2.4 on page 18, the folding kinetics of riboswitches
are important for their analysis and design. This section presents a tractable
modeling approach that allows the prediction of concentrations of different
conformations for a given riboswitch during the course of time.

To obtain an approximate but tractable model of RNA folding, Wolfinger
et al. (2004) present a coarse-graining approach as described in Defini-
tion 13 on page 27. Following e. g. Flamm et al. (2000), they analyze the
folding process on the energy landscape of conformations, i. e. secondary
structures, Ri of a RNA R. Conformation change is modeled by elementary
moves (base pair insertion or deletion, Definition 18 on page 30) endowed
with reaction rates that follow the Arrhenius rule (cf. Section 3.5.2 on
page 36) and thus depend on the energy barrier between the source and
target conformations. In the approximation of RNA secondary structures,
activation energies for opening/closing of single base pairs are approxi-
mately constant. The energy barrier thus effectively depends only on the
energy difference between source and target (Wolfinger et al. 2004). This
defines a Markov process on the state space of all secondary structures,
which is too large to make it possible to analyze it by diagonalizing the cor-
responding rate matrix, i. e. by integrating the master equation as described
in section Section 6.7. To effectively reduce the state space, Wolfinger
et al. (ibid.) combine states into basins that consist of all conformations
that are connected to the same local minimum by their gradient walk on
the energy landscape. Since gradient walks connect states to their lowest
energy neighbors, they correspond to the fastest folding paths from a state
into a local minimum. This provides the rationale for approximating the
full process by the macroprocess on gradient basin macrostates, which
are assumed to be equilibrated. Consequently, the rates between the
macrostates are canonically derived as weighted sums of microrates of the
original process. The macroprocess is finally solved by diagonalization. The
approach described here re-uses ideas of this coarse-graining, which also
allows re-using several tools for single-molecule RNA kinetics (RNAsubopt
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(Lorenz et al. 2011), barriers (Flamm et al. 2002), treekin (Wolfinger
et al. 2004)).

6.1. RNA ligand interaction model
The reaction system of the RNA R (a RNA molecule, given by its sequence
of nucleotides {A,C,G,U}) with the ligand L is described at the level
of RNA and binding complex conformations, such that the kinetics of
association, dissociation, and conformation changes can studied. For
simplicity, it is assumed that there is only a single ligand conformation
(also denoted L). Like the RNA, the complex of RNA and ligand adopts
various conformations LRi; note however that only a subset of the RNA
conformations binds the ligand. Thus, the system of consideration consists
of the reactions

Ri −−→ Rj (6.1a)
L + Ri −−→ LRi (6.1b)

LRi −−→ L + Ri (6.1c)
LRi −−→ LRj, (6.1d)

for all i, j ∈ {1, . . . , N}, i 6= j. According to the rate laws for elementary
reactions (cf. 3.5.2), the rates of each of these reactions depend on specific
rate constants and the concentrations of the molecules. The Reactions 6.1a
and 6.1d only have non-zero rate constants, if the RNA conformations Ri

and Rj are related by an elementary move such as the insertion or deletion
of a base pair. Moreover, L and Ri can interact only for the subset of the
Ri that form an appropriate binding pocket; otherwise, the complex LRi

is deemed unstable and thus excluded from the model.
Since RNA conformations correspond to RNA secondary structures, the

energies of monomer states can be calculated from the Turner energy
model (Turner and Mathews 2009). For dimer states, the aptamer-ligand-
specific binding energy is added. For the exemplary studied riboswitch
RS3, this energy can be derived from the empirical dissociation constant
(Wachsmuth et al. 2013) as described in Section 3.6 on page 38.

Finally, the rate constants are derived as Metropolis rates with ap-
propriate pre-exponential factors that can be estimated from empirical
rates. Note that the rates of base pair opening k− and closing k+ are
directly related by the energy change ∆G due to the closing. Concretely,
k−/k+ = exp(∆G/RT ) for ∆G < 0. Experimental values are available
for the zippering rate, which corresponds to the rate of closing the last
hairpin in a helix. A careful analysis in Kuznetsov and Ansari (2012) yields
a value in the range 4.7× 107 s−1 to 1× 109 s−1 roughly consistent with
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earlier estimates (Cocco et al. 2003; Pörschke 1974; Zhang and Chen 2002).
In principle, a kinetic constant can be derived for the closing of first base
pair in a loop from a worm-like chain model Kuznetsov and Ansari (2012)
and Toan et al. (2008); following earlier work on RNA kinetic models
(Wolfinger et al. 2004), a single kinetic parameter k+ for all base pairs is
used here.
An empirical rate of one specific theophylline aptamer association was

reported as 600M−1 s−1 (Latham et al. 2009), which may serve as rough
estimate for comparable systems. Note that Latham et al. (ibid.) measured
the macroscopic apparent rate that depends on the rate of dimerization,
i. e. the formation of a RNA–ligand dimer complex, as well as the rate of
refolding into structures with theophylline binding pocket.
While the Reactions 6.1a, 6.1c, and 6.1d are of first order, the second

order association in Reaction 6.1b introduces non-linearity into the system.
Assuming ligand excess, which is a very plausible assumption for small
molecular ligands, however, it is possible to devise a pseudo-first order
approximation of the system.

Even if the reaction equations above appropriately model the RNA–
ligand interaction, this system is still computationally intractable for
typical riboswitch sizes. As a remedy, a coarse-grained process based on
separate gradient basins for the monomer and dimer states is constructed.
The monomer states with suitable binding pocket are connected to dimer
states, Fig. 6.1 on the next page. Importantly, there is no direct mapping
from monomer macrostates to dimer macrostates of the coarse-grained
system because conformations without binding pockets are absent from
the “dimer world”. The upper basin in the “monomer world” of Fig. 6.1
on the following page is subdivided into two basins in the dimer world;
conversely, the middle and lower monomer basins correspond to a single
basin of the dimer world.

6.2. Contributions
Section 6.3 on page 73 discusses the general macroprocess of RNA ligand
interaction based on gradient basin macrostates and the derivation the
corresponding rate constants. This original description of the specific
macrostate system is a fundamental prerequisite for RNA ligand interaction
kinetics based on gradient basin coarse graining. Subsequently, this system
is discussed under the assumption of excessive ligand concentrations, which
is valid for a wide spectrum of biological systems. On this basis, this chapter
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Figure 6.1.: Correspondence between the energy landscapes of the
monomers (left) and the dimers (right). The dimer landscape
is obtained from the monomer landscape by only retaining the
structures possessing the binding pocket (blue circles) while
removing the other ones (green squares). As the removed struc-
tures might lie on a gradient walk (solid arrow), rendering
that path invalid in the dimer landscape, formerly suboptimal
moves (dashed arrows) become gradient walks and new local
minima (filled squares and circles) may arise. These effects
might alter the mapping of the structures to their gradient
basin.

devises the first analytical approach for RNA ligand interaction kinetics
enabling the computation of time-dependent macrostate probabilities based
on solving the master equation of the interaction process. Finally, the
interaction kinetics of the artificially designed theophylline riboswitch RS3
(Wachsmuth et al. 2013) at different concentrations is discussed and the
effect of co-transcriptional interaction in the model is studied.
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6.3. Macrostate kinetics of RNA–ligand
interaction

6.3.1. Preliminaries and basic notation
Consider the fixed interaction system of the RNA R and the ligand L. Let
X denote the set of all monomer microstates, X = {Ri | i = 1, . . . , N}; in
this setting the Ri are the secondary structures of a given RNA sequence.
The subset X+ ⊆ X comprises the conformations that can bind the ligand.
Here X+ contains all states with a specific binding pocket. Furthermore,
define X∗ as the set of dimer microstates LRi, X∗ = {LRi | Ri ∈ X+} ⊆
{LRi | i = 1, . . . , N}.
A monomer microstate LRi ∈ X∗ has the energy E(Ri) + θL, where

θL < 0 denotes the binding energy of R and L. The inverse temperature is
b = 1

RT
, where T is the absolute temperature and R is the universal gas

constant. For a set S ⊆ X ∪X∗ of microstates, Z[S ] denotes the partition
function of S (cf. Definition 20 on page 33) The probability of a microstate
x in S is denoted by Pr[ x | S ] (Ibid.). Let x, y ∈ X ∪X∗ be microstates.
The microrate constant from x to y is denoted k(x→ y) (or k(y ← x).)

On microstates, define the symmetric neighborhood relation x N y w. r. t.
a given symmetric move set. Only neighbors have non-zero transition
rates between microrates. All microrate constants are defined by the
Metropolis rule, i. e. for x, y ∈ X ∪X∗, x 6= y

k(x→ y) = c(x→ y)
exp(−b[max{E(x), E(y)} − E(x)]) if x N y,

0 else,
(6.2)

where c(x→ y) denotes the reaction-specific pre-exponential factor. Here
it is assumed that this factor depends only on the type of reaction and the
factors for conformation change in monomers and dimers are equal. Thus,
one can distinguish the factors ca for association, cd for dissociation, and
cR for conformation changes of the RNA secondary structure. As is shown
shown later in Eq. (6.11) on page 85, ca = cd due to detailed balance (cf.
Section 3.5.1 on page 35).

Denote the power set of a set S by P (S) (cf. Definition 11 on page 26).
A monomer (dimer) macrostate is a set of monomer (dimer) microstates,
i. e. an element of P (X) (P (X∗)), respectively. Denote the (macro)rate
constant from macrostate α to β by r(α→ β) (alternatively, r(β ← α)).
Macrorate constants are defined by microrate constants and state proba-
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bilities as
r(α→ β) =

∑
x∈α,y∈β

Pr[ x | α ]k(x→ y).

Note that the term macrostates is used freely to denote general sets
of microstates. Only when specific partitions of the microstates into
macrostates are introduced in Section 6.4 on page 76, it makes sense to
distinguish represented macrostates of the specific coarse-grained system
from other sets of microstates.

6.3.2. Rate constants between dimer states
For a microstate x ∈ X+, let Lx denote its corresponding dimer microstate
(after binding to L), i. e. for x = Ri, Lx = LRi. This notation is raised to
sets of microstates by defining Lα = {Lx | x ∈ α}. Lemma 5 below asserts
that the rate constants between dimer microstates and macrostates can be
computed exactly like rate constants of monomer states.

Lemma 5. For x, y ∈ X+, k(Lx→ Ly) = k(x→ y). Furthermore, for all
α ∈ P (X+), Pr[Lx | Lα ] = Pr[ x | α ]. Finally, r(Lα→ Lβ) = r(α→ β),
for all macrostates α, β ∈ P (X+).

Proof. The individual claims follow easily from the definitions:

k(Lx→ Ly) = c(Lx→ Ly) exp(−b[max{E(Lx), E(Ly)} − E(Lx)])
= c(x→ y) exp(−b[max {E(x) + θL, E(y) + θL} − (E(x) + θL)])
= c(x→ y) exp(−b[max{E(x), E(y)}+ θL − E(x)− θL])
= exp(−b[max{E(x), E(y)} − E(x)])
= k(x→ y).

Furthermore,

Pr[Lx | Lα ] = exp(−bE(Lx))
Z[Lα ]

= exp(−b[E(x) + θL])∑
x∈α exp(−b[E(x) + θL])

= exp(−bθL) exp(−bE(x))
exp(−bθL)∑x∈α exp(−bE(x))

= Pr[L | α ].
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Finally,

r(Lα→ Lβ) =
∑

Lx∈Lα
Ly∈Lβ

Pr[Lx | Lα ]k(Lx→ Ly)

=
∑
x∈α
y∈β

Pr[ x | α ]k(x→ y)

= r(α→ β),

where the sum runs over the Lx ∈ Lα and Ly ∈ Lβ.

The microrate constant from monomer to dimer states is constant,
whereas the back rate depends on the binding energy θL.

Lemma 6 (Association and dissociation microrate constants). For x ∈ X+,
the rate of association is k(x→ Lx) = ca and the dissociation rate is
k(Lx→ x) = cd exp(bθL). All other rates between monomer and dimer
microstates are 0.

Proof. By Metropolis rule, for x ∈ X+, with η = max{E(x), E(Lx)} −
E(x),

k(x→ Lx) = ca exp(−bη)
= ca exp(−b[E(x)− E(x)]) = ca,

since E(Lx) = E(x) + θL ≤ E(x). Analogously, for the inverse microrate,

k(Lx→ x) = cd exp(−bη)
= cd exp(−b[E(x)− E(Lx)])
= cd exp(bθL).

The association (dissociation) microrates due to Lemma 6 induce corre-
sponding macrorates, which additionally depend on the probability of the
associable (dissociable) microstates in the source macrostate, respectively
(Lemma 7.)

Lemma 7 (Association and dissociation macrorate constants). For α ∈
P (X) and β ∈ P (X+), the dimerization and dissociation reactions rate
constants have the forms

r(α→ Lβ) =ca
Z[α ∩ β ]

Z[α ]
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and

r(Lβ → α) =cd
Z[α ∩ β ]

Z[ β ] · exp(bθL).

Proof. Let α ∈ P (X) and β ∈ P (X+). Thus

r(α→ Lβ) =
∑
x∈α
Ly∈Lβ

Pr[ x | α ] · k(x→ Ly)

=
∑

x∈α∩β
Pr[ x | α ] · k(x→ Lx)

= ca
Z[α ∩ β ]

Z[α ]

and

r(Lβ → α) =
∑

Lx∈Lβ
y∈α

Pr[Lx | Lβ ] · k(Lx→ y)

=
∑

x∈α∩β
Pr[Lx | Lβ ] · k(Lx→ x)

= cd
Z[α ∩ β ]

Z[ β ] · exp(bθL) .

6.4. A tractable model under ligand excess
For the described coarse-grained RNA ligand interaction process, partition
the monomer microstates X and the dimer microstates X∗ into respective
sets of macrostates Ξ and Ξ∗. For the theoretical discussion, it is required
only that Ξ and Ξ∗ are partitions of the respective sets X and X∗. Later,
during the application, macrostates are defined as gradient basins (within
their respective component).
Denote the monomer macrostates in Ξ by α1, . . . , αn and the dimer

macrostates in Ξ∗ by β1, . . . , βm. Since—by model assumption—the ligand
is in large excess, the change of the ligand concentration [L] is essentially
negligible in relation to the change of RNA concentrations. Formally,
this equates to the assumption d/dt[L] = 0, i. e. at all times [L] = l0, for
the initial ligand concentration l0. The change of RNA monomer and
RNA ligand dimer concentrations over time is described by a system of
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linear, first-order ordinary differential equations (ODEs) corresponding to
Reactions (6.1a)–(6.1d).

Following first-order rate laws (Section 3.5.2 on page 36), Reaction (6.1a)
causes the flows r(αi → αj)[αi] from αi to αj (for 1 ≤ i, j ≤ n); Reac-
tion (6.1d), r(βi → βj)[βi] from βi to βj for 1 ≤ i, j ≤ m; and Reac-
tion (6.1c), r(βi → αj)[βi] from βi to αj for 1 ≤ i ≤ m, 1 ≤ j ≤ n. In
contrast to these simple first-order transitions, the state changes due
to Reaction 6.1b follow second-order rate laws contributing the flow
r(αi → βj)[L][αi] from αi to βj. Without the assumption d/dt[L] = 0,
the rate would depend on two variable concentrations, causing the sys-
tem to be non-linear. However, by the assumption of ligand excess, the
concentration [L] is constant.
The change of concentrations is now described by summing over the

single contributions, yielding the following system of ODEs:

(i = 1, . . . , n) d

dt
[αi] =

∑
1≤k≤n
k 6=i

r(αk → αi)[αk] +
∑

1≤k≤m
r(βk → αi)[βk]

−
∑

1≤k≤n
k 6=i

r(αi → αk)[αi] −
∑

1≤k≤m
r(αi → βk)[L][αi],

(j = 1, . . . ,m) d

dt
[βj] =

∑
1≤k≤n

r(αk → βj)[L][αk] +
∑

1≤k≤m
k 6=j

r(βk → βj)[βk]

−
∑

1≤k≤n
r(βj → αk)[βj] −

∑
1≤k≤m
k 6=j

r(βj → βk)[βj].

Let γ = (α1, . . . , αn, β1, . . . , βm)t and define the (n+m)×(n+m)-matrix
R(l0). Then the entire coarse-grained system under ligand excess can be
expressed by the linear ODE

d

dt
[γ] = R(l0)[γ],

For this purpose, R(l0) is constructed as

R(l0) =


A C

l0 ·D B

 (6.3)

from four submatrices:
A: n×n-matrix with entries aij = r(αi ← αj) for 1 ≤ i, j ≤ n, i 6= j;

for 1 ≤ i ≤ n, aii = −∑1≤k≤n r(αk ← αi)−
∑

1≤k≤m l0r(βk ← αi)
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B: m×m-matrix with entries bij = r(βi ← βj) for 1 ≤ i, j ≤ m, i 6= j;
for 1 ≤ j ≤ m, bjj = −∑1≤k≤n r(αk ← βj)−

∑
1≤k≤m r(βk ← βj)

C: n×m-matrix with entries cij = r(αi ← βj) for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and

D: m×n-matrix with entries dij = r(βi ← αj) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

6.5. Equilibrium distribution
The distribution of the RNA molecules to the macrostates in the equilibrium
state of the full model can be calculated using the law of mass action
(cf. Eq. (3.4) on page 38). Inside the world of monomers and dimers,
respectively, the probability of each macrostate can be derived from its
Boltzmann weight as described in Section 3.3 on page 32. However, in
the presence of the ligand, one has to consider the distribution of the RNA
to both worlds. This distribution depends on the ligand concentration and
is derived in this section. Therefore, denote by R+ the species of all RNAs
that can bind the ligand (i. e. all conformations in X+), by R̃ the species
of all RNAs that cannot bind the ligand (i. e. all conformations in X \X+),
by L the ligand and by LR the species of all RNA–ligand dimer complexes.
The transition between the monomer and dimer world is described by the
reactions

R̃ −−⇀↽−− R+, (6.4)

which describes the formation of structures with and without the binding
pocket inside the monomer world, and the dimerization reaction

L + R+ −−⇀↽−− LR. (6.5)

By the law of mass action and the Boltzmann distribution of energies
(cf. Section 3.3 on page 32), one gets

K̃ = [R+]
[R̃]

(6.6a)

= Z[X+ ]
Z[X \X+ ]

= Z[X+ ]
Z[X ]− Z[X+ ] , (6.6b)
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for Reaction (6.4) and, under the assumption of ligand excess,

K+ = [RL]
[R+] · [L]

= [RL]
[R+] · l0

(6.7a)

as well as

K+ = Z[LX+ ]
Z[X+ ] · Z[ L ]

= Z[X+ ] · exp(−bθL)
Z[X+ ]

= exp(−bθL) (6.7b)

for Reaction (6.5), where K̃ and K+ are the equilibrium constants of their
respective reactions. Note these can readily be computed by using the
expressions (6.6b) and (6.7b).
By rewriting Eq. (6.6a) and Eq. (6.7a), one obtains

[R+] = K̃ · [R̃] (6.8a)

and

[RL] = K+ · l0 · [R+]. (6.8b)

Additionally, for the known initial RNA concentration r0, the relation

r0 = [R̃] + [R+] + [RL] (6.8c)

holds, since any RNA molecule must be in either of these three molecule
species. By solving the system of Eqs. (6.8a) to (6.8c), one can now derive
the equilibrium concentrations for each species:

[R̃] = r0

1 + K̃ + K̃ ·K+ · l0

[R+] = K̃ · r0

1 + K̃ + K̃ ·K+ · l0

[RL] = K ·K+ · l0 · r0

1 + K̃ + K̃ ·K+ · l0
Knowing these, the fractions of RNA monomers and dimers can be cal-
culated as pmon = [R]/r0, [R] = [R̃] + [R+] and pdim = 1 − pmon = [RL]/r0,
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respectively. Putting things together, the probability of a macrostate α in
the equilibrated full system is

Pr[α ] =
Pr[α | X ] · pmon if α ∈ Ξ,

Pr[α | X+ ] · pdim if Lα ∈ Ξ∗.
(6.9)

To obtain the equilibrium concentration of a certain state, one can multiply
its probability with the initial RNA concentration r0.

6.6. Detailed balance
This section shows that described model is in detailed balance. The full
rate matrix (Eq. (6.3) on page 77) incorporates the ligand concentrations.
Therefore, for any two macrostates α and β with indices i and j, respectively,
denote the full macrorate coefficient for the transition from α to β as

r̂(α→ β) = rji,

where rji is the respective entry of the full rate matrix. Therefore,
r̂(α→ β) = l0 · r(α→ β) if α is a monomer and β is a dimer macrostate.
Else, r̂(α→ β) = r(α→ β).

Theorem 5 (Detailed balance). The system described in Section 6.4 on
page 76 is in detailed balance.

Proof. Recalling Eq. (3.1) on page 36, the system is in detailed balance if,
in the equilibrated system,

Pr[α ] · r̂(α→ β) = Pr[ β ] · r̂(β → α)

holds for any two macrostates α and β. If the rate coefficients are both
zero, the claim is trivial. Else, both constants are non-zero, as follows
directly from Eq. (6.2) on page 73 and the symmetry of the neighborhood
relation N . Therefore, the previous equation is equivalent to

Pr[α ]
r̂(β → α) = Pr[ β ]

r̂(α→ β) . (6.10)

The detailed balance of the system is now shown by proving that Eq. (6.10)
holds for all macrostates α and β. Let, as before, Ξ and Ξ∗ denote the sets
of monomer and dimer macrostates, respectively. Note that the claim is
trivial for α = β, so assume α 6= β. One can now distinguish several cases.
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First, let α, β ∈ Ξ. Then, r̂(α→ β) = r(α→ β). Further, by Eq. (6.9)
on page 80,

Pr[α ]
Pr[ β ] = Pr[α | X ] · pmon

Pr[ β | X ] · pmon

= Z[α ]
Z[X ] ·

Z[X ]
Z[ β ] ·

pmon

pmon

= Z[α ]
Z[ β ] .

Let Emax
x,y = max{E(x), E(y)}. Inserting the definitions of the macrorate

and microrate coefficients, the ratio of the rate coefficients is

r̂(β → α)
r̂(α→ β) =

∑
y∈β Pr[ y | β ]∑x∈α k(y → x)∑
x∈α Pr[ x | α ]∑y∈β k(x→ y)

=
∑
y∈β(exp(−bE(y))/Z[ β ])∑x∈α cR exp(−b[Emax

x,y − E(y)])∑
x∈α(exp(−bE(x))/Z[α ])∑y∈β cR exp(−b[Emax

x,y − E(x)])

= Z[α ]
Z[ β ] ·

∑
y∈β exp(−bE(y))∑x∈α exp(−b[Emax

x,y − E(y)])∑
x∈α exp(−bE(x))∑y∈β exp(−b[Emax

x,y − E(x)])

= Z[α ]
Z[ β ] ·

∑
y∈β

∑
x∈α exp(−bEmax

x,y )∑
x∈α

∑
y∈β exp(−bEmax

x,y )

= Z[α ]
Z[ β ]

= Pr[α ]
Pr[ β ] ,

so for these transitions the criterion is fulfilled.
Analogously, for Lα,Lβ ∈ Ξ∗ one gets

Pr[Lα ]
Pr[Lβ ] = Z[Lα ]

Z[Lβ ] = Z[α ]
Z[ β ] .

Since r̂(Lα→ Lβ) = r(Lα→ Lβ) = r(α→ β) (cf. Lemma 5 on page 74)
and, equally, r̂(Lβ → Lα) = r(β → α), the ratio of the rate coefficients is
also Z[α ]/Z[ β ].
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In the third case, α ∈ Ξ while Lβ ∈ Ξ∗. Now,

Pr[α ]
Pr[Lβ ] = Pr[α | X ]

Pr[Lβ | X∗ ] ·
pmon

pdim

= Z[α ]
Z[X ] ·

Z[X∗ ]
Z[Lβ ] ·

1 + K̃

1 + K̃ + K̃ ·K+ · l0
· 1 + K̃ + K̃ ·K+ · l0

K̃ ·K+ · l0

= Z[α ]
Z[ β ] ·

Z[X+ ]
Z[X ] ·

1 + K̃

K̃ ·K+ · l0
.

To further simplify this expression, Eq. (6.6b) on page 78 can be rewritten
as

K̃

1 + K̃
= Z[X+ ]

Z[X ] ,

such that

Pr[α ]
Pr[Lβ ] = Z[α ]

Z[ β ] ·
K̃

1 + K̃
· 1 + K̃

K̃ ·K+ · l0

= Z[α ]
Z[ β ] ·

1
K+ · l0

(6.7b)= Z[α ]
Z[ β ] ·

exp(bθL)
l0

· ca

ca

(6.11)= cd
Z[α ∩ β ]

Z[ β ] exp(bθL) Z[α ]
Z[α ∩ β ] ·

1
l0 · ca

(∗)= r(Lβ → α)
r(α→ Lβ) · l0

= r̂(Lβ → α)
r̂(α→ Lβ) ,

where the equivalence (∗) follows from Lemma 7 on page 75.

6.7. Computing RNA–ligand kinetics
The described ODE system can be solved analytically building on existing
software. The entire computation pipeline can be outlined as follows:

1. enumeration of the RNA’s structure space

2. computation of the gradient basins and rates between these for
a) the monomer landscape
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b) the dimer landscape

3. computation of the rates between the monomer and dimer basins

4. construction of the full rate matrix R(l0)

5. integration of the linear ODE system

Since an exhaustive enumeration of the structure space is infeasible
even for short RNAs, Step 1 generates only a selected part of all possible
secondary structures of the input RNA. For this work, only structures up
to a certain energy above the minimum free energy of the sequence as
computed by RNAsubopt (Lorenz et al. 2011) are considered. To further
reduce the number of structures, only canonical structures as described in
Chapter 4 on page 41 are considered.
Often, the restriction to low energy structures excludes important mi-

crostates of relatively high energy such as the open RNA chain from the
model. Simply adding such a structure to the system is insufficient without
also including transitional structures that connect it to the remaining
states. The solution for this work was to develop a heuristic algorithm to
partially explore an energy landscape around a given structure of interest
(cf. Chapter 5 on page 59). This approach seems to be more adequate in
the context of a gradient basin coarse graining than a direct path heuristic
(e. g. findPath (Flamm et al. 2000)).

In Step 2a, the gradient basins and rates for the monomer landscape
from the list of input structures is computed using barriers (Wolfinger
et al. 2004) (with minh heuristic). For Step 2b, a list of all input structures
that contain the binding pocket is generated with RNAsubopt’s constraint
folding mode. This enables one to enumerate dimer structures up to a
higher energy than possible for the entire landscape, ensuring the dimer
world is connected. As shown in Lemma 5 on page 74, the transition
rates in the constrained dimer landscape are independent of the ligand’s
binding energy and thus can be computed exactly like those of the monomer
landscape.

In Step 3, the transition rates between monomer and dimer macrostates
are computed based on Lemma 7 on page 75 using the mapping of the
monomer and dimer structures to their respective basins. For this purpose
barriers has been modified to output the required information.
Step 4 yields the full rate matrix R(l0) for one set of pre-exponential

factors and a certain ligand concentration l0 by combining the previously
computed rate constants. Take note that one can easily compute R(l0)
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for different values of l0, ca and cR without repeating the previous, more
time-consuming computation steps.
Finally, in Step 5 the described ODE system is solved exactly with

the tool treekin (Wolfinger et al. 2004). After diagonalizing R(l0), it
efficiently computes the development of the macrostates’ concentrations
during an arbitrary time interval.

6.8. Parameters from empirical measurements
The binding energy θL can be derived from an empirically measured
dissociation constant KA

d of the aptamer; e. g. in the case of theophylline,
Jenison et al. (1994) measure a KA

d of 0.32 µM for the theophylline aptamer
of RS3. From the macroscopic measurement, one can, as described in
Section 3.6 on page 38, derive the binding energy as

θL = RTA ln
(
KA

d · Pr[ “pocket” | A, TA ]
)
,

where TA = 298K is the temperature of the measurement, R is the gas
constant, and Pr[ “pocket” | A, TA ] denotes the equilibrium probability
of the binding pocket in the aptamer at temperature TA as calculated
in the Turner energy model (cf. Wachsmuth et al. 2013, which neglect
the probability). This relation allows calculating the effective dissociation
constant at temperature TR of a theophylline riboswitch like RS3 that
contains the aptamer, due to the inverse relation

KRS
d =

exp
(
θL
RTR

)
Pr[ “pocket” | RS, TR ]

=
exp

(
RTA
RTR

ln
(
KA

d · Pr[ “pocket” | A, TA ]
))

Pr[ “pocket” | RS, TR ]

=

(
KA

d · Pr[ “pocket” | A, TA ]
)TA/TR

Pr[ “pocket” | RS, TR ] .

For RS3 at TR = 313.15K,

Pr[ “pocket” | A, TA ] ≈ 0.292

and
Pr[ “pocket” | RS, TR ] ≈ 2.59× 10−11
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due to the pocket-constrained and unconstrained ensemble free energies in
the Turner model. Thus,

θL ≈ RTA ln(0.292KA
d ) ≈ −9.59 kcalmol−1

and

KRS3
d ≈ (0.292KA

d )TA/TR

2.59 · 10−11 ≈ 7891M.

For relating the rates of the different reaction types, one needs to
estimate the pre-exponential factors of all reactions. Commonly, one
assumes constant factors for each type of reaction. Furthermore, it is
reasonable to equate the factors for monomer and dimer conformation
changes.
Given the apparent association rate cm

a (which we assume to equal
the macroscopic pre-exponential factor of dimerization), one can bound
the microscopic pre-exponential factor ca. Assuming that refolding is
much slower than dimerization, cm

a is a product of the microrate and the
equilibrium probability of the binding pocket. Conversely, if the refolding
is assumed to be much faster, than cm

a directly measures the dimerization
microrate. Thus,

cm
a ≤ ca ≤ cm

a · Pr[ “pocket” | aptamer ]−1.

In the case of theophylline, Pr[ “binding pocket” | aptamer ] ≈ 1 and con-
sequently, ca ≈ cm

a .
Finally, the pre-exponential factor for dissociation cd equals ca. This is

a consequence of detailed balance of the dimerization reaction, i. e.

k(Ri → LRi) Pr[Ri ] = k(LRi → Ri) Pr[LRi ],

which implies

ca Pr[Ri ] = cd exp(bθL) Pr[Ri ] exp(−bθL) = cd Pr[Ri ]. (6.11)

6.9. Ligand intake into the cell
Aiming to use designed riboswitches as a tool for in vivo experiments, any
useful simulation of the folding process needs to consider the physiological
conditions inside living cells. As already stated, the ligand concentration
is an important parameter to the folding kinetics of riboswitches. In an
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in vivo experiment, however, the experimenter adds a certain amount of
ligand to the medium the cells are growing in. To get to the location of
RNA transcription or translation and interact with a riboswitch, the ligand
needs to permeate through the lipid bilayer surrounding all cells, following
the gradient of concentrations until the concentrations outside and inside
of the cell are equal. Depending on how well a certain molecule can pass
through these membranes, the equilibration of the concentrations may take
some time. For example, polar molecules typically have a lower rate of
diffusion through lipid bilayers while water molecules can get past them
rather quick. This raises the question how long it actually takes for a given
ligand to enter the cells and begin its interaction process.

To answer this question, one needs to resort to Fick’s laws of diffusion
(Crank 1979) which describe the flux J , the flow of particles into the cell,
as

J = PL(co − ci), (6.12)

where co and ci are the concentrations of the ligand outside and inside the
cell, respectively, and P is the permeability coefficient for the ligand L of
interest. The unit of P is m s−1. Assuming that the concentrations are
given in their SI default units molm−3, the flux J has the unit molm−2 s−1,
i. e. it describes how many particles enter the cell depending on the size of
its surface area A.
The idea now is to model the concentration ci = ci(t) as a function of

the time. This can easily be done using an ordinary differential equation
(ODE): the change of the concentration over time equals the number of
particles entering the cell divided by the cell’s volume, i. e.

ċi(t) = dci
dt

(t) = A · V −1 · J

= AV −1PL(co(t)− ci(t)).

In Eq. (6.13), the concentration co also depends on the time. This is correct
since any molecule that enters the cell reduces the concentration outside
of it. However, since the volume of the medium is huge compared to that
of the cell, one can assume co(t) ≡ co to be constant. Furthermore, co is
known since it is the initial concentration the experimenter adds to the
medium, and ci(0) = 0 since in the beginning there is no ligand inside the
cell1. By letting k = AV −1PL and dropping the index of ci, Eq. (6.13) on

1Of course, this is only the case if the ligand is not naturally present in the cell, but
in this case, it is not sensible to use it to toggle a riboswitch anyway.
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page 86 becomes

ċ(t) = k(co − c(t)) = kco − kc(t) (6.13)

which is a linear, inhomogeneous, first-order ODE. This class of ODEs can
easily be integrated. The solution has the general form c(t) = ch(t) + cs(t),
where cs is a special solution for Eq. (6.13) and ch is the general solution
for the homogeneous ODE

ċh(t) = −kch(t). (6.14)

Obviously, the constant function cs(t) ≡ co is a solution to Eq. (6.13) since
dco
dt

= 0 = kco − kco. The general solution for Eq. (6.14) can be obtained
by separation of variables:

dch
dt

= −kch

⇔
∫ dch
−kch

=
∫
dt

⇔ −1
k

ln |kch| = t+ a

⇔ ch = 1
k

exp(−ka) exp(−kt)

where a is the integration constant. The general solution for Eq. (6.13) is
therefore

c(t) = ch(t) + cs(t) = 1
k

exp(−ka) exp(−kt) + co.

Inserting the initial value c(0) = 0, one can determine a to solve the initial
value problem (IVP):

0 = 1
k

exp(−ka) · 1 + co

⇔ exp(−ka) = −kco
⇔ −ka = ln |−kco|

⇔ a = −1
k

ln |−kco|

Inserting this constant into c(t), the final solution of the IVP:

cIVP(t) = −co exp(−kt) + co = co(1− exp(−kt)) (6.15)
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As can be seen directly from Eq. (6.15) on page 87, the concentration inside
the cell scales linearly with the initial concentration, i. e. the duration of the
equilibration process does not depend on co. By setting it to 1, cIVP|co=1(t)
therefore describes the fraction of the initial concentration that is diffused
into the cell at time t.

To apply Eq. (6.15) on page 87 to the problem of the ligand theophylline
diffusing into, for example, an E. coli cell, the parameter k needs to be
specified. The average cell surface of E. coli is A = 6 µm2, its average
volume is V = 1 µm3 (Gilbert 2009, p. 26). The permeability coefficient
is Ptheophylline = 2.9× 10−6 ms−1 (Gutknecht and Walter 1981). Therefore,
k = 11.6 s−1. A plot of cIVP|co=1,k=11.6 s−1(t) is shown in Fig. 6.2 on the
next page.

The ligand concentration reaches the equilibrium in less than one second.
As a consequence, in practice it can be assumed that the ligand concentra-
tion inside the cells of the experiment is equal to the one of the surrounding
medium for theophylline and E. coli. For larger cells, the equilibration
takes longer since the parameter k which linearly scales the time axis in
Eq. (6.15) on page 87 grows inversely proportional to the cell diameter.
That is because k = AV −1P and, assuming a cell has a spherical shape,
its surface area A grows quadratically while its volume V grows cubically
in the diameter. However, given that the diameter of e. g. a human cell
(Kuse et al. 1985; Luciani et al. 2001) is only about ten to 15 times larger
than that of E. coli, the concentrations inside and outside of the cell may
be assumed to be equal even for large eukaryotic cells.

It should be noted that the calculations in this section are subject to
some simplifications. As stated before, the concentration in the medium
is assumed to be constant. Also, the flux as calculated by Eq. (6.12) on
page 86 does not consider the influence of differences of concentrations
of other molecules inside and outside the cell and the resulting chemical
potentials. The calculation also assumes that the ligand accumulates in
the cell, neglecting degradation as well as efflux from the cell. The latter
might be especially important if the ligand can interact with the various
active or passive transportation mechanisms of the cell. As a final note, E.
coli, like the most gram-negative bacteria, has not just one but two cell
membranes that hinder the diffusion process (Gupta 2011).
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Figure 6.2.: Plot of cIVP|co=1,k=11.6 s−1(t), which resembles the diffusion pro-
cess of theophylline into an average E. coli cell. The fraction of
the initial concentration in the medium that is diffused into the
cell is plotted against the time in seconds. The equilibration
process is nearly complete after just 1 s.

6.10. Empirical results
Applying the model to the designed on switch RS3 from Wachsmuth et
al. (2013) demonstrates the effect of changes in ligand concentrations to
the interaction of that riboswitch with its ligand theophylline. Using a
prototypical software, the macroprocess for RS3 including rate constants
is precomputed in several hours. Subsequently, computing the kinetics for
each combination of concentrations and pre-exponential factors takes only
a few seconds on off-the-shelf hardware (e. g. Core i5-750 @ 2.67 GHz).
Figure 6.3 on page 91 summarizes the results; each subfigure plots the
probabilities of prominent monomer and dimer states over time.
The pre-exponential factors are set to the estimations cR = 1× 106 s−1

and ca = 600M−1 s−1 as described before. This allows interpreting the
time and ligand concentrations in concrete units and relates the speed of
folding and dimerization.

Figures 6.3A-C show the results for ligand concentrations 104 M, 105 M,
and 106 M. In the RS3 riboswitch, the aptamer domain is fused to a
rho-independent terminator at the 3’-end. Thus, during transcription the
aptamer is available shortly before the strong terminator stem can be
formed and then dominates the entire structure ensemble. Therefore, the
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partially transcribed riboswitch RS3 that is shortened by the 3′-half of the
terminator stem and the 3’ poly-U stretch is studied as well. The kinetics
of the shortened riboswitch is shown for concentrations of 10−7 M, 10−6 M,
and 10−3 M in respective Figures 6.3D-F. Note that the time scales for
interaction of RS3 with theophylline are in accordance with the computed
dissociation constant KRS3

d , which implies that the monomer and dimer
concentrations are balanced at about 104 M ligand concentration. This
extreme concentration suggests that the riboswitch would be non-functional
without further, probably co-transcriptional, effects. This is a plausible
hypothesis since RS3 was designed to regulate at the transcriptional level.
The estimated rates are derived from a small number of empirical

measurements at different conditions, such as ion concentrations (100mM
NaCl in Kuznetsov and Ansari (2012), 5mM MgCl2 and 0.5M NaCl in
Jenison et al. (1994), no Mg2+ and 100mM NaCl in Latham et al. (2009)),
temperatures, and actual sequences; hence they are not directly comparable.
Nevertheless, they provide reasonable ball park estimates, because one
can observe that the qualitative behavior of the system is robust against
variations of these parameters by several orders of magnitude.

6.11. Discussion
Several refinements of the model remain for future research. Most impor-
tantly, the assumption that there is only a single binding motif is rather
stringent. In general, multiple binding motifs with different binding ener-
gies are plausible. A corresponding generalization of the model naturally
leads to multiple “ligand worlds” for the different binding modes. Further-
more, some ligands, such as Mg2+ have multiple binding sites. The current
implementation of the Arrhenius approximation of the RNA folding
kinetics, finally, is quite simplistic, using only a single kinetic pre-factor for
all structural rearrangements. A refined model would presumably distin-
guishing constants for nucleation, stack extension, base pair sliding, and
loop pinching. In particular riboswitches that control at the transcriptional
level will strongly depend of the kinetics of transcription, i. e., the growth of
the RNA chain itself. After all, growing RNA molecules are known to favor
different local minima and thus to refold globally as the chain becomes
longer (Hofacker et al. 2010). Conceptually it is not difficult to extend
the current framework. However, experimental measurements are required
to gauge additional thermodynamic parameters, kinetic pre-factors, and
transcriptional speed—and these are very scarce at present.
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Figure 6.3.: Kinetics plots showing the probabilities of prominent monomer
and dimer states over time. A-C Complete riboswitch RS3
at (unit-free) concentrations 104 (A), 105 (B), and 106 (C).
D-F Partially transcribed riboswitch RS3 (without 3’-half of
terminator stem) at concentrations 10−7 (D), 10−6 (E), and
10−3 (F). Folding rate: 106, dimerization rate: 600
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Chapter 7.

Conclusion

In this work, a solid framework to model the folding kinetics of riboswitches
has been developed. Utilizing a number of sensible approximations and
heuristics, it is feasible to evaluate the simulation for a large number of
different parameters and ligand concentrations. It has been shown that
the kinetics of riboswitches may be strongly affected by co-transcriptional
effects. Furthermore, the theoretical results from Chapters 4 and 5 on
page 41 and on page 59 are useful on their own. It is planned that the
implementation of the symmetric canonical move set will be included
in upcoming versions of barriers. A direct path search heuristic for
canonical landscapes based on the idea of findPath has been developed
which can also be used to estimate barrier heights. The partial exploration
tool for RNA landscapes is another result of this work.

As already stated in each individual section, there are several possible di-
rections for possible future work. For example, the model may be extended
to support multiple binding pocket conformations yielding different energy
bonuses when the ligand binds to them. Another possible improvement
would be to consider different pre-exponential factors for different types of
moves, e. g. for loop formation and helix zippering, when better measure-
ments of such parameters become available. With exception of the move
set, which was implemented in C, the tools developed in this work are
written in Perl. This speeded up the development, but results in a worse
overall performance compared to an implementation in a faster, compiled
language. One could therefore consider a re-implementation of one or
several of the tools for optimized performance. Further, a parallelization
of the algorithms should not be too hard to accomplish and would further
decrease the runtime.
All in all, this work contributes to the better understanding of ri-

boswitches and provides a valuable method to analyze their behavior
in silico.
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