Conserved Introns
Reveal Novel Transcripts
in *Drosophila melanogaster*

Dominic Rose
Bioinformatics Group, University of Leipzig

Bled, Feb 2009
Outline
Outline

• Genome-wide comparative genomics approach
Outline

• Genome-wide comparative genomics approach
• Search for short conserved introns in insect genomes
Outline

- Genome-wide comparative genomics approach
- Search for short conserved introns in insect genomes
- Capable to identify novel conserved transcripts
Outline

- Genome-wide comparative genomics approach
- Search for short conserved introns in insect genomes
- Capable to identify novel conserved transcripts
- Novel conserved introns \rightarrow novel cons. transcripts
Outline

• Genome-wide comparative genomics approach
• Search for short conserved introns in insect genomes
• Capable to identify novel conserved transcripts
• Novel conserved introns \rightarrow novel cons. transcripts
• Intron detection allows to
 • ...extend annotation of existing coding or UTRs
• Genome-wide comparative genomics approach
• Search for short conserved introns in insect genomes
• Capable to identify novel conserved transcripts
• Novel conserved introns \rightarrow novel cons. transcripts
• Intron detection allows to
 • ...extend annotation of existing coding or UTRs
 • ...identify novel protein coding genes
Outline

- Genome-wide comparative genomics approach
- Search for short conserved introns in insect genomes
- Capable to identify novel conserved transcripts
- Novel conserved introns \rightarrow novel cons. transcripts
- Intron detection allows to
 - ...extend annotation of existing coding or UTRs
 - ...identify novel protein coding genes
 - ...identify novel mRNA-like ncRNAs
mRNA-like noncoding RNAs (mlncRNAs)
mRNA-like noncoding RNAs (mIncRNAs)

- Central topic of current RNA research
mRNA-like noncoding RNAs (mLncRNAs)

- Central topic of current RNA research
- ENCODE: Large portion of the transcriptional output of eukaryotic genomes consists of mRNA-like noncoding RNAs.
mRNA-like noncoding RNAs (mLncRNAs)

- Central topic of current RNA research
- ENCODE: Large portion of the transcriptional output of eukaryotic genomes consists of mRNA-like noncoding RNAs.
- Capped, polyadenylated, often (alternatively) spliced (just like protein-coding genes), but lack discernible open reading frames
mRNA-like noncoding RNAs (mLncRNAs)
mRNA-like noncoding RNAs (mIncRNAs)

- Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
mRNA-like noncoding RNAs (mlncRNAs)

- Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
- Some serve as precursor for miRNAs and snoRNAs
mRNA-like noncoding RNAs (mlncRNAs)

- Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
- Some serve as precursor for miRNAs and snoRNAs
- Abiotic stress signals: gadd7/adapt15, adapt33, hsrω, OxyR, DsrA, Ibi, G90
 (e.g. expression caused by UV radiation)
mRNA-like noncoding RNAs (mLncRNAs)

- Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
- Some serve as precursor for miRNAs and snoRNAs
- Abiotic stress signals: gadd7/adapt15, adapt33, hsrω, OxyR, DsrA, lbi, G90
 (e.g. expression caused by UV radiation)
- Biotic stress signals: His-1, ENOD40, CR20, GUT15
 (e.g. expression correlated with viral insertion or carcinogenesis)
mRNA-like noncoding RNAs (mlncRNAs)

• Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
• Some serve as precursor for miRNAs and snoRNAs
• Abiotic stress signals: gadd7/adapt15, adapt33, hsrω, OxyR, DsrA, Ibi, G90
 (e.g. expression caused by UV radiation)
• Biotic stress signals: His-1, ENOD40, CR20, GUT15
 (e.g. expression correlated with viral insertion or carcinogenesis)
• Others: UHG, NTT, Bsr, BC1, BC200, SRA
mRNA-like noncoding RNAs (mLncRNAs)

- Gene regulators: Evf-2, Xist, roX1, Tsix, XistAS, roX2, H19, mei, LPW, KvDMR1, DGCR5, CMPD
 (e.g. Evf-2 acts as transcriptional enhancer for distal-less homeobox genes)
- Some serve as precursor for miRNAs and snoRNAs
- Abiotic stress signals: gadd7/adapt15, adapt33, hsrω, OxyR, DsrA, lbi, G90
 (e.g. expression caused by UV radiation)
- Biotic stress signals: His-1, ENOD40, CR20, GUT15
 (e.g. expression correlated with viral insertion or carcinogenesis)
- Others: UHG, NTT, Bsr, BC1, BC200, SRA

→ functionally important ncRNA class
The idea

Functional pair of donor (5’) and acceptor (3’) splice sites will be retained over long evolutionary time scales only if
The idea

Functional pair of donor (5’) and acceptor (3’) splice sites will be retained over long evolutionary time scales only if

1. The locus is transcribed into a functional transcript
The idea

Functional pair of donor (5’) and acceptor (3’) splice sites will be retained over long evolutionary time scales only if

1. The locus is transcribed into a functional transcript
2. Accurate intron removal is necessary to produce a functional transcript
The idea

Functional pair of donor (5’) and acceptor (3’) splice sites will be retained over long evolutionary time scales only if

1. The locus is transcribed into a functional transcript
2. Accurate intron removal is necessary to produce a functional transcript

→ Find the intron → it guides you to your novel transcript
The data

- 12 drosophila genomes (fly)
 - *Anopheles gambiae* (mosquito)
 - *Tribolium castaneum* (beetle)
 - *Apis melifera* (honeybee)
The method

A. predict introns in individual insect genomes using intronscan
- genome
 - + strand intron
 - - strand intron
 - D. mel
 - D. ere
 - D. moj
+ 12 insects

1,398,939 predicted introns for D. melanogaster

B. retain orthologous intronscan predictions
- genome
 - + strand intron
 - - strand intron
 - D. mel
 - D. ere
 - D. moj
+ 12 insects

498,231 predictions with orthologs

C. evaluate characteristic intron evolution
- splice site substitution scores
- conservation scores
- intron length variation
- donor score variation
- acceptor score variation

Positive and negative distributions of training samples

Train an SVM with these 5 discriminative features

Apply to 342,785 predictions that overlap no protein-coding gene

369 conserved introns predicted

intronscan alignments

SVM
Nucleotide frequencies in SS positions differ compared to *D. mel*

- less frequent
- more frequent

<table>
<thead>
<tr>
<th>Species</th>
<th>10⁻¹⁰</th>
<th>10⁻¹⁰</th>
<th>10⁻¹⁰</th>
<th>10⁻¹⁰</th>
<th>10⁻¹⁰</th>
<th>10⁻¹⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. sim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. yak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. pse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. per</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. wil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. maj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. vir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. gri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. gam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. cas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- less frequent ← | → more frequent

(less frequent compared to *D. mel*)

e.g. *Apis* prefers A over G (donor +3) and T over C (acceptor -3)
Learn log-odd substitution scores

\[\log_2 \left(\frac{\text{freq}_{\text{pos}}(x,y)}{\text{freq}_{\text{neg}}(x,y)} \right) \rightarrow \text{substitution matrix} \]

\[\forall x, y \in \{A, T, C, G\} \]

\[x \neq y \]
Evaluating intron evolution - an example

Conservation scores (PhastCons)

A

B

density of positive training samples
classified as real intron (SVM probability 0.999)
density of negative training samples
classified as false prediction (SVM probability 0.001)
density of negative training samples
classified as real intron (SVM probability 0.999)
Results
Results

- intronscan: \(\sim 1.4 \text{ Mio introns in Dmel} \)
Results

- intronscan: \(\sim 1.4 \text{ Mio introns in Dmel} \)
- alignments: 498k loci
Results

- intronscan: ~1.4 Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
Results

- intronscan: \(\sim 1.4 \text{ Mio introns in Dmel} \)
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation

 Both SS: 23.5k (positive sample)
 one SS: 14.5k (omitted)
 no SS: 117.5k (negative samples)
Results

- intronscan: ~ 1.4 Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation

 - Both SS: 23.5k (positive sample)
 - one SS: 14.5k (omitted)
 - no SS: 117.5k (negative samples)
- SVM training: 95%
Results

- intronscan: \sim1.4 Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation
 - Both SS: 23.5k (positive sample)
 - one SS: 14.5k (omitted)
 - no SS: 117.5k (negative samples)
- SVM training: 95%
- SVM testing: 5%
Results

- intronscan: \(\sim 1.4\) Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation
 Both SS: 23.5k (positive sample)
 one SS: 14.5k (omitted)
 no SS: 117.5k (negative samples)
- SVM training: 95%
- SVM testing: 5%
- area under ROC: 0.983
Results

- intronscan: \(~1.4\) Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation
 Both SS: 23.5k (positive sample)
 one SS: 14.5k (omitted)
 no SS: 117.5k (negative samples)
- SVM training: 95%
- SVM testing: 5%
- area under ROC: 0.983
- \(p > 0.95\): 80% true positives at 0.12% false positives
Results

- intronscan: \(\sim 1.4 \) Mio introns in Dmel
- alignments: 498k loci
- 155.5k overlap annotated protein-coding transcripts
- Agreement with existing exon/intron annotation
 - Both SS: 23.5k (positive sample)
 - one SS: 14.5k (ommitted)
 - no SS: 117.5k (negative samples)
- SVM training: 95%
- SVM testing: 5%
- area under ROC: 0.983
- \(p > 0.95 \): 80% true positives at 0.12% false positives
- \(p > 0.99 \): 72% true positives at 0.07% false positives
 (4 FP, manual inspection: 3 are true introns \(\rightarrow \) 1 FP)
Novel spliced transcripts

369 predictions outside of protein-cod. genes (p>0.95)
131 EST/FlyBase-transcript confirmed introns, 238 unconfirmed
Novel protein-coding genes

A) CONTRAST predicted coding gene, B) NSCAN coding gene

- 20/238 located within 100nt upstream of cod. genes
- 14/20 no annotated 5’UTR
 (in contrast to 77/218, Fischer’s exact test, p=0.005)
- 23 extend CDS, 30 belong to novel CDS
Novel spliced non-coding RNAs
Novel spliced non-coding RNAs

- remove everything protein-coding
Novel spliced non-coding RNAs

- remove everything protein-coding
- remove repeats
Novel spliced non-coding RNAs

- remove everything protein-coding
- remove repeats

→ Heureka! You’ve found mIncRNAs.
Novel spliced non-coding RNAs

- remove everything protein-coding
- remove repeats

→ Heureka! You’ve found mIncRNAs.

- 129 bona fide mIncRNAs
Novel mRNA-like noncoding RNAs
Novel mRNA-like noncoding RNAs

- 29/129 have predicted orthologous introns outside Sophophora subgenus (*D. virilis, D. mojavensis, D. grimshawi*)

 → conserved exon-intron structure over 63 My years
Novel mRNA-like noncoding RNAs

- 29/129 have predicted orthologous introns outside Sophophora subgenus (*D. virilis*, *D. mojavensis*, *D. grimshawi*)
 → conserved exon-intron structure over 63 My years
- Mostly unstructured (just 2 transcripts have RNAz hit)
Experimental verification
Experimental verification

- RT-PCR, 5 different developmental stages of Dmel: embryo, larva, pupa, male, female
Experimental verification

- RT-PCR, 5 different developmental stages of Dmel: embryo, larva, pupa, male, female
- 18/29 (62%) experimentally validated:
Experimental verification

- RT-PCR, 5 different developmental stages of Dmel: embryo, larva, pupa, male, female
- 18/29 (62%) experimentally validated: mIncRNAs: 7/12
Experimental verification

- RT-PCR, 5 different developmental stages of Dmel: embryo, larva, pupa, male, female
- 18/29 (62%) experimentally validated: mlncRNAs: 7/12
 introns in putative coding transcripts: 11/17
Experimental verification of mIncRNAs

<table>
<thead>
<tr>
<th>mIncRNA</th>
<th>chr</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>mIncRNA36C10</td>
<td>chr2L:17486220-17486296</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA68E3</td>
<td>chr3L:11950619-11950679</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA69E2</td>
<td>chr3L:12771073-12771124</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA66A2</td>
<td>chr3L:7469008-7469065</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA102B1</td>
<td>chr4:285056-285111</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA42E5-1</td>
<td>chr2R:2907741-2907800</td>
<td>200</td>
</tr>
<tr>
<td>mIncRNA42E5-2</td>
<td>chr2R:2906739-2906797</td>
<td>200</td>
</tr>
</tbody>
</table>
Summary
Summary

- Novel method that predicts intron-containing transcripts
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction

We identify novel...
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction

We identify novel...
- transcripts coding for proteins or mIncRNAs
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction

We identify novel...
- transcripts coding for proteins or mIncRNAs
- transcripts without conserved secondary structures
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction

We identify novel...
- transcripts coding for proteins or mIncRNAs
- transcripts without conserved secondary structures
- transcripts with low sequence conservation
Summary

- Novel method that predicts intron-containing transcripts
- We solely use intron information for prediction

We identify novel...
- transcripts coding for proteins or mIncRNAs
- transcripts without conserved secondary structures
- transcripts with low sequence conservation

Limitations: Transcript start, transcript end?
Thank you

Michael Hiller (Stanford)

Leipzig:
Sven Findeiß, Manja Marz, Christine Schulz, Sonja J. Prohaska

Halle:
Sandro Lein, Claudia Nickel, Gunter Reuter

Freiburg:
Rolf Backofen

Various cities, countries, and continents:
Peter F. Stadler