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Abstract

In the last two decades the study of changes in the genome function that
are not induced by changes in DNA has consolidated a strong research field
called ”epigenetics”. Chromatin state changes play an essential role in the
regulation of transcription of many genes, thus controlling cell differentiation.
A large part of these changes is due to histone modifications that alter the
accessibility of the DNA. Current state of the art visualization methods for
the analysis of epigenetic data sets are not suited to represent the relationship
between the combinatorial pattern of histone modifications and their regulatory
effects. A recent strategy to generate a global overview of these interactions
is the use of scatterplots. One of the biggest weaknesses of scatterplots is the
overplotting. This can be solved using a 2D tiled-binned representation strategy,
where dividing a scatterplot into bins consisting of tiles for each modification
pattern is possible. However, this 2D strategy does not allow to represent the
interaction of more than two histone modifications. Here, TiBi-3D, a tool that
can visualize the combinatorics of histone modifications with tiled-binned 3D
scatterplots, is presented. Two important features of TiBi-3D are that tiles are
represented with spheres in the scatterplot, and that their position and color
encodes the histone modification pattern they represent. TiBi-3D also includes
a transparency value assigned to each of that spheres to depict the amount of
data points in each bin. In addition, to reduce the occlusion in the scatterplot
each transparency value is initially filtered by an outlier detection, transformed
to log scale, and then normalized. TiBi-3D provides features for exploration
and interaction with the scatterplot and the data, thus enabling to examine
the data set thoroughly. It is also possible to export the results as figures or
in bed file format for further processing. By using TiBi-3D, for example, it
was possible to observe new relations between the CpG-density and histone
modifications in different cell types. In conclusion, TiBi-3D is an excellent tool
for the analysis of global patterns in epigenetic data.
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Chapter 1

Introduction

During the last years a new research field has been established next to genetics,
it investigates changes in genome function: epigenetics. Research in this field
studies changes in the genome function that are not induced by changes in
DNA sequence. The DNA forms with special proteins, so-called histones, the
chromatin, which is the material that builds the chromosome in eukaryotic cells.
This histones can be modified by several molecules, thus changing, for example,
the readability of the DNA wrapped these proteins. Therefore, these changes of
the chromatin states are interesting for studying the differentiation of cell types,
since the DNA does not change during the differentiation. Such changes can
be seen on a phenotypic level. For example, cells of the nerve system produce
biological messengers that are not produced in muscles or stomach. One reason
is that the modifications of the histones change between different cell types and
therefore, change the readability of the DNA. This influences the regulation
of transcription of particular genes and thus, controls the differentiation of
the cells. For this reason, studying the changes of the histone modifications is
interesting for Bioinformaticians.
Using a special DNA sequencing method, ChIP-seq, it is possible to target
and identify only special modified histones and sequences of the DNA bound
to that protein. In this thesis, three histone modifications occurring at the
histone H3 in mouse are analyzed. These modifications are known to activate
or repress transcription. Additionally, the influence of genetic features, like the
CpG-density or the length of the DNA segment bound to the histone is also
studied. Since the data set has more than 800,000 elements, it is tedious to
study it with known available tools, for instance, a genome browser to obtain
an overview. Nevertheless, state of the art publications still analyzed histone
modifications using genome browsers with stacked tracks for each combination
of samples and histone modifications. Using this methods, it is possible to
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Chapter 1. Introduction

study the effects of single histone modifications. The effects of combinations of
modifications cannot be worked out with them.
Several work has been done before addressing this problem, but none of them
has met all the demands, like reasonable results, a good overview, and showing
the effects of all combinations of modifications. In my first approach, the global
change of histone modifications between different cell types was analyzed using
k-means++ clusterings and visualized with starplots and scatterplots [1] to
reduce the complexity of the data set and to compare only the centroids of
each cluster. Nevertheless, it turned out that the data set does not fulfill the
requirements of k-means clustering like well separated clusters. Zeckzer et al.
[2] published with my cooperation TiBi-SPLOM, a tiled binned 2D scatterplot
matrix that visualizes the correlation of histone modifications pairs. Using
TiBi-SPLOM, the user is able to study data sets in an exploratory manner.
It visualizes the distribution of histone modifications between different cell
types and the user has to work out the results by studying the scatterplots.
However, the data used was generated for the correlation of three histone
modifications, and as a result TiBi-SPLOM could not show all information of
the data set. In this thesis, results are described that were hard to reproduce
using TiBi-SPLOM. As an alternative TiBi-3D was developed to visualize
the changes of three histone modifications during the cell differentiation. It
extends the tiled binned scatterplots to three dimensions while reducing the
effects of occlusion by providing suitable interaction methods with the plot,
like rotating and filtering. Additionally, TiBi-3D pre-processes the data with a
normalization method that tries to reduce the clutter in the plot affected by
outliers in the data set. Using TiBi-3D, the user is able to filter the data set in
many ways, thus being able to expose interesting changes in the plot related to
changes in the histone modifications. It is also possible to export the results
as a figure and the analyzed data into a bed file for further processing. For a
better and easier comparison, it is possible to save the used perspectives of a
scatterplot and apply them to a new data set.
In this thesis, the biological background of epigenetics and DNA sequencing
is explained to better understand the effects of histone modifications. Then
in Chapter 3, the related works are considered. In Chapter 4, all methods,
adapted or newly developed for TiBi-3D, are described. In Chapter 5, the 3D
tiled binned scatterplot is compared with the 2D tiled binned scatterplot by
TiBi-SPLOM. Several new insights were observed with TiBi-3D and analyzed
in this thesis.
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Chapter 2

Background

2.1 Epigenetics

Organisms with more than one cell type evolved from unicellular organisms.
Each individual cell of these organisms has the same genetic material, the DNA,
and the same set of genes, in all of its cells. Nevertheless, the different cell types
have different functions and for that purpose produce different transcripts by
regulation of gene expression. The process of differentiation into cell types is
determined by gene regulation. One part of this research field besides the study
of transcription factors and the gene regulation by RNAs is called epigenetics
and is defined as ”the study of heritable changes in gene expression that are
not mediated at the DNA sequence level”[3].
In eukaryotes the DNA is located in the nucleus. It is organized in chromosomes.
Human, for example, has 46 chromosomes. As shown in Figure 2.3, the DNA
forms a ”beads on a string”-like structure with special proteins, the histones.
This structure is called the 10nm chromatin fiber.
The histones H3, H4, H2A and H2B in two copies each are forming the histone
octamer, a protein complex consisting of eight proteins. The combination of
the histone complex and 146bp of DNA wrapped around the protein complex is
called nucleosome (shown in Figure 2.1). Figure 2.5c shows the DNA in complex
with the histone octamer. To stabilize the DNA between two nucleosomes [4],
so called linker DNA, the histone H1 is attached to the DNA at its open ends
on the nucleosome (Figure 2.1). The chromatin is packed differently tight as
for example the centromeres (shown in Figure 2.3) are very condensed. These
condensed areas are called heterochromatin [3] and cannot be accessed easily
by the RNA-polymerase, which transcribes the DNA into RNA. In reverse,
parts of the chromosome are packed less dense, the so-called euchromatin [3]
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Chapter 2. Background

— areas which are often highly transcribed. These two structural units are
formed by the histone complexes as they can be packed more tightly or less
tightly by modifying their proteins with the help of enzymes. These enzymes
attach different molecules to the histones at specific positions and change the
conformation of them.

Figure 2.1: The nucleosome [5] consisting of the histone octamer, linker DNA,
and the histone H1. 146bp of DNA is wrapped around the histone octamere.

Lysine 4

Lysine 9

Lysine 14
Lysine 18

Lysine 23

Lysine 27
Lysine 36

Figure 2.2: Positions of lysine in histone H3
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DNA double-strand

Basepair Histones

Chromatides

Telomere

Centromere

Telomere

Chromosome
Nucleus

Cell

Figure 2.3: DNA and its structural organization in the nucleus of eukaryotic
cells [6].

As shown in Figure 2.4, there are many possible modifications on each
histone. Acetylation, methylation, phosphorylation, and ubiquitination are the
most common. All of these modifications are attached to the histone tails. For
example, the histone H3 can be modified by attaching a methylation group to
one of the lysines. All positions of lysine are marked in Figure 2.2. All of these
modifications can have a different impact on chromatin organization, and it is
still a subject of research to reveal their functions. In Section 2.2.4 effects of
those modifications relevant for this thesis are described.

2.2 Biological data

2.2.1 History of DNA Sequencing

After the DNA double helix was first published by Watson and Crick in 1953 [9],
its sequencing has drawn much attention to reveal its sequence content. The
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Chapter 2. Background

Figure 2.4: Known histone modifications involved in chromatin reorganization
[7].

DNA sequence is build up from four nucleotides: deoxyadenosine monophos-
phate (A), deoxyguanosine monophosphate (G), deoxycytidine monophosphate
(C), and thymidine monophosphate (T). All have a 2-deoxyribose sugar and
at this sugar binds also a phosphate group. Additionally, one of the four
nucleobases adenine, guanine, cytosine, and thymine is attached to to the sugar.
The combination of these three correspond to the so-called nucleotides, which
form a single strand of the DNA. DNA is double stranded, where nucleotides
form Watson Crick base pairs: guanine - cytosine and adenine - thymine. The
paired double strand makes the helical structure that characterizes the DNA.
It is a very stable structure. When wrapped around the histone complexes it
forms the chromatin.

2.2.2 Basic Sequencing

One of the first and widely used methods is Sanger sequencing. It was developed
by Sanger and Coulson in 1977 [10]. It uses the DNA polymerase during the DNA
in vitro replication. It is based on the incorporation of modified nucleotides that
terminate DNA replication. At the beginning, the DNA has to be denatured,
which allows to separate the helix into single strands that will act as templates.
Then, a primer is added at the beginning of each segment. A primer is a short
sequence of nucleotides where the DNA polymerase binds to start the DNA
replication process. In next step, the DNA sample is divided into four parts
for the different reactions with the modified nucleotides. For each reaction,
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(a) The DNA component of the nucleosome (shown without the histone
complex).

(b) The histone complex: H3 is colored in green, H2A in orange, H2B
in yellow and H4 in purple (shown without the DNA). The histone tail
of the histone H3 can be clearly apprehended.

(c) DNA and the histone complex form the nucleosome.

Figure 2.5: A nucleosome divided into its components. This model was
generated from the crystal structure published by Luger et al. [8].
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Figure 2.6: Sanger sequencing: Combination of the 4 lanes in one gel im-
age, which reveal the sequence of the investigated segment compared to the
fluorescent peaks caused by fluorescent terminators. [11]

four regular and one of the modified nucleotides are added. During replication,
the DNA polymerase uses all nucleotides but in each reaction only one of
four modified nucleotides is used, producing segments with different lengths
of the new double stranded DNA. Afterwards, the DNA is again denatured
and the segments are separated by length through gel electrophoresis. With
the comparison of the four lanes of the gel image as shown in Figure 2.6, it is
possible to build the sequence of this segment directly out of these image. It is
also possible to use different fluorescent terminators for each type of nucleotide
to read the gel image with a computer automatically.

2.2.3 Next Generation Sequencing

Sanger sequencing is not well suited for whole genome sequencing for several
reasons. For instance, a lot of random primers for binding all parts of the
genome are required. Furthermore, it is time consuming and much more
expensive. However, next generation sequencing methods make it easy and
attractive to sequence whole genomes in less than a week as costs are as low as
$1000 [12].

Illumina sequencing

The Illumina sequencing methods provide a fast way to sequence whole genomes
since it is possible to sequence more than 10 billion nucleotides a day [13]. This
method, like the Sanger sequencing, requires fragmented DNA. These fragments
are ligated at both ends to the primers (Figure 2.7a), which are necessary
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for the amplification step. During the amplification step, the fragments are
put on a flow chip through binding to complementary primers. In this way,
the DNA binds to the flow chip and can be replicated by a so-called bridge
amplification. The flow chip is prepared with primers in abundance for the
following replication step. The bound fragments form a ”U” shape because
both primers are hybridizing to primers on the chip (Figure 2.7b). After one
step of replication, the DNA is denatured again and both strands form again
a brigde on the chip for the next amplification round. After several rounds,
the fragments are forming the so-called DNA clusters that contain only one
specific fragment. Afterwards, the DNA is denatured again.
In the next step the sequencing is done with modified nucleotides that stop the
replication. These nucleotides are fluorescently-labeled to red and green laser
light. Since the polymerase stops after adding one modified nucleotide, it is
possible to iterate over the whole fragments one by one. To recognize which
nucleotide is added to a fragment, two lasers cause their specific fluorescent
excitation. Each terminal nucleotide has a specific fluorescent behaviour and
a camera detects the reaction for each DNA cluster. Since A and C are only
excited by the red laser and G and T only by the green one, it is necessary to
make four pictures of the flow chip each cycle. This pictures are taken with
different filters, thus revealing the minimal varieties of spectra between A-C
and G-T. Then, the termination element, which is bound to the nucleotide, is
chemically washed away and the polymerase can again add a new nucleotide.
After iterating over the whole length of the fragments, the sequence of each
fragment on the flow chip is read. This method is very fast, since it can handle
a huge amount of DNA clusters on one flow chip. Notwithstanding, it also
produces more errors than the Sanger sequencing because an error during
the amplification is exponentially distributed in the cluster. Additionally, the
differentiation between the A-C and G-T spectra is still a problem and retained
termination elements can mislead the results of the following sequencing cycle.
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(a) Ligation of the primers to the DNA fragments

(b) Denatured DNA binds with the primers in a ”U”-shape on the flow cell and is
replicated. After several iterations of denaturation and replication the flow chip is
covered with DNA clusters.

(c) A modified nucleotide (T) binds to a single DNA strand and emits a specific light
spectrum after stimulation by the two lasers. Afterwards, the termination molecule
(the gray rectangle) is washed away for the next sequencing cycle.

Figure 2.7: Schematic workflow of the Illumina sequencing [14].
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ChIP-seq

The previously described methods for DNA sequencing are ”blindly” sequencing
the DNA, since the only possibility to select specific parts of the DNA is to
create a specific primer to target those pieces. For sequencing, for example, the
parts of the DNA that are interacting with a protein, a pre-processing step is
necessary for finding these parts of the DNA. One of the methods to do this is
chromatin immunoprecipitation (ChIP) combined with DNA sequencing (seq).
This method was mainly developed and used for the identification of binding
sites for special proteins, so-called transcription factors [15]. Since histones are
also proteins, it is possible that is wrapped around a histone complex with a
particular modification.
Following the ChIP-seq protocol, the DNA is cross-linked with the proteins that
are bound to the DNA. Then, the DNA is fragmented into pieces of 200-1000
bases by using sonication. Afterwards, specific antibodies are added that bind
to their targets as shown in Figure 2.8. The fragments that are not associated
with an antibody are washed away. Then, the DNA has to be purified again.
Subsequently, the cross-linking is dissolved and the proteins are also washed
away for the sequencing step. In the case of histone modifications, it is expected
that a large amount of DNA fragments should pass the immunoprecipitation
step since histones are spread over the whole genome. Therefore, it is necessary
to use a next-generation sequencing methods such as Illumina to get fast results.
To detect different histone modifications it is necessary to repeat these steps
with a specific antibody for each modification separately and one cycle with an
unspecific antibody or whole cell extract (WCE). The results gained from the
unspecific antibody/WCE sequencing are used in a later step to normalize the
data and reduce the noise, as not all fragments are equally well sequenced by
Illumina. This is due to the following: the primers might not properly bind
at some DNA fragments or the amplification process might not replicate the
DNA fragments to an equal amount.

2.2.4 Data Set

The data used in this thesis was generated from three different cell types from
mouse. These cell types are embryonic stem cells (ESC), murine embryonic
fibroblasts (MEF), and neuronal progenitor cells (NPC). MEF and NPC arise
from the ES cells during differentiation. Both have a common last ancestor
that was derived from ESC. Mikkelsen et al. [16] used ChIP-seq to sequence
three histone modifications at the histone H3. They investigated trimethylation
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me3

Figure 2.8: A H3 histone is bound to its specific antibody during the ChIP-Seq
sequencing.

at three different positions of the amino acid lysine (biological abbreviation:
K): K4, K27, and K9. The numbers represent the positions of the lysine on
the histone. As they were only looking for trimethylation (me3) at the histone
H3, the modification states are called H3K4me3, H3K27me3, and H3K9me3.
H3K4me3 is positivly correlated with transcription [17], and it is found at
tissue-specific genes and the so-called housekeeping genes. These genes are
necessary for the viability of every cell and produce the transcripts for the
basic cell functions. H3K4me3 is also frequently found in embryonic stem
cells. H3K27me3 is related to heterochromatin, a very condensed part of the
chromosome where the DNA is less accessible to RNA polymerase impairing
transcription since the RNA polymerase cannot bind to the DNA [18]. H3K9me3
is a repressor of transcription and correlates with DNA methylation silencing
the DNA that cannot consequently be transcribed [16]. In addition to the nine
histone modification data sets, one whole cell extract was sequenced for each
three cell types.

Mapping

The result of DNA sequencing is just a huge set of short sequences (i.e. reads)
derived from the original DNA. Therefore, it is necessary to map them back
to the reference genomes. Several programs were developed to perform this
task, speed up the mapping, and deal with differences in the sample reads
and the reference genome. For mapping the data set to the mouse genome
mm9, segemehl [19] was used for each ChIP-seq data set. As described by
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Steiner et al. [20], for each modification data set and each position in the
genome, the number of mapped reads was divided by the number of reads
from the WCE of the corresponding cell type. This intensity score, called
”enrichment”, is a measurement for the significance of the peak with respect to
the read distribution. An enrichment value of 3 was selected as a significant
peak. Regions of continuous histone modification are identified by peaks of
distance 100bp and smaller since it is not possible that another nucleosome
can be present between these peaks. Afterwards, all peak regions smaller than
100 basepairs were treated as unmodified since the DNA wrapped around a
nucleosome is 145-147 basepairs in length [21].

Segmentation

In the next step, the data sets were segmented and merged to one data set for
further processing. To compare the different cell types, the ESC was selected as
reference for the segmentation process. As shown in Figure 2.9, all modification
patterns were combined to a modification vector. Three modifications were
studied. Therefore, 23 combinatorial patterns are possible. All patterns with
a segment length below 200 basepairs were discarded, since they are smaller
than the estimated length of a nucleosome ( 150bp) and the indispensable
linker DNA( 50bp). The MEF and NPC data sets were projected onto the
reference ESC segmentation (shown in Figure 2.10 for MEF) and for each cell
type, the overlap of the peak segments was calculated and represented with a
value between 0 and 1.
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Figure 2.9: Example of the binary code segmentation in ESC. The ES-Code
represents which type of modification pattern is present in the segment of the
DNA.

Figure 2.10: Example of code segmentation in MEF mapped to the ESC
segmentation. The vectors represents which type of modification pattern is
present in this segment relative to ESC.

16



Chapter 3

Related work

Beside TiBi-SPLOM another approach was tested to study the combinations
of histone modifications: clustering. The initial implementation of clustering
for this type of data was implemented by Sarah Seifert [22] during her bachelor
thesis. This approach used the k-means++ algorithm for clustering the data
set and visualized the results with starplots. However, this implementation
was limited to eight clusters. Later on, I extended this implementation (called
ChromatinVis) during my bachelor thesis [1]. The limitation of eight clusters
was removed, so it was possible to test other clustering settings. Additionally,
statistical tests for determining the best number of clusters were implemented.
In addition to the starplots, scatterplots and tiled-binned scatterplots were
implemented for visualizing the clustering results. The results had of course
three dimension and principle component analysis was applied to reduce the
dimension to two before visualizing them with the scatterplots. Building on
this, Daniel Abitz added a consensus clustering during his bachelor thesis [23]
to ChromatinVis. Using a consensus clustering, it is possible to improve and
check the results of a clustering algorithm. The consensus clustering uses
different initial setups (for example different numbers of clusters and seeds) and
calculates a clustering for each of these setups. Afterwards, it merges the results
into one consensus clustering that should result in a better separation between
all clusters and increased stability of the found clusters. An improvement of the
visualization techniques used by ChromatinVis was published by Gerighausen
et al. in 2014 [24]. The starplots were discarded and replaced by so-called
windmill charts. Nevertheless, the clustering approach was discarded, since it
did not produce convincing results.
A self-organizing map (SOM) can be used also for visualizing high dimensional
data. It clusters the data using a neuronal network and reduces thereby the
dimensionality of the data set. Using SOMs for visualizing epigenetic data was
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Figure 3.1: Segments with histone modifications annotated to the reference
genome using a genome browser. It is possible to study the occurrences of
histone modifications at a specific position in the genome.

Figure 3.2: A heatmap visualizing the occurences of histone modifications at
specific genomic locations. [26]

already published by Steiner et al. [25], but the results were hard to interpret
and biased by the neighborhood relations in the neuronal network.
Other state of the art publications try to analyze epigenetic data sets mainly
with two visualizations techniques: Using a genome browser or visualizing
the data with heatmaps. The genome browser method (shown in Figure 3.1)
plots the segments as so-called tracks linearly to their chromosome positions.
The user is able to study the combination of histone modification at a specific
position in the genome but cannot, for example, explore global trends of changes
during cell differentiation. In contrast to this, the visualizations using heatmaps
(shown in Figure 3.2 taken from Liu et al. [26]) try to show the occurences of
histone modifications at specific genomic location like promotors or transcription
start sites. Each cell in these heatmaps corresponds to one combination of a
histone modification and genomic location. The color represents the average
modification level of nucleosomes with this modification.

18



TiBi-3D - a Guide through the World of Epigenetics

Further visualization techniques for high dimensional data were reviewed
by Grinstein et al. [27]. However, all of them have issues when visualizing
epigenetic data sets. Parallel coordinates, for example, use parallel axes for all
dimensions of the data set. The range of all values for each axis is scaled to
the lower and upper boundary of its axis. A polyline is drawn for each data
point between the axes and the intersections mark the value of the data point
in this dimension. Circular layouts of this method are called polarcharts or
starplots. Other variants of this principle are RadViz and PolyViz. Although
these techniques are able to present n dimensions, it is hard to order them. Ad-
ditionally, the effect of overplotting of the polylines makes it hard to impossible
to interpret these visualizations. The starplots were a suitable representation
for the clustering results, since the data set was normally clustered with less
than 10 clusters and the effect was minimal to non-existent.
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Methods and Algorithms

4.1 Data Set

To properly handle the data, TiBi-3D requires a specific format. The data
format is similar to a CSV text file, where each line after the header is considered
a data item. The header is defined in two lines, as follows:

• !Data

• shortid;segment;code;variable 1;....;variable n;segment length

The body of the file contains these fields filled with values from the segmentation
of the histones.

• shortid: the unique id for this item

• segment: the chromosome position for the segment

• code: the calculated histone code (see Table 4.1 for further details)

• variable 1 - (n-1): a value between 0 and 1 that represents the corre-
spondence of the histone modification for this segment between the cell
types

• variable n: a value between 0 and 1 that represents the CpG-density for
this segment

• segment length: an integer value that represents the number of nucleotids
in this segment

The code is calculated as described in Section 2.2.4 and transformed to an
integer value. For example, in Table 4.1 is shown how the codes for the histone
H3K4me3,H3K27me3, and H3K9me3 are calculated.
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Table 4.1: Example for the code calculation

Code H3K4me3 H3K27me3 H3K9me3
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

4.2 BED Format

The BED format [28] (Browser Extensible Data) is a common file format to
store annotations for sequences related to their chromosome position. It is
tab separated and each line represents one annotation. This format is used by
TiBi-3D to export the results for further processing using genome browsers or
other programs. Three fields are required:

1. chromosome or scaffold name

2. the starting position of the annotation

3. the ending position of the annotation

The other fields are described as optional, but BED interpreters need each field
before the selected field. These are the fields used by TiBi-3D:

4. name of the sequence

5. a score between 0 and 1000

6. The strand for the annotation indicated by + and -

7. starting position of the thick line (important for the visualization in the
Genome Browser)

8. ending position of the thick line

9. RGB color of the item
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4.3 Binned Scatter Plots

A scatterplot visualizes the distribution of a data set related to two selected
variables. These variables are treated as coordinates in a Cartesian coordinate
system and are drawn related to the two axes. With this type of visualization,
it is possible to easily recognize the distribution of a data set and the correlation
between the two variables. By adding a third axis, the scatterplot can be used
to represent the relationship between three variables of a given data set.
As shown in figure 5.2, the 3D scatterplot has a huge overlapping zone around
the point of origin. To circumvent this, the idea of the tiled binned scatterplots,
proposed by Zeckzer et al.[2] was adapted to 3D. Originally, the data set was
divided into equal rectangles in 2D, but now it is possible to divide into equal
cubes, called bins. Additionally, each of these bins is also divided again into
smaller cubes, called tiles. Each tile represents one code of the data set, and
the amount of data-points that are lying within this bin are represented by a
sphere inside this tile. Each sphere has a specific color and it’s transparency
represents how many data-points of specific code are within this bin. To avoid
problems with dyschromatopsia, the colors were taken from the color brewer
project [29]. Each tile has a length of 1

2 of the bin and each sphere has a
radius of 1

8 compared to length of the bin. To avoid occlusion caused by the
spheres, each sphere is placed close to the center of its containing bin. Further
details of this placement procedure is described in the Algorithm 2, where
the position of the sphere is determined for each tile. This binning method
uses maximally eight spheres for each bin, which can not overlap, so it has a
huge impact on the occlusion of the whole plot. For the binning algorithm
(Algorithm 1) the range of values for each axis has to be transform between 1
and the number of bins in the plot, similarly to Equation (Equation (4.1)). If
the data is distributed logarithmically, it is possible to scale it first by using
the logarithmic transformation 4.3 before applying the binning. If the data is
distributed between 0 and a maximum ≤ 1 the scaling will fail (logarithmic
functions start to raise to infinity around zero), therefore, each value is increased
by one before normalizing it.

normalize(value, datamax, datamin, normmax, normmin) = (4.1)
value− datamin

datamax − datamin

∗ (normmax − normmin) + normmin (4.2)
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Table 4.2: ESC code (binary) or length (logarithmic scale) to map the colors
for the TiBi-3D scatterplot. Each row specifies the ESC code, the modifications
in ESC, the length, the color, its name, and its RGB values.

Code Modifications Length Color Color
Name

RGB

000 none 200-434 red 227, 26, 28
001 H3K9me3 435-940 bright

green
178, 223,
138

010 H3K27me3 941-2032 orange 255, 127, 0
011 H3K27me3,

H3K9me3
2033-4396 bright

blue
166, 206,
227

100 H3K4me3 4397-9506 blue 31, 120,
180

101 H3K4me3,
H3K9me3

9507-20559 bright
orange

253, 191,
111

110 H3K4me3,
H3K27me3

20560-44460 green 51, 160, 44

111 H3K4me3,
H3K27me3,
H3K9me3

44461-
7000272

rose 251, 154,
153

logtransform(value,maxdata) = log#(value)
log#(maxdata) (4.3)

Algorithm 1 Bin the normalized data into the scatterplot
function calculateBin(element, dataset)

x = Math.floor(normalize(element.x, dataset.xmax, dataset.xmin, bins,
0.0);

y = Math.floor(normalize(element.y, dataset.ymax, dataset.ymin, bins,
0.0);

z = Math.floor(normalize(element.z, dataset.zmax, dataset.zmin, bins,
0.0);

updateBin(x,y,z, element.code)
end function
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Algorithm 2 Determine the position of the sphere according to its containing
tile
function setPosition( x, y, z, code)

Point3d position = new Point3d();
switch code do

case 0 . Code 000
position.setX(x + 0.30);
position.setY(y + 0.30);
position.setZ(z + 0.30);

case 1 . Code 001
position.setX(x + 0.30);
position.setY(y + 0.30);
position.setZ(z + 0.70);

case 2 . Code 010
position.setX(x + 0.30);
position.setY(y + 0.70);
position.setZ(z + 0.30);

case 3 . Code 011
position.setX(x + 0.30);
position.setY(y + 0.70);
position.setZ(z + 0.70);

case 4 . Code 100
position.setX(x + 0.70);
position.setY(y + 0.30);
position.setZ(z + 0.30);

case 5 . Code 101
position.setX(x + 0.70);
position.setY(y + 0.30);
position.setZ(z + 0.70);

case 6 . Code 110
position.setX(x + 0.70);
position.setY(y + 0.70);
position.setZ(z + 0.30);

case 7 . Code 111
position.setX(x + 0.70);
position.setY(y + 0.70);
position.setZ(z + 0.70);

this.position = position . Overwrite position of the sphere in the class
end function
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4.4 Range normalization

The data used in this thesis has a distribution that is extremely heterogeneous,
therefore, the range normalization using Equation (4.1) is not appropriate
because of the influence of the outliers. An outlier is described as ”an observation
which deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism” [30]. For this reason, it is
better to detect first the outliers and reduce the interval of [mindata;maxdata]
to an interval without these outliers.
Zeckzer et al. [2] tried to transform the amount of data points in each bin
with a logarithmic scale (Equation (4.3) after binning it. Due to the effects
of occlusion in 3D, this transformation alone does not produce considerable
results, because even in the logarithmic space the outliers are influencing the
visualizations too much. The implemented outlier detection in TiBi-3D is
adapted from the computation of box plots [31]. The box plot shows the median
as line in a box between the lower and upper quartile. This box is extended by
the so called whisker, whose ends represent the lowest and highest value within
the 1.5 interquartile range (IQR). The IQR is the distance between the lower
and the upper quartile. Any data above and below these whiskers is treated as
an outlier.
After binning the data set as shown in Algorithm (1) and transforming each
bin with Equation (4.3), TiBi-3D calculates the upper and lower whisker using
Algorithm (3) for each modification patter.
After this outlier detection, TiBi-3D calculates, for each tile, the transparency
value that represents the amount of elements that are located in the containing
bin related to the bin with the most elements of this specific code. Since
the transparency values of the spheres in the plot have an interval between 0
and 1, the transparency values are normalized again to the [0, 1] interval (like
described in the algorithm 4). The detected outliers are mapped to the lower
or the upper whisker.
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Algorithm 3 Implemented box plot outlier detection in TiBi-3D.
for x = 0; x < bins; x++ do

for y = 0; y < bins; y++ do
for z = 0; z < bins; z++ do

for code = 0; code < #patterns; code++ do
bin = bins[x][y][z];
logvalue = logtransform(bin.getElements(code), maxEle-

ments(code));
boxplots.get(code).add(logvalue);

end for
end for

end for
end for
for all i : boxplots do

sort(i);
median = i.length()/2;
quartile = median/2;
upperQuartile = i[median + quartile];
lowerQuartile = i[median - quartile];
IQR = upperQuartile - lowerQuartile;
lowerWhisker = lowerQuartile - (IQR * 1.5);
upperWhisker = upperQuartile + (IQR * 1.5);

end for

Algorithm 4 Calculate the transparency for each tile
function calculateTransparency(elements(code), maxElements(code))

transparency = logTransform(elements, maxElements(code));
if transparency < lowerWhisker then

transparency = lowerWhisker;
end if
if transparency > upperWhisker then

transparency = upperWhisker;
end if
localmin = lowerWhisker;
if localmin < 0.0 then

localmin = 0.0;
end if
return normalize(transparency, upperWhisker, localmin,1.0,0.0);

end function
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Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1 − 1.5 × IQR

−0.6745σ 0.6745σ 2.698σ−2.698σ

50%24.65% 24.65%

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

Figure 4.1: A box plot applied on normally distributed data set [32]

4.5 Calculation of the right contrast for the
background

As the number of elements in a bin is described by its own transparency and
the user has the possibility to investigate each bin by choosing it, a detailed
information panel was implemented to show the content of the chosen bin. This
Panel (see Figure 4.3) shows each possible combination of histone modifications
and in the second column, the amount of elements of each of them. The color
in the second column corresponds to the color that is used in the bin. For a
better perception depending on the background color, the color of the text in
these text fields has to change.
TiBi-3D uses black and white text color and calculates which color has a greater
contrast to the background. For doing this, it transforms the RGBa color of
the bin into a RGB color by implementing the Alpha Blending algorithm [33].
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With this algorithm, it is possible to combine two transparent images into one:

C = 1
αC

∗ (αAA+ (1 − αA)αBB) (4.4)

where αC is:

αC = αA + (1 − αA)αB (4.5)

C corresponds to the new color for the two combined colors A and B, where
A is merged over B and α is their alpha value. Since TiBi-3D has a complete
opaque background, Equation (4.4) is less complex because it is not necessary
to calculate αC :

C = αAA+ (1 − αA)B (4.6)

With this new color C it is possible to determine if white or black text has a
greater contrast to the background.
To do this, another transformation of the color to the YIQ [34] colorspace
is necessary. The YIQ colorspace is an old colorspace normally used by the
National Television System Committee (NTSC) to encode colored pictures for
broadcasting. The RGB colorspace is transformed into the YIQ colorspace
with the transformation matrix:

∣∣∣∣∣∣∣∣∣
Y

I

Q

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0.299 0.587 0.114

0.595716 −0.274453 −0.321263
0.211456 −0.522591 0.311135

∣∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
R

G

B

∣∣∣∣∣∣∣∣∣ (4.7)

The Y component represents the luminescence of the color, I the difference
between cyan and orange and Q the difference between magenta and green. An
example of this colorspace is shown in Figure 4.2. For calculating the better
foreground color F (black or white), only the Y component is required:

Y =
∣∣∣0.299 0.587 0.114

∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
R

G

B

∣∣∣∣∣∣∣∣∣ (4.8)

F =

white if Y < 0.5

black if Y ≥ 0.5
(4.9)
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Figure 4.2: A picture [35] (top left) divided into Y (top right), I (bottom left),
and Q (bottom right).

Figure 4.3: Example for the correct contrast and alpha blending in TiBi-3D

Figure 4.3 shows how these methods influence the foreground color related to
their background color for a better recognition.
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4.6 Java3D

As explained in Section 4.3, TiBi-3D visualizes a given data set with a 3D tiled
binned scatterplot. Java is not able to handle 3D components in the viewing
interface out of the box. For this special application, an API called Java3D for
using OpenGL or Direct3D with Java was developed [30]. Its components are
embedded in the normal GUI of a Java program like in TiBi-3D or shown in
another window. With this API it is possible to easily model and render 3D
objects in a Java program, hence Java3D is encapsulating all OpenGL functions.
Java3D stores the whole 3D scene in a scene graph that has two main branches:

• Viewing branch

• Content branch

Unlike the OpenGL API, Java3D stores a camera position (called ViewingPlat-
form) and can transform it. This information is stored in the viewing branch
and is used by the perspective saver of TiBi-3D. The objects, which are drawn
in the scene, are stored in the content branch. Before rendering the scene,
Java3D optimizes this scene graph, therefore, the access to these objects in
the scene is restricted via capabilities after the rendering. Since this rendering
improves the memory consumption of the scenegraph, it used by TiBi-3D to
improve its runtime.
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Chapter 5

Results

5.1 Visualization

5.1.1 2D vs 3D

The visualization of information with scatterplots has in general to deal with
the effects of overplotting. With a big data set that is not homogeneously
distributed, the data points in the scatterplot are overplotted, as shown in
Figures 5.1. A lot of information gets lost during the drawing process since each
pixel in the visualization can only show one color information. To circumvent
this effects, TiBi-SPLOM [2] used tiled binned scatterplots in 2D. For example,
Figure 5.3 shows the scatterplot for MEF H3K4me3/H3K27me3. However,
since some results were already published with this 2D visualization technique,
it would be helpful to analyze the relationship of all three histone modifications
simultaneously contained in the data set. The three different modifications are
influencing each other, therefore, a two dimensional exploration of them does
not reveal all information.
Earlier visualizations (Figure 5.2a) with scatterplots in 3D of this data set
had to deal with the effects of overplotting like in 2D, as well. However, this
visualization already revealed some relations between all three modifications,
for instance, a change of modifications between 000 to 111. This result is not
easily observable in 2D since the 2D projections are merging the hidden third
dimension. Compared to Figure 5.1, there is also a diagonal line between (0,0)
and (1,1), but this line shows also the merged diagonal line from (0,0,0) to
(1,1,1) in 3D. To explore the relation of all three modifications or just two
modifications and the influence of the segment length or the CpG-density,
a co-analysis of multiple scatterplots is required in TiBi-SPLOM. Without
prior knowledge, some of the results described in Section 5.2 were not clearly
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observable. Even data brushing cannot reveal the results of TiBi-3D (an
example is Figure 5.19).
As described in Section 4.3, the principles of tiled binned scatterplots were
adapted to 3D scatterplots to solve the previously described drawbacks of TiBi-
SPLOM. Unfortunately, 3D visualization has to deal with new difficulties like
occlusion and the correct point of view for gaining interesting results. Therefore,
interaction with the plot is necessary, for instance, rotating and zooming.
Additional features of TiBi-3D are described in Section 5.1.4. Occlusion is
one of the biggest flaws of 3D visualizations. Thus, TiBi-3D tries to reduce
it automatically with the normalization process described in Section 4.4 and
several filtering options. Compared to TiBi-SPLOM, TiBi-3D consumes more
memory while running, but as shown in Section 5.1.3 it needs approximately 1
GB of memory during the calculation of the scatterplot. However, the benefits
of this 3D visualization outweigh the disadvantages of memory consumption,
interaction effort by the user, and the 3D specific drawback of the occlusion.

5.1.2 Design alternatives

TiBi-3D was designed by adapting the 2D tiled-binned scatterplots used by
TiBi-SPLOM. Nevertheless, the design of the binning was slightly changed to
answer new requirements due to adding a third dimension. Therefore, the cube
design of each tile was changed to a sphere since a filled cube would hide the
tiles behind it in the plot.
The encoding of histone modification patterns could be also implemented by
using glyphs. Nevertheless, glyphs must also represent the amount of points in
the tile. This could be done by changing the size of the glyphs but it would be
difficult to perceive the small glyphs in the scatterplot. Moreover, the perception
of the contrast between all colors of the tiles is stronger than the perception
of different glyphs. For that reason, the double encoded histone modification
pattern (categorical color and position in the bin) in the spheres provide a
better solution. Colin Ware also suggested to use colors for categorical data
with less then 10 categories [36].
The color coding is taken from to the color brewer project [29]. One possible
alternative was the color coding with binary RGB values for each modification.
The pattern 100, for example, would be encoded with the RGB value (1,0,0).
The RGB values for the pattern 111 and 000 would be (1,1,1) and (0,0,0).
These values represent the colors white and black, respectively. However, also
the color of the background of the scatterplot is white. Choosing a different
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(a) 000 (b) 000, 001

(c) 000, 001, 010 (d) 000, 001, 010, 011

(e) 000, 001, 010, 011, 100 (f) 000, 001, 010, 011, 100, 101

(g) 000, 001, 010, 011, 100, 101,
110

(h) 000, 001, 010, 011, 100, 101,
110, 111

Figure 5.1: The effect of overplotting of the different codes in a 2D scatterplot
using the data set by Mikkelsen et al. [16]
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Figure 5.3: A 2D binned scatterplot for MEFH3K4me3 and MEFH3K27me3
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background color with a strong contrast to all colors used in the scatterplot is
a difficult task. Using a different color scheme for representing these patterns
is not intuitive and would interfere with the other colors in the plot.
To encode the size of each bin, a saturation value could also be used instead of
transparency. While the transparency values decrease the effects of occlusion,
in the scatterplot, but the use of saturation values would not provide this
improvement. Therefore, the transparency is preferred over the saturation
encoding.
Other design alternatives for representing high dimensional data, in particular
epigenetic data sets, are discussed in the Chapter 3.

5.1.3 Runtime and memory analysis

TiBi-3D is designed as an exploratory software to analyze data with the in-
teraction of the users. Therefore, it should run on a normal computer and
provide results in a short amount of computational time. Like described in
Section 1 and Section 3, TiBi-3D bins the data and generates the statistics for
the normalization. The binning process uses O(n) time where n is the number
of data items and the normalization works in O(m) where m represents the
amount of bins in the scatterplot.

For analyzing the runtime and the memory consumption of TiBi-3D, the
profiling module of NetBeans [37] was used. This analysis was done with a
computer with the following specifications:

• Intel i5-4570 Quadcore CPU with 3.20 GHz

• 8GB RAM

• Nvidia GeForce GTX 650 with 1024MB VRAM

The profiling module plots the different states of the java threads in Figure
5.5. When TiBi-3D loads a file, it uses the API foxtrot [38] to prevent that
the Swing API of java freezes while the whole computation is done. Since
the loading of a file invokes also the binning process and rendering in Java3D,
it is possible to determine the required computational time. In Figure 5.5,
the foxtrot thread was running for 13.611 ms, thus, TiBi-3D needs around 13
seconds on the testing machine to generate the plot. During these computations,
it allocates around 2028MB heap space (TiBi-3D was started with a maximum
allowed heap space of 6GB) and uses a maximum of about 1062MB. The time
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Figure 5.4: Memory consumption of TiBi-3D while loading and binning a data
set, and generating the Java3D scenegraph.

plot of the memory consumption is shown in Figure 5.4. At label ’A’ the
loading of the input file is done, at label ’B’ the binning process is finished,
and at the label ’C’ scencegraph is compiled and ready. After each of these
stages, the garbage collection of java was invoked manually. Compared to [1],
the memory consumption was less, although TiBi-3D stores the spheres as a
mesh of triangles.

5.1.4 Features for Exploration and Interaction

TiBi-3D has several features for exploring and manipulating data sets. The
user can use the mouse of its computer to interact with the scatterplot thus
being able to move, rotate, and zoom in it. TiBi-3D allows to rotate the
plot automatically and can snap the plot to specific angles. Furthermore, it is
possible to switch between parallel and perspective projections. The following
features were implemented, while modifying the former 3D scatterplot from
Dirk Zeckzer to a 3D binned scatterplot.
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Filtering

Different filtering options are implemented in TiBi-3D for analyzing the scat-
terplot more easily.

Cutting planes
Cutting planes [39] are used to divide a 3 dimensional space into two parts
with a plane. In TiBi-3D the user is able to divide the drawing space and filter
the data set. With these planes, it is also possible to define the minimum and
the maximum value of the drawing interval on each axis so that just the values
within these planes are drawn by TiBi-3D. For selecting the interval to show, a
slider with knobs for each axis is provided. The interval is shown with two blue
planes in the scatterplot while adjusting the interval. After the user releases
the slider, the binned scatterplot will be redrawn with the selected interval. An
example of this filtering method is shown in Figure 5.6.

Color filtering
The user can also exclude modification patterns from the scatterplot by selecting
the corresponding check box like shown in Figure 5.14. As default, all patterns
are selected for drawing. The unselected patterns are then excluded during
the next redrawing, thus the scatterplot shows just the patterns of interest.
One advantage of this filtering is it makes possible to exclude unnecessary
or uninteresting patterns for a specific task. This filtering also reduces the
occlusion in the scatterplot like in Figure 5.7.

Transparency cutoff
TiBi-3D includes a transparency cutoff feature. This allows to show the more
significant bins. The transparency of each bin is calculated using the same
normalization strategy as described in 4.4. It has values between 0 and 1.
Thus, it is possible to filter the spheres of each bin and exclude them from the
scatterplot during the drawing process. The user can select the cutoff with a
slider in TiBi-3D and the scatterplot will be directly redrawn.
Using the transparency cutoff also allows to reduce the clutter of the visualiza-
tion and to show the spheres which contain a a minimum amount of data points.
Therefore, it is possible to detect whether the amount of the modification pat-
terns are changing between the different cell types under analysis. The different
levels of the cutoff for MEFH3K4me3, MEFH3K27me3 and MEFH3K9me3 are
shown in Figure 5.8. With a cutoff of 100% as shown in Sub-Figure 5.8k, only
the outliers of each pattern are shown in the scatterplot.
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Figure 5.7: MEFH3K4me3, MEFH3K27me3 and MEFH3K9me3 filtered by
modifications: the patterns "000" and "100" are filtered.

Dynamic axis

Considering that the user can change the amount of bins, TiBi-3D dynamically
calculates the thickness of the axis and adjusts the size of the labels such that
they fit properly.
The calculation for the axis and labels are calculated by using normal linear
functions with the bin size as the parameter. Two different scatterplots with a
bin size of 10 and 25 are shown in Figure 5.9.

Logarithmic scale

As mentioned before, the data is not homogeneously distributed. Especially
the length of each segment and its CpG-density is in-homogeneous. Most of
the values of this type in the data set are located in a small interval, from the
minimum (200bp) up to 1000bp but the maximum value of these dimensions is
considerably larger (700,000bp). During the binning process, the bin space is
normalized to the minimum and the maximum so that it would produce a large
white space with the CpG-density drawn with a linear scale (Figure 5.10).
As shown in Figure 5.11, the user can choose for each dimension if a logarithmic
scale should be used, using check box. If activated, TiBi-3D scales each value
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(a) 0.0 (b) 0.1 (c) 0.2

(d) 0.3 (e) 0.4 (f) 0.5

(g) 0.6 (h) 0.7 (i) 0.8

(j) 0.9 (k) 1.0

Figure 5.8: MEFH3K4me3, MEFH3K27me3, and MEFH3K9me3 with different
transparency cutoffs from 0.0 (a) to 1.0 (k)
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Figure 5.10: MEFH3K4me3, MEFH3K27me3, and CpG-density plotted with
normal scale on each axis.

Figure 5.11: The interface for selecting the logarithmical scale for each axis
and the color coding

logarithmically, before applying the normal range normalization as described
in Section 4.4. If the logarithmic scale for color coding is activated, the interval
between the lower and the upper whisker will be divided into eight buckets for
the colors, and each logarithmic value will be sorted into one of these buckets for
a distinct color choice. Additionally, the color information in the bin summary
will be updated with the ranges of each bucket as shown in Figure 5.14.
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Figure 5.12: Example of the logarithmic scale: the length axes is logarithmic
scaled. It allows the user to investigate the values from 200 till 1000 easier.
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Highlighting

TiBi-3D provides the possibility to interact with the scatterplot and the data
table, for instance, selecting an item from the data table and highlighting the
corresponding sphere in the scatterplot. However, in a plot containing a huge
amount of spheres, it is complicated to recognize a single static highlighted
sphere. Therefore, the highlighting strategy used in TiBi-3D attempts to
help the viewer using a highlighting bubble as shown in Figure 5.15, where
a sphere scales down in one second from a sphere five times as large to its
normal radius. Towards Ware’s theory of visual perception [36], this movement
is recognized during the pre-attentive stage of perception that detects the most
interesting parts for the later analysis during the second stage. Hence, the
spheres are not moving. A moving object in the scatterplot is a great stimulus
for gaining attraction for the highlighted sphere since the decreasing of one
sphere is recognized as movement.
The user can explore the highlighted item in the DataInfo Panel as well (Figure
5.13). It provides all the information about the highlighted item from the
data table together with a single independent visualization of its bin in the
scatterplot. On the other hand, it is also possible to highlight a bin in the
scatterplot and the data table will update the data content to the items of
the highlighted bin. Finally, TiBi-3D provides a bin summary to show the
absolute and the relative values for each sphere and the position of the picked
bin (Figure 5.14).

Export

To produce readily usable results, the user can export the content of the data
table into a BED file as described in Section 4.2. The program encodes the
histone modification patterns together with their related color, such that the
user can explore the data in a genome browser, for example UCSC, for more
in depth exploration of the selected genomic regions (Figure 5.16). TiBi-3D
is showing epigenetic data, therefore, the regions have no strand information.
There is no score information included in the data sets, thus the default values
were used for these fields. The thick line fields have the same values as the
starting and ending position of the annotation. After exporting the data, the
user can import the BED file into a genome browser as shown for example in
Figure 5.16. It is also possible to export the whole data table or just a selection.
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Figure 5.13: The DataInfo tab in TiBi-3D, showing the information of the
selected item in the table together with an interactive figure of the bin containing
this item.
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Figure 5.14: The information panel showing a particular bin in TiBi-3D

Additionally, TiBi-3D supports to produce high resolution snapshots of the
scatterplot in the PNG format, thus providing an easy way to save interesting
views of the scatterplot.

Perspective Saver

TiBi-3D can store specific camera positions for the user permanently. This
feature allows the user to compare different data sets using the same specific
camera position. As previously mentioned in Section 4.6, Java3D stores camera
positions similar to object positions. To do this, the program has to store
a transformation matrix for the camera position. An affine transformation
matrix is required to rotate and translate an object in a space. To calculate
this affine transformation, the rotation matrix has to be concatenated with the
translation matrix obtaining an augmented matrix. In addition, a fourth row is
added for storing the homogeneous component [40] to the translation vector.
The remaining of the row is filled up with zeros. The element m44 in the Table
5.1 is this component. The homogeneous component determines how to project
infinity in a finite space.
TiBi-3D can access this transformation matrices of the camera and stores them
in a serialized objects [41]. These objects can be exported, thus these camera
perspectives can be imported later by TiBi-3D again.
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Figure 5.16: An example of visualizing the exported data using the UCSC
Genome Browser

Table 5.1: An affine transformation matrix for 3 dimensions

x dimension y dimension z dimension translation vector
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

Figure 5.17: An example of how the camera view can be saved
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5.2 Biology

With TiBi-3D it was possible to get new insights into the data set compared
to [2]. As TiBi-3D is able to show the relation of three histone modifications
simultaneously, the results cannot (easily) be reproduced using TiBi-SPLOM.

5.2.1 H3K4me3-H3K27me3 switch

In 2012, a so called H3K4me3-H3K27me3-switch was published by Cui et
al. [42]. It was desribed that H3K4me3-H3K27me3 modifications in ESC is
changed to H3K4me3 and H3K27un (un for unmodified) in fully differentiated
tissues through the process of differentiation. As H3K27me3 is a repressor
and H3K4me3 an activator of gene expression, it was assumed that the DNA
associated with the modifications contains genes that are important for differ-
entiation.
With TiBi-3D and the data set from Mikkelsen et al. [16], it was not possible
to recreate this results. As shown in Figure 5.18 and 5.19, there is no clear
trend showing that the H3K4me3-H3K27me3 (code 110) modification patterns
are changing to H3K4me3 (code 100) modification patterns. In this data set,
it was found that these modification patterns are changing to all possible
modifications through the cell differentiation from ESC either to MEF or NPC.

5.2.2 The ”H3K9me3 hole”

As previously described in Section 2.2.4, H3K9me3 is related to a methylation
that silences the expression of the methylated DNA segment. This is a powerful
mechanism to shutdown the expression of genes not needed in a specific cell
type, because this repressive mark is copied during the replication of the DNA
[43]. Since embryonic stem cells can still be differentiated to all cell types not
many genes should be marked with H3K9me3. In the differentiated cell types,
the amount of H3K9me3 modifications should increase as a result of not all
genes are necessary for these cell types.
Based on the given data set it was not possible to validate the reported trend
in MEF or NPC. Instead rather the opposite effect is observable. In Figure
5.20 and Figure 5.21, the H3K9me3 modification area is marked. It is easy to
see that only few segments are located around the H3K9me3 pattern in MEF
or in NPC. Using TiBi-SPLOM it was not possible to observe this ”H3K9me3
hole”. Two possible explanations for this behavior could be a lower amount of
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(a) Tiled binned 3D scatterplot showing
the correlation of MEF H3K4me3, MEF
H3K27me3, and MEF H3K9me3 for 110
modification pattern
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(b) Tiled binned 2D scatterplot showing the
correlation of H3K4me3 and H3K27me3 in
MEF for 110 modification pattern
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(c) Tiled binned 2D scatterplot showing the
correlation of H3K4me3 and H3K9me3 in
MEF for 110 modification pattern
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(d) Tiled binned 2D scatterplot showing the
correlation of H3K9me3 and H3K27me3 in
MEF for 110 modification pattern

Figure 5.18: The 110 modification pattern does not switch to 100 in MEF.
Using TiBi-3D, it is possible to perceive the distribution of 110 patterns. The
normalization process of TiBI-SPLOM is influenced by the outlier bins in each
corner of the figures and reduces the visibility of the other bins.
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(a) Tiled binned 3D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K27me3, and NPC H3K9me3 for 110
modification pattern
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(b) Tiled binned 2D scatterplot showing the
correlation of H3K4me3 and H3K27me3 in
NPC for 110 modification pattern
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(c) Tiled binned 2D scatterplot showing the
correlation of H3K4me3 and H3K9me3 in
NPC for 110 modification pattern
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(d) Tiled binned 2D scatterplot showing the
correlation of H3K9me3 and H3K27me3 in
NPC for 110 modification pattern

Figure 5.19: The 110 modification pattern does not switch to 100 in NPC.
Using TiBi-3D, it is possible to perceive the distribution of 110 patterns. The
normalization process of TiBI-SPLOM is influenced by the outlier bins in each
corner of the figures and reduces the visibility of the other bins.
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(a) Tiled binned 3D scatterplot showing
the correlation of MEF H3K4me3, MEF
H3K27me3, and MEF H3K9me3
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(b) Tiled binned 2D scatterplot showing
the correlation of MEF H3K4me3, MEF
H3K27me3
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(c) Tiled binned 2D scatterplot showing
the correlation of MEF H3K4me3, MEF
H3K9me3
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(d) Tiled binned 2D scatterplot showing
the correlation of MEF H3K27me3, MEF
H3K9me3

Figure 5.20: H3K9me3 is not recruitable in MEF. The labeled rectangles in
the plots are showing the ”H3K9me3 hole”.

H3K9me3 modifications (around 5950 of 815000 segments) in the data set, or
that the course of differentiation is already set in the ESC. This hole is also an
explanation of the necessary ”vacuum cleaner” cluster in [1] in NPC since this
H3K9me3 hole is more distinct in NPC.
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(a) Tiled binned 3D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K27me3, and NPC H3K9me3
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(b) [Tiled binned 2D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K27me3
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(c) Tiled binned 2D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K9me3
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(d) Tiled binned 2D scatterplot showing
the correlation of NPC H3K27me3, NPC
H3K9me3

Figure 5.21: H3K9me3 is not recruitable in NPC. The labeled rectangles in the
plots are showing the ”H3K9me3 hole”.
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5.2.3 Correlation of histone modifications in NPC

The correlation between H3K4me3 and H3K9me3 with H3K27me3 shows an
interesting behavior in NPC since there are only few segments modified with
the 101 pattern in NPC (the A labeled area in 5.22a). However, in the area
around ”B” with the 111 pattern there are many more segments. This leads
to the assumption that in NPC H3K4me3-H3K9me3 are not that likely as
fully 111 modified segments. This result shows a strong correlation between
H3K4me3-H3K9me3 modifications with H3K27me3 that are not detectable in
TiBi-SPLOM as shown in Figure 5.22. Since H3K4me3-H3K9me3 modifications
cannot occur together in NPC without an additional H3K27me3 there must be
a cause that is used by mechanisms that are setting all three trimethylations.
A more detailed analyses of the bins (25,25,25) and (25,01,25) in MEF and
NPC (Figure 5.23) showed that this correlations is stronger NPC than in MEF.

5.2.4 Cordilleras in MEF and NPC plots for the pattern
111

In this section, the influence of length and CpG-density on different modifi-
cations is investigated. Using the modification filtering, the 111 pattern was
analyzed. This revealed a special distribution in MEF and NPC. In MEF
(Figures 5.24 and 5.25), each plot has a peak: the area labeled with ”A”.
MEF H3K4me3 and H3K27me3 are forming the same stable shape, however,
H3K9me3 is thinned out (Figure 5.25e). This ”111 mountain” occurs in an
area with segments longer than 6000bp and a CpG-density around 0.3. Com-
pared to NPC, these segments are changed to non modified segments. This
cordilleras reveal a specific modification mechanism of H3K4me3, H3K27me3,
and H3K9me3 histone marks in MEF and NPC. Since these segments were
modified with all histone modifications in ESC, a significant part of them with
long length and high CpG-density are conserving this state in MEF but change
it completely to being non-modified in NPC.
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(a) Tiled binned 3D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K27me3, and NPC H3K9me3. 101 modi-
fication patterns (Label ”A”) are not likely
as fully 111 pattern (Label ”B”). The scat-
terplot was cutted with cutting planes to
expose the 110/111 patterns.
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(b) Tiled binned 2D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K27me3. Label ”A” shows the 110 modi-
fication patterns and Label ”B” shows the
111 patterns.
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(c) Tiled binned 2D scatterplot showing
the correlation of NPC H3K4me3, NPC
H3K9me3. Label ”A” shows the 110 modi-
fication patterns and Label ”B” shows the
111 patterns. In this plot, both patterns are
at the same spot.
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(d) Tiled binned 2D scatterplot showing
the correlation of NPC H3K27me3, NPC
H3K9me3. Label ”A” shows the 110 modi-
fication patterns and Label ”B” shows the
111 patterns.

Figure 5.22: The modification pattern 111 is more likely to occur than 110
in NPC. H3K4me3-H3K9me3 modifications have a strong correlation with
H3K27me3.
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(a) Itemview of bin (25,25,25) in NPC of the
plot shown in Figure 5.22a

(b) Itemview of bin (25,1,25) in NPC of the
plot shown in Figure 5.22a

(c) Itemview of bin (25,25,25) in MEF (d) Itemview of bin (25,1,25) of in MEF

Figure 5.23: Comparison of the item view of the bins (25,25,25) and (25,1,25)
in MEF and NPC.
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a

(a) TiBi-3D for MEF H3K4me3, CpG-
density, and length filtered for code 111
(rose). The peak of the ”111 mountain” is
labeled with ”a”.
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(b) TiBi-SPLOM for CpG-density and MEF
H3K4me3 filtered for code 111 (rose).
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(c) TiBi-SPLOM for length and MEF
H3K4me3 filtered for code 111 (rose).
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(d) TiBi-SPLOM for CpG-density and
length filtered for code 111 (rose).

Figure 5.24: The 111 peak in MEF with H3K4me3, CpG-density, and length.
Although the peak can be seen using TiBi-3D, it is difficult to identify them in
2D.
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(a) MEF H3K4me3 (b) NPC H3K4me3

(c) MEF H3K27me3 (d) NPC H3K27me3

(e) MEF H3K9me3 (f) NPC H3K9me3

Figure 5.25: The 111 cordilleras in all three histone modifications in MEF and
NPC. The peak shifts from an attached trimethylation in MEF to unmodified
segments in NPC.

62



TiBi-3D - a Guide through the World of Epigenetics

5.2.5 Correlation of 111 modifications and CpG-density
in MEF/NPC

In Figure 5.26, the relation between H3K4me3, H3K27me3, and CpG-density
in MEF is shown. The CpG-density is an interesting genomic feature that
may indicate binding sites for histone modification enzymes. It is clearly
recognizable that only H3K4me3 appears with high CpG-density (mark ”A”)
and that H3K27me3 marks cannot be found with this level of CpG-density
(mark ”B”). High CpG-density occurs in MEF only without H3K27me3 marks.
Around the label ”A” the majority of the bins contains only segments having
red and blue color. As these colors represent the non-modified and H3K4me3
modified elements in ESC, it indicates a part of these segments were modified
after the differentiation into MEFs. This modification pattern seems to be
specific for H3K4me3 in MEF in relation to high CpG-density since many
segments with H3K4me3 and H3K27me3 modifications were found in ESC.
As described in Section 2.2.4, H3K4me3 modifications act as an activator of
transcription, thus it can be assumed that this special segments are involved in
controlling MEF-specific cell functions.

5.2.6 Influence of CpG-density towards H3K4me3 mo-
difications in murine fibroblasts

The influence of the CpG-density towards H3K4me3 in MEF was analyzed in
depth. In Figure 5.27, the coloring of the bins is changed from the ESC code
to show the CpG-density. It is clearly visible that the segments having a high
CpG-density are located around the corner of H3K4me3 in the plot. For further
analysis, the data was exported as a bed file from TiBi-3D and uploaded to
the UCSC genome browser. In Figure 5.28a, the genegraph of these segments
is shown for all chromosomes. It shows the distribution of these segments
where a peak visualizes a locus with a lot of segments. A short analysis of this
genegraph does not reveal any specific pattern since the data is more or less
homogeneous distributed over all chromosomes.

63



Chapter 5. Results

(a) Tiled binned 3D scatterplot showing
the correlation of MEF H3K4me3, MEF
H3K27me3, and CpG-density. The re-
gion labeled with ”a” shows segments with
H3K4me3 modifications and high CpG-
density, while the region labeled with ”b”
shows the region with H3K27me3 marks
and a less CpG-density.
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(b) Tiled binned 2D scatterplot showing the
correlation of MEF H3K4me3 and MEF
H3K27me3. The labels correspond to Fig-
ure 5.26a
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(c) Tiled binned 2D scatterplot showing
the correlation of CpG-density and MEF
H3K4me3. The label ”a” corresponds to
Figure 5.26a
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(d) Tiled binned 2D scatterplot showing
the correlation of CpG-density and MEF
H3K27me3. The label ”b” corresponds to
Figure 5.26a

Figure 5.26: Comparison between MEF H3K4me3, MEF H3K27me3, and
CpG-density using TiBi-3D and TiBi-SPLOM.
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Figure 5.27: Corner of MEF H3K4me3, H3K27me3, and H3K9me3 with CpG-
density as coloring

In the next step, the origin of the segments was analyzed. Figure 5.28b
shows the origin of all segments in the H3K4me3 corner. Around 45% of all
segments were modified with H3K4me3 before in ESC, but only 3% were
acquired from non-modified segments in ESC. Subsequently, the data set was
again filtered for those 1000 segments with the highest CpG-density. Since
the bed file generated by TiBi-3D does not contain anymore the CpG-density
of the segments but the segment ID as described in Section 4.1, the forth
column was cut out using the bash tool cut (”cut -n 4”) and the elements of
this new file were used for grepping these segments out of the whole data set
using the bash tool grep (”grep -f cutted-bedfile dataset-file”). This
generated a data set file contains only the elements of the corner and were sorted
with ”sort -n -f ";" -k10,10” since the 10. column stores the CpG-density.
Appending the command ” | tail -1000” only the 1000 segments with the
highest CpG-density were saved. Figure 5.29a shows the origin of these segments
and reveals that around 70% of the segments were not modified in ESC. This
result supports the assumption that in MEF are special segments related to
specific cell functions. A genegraph generated by the UCSC genome browser
for these 1000 segments is shown in Figure 5.29b. However, it does not show
significant peaks over all chromosomes, but compared to the genegraph with all
segments (Figure 5.28a), it is noticeable that no peaks occur on chromosome Y
and only a few on chromosome X. The segments with the highest CpG-density
are apparently not on these chromosomes.
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(a) Genegraph of all segments in the H3K4me3 corner in MEF
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(b) Origin of all segments in the H3K4me3 corner in MEF

Figure 5.28: Analysis of pure H3K4me3 modifications in MEF
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(a) Origin of 1000 segments with the highest CpG-density in the H3K4me3 corner in
MEF

(b) Genegraph for the 1000 segments with the highest CpG-density in the H3K4me3 corner in
MEF

Figure 5.29: Analysis of 1000 pure H3K4me3 modifications with high CpG-
density in MEF
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Conclusion

From a biological perspective, the results of TiBi-3D shows this is a useful
and strong exploration tool for analyzing epigenetic data sets. Providing
various possibilities to interact with the scatter plot like filtering, rotating, and
data brushing, it can help bioinformaticians and biologists to get a deeper
understanding of the relationships of histone modifications. It can also reveal
interesting spots in data sets and then export them as figures or as bed files
for later analysis. Compared to TiBi-SPLOM, TiBi-3D can visualize more
complex correlations, since it can visualize three dimensions simultaneously.
However, 3D visualizations have to circumvent the effects of occlusion. The
overlapping of data points in the 3D tiled-binned scatterplots is less than in
the 2D visualizations, because the third hidden dimension is accumulated in
the two visible dimensions. Additionally, TiBi-3D allows the user to explore
changes of the histone modifications, that are hard or impossible to observe in
2D, for instance, the effect of the CpG-density towards trimethylation of H3K4,
H3K27, and H3K9 in MEF and NPC. TiBi-3D also has an efficient memory
management for 3D visualizations, since the first approach to visualize the
used data set in 3D shown in Figure 5.2a consumed more than 14 GB RAM at
runtime. Using the same data set used in this thesis, TiBi-3D allocates only 2
GB of memory for its heap and uses only 1 GB for the calculation. Therefore,
TiBi-3D could still be used on older machines with a 32 bit operating system.
Since TiBi-3D is written in Java, it can be executed on every operating system
without additional compilation.
Every data set is pre-processed as described in Section 2.2.4 and can thus be
analyzed with TiBi-3D. The results of TiBi-3D give a better understanding of
the interaction of histone modifications during the differentiation of the cell
type and the influence of attributes of the DNA wrapped around the histones,
for instance, length or CpG-density of the segment.
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Future work

<irony>
Although TiBi-3D produces meaningful results, there is still space for improve-
ments. For example, the color space is still not perfect, since some of the
used colors can be confusing. However, eight colors are necessary to encode
all possible modification patterns and the position of each sphere also encodes
the modification pattern. TiBi-3D is able to visualize just three histone mod-
ifications in one scatter plot. Since many histone modifications as shown in
Figure 2.4 are related only to the chromatin reorganization, it would be useful
to extend TiBi-3D to analyze more dimensions simultaneously. Additional data
mining is necessary for extending TiBi-3D as it is impossible to visualize more
than three dimensions with scatter plots. Additionally, a better integration
between the UCSC genome browser and TiBi-3D would be useful. As described
in Section 5.2.6, it is tedious to re-import the exported bed files in TiBi-3D
for further analysis. For example, a filtering mechanism for segment positions
with a given bed file would improve future analysis, since the user could filter
the data set for interesting chromosomes or regions for known gene families,
e.g., the ”housekeeping genes”. Furthermore, a deeper analysis of the result
described in Section 5.2.6 like a GO analysis could provide more information to
support the assumption that these segments contain genes that are responsible
for MEF specific cell functions.

</irony>
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