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Abstract

Recent research results concede a growing importance of noncoding RNA (ncRNA) to various
cellular processes and regulatory functions. The reliable detection of ncRNAs using bioinformatic
methods promises to improve the understanding of essential biologic processes and could help
to economise time- and cost expensive experiments. A promising approach for the prediction of

ncRNAs is the RNAz program.

In consideration of current knowledge about RNA and the fact that novel sequenced genomes are
available, we started genomewide detection and annotation of structured ncRNAs in Trypanosoma,
and Leishmania taxa. We predict more than hundred structured ncRNAs among the genomes of
Trypanosoma brucei, Leishmania infantum and Leishmania major using the young and promising
RNAz prediction approach. We demonstrate how to predict ncRNAs genomewidely in automated

large-scale analyses using comparative genomics.

Zusammenfassung

Nichtkodierender RNA (ncRNA) wird in jiingsten Forschungsergebnissen eine zunehmende Bedeu-
tung in einer Reihe von zelluldren Prozessen und regulatorischen Funktionen zugestanden. Der
zuverlissige Nachweis von RNAs mit Hilfe bioinformatischer Methoden verspricht ein besserens
Verstandnis grundlegender biologischer Prozesse und konnte helfen, zeit- und kostenintensive Ex-
perimente einzusparen. Ein vielversprechender Ansatz fur die Vorhersage von ncRNAs ist das

Programm RNAz.

Wir haben, unter Beriicksichtigung von aktuellem Wissen {iber RNA und der Tatsache, dass
neue Genome als Datenbasis verfiigbar sind, mit dem genomweitem Nachweis von ncRNAs in
Trypanosomen und Leishmanien begonnen. Wir sind in der Lage {iber 100 in Struktur faltende
RNAs in den Genomen von Trypanosoma brucei, Leishmania infantum and Leishmania major
vorauszuberechnen. Wir zeigen mit Hilfe von vergleichender Genomik, wie ncRNAs automatisiert

in grofsem Umfang genomweit vorhergesagt werden konnen.
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Abbreviations

These shortenings are used in the document:

DNA
RNA
ncRNA
mRNA
tRNA
rRNA
snRNA
snoRNA
sIRNA
gRNA
miRNA
tmRNA
Thb

Tc

Tv

Li

Lm

nt

SCI
SMN
CM

BC
SRP
LSU
SSU

Desoxyribonucleic acid
Ribonucleic acid

Noncoding RNA
Messenger RNA

Transfer RNA

Ribosomal RNA

Small nuclear RNA

Small nucleolar RNA
Spliced leader RN A

Guide RNA

Micro RNA

RNA with dual tRNA-like and mRNA-like character
Trypanosoma brucei
Trypanosoma congolense
Trypanosoma vivax
Leishmania infantum
Leishmania major
Nucleotide(s)

Structure conservation index
Survival Of Motoneuron
Covariance model

Blastclust

Single Recognition Particle
Large Subunit

Small Subunit
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Chapter 1

Introduction

1.1 Motivation

The central dogma of molecular biology postulates that DNA makes RNA makes protein (protein
biosynthesis). Genes encode proteins and proteins are agents of cellular activity. This led to
a common opinion that RNA mainly functions in gene expression, reducing RNA to its role as
mRNA, tRNA and rRNA in the past. This point of view is not wrong but it underestimates
the abilities RNA provides and thus became obsolete. Various research results of the last years
concede RNA a more complex role in the cell and a growing importance in generalm’lzj7[31. A
variety of transcripts were discovered that are not translated into protein, but instead are processed
upon transcription leading to their actual products. Members of this class of molecules are called
noncoding RNAs (ncRNAs) in the sense of “non-protein-coding”. Many of these ncRNAs are
believed to act as an additional layer controlling several cellular processes. The different groups
of ncRNAs are classified by their function, e.g. small nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs) or the relatively young micro RNAs (miRNAs, shortly introduced at section
7). However, before speculating about an RNA’s function, it has to be identified and localized

in a genomic sequence.

The determination of whole genome sequences is one of the most fascinating goals in science. A
major step of genomics was the initial working draft sequence of the human genome published
in 200181 Up to now sequencing techniques were improved and thus more and more genomes
of a variety of taxa become available. The increase of high quality sequences offers new bioinfor-
matic challenges for identification and characterization of functional elements in these datasets.
The search for functional elements includes annotation of protein coding genes as well as non-
coding genes, elements with influence on gene regulation or chromosomal structure, stability and
dynamics and additionally all kind of undescribed elements. Unlike protein coding genes, ncRNA
sequences do not exhibit a strong common statistical signal that separates them significantly from
their genomic environment. For example they have no start or stop codon and they lack open

reading frames, CpG islands or typical splicing signals. Individual families of ncRNAs exhibit
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2 CHAPTER 1. INTRODUCTION

evolutionarily very well-conserved secondary structures.

There are common experimental methods and also new computational approaches for detection of
the elements mentioned above, but in general three main ways of discovering new noncoding RNA

M1 The first one uses specific amplification and cloning strategies to

genes seem to be promising
enrich ncRNAs. Here the spectrum reaches from simple cloning and sequencing of small RNAs in
total RNA extracts®! to immunoprecipitation with antibodies against proteins associated with spe-
cific ncRNA families in order to localise ncRNAs within their subcellular compartements[xj. The
second method uses microarray technology for probing entire genomes systematically[gj. The third
strategy could be described as computational comparative genome analysis. With the help of fast
and reliable algorithms ncRNA candidate detection could be done computational without time and
cost expensive laboratory experiments. It seems to be a very fruitful way of identifying ncRNAs as
some trailblazing screens with different genomes have successfully been performedll(”’l1 1,09, 103
The structural conservation of ncRNAs can be understood as a consequence of stabilizing selection
acting (predominantly) on the secondary structure whereas their sequences are often highly vari-
able. This results in a substitution pattern that can be utilized to design a general-purpose RNA
genefinder based on comparative genomics. This idea was first implemented in the tool QRNAIMJ,
which is based on an SCFG (stochastic context free grammar) method to asses the probability
that a pair of aligned sequences evolves under the constraint of preserving a secondary struc-
ture. RNAs that are under long-time selection for secondary structure can be expected to have
sequences that are more resilient against mutationst2 16], which in turn correlates with increased
thermodynamic stability of the folded RNA. Indeed, it has been observed that functional RNAs

are more stable than the structures formed by randomized sequences[w’ 18 11

. The program
RNAzMY combines both approaches. It uses a z-score measuring thermodynamic stability of in-
dividual sequences and a structure conservation index (SCI) obtained by comparing the folding
energies of the individual sequences and the energy of the predicted consensus folding. Both values

measure different aspects of stabilizing selection preserving RNA structure.

1.2 Subject of this thesis

This work is based on two projects I participated in prior to my diploma thesis, where we success-
fully detected ncRNAs in Ciona intestinalis®!! and Caenorhabditits e]egans[zzj. In this thesis I

will reuse material already published in those two articles without further citation.

The core tool of the whole project, RNAz, allows fast and reliable prediction of ncRNAsHY . Dye
to the fact that RNAz is a new tool, only a few surveys for RNAz based ncRNA detection have been
made. In an exemplary study thousands of functional ncRNAs could be retrieved in humant3l, In
order to extend our knowledge about ncRNAs to more basal organisms, we decided to investigate
taxonomic families further down the root of life. One of the pre-requisites for comparative genome
analysis using RNAz is a set of relatively closely related species, which nevertheless show enough
sequence variation to yield reliable signals for conserved structures. Another aspect is the biological

relevance. In contrast to metazoans and higher plants, the main targets of ncRNA research to
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date, little is known about functional RNAs in protista. Recent sequencing initiatives revealed
members of fully sequenced genomes of Trypanosoma sp. and Leishmania sp.. Thus, we decided
to screen these parasites for ncRNAs. We expect that RNAz prediction is possible among every
taxon offering new ways of fast and reliable ncRNA detection.

Inspired by the idea of identifying functional elements computational, this thesis concentrates on
ncRNA prediction by comparative genome analysis using modern ncRNA detection algorithms
and annotation methods. The main goals are (i) to detect and to deliver a set of putative ncRNAs
in the recently sequenced Trypanosoma and Leishmania genomes and (ii) to discuss the quality
of the prediction. We expect to identify known ncRNA genes as well as novel (unseen) candidate
ncRNAs.

3300 Cephalochordates

Oikopleura dioica

Larvaceans _. . )
Ciona savignyi
Ciona intestinalis
Ascidians

Urochordates

30 000

Vertebrates

3600

Caenorhabditis remanei

Caenorhabditis briggsae Echinoderms

Caenorhabditis elegans
Nematodes

Hemichordates

Chordates
Protostomes

Deuterostomes

Bilateria

Figure 1.1: Overview on prior RNAz based ncRNA prediction screens. Vertebrates (~ 30,000
ncRNA candidates), nematodes (~ 3,600 ncRNA candidates) and urochordates (~ 3,300 ncRNA
candidates) are covered. But how does the situation of ncRNA prediction looks like at less sophisti-
cated organisms and their genomes nearby at the left side respectively the root of the phylogenetic
tree?
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Chapter 2

Background

2.1 Noncoding RNA variety

The modern ncRNA world consists of ncRNAs acting in well-adapted specialized biological pro-
cesses, including translocation, transcriptional regulation, chromosome replication, RNA process-
ing and modification, mRNA stability, protein translation and degradationlzj.

Table Z] provides an overview on major biological processes affected by ncRNAs. It is only a
selection to illustrate the variety of the ncRNA world, more details can be obtained from the
NoncodeEI database®¥. In general Noncode contains thousands of sequences from hundreds of
organisms covering all kingdoms of life. Some ncRNAs are induced or repressed by stress others
are specific to diseases, imprinted domains, sex, tissue, or developmental stagel25j. The better we
characterise ncRNA loci and the biological function of their RNA product the better we are able

to understand the organism.

2.2 Objects of research - The organisms

Due to the fact that the underlying tools of this work are new and that there are only a few
successful approaches in managing genomewide RNAz based ncRNA annotation (cp. section [[2),
we considered to analyse some of the most recently sequenced genomes from different species in an
automated way. Table 222 presents a phylogenetic overview of the screened organisms. The aim
of the next subsections is a brief introduction of those organisms. Overall, this thesis deals with
Trypanosoma, brucei (Tb), Trypanosoma congolense (Tc), Trypanosoma vivax (Tv), Leishmania
magjor (Lm) and Leishmania infestans (Li).

lhttp://noncode.bioinfo.org.cn/
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Classification Process Example Function

6S RNA Transcription 184nt E. coli 6S Involved in stationary phase
regulation of transcription
by the sigma70-holoenzyme,
modulates promotor use.

XIST Gene silencing 16,500 nt human Xist Required for X chromosome

inactivation.

Telomerase RNA

Replication

451 nt human telom-
erase RNA

A RNA component of ribonu-
cleoprotein reverse transcrip-
tase that synthesises telom-
eric DNA, core of telomerase
and telomere template.

snRNA

RNA processing

186 nt human U2

snRNA

Small RNA molecules that
are found within the nucleus
of eukaryotic cells, involved in
a variety of important pro-
cesses such as RNA splic-
ing, forming the core of the
spliceosome.

RNase P

RNA processing

377nt E. coli RNase
P

Catalytic core of RNase P.

snoRNA

RNA modification

102nt S. cerevisiae
U18 C/D snoRNA

A class of small RNA
molecules found within the
nucleolus, involved in chem-
ical modifications of rRNAs
and other RNA genes by
methylation or pseudouridy-
lation, the example directs
the 2’-O-ribose methylation
of target rRNA.

gRNA

RNA modification

68nt T. brucei gCYb
gRNA

Function in RNA editing that
has been found only in the
mitochondria of kinetoplas-
tids in which mRNAs are
edited by inserting or deleting
stretches of uridylates.

miRNA

mRNA translation

22nt C. elegans lin-4
miRNA

Represses translation by pair-
ing with 3’ end of target
mRNA

tmRNA

Protein stability

363 nt E. coli tmRNA

Directs addition of tag to
peptides on stalled ribosomes

4.55 RNA

Protein translocation

114nt E.
RNA

coli 4.58

Integral component of signal
recognition particle central to
protein translocation across
membranes

Table 2.1: Overview of ncRNA classes and their activities!4

124



2.2. OBJECTS OF RESEARCH - THE ORGANISMS 7

PHYLUM | Euglenozoa

CLASS Zoomastigophora (Flagellata)
ORDER Kinetoplastida
FAMILY | Trypanosomatidae

GENUS Trypanosoma, Leishmania,
SPECIES | Trypanosoma brucei Leishmania major
Trypanosoma congolense Leishmania infantum

Trypanosoma vivax

Table 2.2: Taxonomic overview of used Trypanosoma and Leishmania

2.2.1 Trypanosoma

Trypanosomes are unicellular, flagellated protozoan organisms of the genus Trypanosoma, which is
part of the order Kinetoplastida. This order is characterised by the presence of one flagellum and
a single mitochondrion containing the kinetoplast, a specialized DNA containing organelle. Acting
as a parasite, they affect vertebrates, invertebrates or plants. Some are potentially pathogenic,
causing disease in humans and their domestic animals. Amongst these are Tc, causative agent of
Chagas’ disease in South America or Tb causing African Trypanosomiasis (also known as Sleep-
ing sickness). Transmission of the human-infective trypanosome is via blood feeding insects.
Throughout its life cycle, the parasite alternates between development in mammalian tissue fluids
and bloodstream as well as growth in its vector’s (the Tsetse fly) midgut and salivary gland. De-
velopment is accompanied by changes in morphology, biochemistry, cell cycle stage and expression

of major surface markersi 0

Figure 21l illustrates the common trypanosome Tb.

Figure 2.1: Electron micrographs of T. brucei (A) trypomastigotes, (B) short stumpy form and
(C) in a bloodstream %!

Untreated Human African Trypanosomiasis, caused by the subspecies T. brucei gambiense and T.
brucei rhodesiense, fatally threatens over 60 million people with 500.000 deaths a year. Therefore
expectations on the benefit of the trypanosomatid genome-sequencing projects are considerably
high with the intent to improve our knowledge of parasite biology stepwise. Todays genomic
research concentrates on aspects of these organism concerning cell differentiation, changes in

27

metabolism or cell cycle control RNA analyses are somehow underrepresented and thus,

we decided to use the Tb, Tc and Tv genomes for ncRNA annotation.
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2.2.2 Leishmania

Leishmania are intracellular protozoic parasites propagating in white blood cells, especially macrophages
and dendritic cells. Therefore, they use various mechanisms to foil mammalian humoral and cellu-
lar immunresponse. They are flagellates belonging to the order of the Kinetoplastida and the

family Trypanosomatidae. At least 20 species of Leishmania are recognised.

‘ Genus Leishmania ‘

‘ L tropica | | L. major ‘ ‘ L asthiopica ‘ ‘ L mexicana | | L braziliensis | | L donaovani |

L. tropica L. aethiopica L. mexicana L. braziliensis L. donovani

L. amazonensis L. guyanensis [ L. infantum |
L. garnhami L. panamensis L. chagasi
L. pifanoi L. peruviana

L. venezuelensis

Figure 2.2: Pathogenic complexes and species of Leishmania

Their life cycle involves a vertebrate host (e.g. human) and a vector (a sand fly) that transmits
the parasite between vertebrate hosts. They reproduce asexually in the gut of the vector and form
a characteristic morphological state, called the promastigote. Promastigotes are injected into the
vertebrate host during the bite of the vector. While entering the vertebrate cells they change into
a form of life called the amastigote and start to reproduce. Eventually the host’s cell dies and the
amastigotes are released and get the ability to infect other cells. This leads to a disease called

leishmaniasist.

Figure 2.3: Electron micrographs of (A) Leishmania promastigotes, (B) Leishmania amastigotes
with labeled nucleus(N), kinetoplast(K) and flagellum(F) and (C) Leishmania donovani infantum
in a bone marrow smear of an Old World visceral leishmaniasis patient

Leishmaniasis threatens 350 million people in 88 countries of the world. In general the disease
is divided into two groups based on geographical distribution: Old World leishmaniasis threatens
Asia, Africa and some mediterranean countries (66 nations), the New World leishmaniasis per-
tains Central and South America (22 countries). The disease subclassifies into visceral (VL) and

cutaneous (CL) forms of leishmaniasis. Among others genomic research could potentially enable
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the identification of elementary chromosome loci controlling the susceptibility to the disease, new
drug targets or the development of effective vaccines

Out of the various species of Leishmania, the genome sequencing projects of Lm (which causes
0Old World CL) and Li (which causes Old World VL) are high in progress and so we decided to

use them for further analyses.

Genome projects represent one of the major ressources for producing data to supplement our
fundamental knowledge on related organisms. However, translation of this knowledge into an
understanding of specific living beings biology takes time and care. The next subsections provide

an insight on the genomes of the screened organisms and the data sources of this project.

2.3 Objects of research - The genomes

2.3.1 Trypanosoma

All trypanosomatid genomic sequences were retrieved from the public accessible ftp server of the
Wellcome Trust Sanger InstituteE. The Tb genomeﬂ was available in version 4 from July 2005.
Both, the T(E and the TVH genomes, were from November 2004.

The Tb genome consists of 11 chromosomes, partitioned to 15 files and 27,736,938 nt in sum. The
Tc genome was obtained in 4,676 contigs, containing 33,385,363 nt. The genomic sequence of Tv
was structured to 7,366 contigs with 44,233,297 nt. Out of the three trypanosomatid species, Tb
was the only one with a given annotation in EMBL file formatﬂ, summarized at table Z3 These
datasets can be accessed and visualised with Artemisﬁ.

2http://www.sanger.ac.uk/
3ftp://ftp.sanger.ac.uk/pub/databases/T.brucei_sequences/T.brucei_genome_v4/
4ftp://ftp.sanger.ac.uk/pub/databases/T.congolense_sequences/
Sftp://ftp.sanger.ac.uk/pub/databases/T.vivax_sequences/
Shttp://www.ncbi.nlm.nih.gov/collab/FT/
"http://www.sanger.ac.uk/Software/Artemis/
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Element 7# avg(len)
CDS 10,114 1,459
repeat region 8,485 155
misc_feature 4,007 422
repeat_ unit 1,658 73
variation 963 3
sig_peptide 372 73
snoRNA 353 83
rRNA 106 688
tRNA 65 73
misc_ RNA 29 132
gap 29 100
3UTR 9 294
5’UTR 6 91
snRNA 6 143
gene 2 1122
promoter 2 182
intron 1 330

Table 2.3: Statistical overview of the initially given T. brucei annotation (cp. figure Z4); Several
coding and repetitive elements are known, they can be used to define regions of noncoding DNA
by excluding their loci from the underlying genome; Given RNAs can be used to validate the
quality of the resulting nc predictions, hopefully we detect most of them.

W CDS
[Jrepeat_region
[ misc_feature
[Jrepeat_unit
M variation

[ sig_peptide
[l snoRNA
[JrRNA

Il tRNA

[l misc_RNA
Ogap
[]3'UTR

[ 5'UTR
repeat_region 32.38% I snRNA

[] promoter
[Jgene

l intron

repeat_unit 6.33%

CDS 38.59% misc_feature 15.29%

Figure 2.4: Graphical overview of the initially given T. brucei annotation (cp. table EZ3); The
major part of the given annotation are coding and repetitive elements.
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2.3.2 Leishmania

The Li genom@ was downloaded in version 2.0 and the Lm gen0m£ in version 5.2. Both were
available in one single file. The genomic sequence of Li exists of 34,744,916 nt in sum and the
sequence of Lm has a total length of 32,810,825 nt. Annotation data was given for both, similar to
Tb (EMBL file format). Tables 24} and figures 221 figure [Z8 describe the initial distribution
of the given Leishmania annotations.

Element 7# avg(len)
misc_feature 17,921 210

CDS 8,173 1,850
repeat_region 3,655 208
rRNA 62 602
tRNA 62 73
snoRNA 43 97

misc_ RNA 14 2,642
snRNA 7 123
repeat_ unit 3 1153

Table 2.4: Statistical overview of the initially given L. infantum annotation (cp. figure EZH); Less
coding sequences and repeats are known for Li in comparison to the Th annotation.

repeat_region 12.21%

[ misc_feature
[l cbs
[Jrepeat_region
[ JtRNA

o B tRNA
. \ CDS 27.30% [ snoRNA
misc_feature 59.86% I misc_RNA
[JsnRNA
[l repeat_unit

Figure 2.5: Graphical overview of the initially given L. infantum annotation (cp. table Z7)

8ftp://ftp.sanger.ac.uk/pub/pathogens/L_infantum/
9ftp://ftp.sanger.ac.uk/pub/databases/L.major_sequences/
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Element # avg(len)
misc_ feature 19,909 291
repeat region 16,389 95
CDS 8,311 1,899
snoRNA 693 88
tRNA 83 74
rRNA 63 637
misc_ RNA 61 446
snRNA 7 101
repeat_unit 3 1,212
miscrecomb 1 7,615

Table 2.5: Statistical overview of the initially given L. major annotation (cp. figure 26); The Lm
genome comprises considerably more repeats than Li.

CDS 18.26% [ misc_feature
[] repeat_region
W cDs
[]snoRNA

I tRNA

[T rRNA

[l misc_RNA
[JsnRNA

Il repeat_unit
[ misc_recomb

misc_feature 43.74%

repeat_region 36.00%

Figure 2.6: Graphical overview of the initially given L. major annotation (cp. table Z3)



Chapter 3

Methods

Automation is of utmost importance while handling data sets covering complete genomes. The
purpose of this chapter is to introduce the methodical steps that lead to ncRNA predictions out

of blank sequence data.

3.1 Basic ideas and screen design

Each screen is based on up to three organisms. There is a target genome in which we try to
annotate candidate ncRNAs primarily and other genomes which are used to identify conserved
and thus putative functional elements. A simplified view of our procedure for retrieving ncRNA
predictions is illustrated in figure Bl Details of each step, implemented algorithms and used
tools follow in the upcoming subsections. An overview of our performed screens is given in table
B Although the RNAz program is able to handle six-way alignments we choose three as an
upper bound of aligned sequences because of coding effort, overall runtime complexity and the
observation that it is possible to get significant noncoding signals with three genomic sequences

per alignment onlyl2 11.2q

= o g g

| Sequences Hits Alignments Frames ncRNAs |

Figure 3.1: Very simplified view on the ncRNA prediction pipeline

3.1.1 Genome-wide alignments of noncoding DNA

At the beginning, we have to calculate nc regions, for they were not given with the initial annotation
files explicitly. Due to the specific annotation formats of our target organisms (cp. subsections

3T and 232) we start with collections of all contiguous regions that are not annotated as either

13



14 CHAPTER 3. METHODS

Order Screen description Alignment

Kinetoplastida TbTc pairwise
TbTcTy three-way
TbTcLi three-way
TbTcLm three-way
LiLm pairwise
LiLmTb three-way
LmlLi pairwise
LmLiTb three-way

Table 3.1: Overview of the performed screens. The two-letter code abbreviating the organisms
names indicates the order of setting up pairwise and multiple alignments. Bolded letters indicate
the target genomes. Screen design is due to the given amount of available data including genomic
sequences and annotation sheets and the phylogenetic relation of the organisms.

“CDS”, “repeat _region” or “repeat unit” for the trypanosomatid genomes.

For each noncoding DNA interval within the target genome, we determine potentially homologous

regions with the corresponding subject genome by pairwise blast U

searches using an Expect
value of E < 1073, This threshold is pretty low, though we want to ensure that nothing is missed.
Regions separated by short distances (< 30 nt) only are combined given the alignments pass the

consistency checks outlined below.

Structured RNAs are less conserved in regions without base pair interactions, which might prevent
blast from extending the sequence alignment into such regions. In order to ensure that a global
alignment constitutes a complete ncRNA gene, blast hits with short distances between them
are combined. But due to rearrangement, deletion, and duplication events during evolution, not
all local alignments lead to a consistent global alignment. We therefore employed the following
algorithm:

A global alignment is inconsistent if at least one region of sequence A is conserved with at least
two regions of sequence B (duplication or deletion) or if at least two distinct regions of sequence
A are conserved in different order in sequence B (rearrangement), c¢p. figure It is useful to
construct a graph Gg in the following way: Local alignments are the vertices, and there is an
edge between two vertices if the distance of the corresponding alignments is less than a certain
threshold value ¢ = 30nt. Thus the connected components of G's comprise sets of alignments
with pairwise short distance; amon them, all combinations of consistent, global alignments have
to be determined. In short, the first step checks whether each pair = and y of local alignments
are consistent, in the sense that they can be derived from the same global alignment. Two further
auxiliary graphs G¢ and Gy store this consistency information. If x and y are consistent an edge
in G¢ is introduced, otherwise an edge in G is added between x and y. Finally, the graph G is
constructed by inserting edges between the two nodes x and y if at least one path between x and
y exists in G¢ which does not contain pairs of nodes that are inconsistent, i.e., connected by an

edge in G;. Complete subgraphs of G correspond to local alignments which can be combined to
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a consistent global alignment. Only maximal local alignments, i.e., the maximal cliques of G, are
of interest for our purpose. They can be computed efficiently e.g. by the program cliquer[:ﬂj. We
remark that this approach is similar in spirit to the consistency checking algorithm implemented
in the tracker algorithm for phylogenetic footprintingl"‘zJ. Figure B3 illustrates a simple example
of checking three hypothetical blast hits.

These combined pairwise blast hits form the basis for a second blast search where we retrieve
conserved regions within a third organism. The sequences should be aligned in order of their
phylogenetic distance to avoid too restrictive searches, which would result in less conservation and
therefore loss of signal. Hits obtained by the second search are treated with the same consistency
checks as used in the first search. Global alignments of the resulting regions are then computed
using clustalw® to improve the alignment quality. Alignments of both reading directions are
produced. Finally, columns with gaps flanking the sequences are removed.

We tried to align the genomes in the order of their phylogenetic relation, starting with the closest
ones and then adding the third. But those relations mostly are hard to enlighten and phylogenetic
trees are often questionable. For the trypanosomes we found bootstrapped maximum parsimony,

B4, By supposing that

minimum evolution and quartet maximum likelihood 18S rRNA based trees
T. brucei is closer to T. congolense than it is to T. vivax. For the two Leishmania genomes we

simply performed two screens because both have a given annotation.

3.1.2 Noncoding RNA prediction using RNAz

20 (version 0.1.1) to detect

The clustalw alignments described above are screened with RNAz!
regions that are additionally conserved on the level of RNA secondary structure. Due to com-
putational limitations and restrictions in the training set of the support vector machine (SVM)
implemented in the RNAz program, alignments were scanned by moving a window of length 120
in steps of 50nt. An SVM is a tool that first needs to be trained with positive and negative
datasets and is then able to decide of an input data whether it belongs to the positive or negative
group. In our case the decision is expressed in terms of the RNA classification probability p > p..
Alignments with a total length smaller than 120nt are screened directly with RNAz. We only
scanned alignments of at least 40 nt length, for most known ncRNA families use not to be shorter.
The RNAz algorithm evaluates the thermodynamic stability of RNA secondary structures (relative
to an ensemble of randomized sequences) and quantifies the evidence for stabilizing selection by
comparing the energy of a consensus structure with the ground-state energies of the individual
structures. RNAz performs the classification by means of a support vector machine. The classifi-
cation is based upon the folding energy z-score and the structure conservation index (SCI). The
length and sequence divergence of the alignment and the number of aligned sequences (N) are
used to normalise those descriptors.

SCI — c?nsensus MFE (3.1)
mean single sequence MFE
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—_—
Duplication:
—_—
Rearrangement:
—_—

Figure 3.2: Local pairwise alignments will lead to an inconsistent global alignment in case of
duplication, deletion or rearrangement events. They are combined to a global alignment only if
they are consistent, otherwise there will be one alignment for each region.

QS ©

A@— B A@———( B
Gs C Gy C
A@ B A@ B
Gc C Gr C

Figure 3.3: A simple example of consistency checks validating three blast hits A, B, C.

Gs: Edge between two vertices (local alignments) if they have a distance < 30 nt — find all
combinations of consistent global alignments

G¢: Edges between consistent pairs of local alignments

G1: Edges between inconsistent pairs of local alignments

Gr: Edge between z and y if at least one path from x to y exists in G¢ which does not contain
vertices connected in Gy

Cliques in G are local alignments which can be combined to a consistent global alignment, in
the example there is one single trivial clique, thus A and C are consistent and can be combined.
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inel §
/oscOTe — > single seqzt\;ence z-SCOre (3.2)

The significance of the classification is quantified as an RNA classification probability p. A value of
p > 0.5 classifies the alignment as noncoding RNA with low significance, whereas p > 0.9 indicates
a high significance for structured and thus functional RNA. For each global alignment, all possible
reading directions are considered, because the classification of RNAz is based on the thermodynamic
stability of the potentially transcribed RNA, which is inherently direction dependent.

For each alignment all overlapping frames classified with p > 0.5 are merged together. For some
loci we obtain more than one alignment for the same query organisms sequence. This does not
constitute a problem for the ncRNA detection, since we obtain essentially identical alignments
with different paralogs. Two different alignments of the same reading direction were merged onto
the same genomic loci if they overlap at least 90 % in a query genome. All such genomic regions
are combined again if they overlap at least 90 % independent of the reading direction of their
alignments. Putative ncRNA clusters in close vicinity might still cover a genomic region more
than once. Of all merged regions that overlap more than 20 % all except one are discarded,leaving
us with a unique genomic locus for each ncRNA gene. For each locus we choose the alignment with
the maximal RNAz classification probability and the maximal length as the best representative.
Hence, for all statistics reported below, each genomic location is represented in at most one
structured RNA candidate. In the end we can provide an almost distinct and unique ncRNA
annotation of loci where we observe overall noncoding signals ("adjusted region’) and their best
representative obtained by a single alignment ("best RNA’) for each of the combined regions. It
seems to be wrong to merge loci of different alignments because we would flout their biological
context; the start and end position of a unique ncRNA may become unclear and we can not speak
of conserved elements with a specific biological function.

3.1.3 Specificity, sensitivity and false positive rates

In order to estimate the specificity and the false positive rate of RNAz, we repeat each screen
with shuffled input alignments. All alignments are shuffled with the Perl script shuffle-aln.pl
published by Washietl et al. for randomization of multiple sequence alignments and the destruction

of native secondary structuresHol,

The specificity in terms of individual RNAz scanning windows is defined as

number of shuffled scanning windows with p < p.

specificity := (3.3)

number of shuffled scanning windows
In order to estimate the sensitivity of a screen we compare our ncRNA predictions to the initially
given annotation data. We annotate a putative ncRNA candidate of our screen as known if its

genomic locus overlaps at least 70 % with an ncRNA, that is already annotated in the corresponding
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organism, leading to the following definition of sensitivity:

N

A (3.4)

SNg =
Here N is the number of unique genomic loci, classified by RNAz, that can be identified as a known
member of a specific ncRNA family (required overlap of 70 %) and NN, is the entire number of
ncRNAs of this family in the genome. The sensitivity of a screen largely depends on the number
of ncRNAs which have a conserved primary structure between the organisms. To state how many
known ncRNAs can be detected by our screen in principle we also report the sensitivity of our

alignment procedure defined as
N

N,
where N, is the minimal unique number of sequence-conserved motifs in the alignment input set,
identified by blast (E < 1073) and blat (default parameters). Additionally to the conservative
approach of comparing positions we ask for common motifs of known ncRNAs and our ncRNA

SNq = (3.5)

predictions. This defines sensitivity values s,, and s,4 as

n
Sna ‘— E (36)
and
n
Sng = Fg (37)

where n is the minimal number of unique hits of both tools obtained by individual searches
of our ncRNA candidates against nucleotide blast databases of the given ncRNA sequences.

Furthermore we try to define a measuring value in spirit of a “false positive rate” as

number of shuffled scanning windows with p > p.

false positive rate := (3.8)

number of original scanning windows with p > p.

3.1.4 Annotation of predicted ncRNAs

To interpret our own results, the large number of ncRNA candidates needs to be verified. This
is either done by comparison of our hits with known ncRNAs given by external databases or
by third party ncRNA detection tools. We compare our hits by local blast searches against
known sequences from the Noncode¥ (Release 1.0), the Rfam0! (Version 7.0, March 2005), the
miRBase? (Release 8.0, February 2006) and the snoRNA-LBMEBS (Version 2) databases. These
blast searches are performed with an E-value of E < 107'%. Another possibility is to perform
blast searches against sequences provided by the NCBIEI databases. But we do not expect to
obtain significant blast alignments with short query sequences like miRNAs. Specific ncRNA
detection tools are tRNAscan-SEM for identification of tRNAs, Infernal/cmsearch to align our

(4 . RNAmicro was

predictions with Rfam covariance models and RNAmicro for miRNA detection
called with window sizes of 70, 100 and 130 nt. Infernal/cmsearch produces many hits with low

scores, thus a bitscore cutoff value is set at 10 (cp. the bitscore distributions B2 B ET2, BT

Lhttp://www.ncbi.nlm.nih.gov/
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E23 E2R) for all screens. By default we ignore hits with senseless models and only keep hits of
biological mean (cp. table B2).

Accepted CM Ignored CM

5S ribosomal RNA Antizyme RNA frameshifting stimulation element

ctRNA Cardiovirus cis-acting replication element (CRE)

Pyrococcus C/D box small nucleolar RNA | Coronavirus 3’ stem-loop II-like motif (s2m)

Small nucleolar RNA Us4 Hammerhead ribozyme (type I)

tRNA Hepatitis C stem-loop IV

U2 spliceosomal RNA Histone 3’ UTR stem-loop

U6 spliceosomal RNA Infectious bronchitis virus D-RNA

U7 small nuclear RNA Iron response element

UPSK RNA Renin stability regulatory element (REN-SRE)
S-element

Tymovirus/Pomovirus tRNA-like 3’ UTR element
UnaL2 line 3’ element

Table 3.2: Overview of accepted and ignored Rfam covariance models. Only model de-
scriptions with a hit during the various Infernal runs are listed. @ Maybe the list of
accepted models should be handled more restrictive.  Hits of accepted models with a
bitscore higher than 10 are kept. A complete list of Rfam RNA families is available at
http://www.sanger.ac.uk/Software/Rfam/browse/old_index.shtml.

RNAmicro is under continuous development at our group and works in spirit of RNAz. Similar to
RNAz it uses a trained SVM to detect miRNA precursor sequences. We try to recognise SMN
binding sites and critical sequence features involved in forming the SMN complex (survival of
motonen) and the regarding assembly of an Sm core®!. The RNA motif and pattern searcher
RNAbobH is used for this purpose. We scan our predictions for matches of combinations of stem-
loops and Sm sites derived from the motifs shown in figure BXA Explicitly we searched after the

Sm sites listed in table

Organism Sm site
Common AUUUUUG
Leptomonas seymouri  AUUUUG
Crithidia fasciculata AUAUUUUGA
Trypanosoma brucei ACUUUG

Table 3.3: Overview of Sm sites used for RNAbob runs. Sm sites are taken from the motifs listed
in table

As a last consistency check we try to cluster our predictions with Blast clustBY to determine if
our predictions are repetitive. First we cluster with default parameters and then less restrictive
with -S 75 as similarity threshold and -L 0.5 as minimum length coverage. This results in clusters
with higher cardinalities. Identical or even similar predictions are grouped together.

?http://selab.wustl.edu/cgi-bin/selab.pl?mode=software## RN Abob
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All figures of this thesis showing consensus secondary structures without any further citation are
created with the Vienna RNA package 1. 64586 1t is a set of tools for RNA secondary structure
prediction and comparisorE. Exemplary consensus structures are colored using the ALIDOT color
schemd] regarding inconsistent sequences in the alignment by saturation and the occurring types
of basepairing by color (cp. figure B4).

All comparisons of positions of resulting ncRNA predictions with known elements are done with
the positions of the ’adjusted regions’. Everything dealing with primary sequence or alignments
like blast/blat searches or consensus folding is done with ’best RNAs’ to preserve the original
biological context.

Incompatible pairs
0 1 2

s |

2

‘U

Figure 3.4: Coloring code of RNA consensus secondary structures. Inconsistency increases from
the left to the right and differences in basepairing are marked by type of color. Thanks to S.
Washietl for the permission to use this figure.

Types of pairs

3http://www.tbi.univie.ac.at/~ivo/RNA/
4http://www.tbi.univie.ac.at/RNA/ALIDOT/alidot-2.0.html#SECE
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Figure 3.5: Critical RNA sequence features inducing SMN binding and Sm core formation; (A)
Common critical RNA sequence features for SMN bindingm; (B) Leptomonas seymouri, U5
snRNA; (C) Crithidia fasciculata, Ub snRNA; (D) Trypanosoma brucei, Ul snRNAm;
Based on this motifs we set up descriptors allowing to search for putative SMN binding sites by
RNAbob.
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3.2 The supporting database system

Large-scale analyses imply to set up a computational environment where the huge amount of data
can be managed efficiently. Processing of alignments of both reading directions, splitting them
into RNAz scanning windows and genomewide annotations leads to fast growing data sets. With
the advantages of an integrated relational database in mind, we set up a MySQL database server
(http://www.mysql.com, version 4.1) for storing, processing and analysing the occurring data.
We decide to use the MySQL database system due to its ability to handle character large objects
(CLOBS) and the fact that build-in string functions work performantly on them. Moreover it has

a high quality documentation and is open source.

The database model is shown in figure Bl It is divided into three main parts, indicated by
three different background colors. The red area focuses on storing the raw source data including
complete genomic sequences and initially given annotation. The yellow region handles results of
processing steps, starting from the early blast searches up to the RNAz noncoding prediction. The
green area provides tables and thus functionality for annotation purposes and result handling of
additional tools. Therefore we are able to annotate predicted ncRNAs automatically. The central
table POSITIONS is used to link all results together. It is the main annotation table where
every genomic element including our ncRNA predictions is registered. Overall there are 22 tables
providing data which we access either directly per command-line SQL statements or via a set of
Perl scripts. The system can easily be adopted and upgraded with the release of new genomes
and annotation data.

It is a general problem in Computer Science that programs are less worthy without documentation.
Moreover it was a major part of this thesis to set up the computational environment. Therefore

we decide to explain each table shortly. The description can be found in table B4l
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Tablename Documentation
POSITIONS Central table concerning all kind of annotation data. Here, given

and newly calculated positions of annotatable genomic elements
are stored.

Handling sources

ORGANISM
SCAFFOLDS

TYPES
SUBTYPES

Each organism of the screen is entered here.

Stores all genomic sequences, no matter if they are chromosomes,
scaffolds, contigs, shotgun-reads a.s.o. (The name of the table is
a relict of our very first urochordate screen where the sequences
were available as scaffolds).

We have to specify what we want to annotate in general.
Subclasses of entries of the table TYPES

Noncoding RNA prediction

SEARCHES

SIGALIGN
RNAZ
CORRESPONDENCES

RNAZCLUSTER

RNAZCLUSTERBRIDGE
RNAZANNOTATION

RNAZBRIDGE

ADJUSTED

BESTRNA

VBDOKU

WINDOWS

Specifies our different blast searches

Stores significant blast alignments
Provides data for each frame scanned with RNAz

Think of a sequence with several blast hits. Each hit is used
for further searches and may also lead to several hits. To avoid
explosive data growth we only use one specific blast hit from the
first search to perform the second.

For each alignment all overlapping frames with p > 0.5 are merged
together.

We want to know which RNAz frame is used for which RNAz cluster.

Clusters of the same reading direction overlapping more than 90 %
are combined and build unadjusted ncRNA regions.

We want to know which RNAz frames form which unadjusted re-
gion.

If there are regions overlapping more than 90 % of different read-
ing directions we merge them and form adjusted regions by stor-
ing the best representative independent of the reading direction.
Thereby we annotate a putative reading direction for the ncRNA
candidate.

Each adjusted region has one best representative in terms of com-
bined RNAz frames of a specific alignment (RNAz clusters).

Due to a restrictive merging procedure we still have multiple cov-
ered loci. Of all merged regions which overlap more than 20 % we
discard all except one leaving us with a unique genomic locus for
each ncRNA gene.

We want to know which RNAz frames participate in setting up the
ncRNA predictions. This table provides hard coded redundant
information so that we do not have to calculate extensive table
joins (Stepping back the processing pipeline would also reveal this
information.).

Additional annotation

ANNOTYPES

COMMENTS
BCRUN
BCLUST
BMEM

The different kind of annotation approaches for analysing the
ncRNA predictions are listed here.

What we can say about each prediction.
Each Blastclust run is listed here.
Each observed Blastclust cluster is stored here.

Which ncRNA prediction participates in which cluster.

Table 3.4: Brief documentation of the database system
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Figure 3.6: Database model used for automated ncRNA prediction.



Chapter 4

Noncoding RNA predictions

We performed several prediction screens (section Bl tableBl). This chapter presents the obtained
results. The complete output of the major processing tools is stored at several integrated databases
allowing fast assaying. Currently we set up 5 databases for the true data sets and 5 for shuffled
alignment approaches. The databases handling the true data sets contain up to 360,000 (TbTec,
TbTcTv), 92,000 (TbTcLi), 97,000 (TbTcLm), 7,800,000 (LiLmTb) and 2,500,000 (LmLiTb)
records providing putative annotations of novel noncoding RNAs.

4.1 Novel ncRNA candidates of the genus Trypanosoma

In this section we want to report about our predicted ncRNA candidates of the Trypanosoma
brucei genome. The numbers of observed ncRNA signals are listed in table Bl

P TbTc TbTcTv TbTcLi TbTcLm
> 0.50 290 140 122 117
>0.90 | 136 71 66 70
> 0.98 84 24 37 38
> 0.99 68 18 24 30

Table 4.1: Overview of the numbers of Trypanosoma brucei ncRNA predictions. Obviously there
are more hits among the screens using trypanosomes only, but the predictions including Li and
Lm seem to have higher p values.

Out of the given annotation we calculated 17,485 regions of Th noncoding DNA. These elements

comprise 11,819,781 nt what is nearly 43 % of the total Tb genomic sequence.

25
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4.1.1 The TbTc approach

Based on pairwise alignments of Tb with Tc we detect 290 structured RNA signals (p > 0.5,
Tab. ET)) of which 192 are annotatable. Due to the definitions of subsection we obtain the
specifity values and false positive rates shown in table EE2, the resulting sensitivity values are
shown in table 3l Observed detection rates are shown in table B4l

P > 0.50 > 0.90 > 0.98 > 0.99
False positive rates 63 % 57% 56 % 54 %
(1,842/2,912)  (754/1,323) (377/678)  (294/540)
Specificity per test 0.939 0.975 0.988 0.990

Table 4.2: False positive rates and specifities of the ThTc screen; With higher p value the false
positive rate does not decrease significantly.

type N n No Ng| sya SNg Sna  Sng
rRNA 82 8 92 106 | 0.89 0.77 0.90 0.78
tRNA 30 32 56 65 |0.54 046 0.57 0.49
misc RNA |25 1 29 29 |0.86 0.8 - -
snRNA 3 4 5 6 | 0.60 050 0.80 0.67
snoRNA 7T 7 27 353|026 0.02 0.26 0.02

Table 4.3: Estimated sensitivities of the TbTc screen; Given misc  RNAs are actually sIRNAs.
The positions of our ncRNA predictions seem to be woolly, however. 25 out of 29 sSIRNAs map to
our predictions if we search for matches with an overlap of 70 %. Only one matches if we search
with the absolute positions (required overlap 100 %).

per 1 mb alignment per 1 mb nc region

p | normal  shuffled | normal shuffled
> 0.50 | 5,428.68 3,433.94 | 246.37 155.84

>0.90 | 2,466.40 1,405.64 | 111.93 63.79
> 0.98 | 1,263.96 702.82 57.36 31.90
> 0.99 | 1,006.69 548.09 45.69 24.87

Table 4.4: Noncoding RNA detection rates of the TbTc screen.

We obtain 8,439 blast hits with an average length of ~64 nt between the Tb noncoding DNA and
the Tc genome. 4,523 of them made it into the RNAz input set. Their average length is ~ 95 nt.
In consideration of all possible reading directions the total alignment input set comprises 9,046
alignments. Overall there are 30,162 RNAz frames. At the p > 0.5 level we count 2,912 and with
p > 0.9 we observe 1,323. Figure EIl illustrates the complete distribution of structured RNAz

frames.

The tRNA finder tRNAscan-SE produced 24 tRNA predictions, which all decode standard amino
acids. Their average length is 73 nt. A blast search of the Tb predictions against the complete
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Noncode database affects 5 of our ncRNAs (34 hits). Overall a run of the miRNA detection tool
RNAmicro reveals 348 hits. 12 of them are classified with p > 0.5. But a blast search against the
miRBase produced no hit. A blast search against the Rfam leads to 1,199 hits affecting 62 of our
ncRNA candidates. A search after RNAs homologous to the Rfam covariance models produced 319
hits covering 224 of our ncRNA predictions. The distribution of the obtained bitscores is shown in
figure After filtering (cp. restrictions mentioned at B2) we keep 32 annotations. Furthermore
we obtain no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches
are listed in table Exemplary secondary structures of conserved RNAbob hits are illustrated in

figure B3

The ncRNA candidates are groupable into 148 cluster by the first and into 120 cluster by the
second Blastclust run. The maximal observed cardinality is 24 in both runs indicating that we
detect the same or in fact very similar ncRNAs about 20 times in the genome (cp. figure E4). For
both searches the cluster with the maximal cardinality comprise the sSIRNAs. The next clusters
are a M4 rRNA (large subunit epsilon/zeta) and a M1 rRNA cluster (large subunit gamma).

Finally we present some exemplary ncRNA consensus structures of the TbTc screen at figure

descriptor  # hits 7 conserved hits # unique predictions

Common 0 0 0
L. seymouri 0 0 0
C. fasciculata 0 0 0

T. brucei 2 2 2

Table 4.5: Number of ncRNA candidates for SMN binding of the TbTc screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure.
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Figure 4.1: Histogram of the RNAz classification probability of the ThTc screen. The distribution
looks nice, with higher p value we detect more structures.
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Figure 4.2: Bitscores obtained by Infernals cmsearch of the TbTc screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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putative Sm site ¢

Figure 4.3: Exemplary RNAbob hit using the T. brucei SMN descriptor (TbTc screen); Illustrated
structure: 44432.
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Figure 4.4: Histogram of the obtained Blastclust cardinalities of the TbTc ncRNAs. The y-axis
is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster cardinalities
seems to be non-repetitive, but we observe some significant repetitive hits with cardinalities of
more than 20.
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Figure 4.5: Exemplary consensus structures of the TbTc ncRNAs.

(A) Structure 47594, p=0.999, known as rRNA cluster of small subunit 18S rRNA
(B) Structure 47800, p=0.816, known as asparagine tRNA

(C) Structure 47803, p=0.959, known as lysine tRNA

(D) Structure 47667, p—0.886, known as U2 snRNA

(E) Structure 47742, p=0.685, known as U6 snRNA

(F) Structure 47865, p=0.921, known as H/ACA snoRNA Tb10Cs2H2

(G) Structure 47807, p=0.506, known as 7SL, SRP RNA

(H) Structure 47917, p=0.943, known as sIRNA
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4.1.2 The TbTcTv approach

Based on three-way alignments of Th, Tc and Tv we detect 140 structured RNA signals (p > 0.5,
Tab. ET) of which 86 are annotatable. Due to the definitions of subsection we obtain the
specifity values and false positive rates shown in table ELf, the resulting sensitivity values are
shown in table 71 Observed detection rates are shown in table

P > 0.50 > 0.90 > 0.98 > 0.99
False positive rates 57% 61 % 67 % 1%
(2,241/3,911)  (653/1,072) (247/370)  (144/202)
Specificity per test 0.959 0.988 0.995 0.997

Table 4.6: False positive rates and specifities of the TbTcTv screen; The increase of the FPR
with higher p value has never been observed in prior screens. This screen should be doubted, the
results of the SVM classification seem to be uncertain due to the phylogenetic range of the genomic
sequences. The average SVM classification criteria of resulting ncRNAs of this screen (p=0.85,
z=-1.52, SCI=0.74) tend to get outperformed by the comparable TbTcLi (cp. T3 p=0.87, z=-
1.59, SCI=0.83) and TbTcLm (cp. EET4 p=0.90, z=-1.68, SCI=0.82) ncRNA candidates. The
high false positive rate implies repetitive elements among the true data set. Shuffling did not
destroy the structures, they remain detectable in the shuffled set. To enlighten those assumptions
we manually curated the annotation of each ncRNA prediction by blast searchs against the NCBI.
We are able to annotate 101 predictions by hand. With 24 the most often occurring hit class is
spliced leader mini-exon and they indeed appear repetitive in the trypanosomes. But they are not
present in the other three-way screens (and especially not in their shuffled counterpart) and thus
mislead TbTcTv false positive statistics.

type N n No Ng| sSNa SNg Sna  Sng
rRNA 33 45 51 106 | 0.65 0.31 0.88 0.43
tRNA 17 20 47 651|036 0.26 0.43 0.31
misc. RNA | 25 28 28 29 |0.89 0.86 1.00 0.97
snRNA 2 2 1 6| 1.** 034 1.** 0.34
snoRNA 0 O 4 353 | 0.00 0.00 0.00 0.00

Table 4.7: Estimated sensitivities of the TbTcTv screen; Given misc_ RNAs are actually sIRNAs;
** indicate improper ratios. Only one of the given snRNAs in the alignment input set is detectable
by blast or blat, but we have 2 of the given snRNAs in our result set (namely U2, U3). The
U5 snRNA is annotatable by NCBI blast (cp. figure L9). In conclusion we detect all of the given
snRNAs of the input set. It is correct to have a smaller input set in comparison to the ThTc screen
(two genomes) because the RNAs have to be conserved in all three genomes. In percentages we
notably perform worse detecting tRNAs, but tRNAscan-SE is also not able to detect more of them.

Prior pairwise blast hits are used for global alignments with Tv. This resulted in 13,648 blast
hits with an average length of ~66nt. 11,107 of them made it into the RNAz input set. Their
average length is ~113nt. In consideration of all possible reading directions the total alignment
input set comprises 22,214 alignments. Overall there are 54,554 RNAz frames. At the p > 0.5 level
we count 3,911 and with p > 0.9 we observe 1,072. Figure L8l illustrates the complete distribution
of structured RNAz frames.
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per 1 mb alignment per 1 mb nc region

p | normal  shuffled | normal shuffled
>0.50 | 7,291.06 4,177.77 | 330.89 189.60

>0.90 | 1,998.47 1,217.35 90.70 55.25
> 0.98 689.77 460.47 31.30 20.90
> 0.99 376.58 268.45 17.09 12.18

Table 4.8: Noncoding RNA detection rates of the TbTcTv screen.
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Figure 4.6: Histogram of the RNAz classification probability of the TbTcTv screen. The two
peaks at around p = 0.66 and p = 0.73 destroy the significance of the entire screen. There is a
considerable fraction of low scoring RNAz frames, we assume that the phylogenetic range is too
close or an abundance of unannotated repeats.

The tRNA finder tRNAscan-SE produced 13 tRNA predictions, which all decode standard amino
acids. Their average length is 74nt. A blast search of the Tb predictions against the complete
Noncode database affects 2 of our ncRNAs (21 hits). Overall a run of the miRNA detection tool
RNAmicro reveals 288 hits. Still 2 of them are classified with p > 0.5. But a blast search against
the miRBase produced no hit. A blast search against the Rfam leads to 1,102 hits affecting 43 of our
ncRNA candidates. A search after RN As homologous to the Rfam covariance models produced 149
hits covering 113 of our ncRNA predictions. The distribution of the obtained bitscores is shown in
figure L7 After filtering (cp. restrictions mentioned at B2)) we keep 18 annotations. Furthermore
we obtain no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches
are listed in table EEQ

The ncRNA candidates are groupable into 74 cluster by the first and into 58 cluster by the second
Blastclust run. The maximal observed cardinality is 23 (first run) and 25 (second run) indicating

that we detect the same or in fact very similar ncRNAs about 20 times in the genome. For both
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descriptor  # hits # conserved hits # unique predictions

Common 0 0 0
L. seymouri 14 0 0
C. fasciculata 0 0 0

T. brucei 6 0 0

Table 4.9: Number of ncRNA candidates for SMN binding of the TbTcTv screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure. It is surprising that we do not get a conserved hit with the Tb descriptor because we
have hits with ncRNA predictions of the TbTcLi and TbhTcLm screen (cp. B3, ET7), although
Tv is phylogenetically closer to Tb than it is Li or Lm.

searches the cluster with the maximal cardinality comprise the sIRNAs. The next clusters are a
M4 rRNA (large subunit epsilon/zeta) and a M2 rRNA cluster (large subunit delta).

Finally we present some exemplary ncRNA consensus structures at figure L9
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Figure 4.7: Bitscores obtained by Infernals cmsearch of the TbTcTv screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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Figure 4.8: Histogram of the obtained Blastclust cardinalities of the TbhTcTv ncRNAs. The
y-axis is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster
cardinalities seems to be non-repetitive, but there are some significant repetitive hits among our
predictions with cluster cardinalities of more than 20.
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Figure 4.9: Exemplary consensus structures of the TbTc¢Tv ncRNAs. Obviously they are similar
to the TbTc structures, so we illustrate some of the unannotatable ncRNA candidates.

(A) Structure 46758, p=0.965, known as rRNA cluster and 18S rRNA

(B) Structure 46779, p=0.848, known as U2 snRNA

(C) Structure 46807, p=0.999, overlaps with known tRNA, a NCBI blast search indicates the U5
snRNA of T. brucei and L. seymouri

(D) Structure 46889, p=0.843, known as sIRNA, we did not match the sSIRNA completely and the
consensus structure confirms this

(E) Structure 46811, p=0.963, putative novel ncRNA, yet unannotated, a NCBI blast search
revealed no further annotation

(F) Structure 46917, p=0.968, putative novel ncRNA, yet unannotated, a NCBI blast search
revealed no further annotation
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4.1.3 The TbTcLi approach

Based on three-way alignments of Th, Tc and Li we detect 122 structured RNA signals (p > 0.5,
Tab. ET)) of which 117 are annotatable. Due to the definitions of subsection we obtain the
specifity values and false positive rates shown in table ELI0, the resulting sensitivity values are
shown in table EETTl Observed detection rates are shown in table

p > 0.50 > 0.90 >0.98 > 0.99

False positive rates 18% 20 % 14% 13%
(64/362) (20/147) (11/79)  (8/60)

Specificity per test 0.974 0.988 0.996 0.997

Table 4.10: False positive rates and specifities of the TbTcLi screen; The false positive rate
improves considerably in comparison to the prior Trypanosoma only screens.

type N n N, Ng| SnNa SNg Sna  Sng
rRNA 61 69 83 106 | 0.74 0.58 0.83 0.65
tRNA 31 35 54 65| 0.57 048 0.65 0.54
misc RNA | 0 0 0 29]0.00 0.00 0.00 0.00
snRNA 2 2 2 6100 034 1.00 0.34
snoRNA 0 0 0 353 | 0.00 0.00 0.00 0.00

Table 4.11: Estimated sensitivities of the TbTcLi screen; Members of the misc_ RNA family are 7
sl SRP RNA and other slIRNAs; They miss the input set and thus are not detectable; We match
the known U2 and U6 snRNA, but miss the given U1, U3, U4 and U5 snRNAs; snoRNAs also are
not in the input set.

per 1 mb alignment

per 1 mb nc region

p | normal shuffled | normal shuffled
> 0.50 | 674.86 119.31 30.63 5.41
> 0.90 | 274.04 54.06 12.44 2.45
> 0.98 | 147.28 20.51 6.68 0.93
>0.99 | 111.85 14.91 5.08 0.68

Table 4.12: Noncoding RNA detection rates of the TbTcLi screen.

Prior pairwise blast hits are used for global alignments with Li yielding to 23,844 blast hits with
an average length of ~30nt. Only 453 of them made it into the RNAz input set. Their average
length is ~128nt. In consideration of all possible reading directions the total alignment input set
comprises 906 alignments. Overall there are 2,460 RNAz frames. At the p > 0.5 level we count 362
and with p > 0.9 we observe 147. Figure EET0 illustrates the complete distribution of structured
RNAz frames.

tRNAscan-SE produced 29 tRNA predictions. 28 of them decode for standard amino acids and one
is classified as pseudogene. Their average length is 73nt. A blast search of the Th predictions
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against the complete Noncode database affects 2 of our ncRNAs (23 hits). Overall a run of
RNAmicro reveals 193 hits. Still 8 of them are classified with p > 0.5. But a blast search against
the miRBase produced no hit. A blast search against the Rfam leads to 998 hits affecting 65 of our
ncRNA candidates. A search after RNAs homologous to the Rfam covariance models produced 180
hits covering 100 of our ncRNA predictions. The distribution of the obtained bitscores is shown in
figure LT After filtering (cp. restrictions mentioned at B2) we keep 43 annotations. Furthermore
we obtain no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches
are listed in table Exemplary secondary structures of conserved RNAbob hits are illustrated

in figure BT

The ncRNA candidates are groupable into 54 cluster by the first and into 41 cluster by the second
Blastclust run. The maximal observed cardinality is 11 (first run) and 13 (second run) indicating
that we detect the same or in fact very similar ncRNAs about 10 times in the genome. The cluster
with maximal cardinalities comprise rRNAs in both searches. From the top to the bottom we
observe 5.85 rRNA (M3), 28S LSU alpha, and M2 LSU delta clusters by the first BC run and M2,
M4 and M3 clusters by the second one.

Finally we present some exemplary ncRNA consensus structures of the TbTcLi screen at figure

E1a
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Figure 4.10: Histogram of the RNAz classification probability of the TbTcLi screen. The distribu-
tion looks decently, there are many frames with high p values.

descriptor  # hits 7 conserved hits # unique predictions

Common 0 0 0
L. seymouri 11 0 0
C. fasciculata 0 0 0

T. brucei 16 11 3

Table 4.13: Number of ncRNA candidates for SMN binding of the TbTcLi screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure.

putative Sm site
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Figure 4.11: Exemplary RNAbob hits using the T. brucei SMN descriptor (TbTcLi screen); (A)
structure: 44270; (B) structure: 44360; (C) structure: 44390. Altogether they do not look very
stable.
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Figure 4.12: Bitscores obtained by Infernals cmsearch of the TbTcLi screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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Figure 4.13: Histogram of the obtained Blastclust cardinalities of the TbTcLi ncRNAs. The
y-axis is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster
cardinalities seems to be non-repetitive, but we observe some significant repetitive hits with car-
dinalities of more than 10.
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Figure 4.14: Exemplary consensus structures of the ThTcLi ncRNAs.

(A) Structure 44288, p=0.776, known as M4 LSU rRNA

(B) Structure 44338, p=0.956, known as M2 rRNA

(C) Structure 44350, p=0.799, known as M2 LSU rRNA delta, we matched the second half of the
known structure

(D) Structure 44351, p=0.632, known as 5S M5 rRNA

(E) Structure 44289, p=0.992, known as U2 snRNA

(F) Structure 44329, p=0.632, known as U6 snRNA
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4.1.4 The TbTcLm approach

Based on three-way alignments of Tbh, Tc and Lm we detect 117 structured RNA signals (p > 0.5,
Tab. ET)) of which 112 are annotatable. Due to the definitions of subsection we obtain the
specifity values and false positive rates shown in table ELT4l the resulting sensitivity values are
shown in table Observed detection rates are shown in table EET6l

P > 0.50 > 0.90 > 0.98 > 0.99
False positive rates 21% 16 % 13% 9%
(259/1210)  (78/475) (28/208) (13/152)
Specificity per test 0.966 0.990 0.996 0.998

Table 4.14: False positive rates and specifities of the ThTcLm screen; The false positive rate
improves considerably in comparison to the prior Trypanosoma only screens.

type N n N, Ng| SnNa SNg Sna  Sng
rRNA 56 60 83 106 | 0.68 0.53 0.72 0.57
tRNA 33 37T 54 65061 031 0.69 0.57
misc RNA | 0 0 0 29]0.00 0.00 0.00 0.00
snRNA 1 1 1 6017 017 0.17 0.17
snoRNA 0 0 0 353 | 0.00 0.00 0.00 0.00

Table 4.15: Estimated sensitivities of the TbTcLm screen; Members of the misc_ RNA family are
7 s1 SRP RNA and other sIRNAs; They miss the input set and thus are not detectable; We match
the known U6 snRNA, but miss the given Ul, U2, U3, U4 and U5 snRNAs; snoRNAs also are not
in the input set.

per 1 mb alignment per 1 mb nc region

p | normal  shuffled | normal shuffled
> 0.50 | 2,255.74 482.84 | 102.37 21.91
> 0.90 885.52 145.41 40.19 6.60
> 0.98 387.76 52.20 17.60 2.37
> 0.99 283.37 24.24 12.86 1.10

Table 4.16: Noncoding RNA detection rates of the ThTcLm screen.

Prior pairwise blast hits are used for global alignments with Lm yielding to 20,970 blast hits
with an average length of ~40nt. Only 1,225 of them made it into the RNAz input set. Their
average length is ~190nt. In consideration of all possible reading directions the total alignment
input set comprises 2,450 alignments. Overall there are 7,737 RNAz frames. At the p > 0.5 level
we count 1,210 and with p > 0.9 we observe 475. Figure EETH illustrates the complete distribution
of structured RNAz frames.

tRNAscan-SE produced 30 tRNA predictions, 29 of them decode for standard amino acids and one
is classified as pseudogene. Their average length is 72nt. A blast search of the Tbh predictions
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against the complete Noncode database affects 2 of our ncRNAs (7 hits). Overall a run of RNAmicro
reveals 196 hits. Still 8 of them are classified with p > 0.5. But a blast search against the miRBase
produced no hit. A blast search against the Rfam leads to 922 hits affecting 56 of our ncRNA
candidates. A search after RNAs homologous to the Rfam covariance models produced 164 hits
covering 96 of our ncRNA predictions. The distribution of the obtained bitscores is shown in figure
ETA After filtering (cp. restrictions mentioned at B2) we keep 33 hits. Furthermore we obtain
no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches are listed
in table ET7d Exemplary secondary structures of conserved RNAbob hits are illustrated in figure

E18

The ncRNA candidates are groupable into 54 cluster by the first and into 40 cluster by the second
Blastclust run. The maximal observed cardinality is 13 (first run) and 14 (second run) indicating
that we detect the same or in fact very similar ncRNAs about 10 times in the genome. The cluster
with maximal cardinalities comprise rRNAs in both searches. From the top to the bottom we
observe M4 LSU epsilon/zeta, 24S LSU alpha and 5.8S M3 rRNA clusters by the first BC run and
M4, M2, 24S LSU alpha rRNA clusters by the second one.

Finally we present some exemplary ncRNA consensus structures of the TbTcLm screen at figure

£E19
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Figure 4.15: Histogram of the RNAz classification probability of the TbTcLm screen. The distri-
bution implies an abundance of repetitive structures (p = 0.8).

descriptor  # hits # conserved hits # unique predictions

Common 2 0 0
L. seymouri 15 0 0
C. fasciculata 0 0 0

T. brucei 16 12 3

Table 4.17: Number of ncRNA candidates for SMN binding of the TbTcLm screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure.
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Figure 4.16: Exemplary RNAbob hits using the T. brucei SMN descriptor (TbTcLm screen); (A)
structure: 44042; (B) structure: 44128; (C) structure: 44155. The stability of the illustrated
structures is questionable.
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Figure 4.17: Bitscores obtained by Infernals cmsearch of the ThTcLm screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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Figure 4.18: Histogram of the obtained Blastclust cardinalities of the ThTcLm ncRNAs. The
y-axis is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster
cardinalities seems to be non-repetitive, but we observe some significant repetitive hits with car-
dinalities of more than 10.
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Figure 4.19: Exemplary consensus structures of the TbTcLm ncRNAs.

(A) Structure 44039, p=0.999, known as 185 SSU rRNA

(B) Structure 44110, p=0.888, known as M4 LSU epsilon rRNA

(C) Structure 44113, p=0.939, known as M2 LSU delta rRNA

(D) Structure 44142, p=0.695, NCBI blast search indicates T. brucei elongation factor 1-alpha, so
it belongs to the false positive set.

(E) Structure 44136, p=0.867, putative novel ncRNA, yet unannotated, a NCBI blast search
revealed no further annotation

(F) Structure 44137, p=0.997, putative novel ncRNA, yet unannotated, a NCBI blast search
revealed no further annotation
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4.1.5 Common ncRNA signals of the Trypanosoma screens

It is straight forward to be interested in novel ncRNAs which appear in all screens. RNAs conserved
through the three-way alignment approaches imply functionality and thus promise to be the most
important ones. We note that 41 ncRNAs are conserved between the three-way Trypanosoma
screens. We are able to annotate 36 out of these 41 predictions. In this context we speak of
annotatable if the related candidates of all three screens are annotatable. Figure illustrates
the resulting sets of the comparison at the p > 0.5 and p > 0.9 level. These well conserved ncRNAs
are listed at H

ThTcTv: 140 (86) ThTcTv: 71 (44)
‘ 89 ‘ 29
4 3
‘ 41 (36) 6 ‘ 33(30) 6
13 6
64 ‘ 24
- 6 . 7
TbTcLi: 122 (117) ‘ ThTcLi: 66 (63) ‘
ThTcLm:117 (112) ThTcLm: 70 (44)
p>0.5 p>0.9

Figure 4.20: Venn diagrams illustrating the commonalities of the Trypanosoma screens; Numbers
in brackets indicate the count of annotatable predictions.

4.2 Novel ncRNA candidates of the genus Leishmania

In this section we report about our predicted ncRNA candidates of the Leishmania infantum and

Leishmania major genomes. The numbers of observed ncRNA signals are listed in table

P LiLm LiLmTb LmLi LmLiTb
> 0.50 | 113,575 92 30,762 131
>0.90 | 60,506 50 15,632 78
>0.98 | 18,239 29 8,633 30
>0.99 | 13,456 18 6,667 21

Table 4.18: Overview of the numbers of Leishmania ncRNA prediction. The pairwise screens
became meaningless because of the high hit rates. The genomes are related to close and we
assume that not all repeats are annotated completely. We do not care about these pairwise
screens in further analyses because of the insignificant overrepresentation of ncRNAs. Although
T. brucei is close related to the Leishmania species, three-way alignments reduce the amount of
hits dramatically and induce more reliability.

The Li noncoding DNA used for the initial blast search comprises 19,065,849 nt what is nearly 55%
of the total genomic sequence. The Lm noncoding DNA consists of 15,669,214 nt what is less than

lhttp://www.bioinf.uni-leipzig.de/~dominic/projects/tryp/index.php?id=results
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48% of the total genome. The pairwise predictions seem to be irredeemably overestimated. The
high numbers of ncRNA candidates are due to the fact that the two Leishmania species are related
too close phylogenetically and the existence of putative unannotated repeats. Annotation and
evaluation of the pairwise approaches would be expensive because of the many ncRNA candidates
and it even seems to be unsure because of the missing third genome providing essential data. So
we decide to concentrate on Leishmania screens with three-way alignments only. Those predictions
are definitely more reliable.

4.2.1 The LiLmTb approach

Based on three-way alignments of Li, Lm and Tb we detect 92 structured RNA signals (p > 0.5,
Tab. ETR) of which 76 are annotatable. Due to the definitions of subsection we obtain the
specifity values and false positive rates shown in table ELT9, the resulting sensitivity values are
shown in table Observed detection rates are shown in table EL211

P > 0.50 >090 >098 >0.99

False positive rates 26 % 17% 17% 15%
(133/506)  (34/200) (14/81) (8/52)

Specificity per test 0.984 0.996 0.998 0.999

Table 4.19: False positive rates and specifities of the LiLmTb screen

type N n Ng Ng| SNa 5SNg Sna  Sng
rRNA 21 35 44 621|047 0.33 0.80 0.56
tRNA 38 43 57 62| 0.67 061 0.75 0.69
misc RNA| 0 O 0 14 | 0.00 0.00 0.00 0.00
snRNA 1 1 1 71014 0.14 0.14 0.14
snoRNA 0 0 0 43 |0.00 0.00 0.00 0.00

Table 4.20: Estimated sensitivities of the LiILmTb screen; Out of the rRNAs we hit the known
5.8S, 18S and 28S; Among others the given misc_ RNAs are pseudogenes (so it is good not to find
them).

per 1 mb alignment

per 1 mb nc region

p | normal shuffled | normal shuffled
> 0.50 12.79 3.36 26.54 6.98
> 0.90 5.06 0.86 10.49 1.78
> 0.98 2.05 0.35 4.25 0.73
> 0.99 1.31 0.20 2.73 0.42

Table 4.21: Noncoding RNA detection rates of the LiLmTb screen.

Prior pairwise blast hits are used for global alignments with Lm yielding to 14,580 blast hits
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with an average length of ~37nt. Only 2,504 of them made it into the RNAz input set. Their
average length is ~71nt. In consideration of all possible reading directions the total alignment
input set comprises 5,008 alignments. Overall there are 8,544 RNAz frames. At the p > 0.5 level
we count 506 and with p > 0.9 we observe 200. Figure B2l illustrates the complete distribution
of structured RNAz frames.

tRNAscan-SE produced 56 tRNA predictions. 54 of them decode for standard amino acids and 2
are classified as pseudogenes. Their average length is 72nt. A blast search of the Li predictions
against the complete Noncode database affects 2 of our ncRNAs (22 hits). Overall a run of
RNAmicro reveals 111 hits. Still 2 of them are classified with p > 0.5. But a blast search against
the miRBase produced no hit. A blast search against the Rfam leads to 298 hits affecting 65 of our
ncRNA candidates. A search after RNAs homologous to the Rfam covariance models produced 135
hits covering 81 of our ncRNA predictions. The distribution of the obtained bitscores is shown in
figure 23 After filtering (cp. restrictions mentioned at B2) we keep 62 annotations. Furthermore
we obtain no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches
are listed in table Exemplary secondary structures of conserved RNAbob hits are illustrated
in figure

The ncRNA candidates are groupable into 79 cluster by the first and into 64 cluster by the
second Blastclust run. The maximal observed cardinality is 2 (first run) and 4 (second run)
indicating that the predictions are less similar on the level of primary sequence than they are at
the Trypanosoma screens. A specific annotation for each cluster seems complicated. For example
Blastclust combines predictions that we have annotated as tRNAs, known Noncode smnRNAs

of Leishmania tarentolae and 7SL SRP rRNA of Leptomonas collosoma into one cluster.

Finally we present some exemplary ncRNA consensus structures of the LiLmTb screen at figure
Its caption is shown here because of space problems:

(A) Structure 40687, p=0.975, putative unannotated tRNA in Li, blast searches against the Rfam
and the NCBI indicate valine tRNA (L. tarentolae)

(B) Structure 40688, p=0.779, putative unannotated tRNA in Li, blast searches against the Rfam
and the NCBI indicate valine tRNA (L. tarentolae)

(C) Structure 40700, p=0.634, matches with 5S rRNA by NCBI blast

(D) Structure 40741, p=0.831, known as 28S LSU alpha rRNA

(E) Structure 40748, p=0.999, miRNA candidate found by RNAmicro(p=0.988); We present the
complete RNAz hit, the flanking regions should be trimmed.

(F) Structure 40745, p=0.830, putative novel ncRNA, looks like tRNA, but it is not annotatable
(G) Structure 40702, p=0.878, NCBI blast search indicates T. cruci histon H3 gene, so it belongs
to the false positive set.

(H) Structure 40705, p=0.508, NCBI blast search indicates L. donovani S11 mRNA gene and T.
brucei/ T. cruci 40S ribosomal protein, so it belongs to the false positive set.

(I) Structure 40782, p=0.973, NCBI blast search indicates L. braziliensis elongation factor 2, so it
belongs to the false positive set.

(J) Structure 40783, p=0.777, NCBI blast search indicates L. major or T. cruci elongation factor
2, so it belongs to the false positive set.
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Figure 4.21: Histogram of the RNAz classification probability of the LiLmTb screen. The peak at
p = 0.6 implies repetitive structures.

descriptor  # hits # conserved hits # unique predictions

Common 1 1 1
L. seymouri 2 2 2
C. fasciculata 0 0 0

T. brucei 9 1 1

Table 4.22: Number of ncRNA candidates for SMN binding of the LiLmTb screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure.

putative Sm site

(A)

Figure 4.22: Exemplary RNAbob hits of the LiLmTb screen; (A) structure: 40735, found with
the common and the L. seymouri descriptor; (B) structure: 40738, found with the T. brucei
descriptor;
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Figure 4.23: Bitscores obtained by Infernals cmsearch of the LiLmTb screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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Figure 4.24: Histogram of the obtained Blastclust cardinalities of the LiLmTb ncRNAs. The
y-axis is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster
cardinalities seems to be non-repetitive. Although there are some clusters with more than one
member, the screen is less repetitive on the level of primary sequence than the prior screens of
Trypanosoma are.
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Figure 4.25: Exemplary consensus structures of the LiLmTb ncRNAs. Further details are given
at the end of section 2] because of space problems.
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4.2.2 The LmLiTb approach

CHAPTER 4. NONCODING RNA PREDICTIONS

Based on three-way alignments of Lm, Li and Tb we detect 131 structured RNA signals (p > 0.5,
Tab. EETR) of which 116 are annotatable. Due to the definitions of subsection B-I33 we obtain the
specifity values and false positive rates shown in table L2Z3 the resulting sensitivity values are
shown in table Observed detection rates are shown in table

D > 0.50 > 0.90 >098 >0.99

False positive rates 33% 24 % 29% 17%
(497/1498)  (128/523) (33/114) (16/93)

Specificity per test 0.961 0.990 0.997 0.999

Table 4.23: False positive rates and specifities of the LmLiTb screen

type N n N, Ng| Sna SNg Sna Sng
rRNA 28 34 46 63| 0.61 0.44 0.74 0.54
tRNA 54 60 82 83| 0.66 0.65 0.73 0.72
misc RNA | 0 O 0 61]0.00 0.00 0.00 0.00
snRNA 2 2 2 71100 1.00 0.29 0.29
snoRNA 0 0 0 693 | 0.00 0.00 0.00 0.00

Table 4.24: Estimated sensitivities of the LmLiTb screen; Out of the rRNAs we hit the known
18S and 28S rRNAs, but we missed the known 5.8S rRNAs; Among others the given misc  RNAs
are mostly mini-exon genes (so it is good not to find them).

per 1 mb alignment

per 1 mb nc region

p | normal shuffled | normal shuffled
> 0.50 52.60 17.45 95.60 31.72
> 0.90 18.37 4.49 33.38 8.17
> 0.98 4.00 1.16 7.28 2.11
> 0.99 3.27 0.56 5.94 1.02

Table 4.25: Noncoding RNA detection rates of the LmLiTb screen.

Prior pairwise blast hits are used for global alignments with Li yielding to 3,817 blast hits with

an average length of ~107nt. Only 1,570 of them made it into the RNAz input set. Their average

length is ~188 nt. In consideration of all possible reading directions the total alignment input set

comprises 3,140 alignments. In comparison to the LiLmTb screen the number of unfiltered blast
hits is pretty higher (14,580 at LiLmTb and 3,817 at LmLiTb). This is due to the heavy impact of
16,392 annotated Lm repeats ('repeat region’, ’repeat unit’). That is about 450 % of known Li

repeats (3,658). We only cut repeats and coding sequences of the reference genome. The subject

genome of the blast searches remains untouched. Overall there are 12,879 RNAz frames. At the
p > 0.5 level we count 1,498 and with p > 0.9 we observe 523. Figure 228 illustrates the complete

distribution of structured RNAz frames.
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tRNAscan-SE produced 49 tRNA predictions. 48 of them decode for standard amino acids and one
is classified as pseudogene. Their average length is 72nt. A blast search of the Lm predictions
against the complete Noncode database affects 2 of our ncRNAs (22 hits). Overall a run of
RNAmicro reveals 231 hits. Still 6 of them are classified with p > 0.5. But a blast search against
the miRBase produced no hit. A blast search against the Rfam leads to 298 hits affecting 62 of our
ncRNA candidates. A search after RNAs homologous to the Rfam covariance models produced 163
hits covering 100 of our ncRNA predictions. The distribution of the obtained bitscores is shown in
figure 2R After filtering (cp. restrictions mentioned at B2) we keep 56 annotations. Furthermore
we obtain no blast hits with sequences of the snoRNA-LBME-db. Results of the RNAbob searches
are listed in table Exemplary secondary structures of conserved RNAbob hits are illustrated
in figure

The ncRNA candidates are groupable into 74 cluster by the first and into 54 cluster by the second
Blastclust run. The maximal observed cardinality of both runs is 10 indicating that we detect
the same or in fact very similar ncRNAs not more than 10 times per genome. The cluster with
the maximal cardinalities comprise rRNAs for both BC runs. The largest groups contain 285 LSU
epsilon (M4) and LSU alpha.

Finally we present some exemplary ncRNA consensus structures of the LmLiTb screen at figure
4. 50
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Figure 4.26: Histogram of the RNAz classification probability of the LmLiTb screen. Similar to the
LiLmTDb screen we observe a peak at p = 0.6 inducing repetitive structures.

descriptor  # hits # conserved hits # unique predictions

Common 6 6 1
L. seymouri 6 6 1
C. fasciculata 0 0 0

T. brucei 14 6 1

Table 4.26: Number of ncRNA candidates for SMN binding of the LmLiTb screen. Conserved in
this context indicates that we count hits where the motif is found in the majority of the aligned
sequences. Unique indicates the number of involved ncRNA predictions with different secondary
structure.

putative Sm site

(A)

Figure 4.27: Exemplary RNAbob hits of the LmLiTb screen; (A) structure: 68483, found with
the common and the L. seymouri descriptor; (B) structure: 468485, found with the T. brucei
descriptor;
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Figure 4.28: Bitscores obtained by Infernals cmsearch of the LmLiTb screen. The bitscore is
problematic, there are so many hits with low score, we set a cutoff value at 10.
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Figure 4.29: Histogram of the obtained Blastclust cardinalities of the LmLiTb ncRNAs. The
y-axis is scaled logarithmically. The major fraction of the predicted ncRNAs with low cluster
cardinalities seems to be non-repetitive. Contrary to the LiLmTb screen, we now observe cluster
cardinalities of more than 10. Thus the genome of Leishmania major consists of more repetitive
elements than Leishmania infantum.
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Figure 4.30: Exemplary consensus structures of the LmLiTb ncRNAs. The unpaired nucleotides
at the ends of the structures (for example D, E and F) indicate that we do have problems with
assigning the correct RNA positions absolutely. But this issue is due to the decision of aligning
conserved regions with some flanking nucleotides. The borders are too wide but the RNA
structure is not cut and thus completely detected.

(A) Structure 68502, p=0.831, known as 28S LSU alpha rRNA

B) Structure 68491, p=0.935, known as 28S LSU beta rRNA

C) Structure 68497, p=0.970, known as 5.8S SSU rRNA

D) Structure 68441, p=0.925, known as His tRNA

E) Structure 68594, p=0.999, known as Gln tRNA

F

(
(
(
(
(F) Structure 68477, p=0.920, known U6 snRNA
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4.2.3 Common ncRNA signals of the Leishmania screens

It is straight forward to be interested in novel ncRNAs which appear in all screens. RNAs conserved
through the three-way alignment approaches imply functionality and thus promise to be the most
important ones. If we bring the three-way Leishmania screens together by combination of ncRNAs
which appear in both screens we note 131 cluster. This is done by a comparison of conserved Lm
ncRNAs between the screens. It is interesting to notice that all predictions of the LiLmTb screen
have their corresponding prediction in the LmLiTb screen. Figure B3 illustrates the resulting
sets. Related ncRNAs are listed at H

Lm-Li-Cluster (131)

Lm (131)

Figure 4.31: Venn diagram illustrating the commonalities of the Leishmania screens; All 92 Lm
sequences of the LiLmTb screen can be grouped together with Lm sequences of the LmLiTb screen.

2http://www.bioinf.uni-leipzig.de/~dominic/projects/leish/index.php?id=results
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Chapter 5

Discussion

5.1 Promising results

The reliable prediction of ncRNAs is a challenging task and it is very hard to proof those results,
e.g. in terms of mathematical evidence. Regardless of this problem we try to validate our predic-
tions by functional assignments. Figure Bl summarizes the numbers of our predicted ncRNAs and
their annotatable fractions. The majority of the ncRNA candidates is annotatable by automated
methods and we conclude in consideration with these results to have shown promising possibilities
of computational ncRNA detection. The functions of only a minor part remains unidentifiable.
The prediction recovers the majority of conserved known noncoding elements which allows the
conclusion that our procedure works quite good among trypanosomatid species. Considering the
overall reliability of noncoding predictions and the false positive rates we do not perform worse
within trypanosomes than we did in our prior screens of Ciona intestinalis or Caenorhabditis

elegans.

tRNAscan-SE has established through the years and is a common, appropriate and very fast tRNA
detection tool. This tRNA finder has a complimentary detection rate of 99-100 %9 This sounds
nice and comparing the observed hit rates of our candidates with known tRNAs we can state that,

overall, we do not perform worse (cp. figure B2) than tRNAscan-SE in sum.

A major fraction of our candidates refers to known elements pleading the prediction procedure,
but there are also novel up to now unassigned elements among the result set. Our screens include
structured RNAs with putative or even unknown function but also missclassified coding elements.
As mentioned above, manual interference like blast searches against the NCBI help to validate
the predictions. Table Bl provides an overview of the extant predictions without an automated

function-assignment.

59
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Figure 5.1: Summary of predicted ncRNAs. From the left to the right we summarise the amount
of predicted ncRNAs and the number of annotatable ones at the p > 0.5 and the p > 0.9 level for
each screen. For annotation purposes of this diagram we only considered automated methods like
blast searches against ncRNA databases like Noncode and Rfam. Manual assignments, for example
blast searches against the NCBI, are not taken into account here because we want to keep the
whole procedure as much automated as possible. The difference of the numbers of predicted RNAs
and their annotatable subset is much bigger for the TbTcTv screen than it is among the other
three-way alignment approaches. This effect is caused by the mentioned repetitive mini-exon genes
conserved among the trypanosomes (cp. table ELH]).
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Figure 5.2: RNAz challenges tRNAscan-SE: We mention to identify almost the same number of
known tRNAs with our RNAz prediction pipeline than tRNAscan-SE reveals in our candidate sets.
For each screen tRNAscan-SE was run on the RNAz ncRNA candidate set and our predictions
were compared with given known tRNAs. The comparison was done by calculating percentages
of overlapping genomic loci. RNAz hit rates increase if we allow an overlap of 70 % indicating that
we do not match the known RNAs perfectly due to the RNAz sliding window mechanism, but we
are able to detect signaling conserved subregions.
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screen TbTc TbTcTv  TbTcLi TbTecLm LiLmTb LmLiTb
# 198 (38%) 54(39%) 5 (4%) 5(4%) 16 (17%) 15 (12%)

coding 2 2 7 6
noncoding 1 1 3 6
unknown 2 2 6 3

Table 5.1: Overview of ncRNA candidates that lack automated function-assignment. Predictions
of the most reliable three-way alignment screens without an annotation due to automated pro-
cedures are curated manually by blast searches against the NCBI databases. The hit set can
be grouped into coding elements, noncoding RNAs and structures without a clear homology to
known sequences. The coding set and thus the false positive set comprises hypothetical proteins,
elongation factors, some ribosomal proteins and other coding genes (e.g. rod proteins or histone
H3 genes). The blast results indicate that the major fraction of those coding signals is trypanoso-
matid specific (the phylogenetic range of the hit set is almost limited to trypanosomatid taxa).
This could be a hint why RNAz missclassified them (RNAz mostly is trained with vertebrate data).

5.2 Limitations, improvements and future work

Although we got positive feedback by the successful mapping of predicted ncRNAs to known
elements we strongly emphasize that we only present methods for ncRNA prediction and in the end
it is hard to say what are true ncRNAs. Verifying predictions with other prediction methods only
increases certainty if they are completely reliable, but which method features this undoubtedly?
The comparison of our candidate set with known annotated RNAs is reliable if the annotation is
confirmed and thus reliable, but even our starting data sets are full of predictions.

Blast alignments of candidate sequences with ncRNA databases are a common method for func-
tional assignment. The unpublished RNAmicro is considered to be a qualified miRNA detector
although allover RNAmicro experience is comparatively low because it is a new tool. The Infernal
runs contain only little information because the provided bitscore is hard to interpret. There is no
valid distribution or scoring scheme recognizable. Thus we tried to exalt the quality of obtained
hits by setting bitscore cutoff values and neglecting improper Rfam model families. We did not
use the number of RNAbob hits for annotation statistics. This pattern matching approach is very
quick, but seems to be dirty, too. The possibilities of formulating applicable RNA class descriptors
are limited, however. It is allegeable that we do not get any hit with the snoRNA-LBME-db and
the miRBase. On the one hand the snoRNA-LBME-db only contains sequences of human H/ACA
and C/D box snoRNAs and the phylogenetic distance between human and trypanosomatid species
seems to be too large. On the other hand the miRNA sequences are too short to be identified
significantly with blast.

Functions of unassigned predictions remain unclear without strong similarities to known ncRNAs.
We even notice RNAz hits without a significant NCBI blast hit to known elements, whether they
belong to coding or noncoding classes. However, we also know that blast can not find every-
thing and there are false positives in the result set. The next step of identification and thus
verification of ncRNAs could be performing lab experiments like reverse transcriptase-dependent

@768

PCR, microarray or northern blot analyses Unfortunately it is difficult to run them in
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large-scale and genomewide contexts as they are definitely more expensive than computational
approaches. Their benefit is discussable if computational gained results are handled carefully and

with a substantially portion of mistrust.

A major problem of our method is that we do not match known RNAs perfectly and our annotation
differs in some nucleotides from the positions of known elements (cp. table E2). As a consequence
of the RNAz sliding window mechanism, we sometimes could hit specific subregions instead of com-
plete RNAs. Even though we annotate those partial hits as their known counterpart. Furthermore,
we have the problem of providing two start and end positions for each detected structure. After
various merging steps of combining single RNAz frames we annotate a segment (“adjusted region”)
as ncRNA summarizing all signals pointing to this locus, but it is more precise (more “biological”)
to annotate loci retrieved by a single alignment. We therefore tried to choose a best representative
of a single alignment (“best RNA”) for each “adjusted region”. It is straight forward that a “best
RNA” can be shorter than its “adjusted region” (cp. figure B3). Comparisons of positions of our
ncRNAs to known elements are done with the positions of the “adjusted regions”. Additionally
consensus folding is done with “best RNAs” to preserve their biological context (cp. chapter B).
This could result in some “unexpected” consensus structures, however. Although we annotate an
ncRNA candidate as “tRNA” for example, parts of the consensus structure do not need to look
like a tRNA.

screen | TbTc TbTcTv TbTcLi TbTcLm LiLmTb LmLiTb
rRNA | 56/82 23/33  28/61  31/56  20/21  12/28
tRNA | 24/30 13/17  27/31  27/33  37/38  49/54

Table 5.2: The annotation of ncRNA predictions differs with corresponding known elements. For
every screen we list the number of predictions that correspond to known rRNAs and tRNAs. The
first number describes the number of matches with known RNAs given an overlap of 100% is
required, the second one indicates the amount with an overlap of only 70 %. Obviously the second
number is higher than the first concluding that we do not match known elements completely but
major signalling subregions remain detectable.

RNAz itself is limited to six-way alignments. In our case we did not exhaust this issue, we used three
genomes per screen at the most. This is a practicable compromise between data availability, data
quality and computing time. More and more sequencing projects are ongoing but for prediction
purposes we need several progressed genomes out of specific taxons. The phylogenetic distance
between the underlying organisms has to be taken into account. If they are too closely related,
everything aligns with everything and a reliable SVM classification is not possible. This issue
is especially observable within the pairwise alignment screens. If the organisms are related too
distantly the signal is lost and ncRNA detection is problematic. Prediction becomes uncertain if
we screen close related organisms only. This is the case for TbTc¢, TbTcTv, LiLm and LmLi. About
60 % of the putative ncRNAs of the TbTc and TbTcTv screen are annotatable. If we concentrate
on sequences conserved between Trypanosoma and Leishmania we note a considerable increase of
annotatable predictions. There we note that 96 % of the TbTcLi and the TbTcLm candidates and
83 % respectively 89 % of the LiLmTb and LmLiTb screen are annotatable. However, we could miss

species specific elements if we align distantly related sequences. Computation time may become
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Figure 5.3: Exemplary length distribution of TbTcLi ncRNA candidates. The lengths of the
“adjusted regions” and their “best RNAs” do not differ significantly. Nevertheless it is precise to
distinguish between “adjusted region” and “best RNA” to preserve the biological context of a single
alignment. The peak at 120 nt is due to the screening window size of 120 nt.

a problem if large genomes are at hand. Repetitive hits have to be curated immediately during
the creation of the alignments. Although we tried to exclude annotated repeats, we can not be
sure that all repeats are masked completely in the given annotation. Usually one query sequence
is found several times in genomewide blast searches. This multiplicative effect grows with the
number of genomes per screen and complicates the whole process of setting up multiple RNAz input
alignments. Moreover, we screened alignments consisting of every combination of possible reading
directions (there are 2" possibilities with n genomes). This considerably increases the amount of
the RNAz input data and the overall computation time.

It is obvious that predictions depend on the initial screen design and underlying source data. We
set up two individual Leishmania screens such that we looked at conserved loci in two ways. On
the one hand we started with Li and on the other hand we started with Lm noncoding regions.
We expected to see similar blast hits and in the end similar ncRNA candidates. However, the
starting genomes and their underlying annotation differ which results in some differences between
the two screens. Anyway, all LiLmTb ncRNAs predictions have their counterpart within the
LmLiTb screen. In addition, we observe some further signals in the LmLiTb screen. We conclude
that the quality of the whole procedure simply gets worse with the abundance of repeats. In case
of repetitive hits it is difficult to decide if valid and functional RNAs have been observed or if
only relicts of duplication events have been detected. The Blastclust runs confirm repetitive
hits among our predictions.

Indeed, we observe a considerable amount of structured RNAs in the shuffled test sets. The

number of positive classified RNAz frames in the shuffled approaches (false positives) can not be
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argued away. The more repetitive a data set is, the higher the false positive rate will be. With
the increase of repeats in the dataset it becomes more difficult to destroy every structural signal
by shuffling the alignments. Columnwisely randomised alignments may not be the best what we
can do, but it is a first step in creating some sort of false positive rate. Figure L4 illustrates
some discrepancies of SVM classification results on native data sets in comparison with shuffled
alignments. The rating of the predictions and the creation of a reliable false positive rate remains

a open problem.

As mentioned above, we only performed screens with three organisms in this work. It is obvi-
ous that it is useful to have a general set of tools at hand to handle the RNAz maximum of six
organisms in an automatic way. Up to now we did not implement this general computational envi-
ronment although the basis with a well normalized database scheme and related input and output
perl modules is ready. The currently implemented procedure meets all requirements to handle
three organism, but performance improvements are still conceivable, especially at the creation of
the input alignments, using specialised multiple alignment approaches like the threaded blockset
aligner TBABY or LAGAN (Multi—LAGAN)['r’“J. This will automate the procedure promisingly
once again, but less influence on the inputset are a consequence. In the last days of this work
RNAz 1.0 was released. It partly supports those features in ready-made perl scripts.

Although we know that our implemented procedure works quite fine among different taxonomic
classes, we decide not to publish the complete system. Integration of all scripts to a general tool
of ncRNA prediction is not practicable because of missing file format standards and changing
requirements. We therefore refer to the new RNAz 1.0 release. The above mentioned perl scripts
allow large-scale genomic screens from the scratch (without database support).

Automation is the key word if we ask for ncRNA prediction at taxons where the amount of available
genomes and annotation data is high, however. Among others this is the case for a lot of bacterial
organisms. However, we do not know of comprehensive and published RNAz ncRNA predictions
affecting Eubacteria, for instance, up to now. Perhaps there are also possibilities of ncRNA
prediction in taxons where the situation of available genomes looks even worse. Imagine genomes
with high occurrences of gene duplication events. It has been shown that a major fraction of the
genome of Arabidopsis thaliana consists of paralogous genes that probably originated through one
or more ancient large-scale gene or genome duplication events™! and moreover that duplicated

RNA copies acquire new functionality as they evolvel2d: 3]

What happens if we align the genome
to itself? First identical hits have to be excluded and then setting up multiple alignments as RNAz

input may also be possible.

A next step in the RNAz based ncRNA prediction could be to extend the range of the SVM clas-
sification. Beside “valid ncRNA” and “other” it rather would be interesting to have a specialised
classification into resulting ncRNA types (tRNA, rRNA, miRNA, snRNA. snoRNA, ...) imple-
mented in one single program. We admit that this is not yet possible and new algorithms factoring
more ncRNA characteristics have to be developed to reach this pretentious goal.
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Figure 5.4: Comparison of SVM classification results of the TbTcLi screen. The z-score of a valid
ncRNA should be as negative (-3) and the SCI as positive (4+1) as possible. Thus it is expected
to obtain two separated clusters, the native data set in the upper left and the randomised set in
the lower right corner of the plot.

(A) One may divine a separation of the native set comprising all scored RNAz frames and the
corresponding random control.

(B) A separation of RNAz frames with p > 0.5 is not explicitly observable considering z-score
and SCI, but we know that SVM classification yieldes to 342 RNAz windows for the native set in
contrast to 64 frames for the shuffled set at the p > 0.5 level.

(C) However, a comparison of z-score and SCI for ncRNA candidates covering known tRNA loci
reveals a separation. We count 31 tRNA predictions and only 14 in the shuffled set. On the one
hand the z-score is pretty high for the random set, but on the other hand we observe that the
native predictions tend to have a superiorly conserved structure.
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5.3 Conclusion

We showed a promising way of ncRNA prediction by comparative genome analyses. Starting with
blank nucleotide sequences we implemented a methodology for the identification of structured
ncRNAs. We demonstrated how to receive novel unknown ncRNA loci from current genomes. We
assume that RNAz based ncRNA prediction works very well for trypanosomatids. We recommend
to use database systems for efficient handling of the huge amount of data retrieved by large-scale
genomewide analyses. As a consequence, most of the processing steps are automated. Considerable
effort has to be taken into account for the validation of those predictions. For our purposes it
is not necessary to reveal every biological function of predicted loci in detail but we are able
to enlighten the general function of a major fraction of predicted ncRNA genes via homology
based approaches. Furthermore, we assume to have helped in gaining more experience with RNAz
and ncRNA prediction at all. Hopefully we motivated future developments of ncRNA prediction

approaches.

Computational ncRNA prediction remains a challenging field of bioinformatic research - and the

very first steps towards reliable predictions already have been taken.

5.4 Supplement

We set up summarising webpages of the predicted ncRNAs for every three-way alignment screen.
All candidate sets and their current annotation are listed there. Furthermore the predictions
can be downloaded in fasta and EMBL format (viewable with Artemis). We added a unofficial
self-defined “ncRNA” feature key to the EMBL files to address the ncRNAs.

e Trypanosoma (TbTcTv, TbTcLi, ThTcLm):
http://wuw.bioinf.uni-leipzig.de/~dominic/projects/tryps/

e Leishmania (LiILmTb, LmLiTb):
http://wuw.bioinf.uni-leipzig.de/~dominic/projects/leish/
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