litsift: Automated Text Categorization in Bibliographic Search

Lukas C. Faulstich Humboldt Universität zu Berlin, Germany
Peter F. Stadler Universität Leipzig, Germany
Caroline Thurner Universität Wien, Austria
Christina Witwer Universität Wien, Austria

ECML/PKDD 2003 Workshop on
Data Mining and Text Mining for Bioinformatics
Sept 22, 2003
1 Motivation

Goal: comparison of computational results from bioinformatics with experimental results from life sciences

Task: find relevant literature containing information on conserved RNA secondary structures in viral genomes for a fixed virus group

Complications:
- relevant results may be hidden in articles with differing main topics
- key words may be omitted because context is clear or may be overloaded (e.g. secondary structure)
- no established nomenclature of RNA features in viruses

⇒ Exploratory Project: assess the feasibility of supporting broad bibliographic search with automated text categorization techniques (2PM).
2 Approach

1. learn relevant literature using training corpus (dedicated to a specific virus group, e.g. *Picornaviridae, Flaviviridae*)

2. create test corpus (on some other virus group) by searching bibliographic database and downloading referenced articles

3. apply trained classifier to test corpus

4. present articles as ranked list

5. manually relabel some test articles and use for retraining
2.1 Architecture

Manually assigned labels

(3)
(2)
(1)

ranked article list

Filter/Ranker

unlabeled articles

classifier

Labeled articles

query

Web Interface

Data Preparation

Local Repository

vector representation

citations

Download Manager

fulltext

Pubmed

Publisher

Publisher

Publisher

Faulstich et al. litsift Approach
3 Data Sets

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Source</th>
<th>Size</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>picorna</td>
<td>Pubmed</td>
<td>40</td>
<td>68%</td>
</tr>
<tr>
<td>picorna2</td>
<td>Pubmed + Experts</td>
<td>64</td>
<td>58%</td>
</tr>
<tr>
<td>flavi</td>
<td>Pubmed</td>
<td>153</td>
<td>8%</td>
</tr>
<tr>
<td>flavi2</td>
<td>Pubmed + Experts</td>
<td>187</td>
<td>12%</td>
</tr>
<tr>
<td>hepadna</td>
<td>Pubmed</td>
<td>16</td>
<td>69%</td>
</tr>
</tbody>
</table>
4 Methods
4.1 Data Preparation

1. download: Perl wrapper scripts

2. PDF → Text conversion: pdftotext, ps2ascii

3. tokenization and full text index: ConceptComposer

4. term relevance measures: SQL script
 - Odds Ratio \(OR(t, c) = \frac{P(t|c) \cdot (1 - P(t|\bar{c}))}{(1 - P(t|c)) \cdot P(t|\bar{c})} \)
 - Mutual Information \(MI(t, c) = \log \frac{P(t, c)}{P(t) \cdot P(c)} \)

5. vector representation: SQL script, using tfidf term weights
 (persistent storage: MySQL relational database)
4.2 Automated Text Categorization

Prototype: Java application on top of Weka 3 and MySQL. Supports crossvalidation on training corpus and validation on separate test corpus. External data download, preparation, and labeling.

Parameters for experiments:

- term relevance measure: \{OR, MI\}
- dimensionality: \{10, 20, ..., 200\}
- target recall: \{80\%\}
- classifier type \{SMO, J48, N.B.\} (i.e., SVM, C4.5, Naive Bayes)
- classifier-specific parameters
5 Results
5.1 Feature Selection

Relevance measure used as classifier. Threshold defined by target recall 100%. Average precision:

<table>
<thead>
<tr>
<th></th>
<th>flavi</th>
<th>flavi2</th>
<th>picorna</th>
<th>picorna2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>7.8%</td>
<td>11.8%</td>
<td>67.6%</td>
<td>58.0%</td>
</tr>
<tr>
<td>MI</td>
<td>11.2%</td>
<td>20.2%</td>
<td>76.7%</td>
<td>69.3%</td>
</tr>
</tbody>
</table>

⇒ baseline for cross evaluation.
5.2 Cross Evaluation

Picorna corpora: easy to classify. E.g., SMO with MI on picorna2:

Cross Validation Performance (Experiment #93)

- Precision
- Recall

Faulstich et al. litsift Results [10]
Flavi corpora: harder to classify. E.g., SMO with MI on flavi2:

Typically less than 50 features needed for maximum precision.

Faulstich et al. litsift Results [11]
5.3 Validation on Separate Test Corpus
Classifiers trained on Flavi corpora transfer well to Picorna corpora (e.g., SMO with OR, flavi2 → picorna2)...
... but not vice versa (e.g., SMO with OR, picorna2 → flavi2)

Still, even a low precision may save work...

Validation Performance (Experiment #64)

Still, even a low precision may save work...
6 Cost Model

Task: find at least a fraction r of all relevant documents within a bibliographic search result, i.e., target recall is r.

Goal: minimize fraction q of articles to be inspected manually.

Baseline: random selection with probability r requires $q_{\text{rand}} = r$ and yields recall r.

With classifier: classifier with precision p requires

$$q_{\text{auto}} = \min(P(c)r/p, 1)$$

where

$P(c)$ frequency of relevant documents

Work reduction: $s = (q_{\text{rand}} - q_{\text{auto}})/q_{\text{rand}} = 1 - P(c)/p$ if $P(c) \leq p$
6.1 Work Reduction (Examples)

<table>
<thead>
<tr>
<th>training</th>
<th>test</th>
<th>class</th>
<th>msr</th>
<th>$P(c)$</th>
<th>p_{max}</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>flavi2</td>
<td>picorna2</td>
<td>SMO</td>
<td>MI</td>
<td>58%</td>
<td>83.3%</td>
<td>100.0%</td>
<td>30%</td>
</tr>
<tr>
<td>picorna2</td>
<td>flavi2</td>
<td>SMO</td>
<td>OR</td>
<td>12%</td>
<td>32.7%</td>
<td>81.8%</td>
<td>63%</td>
</tr>
<tr>
<td>flavi2</td>
<td>hepadna</td>
<td>SMO</td>
<td>OR</td>
<td>69%</td>
<td>90.9%</td>
<td>90.9%</td>
<td>25%</td>
</tr>
<tr>
<td>picorna2</td>
<td>hepadna</td>
<td>SMO</td>
<td>OR</td>
<td>69%</td>
<td>90.0%</td>
<td>81.8%</td>
<td>25%</td>
</tr>
</tbody>
</table>
7 Conclusions

- classifiers can be transferred among corpora on different virus groups, at the cost of reduced precision
- low precision can still reduce manual work significantly, especially with infrequent classes
- work reduction allows to broaden search queries and to increase overall recall
8 Future Plans

- experiment with classifiers for partially unlabeled data sets
- complete implementation of litsift tool:
 - implement Web interface based on Apache Cocoon
 - re-implement download manager in Java, based on Apache xalan and JaxME.