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Abstract Clusters of paralogous genes such as the famous HOX cluster of
developmental transcription factors tend to evolve by stepwise duplication of
its members, often involving unequal crossover. Gene conversion and possibly
other mechanisms of concerted evolution further obfuscate the phylogenetic
relationships. As a consequence, it is very difficult or even impossible to dis-
entangle the detailed history of gene duplications in gene clusters. In this con-
tribution we show that the expansion of gene clusters by unequal crossover as
proposed by Walter Gehring leads to distinctive patterns of genetic distances,
namely a subclass of circular split systems. Furthermore, when the gene clus-
ter was left undisturbed by genome rearrangements, the shortest Hamiltonian
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paths w.r.t. genetic distances coincide with the genomic order. This observa-
tion can be used to detect ancient genomic rearrangements of gene clusters
and to distinguish gene clusters whose evolution was dominated by unequal
crossover within genes from those that expanded through other mechanisms.

Keywords Evolution of gene clusters · non-homologous recombination ·
unequal crossover · phylogenetic combinatorics · Kalmanson metrics ·
Hamiltonian path problems

1 Introduction

The genomes of higher eukaryotes typically contain many families of genes
with similar DNA sequence. These usually encode similar proteins and share
similar function. Their sequence similarity indicates that they have evolved
from a single original ancestor by means of multiple rounds of duplication.
Such paralogous genes are often, but by no means always, located at the same
genomic locus, where they form a gene cluster. In many cases clustered genes
are not tied together functionally and the clusters can disintegrate by genome
rearrangement without detrimental effects.

However, some gene clusters are evolutionarily old and have retained a very
particular organization of their member genes for hundreds of millions of years.
Among the best characterized gene clusters are the globin gene clusters, which
encode major players in the transport of oxygen within the bloodstream [30]
and the homeobox gene clusters, which play a crucial role in the early stages of
animal development [18]. In vertebrates, the latter show very low levels of re-
peats and unrelated open reading frames, and the genes in paralogous clusters
share the same order and orientation. Experimental work demonstrated that
the consolidated arrangement is crucial and constrained due the necessity of a
coordinated regulation orchestrated by enhancer sequences outside the cluster
[21,32].

The details of the molecular mechanisms and evolutionary forces that gov-
ern the expansion of clusters of paralogous genes are by no means completely
understood. Walter J. Gehring, a developmental biologist famous for his stud-
ies of the Hox gene cluster in Drosophila melanogaster interpreted the fact that
the three Hox genes (abd-B, abd-A, and Ubx ) appear in a tandem arrangement
as evidence for gene duplication by “unequal crossing over”. He proposed that
the current Hox cluster expanded from two Hox genes by a series of unequal
crossing overs between highly similar but mispaired paralogous genes [19]. In
this scenario, a new paralog is created as a hybrid of its left and right neighbors
as indicated in Fig. 1.

The local gene duplication model constitutes an alternative explanation.
Again, unequal crossover is the molecular mechanism resulting in the dupli-
cation. However, in this scenario the crossover occurs between genes and thus
results in the creation of a faithful copy on the complete gene. Diversifica-
tion, subfunctionalization, or neofunctionalization then drives the subsequent
divergence of the paralogous sequences [38,17].
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Fig. 1 Gene cluster expansion by local gene duplication (a) and unequal crossover in
Gehring’s model (b). During mitosis, when chromatids are paired, unequal crossing leads to
a tandem duplication on one chromatid and a deletion on the sister chromatid. The loss of
whole genes is considered to be lethal. In Gehring’s model the crossover occurs within the
gene sequences resulting in hybrid genes. Crossover between intergenic sequences results in
duplication of complete genes.

Gehring noted that terminal genes in a Hox cluster are not subject to
changes by crossover and that the genes in the middle of the cluster are more
similar to the consensus sequence than more distal genes. The paralogs in
a cluster most similar to a given gene tend to be its neighbors. A recent
analysis of the genetic distances between Hox genes, furthermore, showed that
the shortest Hamiltonian path w.r.t. the genetic distance follows the genomic
order of the cluster [46]. We ask here if and how these observations can be
explained by Gehring’s model and the local gene duplication model.

The analysis of the history of a gene family is usually based on the infer-
ence of a phylogenetic tree of the paralogous genes in question. However, this
is a difficult task and often remains unsuccessful, in particular for the deep
branches since several effects conspire to erase the phylogenetic signal. Satura-
tion of the phylogenetic signal limits the power of reconstruction in particular
for old events and events separated by relatively short time scales.

Genomic elements that are very similar in sequence and in close proximity,
as it is the case in clusters of paralogous genes, are particularly prone to gene
conversion and other mechanisms of concerted evolution [7,35]. Last but not
least, the very process that introduces additional new members may involve
unequal crossover in Gehring’s model thus producing a non-tree-like structure
of genetic distances to begin with.

The purpose of this contribution is two-fold. First, we investigate the conse-
quences of Gehring’s model for gene cluster expansion and show that while the
resulting genetic distances are not additive trees, they belong to a special class
of circular decomposable metrics. Therefore, they can be represented faithfully
by the type of phylogenetic networks produced by the NeighborNet[4,5] al-
gorithm. Furthermore, we will see that in the absence of extreme selective
pressure they have the Robinson property, so that the Hamiltonian path with



4 Sonja J. Prohaska et al.

5
6 7

8

1

2

3

4
9

12

11

10

13

14

Fig. 2 Each planar embed-
ding T̆ gives rise to a circu-
lar ordering of the vertices
by following the “outline”
around the tree.

the shortest genetic distance between genes is co-linear with the genomic or-
der in the gene cluster. We then use this result to distinguish between gene
clusters that likely have evolved under Gehring’s model and retained synteny
from those that have a different origin or were subjects to a rearrangement of
their gene order.

2 Trees, Metrics, and Hamiltonian Paths

In this section we introduce the notation and provide some mathematical back-
ground information on the connection between tree metrics and Hamiltonian
paths. The material presented here is mostly “folklore” and included primarily
as an introduction to the more formal development of the following sections.
Proofs are included for completeness since we are not aware of any convenient
references.

2.1 Gene Duplications and Genomic Gene Order

We consider a family X of n = |X| paralogous genes whose evolutionary
history is given by the tree T (with vertex set V , leaf set X ⊂ V , and edge
set E) and strictly positive branch lengths ` : E → R+. The corresponding
genetic distance function d : X ×X → R+

0 is given by

dxy =
∑
e∈℘xy

`(e) (1)

where ℘xp denotes the unique path connecting x and y in T . We write dmax =
maxx,y∈X dxy for the maximal distance between two leaves.

Let π : {1, . . . , n} → X be a bijection. In other words, π defines an ordering
ofX so that x ≺ y iff π−1(x) < π−1(y). A special ordering π̂ is the arrangement
of the gene on the genome.

A circular (or cyclic) ordering [31] is a ternary relation / i j k on a set X
that satisfied the following five conditions for all i, j, k ∈ X:
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Fig. 3 Phylogenetic tree arising from a block duplication of two paralogs. The l.h.s. sketches
the phylogenetic tree and the genomic ordering of the leaves. The r.h.s. shows the corre-
sponding graph GT . After contracting the edge between a and r, we are left with a K3,3,
hence GT is not planar. Thus the genomic ordering π̂ is not a T -ordering.

(cO1) / i j k implies i, j, k are pairwise distinct. (irreflexive)
(cO2) / i j k implies / k i j. (cyclic)
(cO3) / i j k implies ¬/ k j i. (antisymmetric)
(cO4) / i j k and / i k l implies / i j l. (transitive)
(cO5) If i, j, k are pairwise distinct then / i j k or / k j i. (total)

A pair of points (p, q) is adjacent in a total circular order on V if there
is no h ∈ V such that / p h q. Circular orderings can be linearized by cutting
them at any point resulting in a linear order with the cut point as its minimal
(or maximal) element [37]. We will write, by abuse of notation, i ≺ j ≺ k to
mean / i j k together with a suitable linearization, i.e., a cut between k and i.

It is well known that trees are planar graphs. Let T̆ be a fixed planar
embedding of T . It defines, up to orientation, a unique circular ordering of the
leaf set X. Any linearization of this circular order defines a linear order, which
we will refer to as a T -order, see Fig. 2.

Consider a tree T = (V,E) with leaf-set X ⊂ V and fix a particular circular
order π on X. Let Eπ be a set of edges connecting consecutive leaves w.r.t. to
π and denote by GT = (V,E ∪Eπ) the auxiliary graph with the same vertices
as T and an edge set extended by Eπ. Thus GT is a Halin graph [20] whenever
π is T -order. A necessary condition for π to be a T -order therefore is that GT
is a planar graph.

Clearly, if the gene family originated exclusively by tandem duplications,
then the genomic order π̂ is a T -order for the gene phylogeny T . On the other
hand, if a block containing two or more genes is duplicated as a unit, then
π̂ and the tree are discordant as shown in Fig. 3. Every duplication scenario
in which more than a single gene duplicated at least once must contain this
situation as a subgraph, and thus K3,3 as a minor. It follows immediately
that π̂ is not a T -order whenever the evolutionary scenario involves larger
block duplications. We remark that gene loss may erase this signature of block
duplications. For instance, the loss of 2 or 3 in Fig. 3 leads back to a T -order.
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2.2 From Trees to Hamiltonian Paths

For an arbitrary order π we define the length function

L(π) =

n∑
i=2

dπ(i−1)π(i) (2)

L(π) can be interpreted as the length of the Hamiltonian path defined by the
ordering π in the complete graph with vertex set X and edge lengths dxy.

Theorem 1 Let d be the additive tree metric associated with the tree T and
its non-degenerative length function `. Then L(π) is minimal if and only if (i)
π is a T -order and (ii) dπ(1)π(n) = dmax.

Proof We use the abbreviation L =
∑
e∈E `(e).

Claim 1. Every order π satisfies L(π) ≥ 2L − dmax.
Denote by ω the closed walk ℘π(1)π(2)℘π(2)π(3) . . . ℘π(n−1)π(n)℘π(n)π(1). Its

length is L(ω) = dπ(n)π(1) +
∑n
i=2 dπ(i−1)π(n). Since ω connects any two leaves,

it contains all edges of T . Furthermore, since T contains no cycle, ω must leave
each subtree that it enters along the same edge. Thus ω covers any edge at
least twice. Hence L(ω) ≥ L. Since ω contains exactly one path too many, and
the longest possible path had length dmax, the claim follows. /

Claim 2. If π is T -order, then L(π) = 2L − dπ(1)π(n).
By construction ω associated with a T -order is the closed walk defined

by the “outline” of the tree, cf. Fig. 2. Any such walk covers each edge of T
exactly twice, once when entering and once when leaving a given subtree. This
construction is well known in the literature, see e.g. [33, Thm.5]. The claim
follows directly from L(π) = L(ω)− dπ(1)π(n). /

Fix an arbitrary leaf 1 as the root of T and a starting and end point of ω
and denote by n the last leaf visited for the first time along ω. Furthermore,
for every edge e, T (e) denotes the connected component of T \ {e} that does
not contain 1.

Claim 3. If ω covers every edge of T exactly twice then the leafs contained
within every subtree form an interval in π.

It suffices to note that ω enters and leaves the subtree T (e) only through
e. If the edge is covered exactly twice, all leaves of T (e), and only the leaves
of T (e) are visited along ω between the first and the second traversal of e. /

It follows that, for each edge e = {u, v} where v ∈ V (T (e)) and u /∈
V (T (e)), that is, T (v) = T (e), there is a linear ordering of the children v1,
v2, through vd(v) of v so that the subtrees T (v1), T (v2), . . . , T (vd(v)) are
traversed by ω in this order. Consequently, there is a planar layout of T so
that the leaves 1 through n are arranged in the order of traversal. In other
words, if ω traverses T so that every edge is covered exactly twice, then T has
a planar embedding so that ω travels along its outline and visits consecutive
leaves in the order in which they appear on the outline of the tree.
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Hence there is a T -ordering following the outline of T if and only if the
corresponding closed walk covers every edge of T exactly twice. Now suppose
that π is not a T -ordering. By closure of the walk, each edge must be covered
an even number of times by ω, so that ω without the return path from π(n)
to π(1) covers at least one edge thrice, thus L(π) > 2L − dπ(1)π(n). ut

2.3 Simulating Distance Matrices for Gene Duplications

We show here that genetic distance matrices for models of gene duplications
can be simulated directly. This has advantages over the more usual approach of
simulating sequence evolution. In particular we can, in this manner, separate
the stochastic noise that may lead to deviations from additive tree metrics.

Lemma 1 Let d : X ×X → R be an additive tree metric on X and let δx ≥ 0
for x ∈ X be arbitrary. Then d′ : X ×X → R defined as d′xy = dxy + δx + δy
for x 6= y is again an additive tree metric.

Proof A metric d is an additive tree metric if and only if every 4-tuple satisfies
the “4-point condition” [6,13,15,47], which stipulates that any four leaves can
be renamed such that

dxy + duv ≤ dxu + dyv = dxv + dyu (3)

Using the definition of d′ immediately yields

d′xy + d′uv = dxy + duv + δx + δy + δu + δv

≤ dxu + dyv + δx + δy + δu + δv

= dxv + dyu + δx + δy + δu + δv

≤ d′xu + d′yv = d′xv + d′yu

ut

Hence we can propagate time by an increment ∆t simply by adding δx =
rx∆t where rx is the rate of evolution of taxon x. A duplication of gene x
can be introduced by simply duplicating the row and column x in the distance
matrix D, i.e., by setting dzy = dxy for all y 6= x, z and dxz = 0. The procedure
is summarized in Alg. 1.

A rate rx′ (and possibly a new rate rx) needs to be chosen. Assuming a
constant rate of duplication, we set ∆t = 1/n and choose one of the leafs at
random for duplication. Instead of appending the new leaf x′ to the end of
the matrix, we insert it explicitly before or after x so that the order π of the
rows and columns explicitly encodes the genomic order. Duplicating a larger
block of rows and columns can immediately be used to simulate the block
duplications of any number of adjacent genes.

Lemma 2 Every additive tree metric d′ can be constructed by Alg. 1.
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Algorithm 1 Simulation of an Additive Tree Metric
Require: n {final dimension}
V ← {1}
while |V | < n do

randomly pick x ∈ V , z /∈ V
V ← V ∪ {z}
dzu ← dxu for all u ∈ V \ {u}
dzx ← 0
randomly choose δu ≥ for all u ∈ V
for p, q ∈ V , p 6= q do
dpq ← dpq + δp + δq

end for
end while

Proof If d′ is an additive tree metric, then there is a unique additive tree T
with edge lengths ` : E → R+

0 representing d′. Suppose for the moment that T
is binary. Then it has at least one “cherry”, i.e., a pair of leaves separated by
only a single interior vertex, say {p, q}. It is easy to check that every cherry
in T must satisfy

min
x,y∈V \{p,q}

{
(d′px + d′qy)− (d′pq + d′xy)

}
> 0 (4)

If {p, q} is a cherry, then the distances in T from p and q to their last
common ancestor are δp = (1/2) minu,v 6=p(d

′
pu + d′pv − d′uv) ≥ 0 and δq =

(1/2) minu,v 6=q(d
′
qu + d′qv − d′uv) ≥ 0, both of which are non-negative as a con-

sequence of the triangle inequality. The reduced distance matrix D on V \ {q}
defined by dxy = dxy for x, y /∈ {p, q}, dxp = d′xp − δp represents T with the
cherry replaced by its last common ancestor, hence it is again an additive
distance matrix.

Repeating this construction we arrive at a single vertex after |V |−1 steps.
Each step identifies a leaf p that is duplicated and the extensions δp and δq
of p and its copy q. Note that we have set δx = 0 for all x ∈ V \ {p, q}.
This reflects that the stepwise elongation of the trees’ branches modeled in
Alg. 1 can be subdivided arbitrarily between duplication events that affect a
particular branch. Here we simply choose to add the entire length immediately
after each duplication event. Thus the construction in this proof backtraces a
particular sequence of duplication events in Alg. 1.

The case of non-binary trees is easily incorporated by observing that it can
be represented as binary tree in which an internal branch length of 0 is also
allowed. ut

3 Type R Distance Matrices

3.1 Construction and Recognition

The model so far corresponds to a mechanism in which unequal crossover
occurs only between the genes of interest. We can, however, also model events
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in which the genes themselves are recombined. Instead of assuming that x′

is a true copy of x we now assume that the newly introduced gene z is a
recombinant of two adjacent genes x and y. The product is inserted between
x and y.

Since z is composed of two parts, of relatives sizes a and (1−a), 0 ≤ a ≤ 1,
that are identical to x and y, respectively, we have

dzu = adxu + (1− a)dyu

dzx = (1− a)dxy

dzy = adxy

(5)

After the duplication event, each gene evolves independently with its own rate,
so that the genetic distance between p and q again grows by δp + δq, i.e.,

d′pq = dpq + δp + δq (6)

Definition 1 A distance matrix D is of type R if it is constructed by repeated
application of Eqns.(5) and (6)

Clearly, every additive tree metric is of type R by virtue of setting a = 0
(or a = 1) in every duplication step. In particular, therefore, for n = 3 every
distance matrix is of type R. For n > 3, however, it is not obvious whether a
type R matrix can be recognized efficiently.

We start by observing

d′xz + d′yz − d′xy = dxz + dyz − dxy + δx + δz + δy + δz − δx − δy = 2δz (7)

since dxz + dyz = (1− a)dxy + adxy = dxy.

For n ≥ 4, consider the following expression for u /∈ {x, y, z}.

d′uz − ad′ux − (1− a)d′uy = duz − adux − (1− a)duy︸ ︷︷ ︸
=0

+ δu + δz − aδu − aδx − δu + aδu − δy + aδy

= δz − aδx − (1− a)δy := f(a)

(8)

The key observation is that this expression is independent of u. Thus, for
n ≥ 5, there are distinct leaves u, v distinct from {x, y, z} so that d′uz−ad′ux−
(1 − a)d′uy = f(a) = d′vz − ad′vx − (1 − a)d′vy, which can be rearranged as
d′uz − d′uy − ad′ux + ad′uy = d′vz − d′vy − ad′vx + ad′vy and hence, after a short
calculation,

a =
(d′uz + d′vy)− (d′vz + d′uy)

(d′ux + d′vy)− (d′vx + d′uy)
(9)

Note that this equation must be satisfied for all u, v /∈ {x, y, z}, hence it
restricts the space of type R distance matrices to a submanifold for all n > 5.
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Once a has been computed, f(a) can also be computed explicitly. Now
consider the following system of equations

−aδx − (1− a)δy = f(a)− δz
(1− a)dxy + δx = d′xz − δz

adxy + δy = d′yz − δz
(10)

The first line uses the definition of f(a) above, the second and third line are
rearrangements of d′xz = (1− a)dxy + δx + δz and d′yz = adxy + δy + δz, resp.
Multiplying the second and third line by a and (1− a), resp., and adding up
the three equations yields 2a(1− a)dxy = f(a)− 2δz + ad′xz + (1− a)d′yz. We
can now compute dxy from

2a(1− a)dxy = (d′uz − ad′ux − (1− a)d′uy)− 2δz + ad′xz + (1− a)d′yz (11)

Finally, δx and δy are obtained from

δx = d′xz − (1− a)dxy − δz
δy = d′yz − adxy − δz

(12)

In summary, therefore, we can obtain, for n ≥ 5, complete information on the
relative arrangement of the parents x and y and their recombinant offspring
z. If a = 0 or a = 1 in Eqn.(9) then z is a copy of x or y, resp. In this case
we cannot determine dxy from Eqn.(11) since 2a(1− a) = 0. By construction,
however, we can just remove z from the matrix to obtain the ancestral state.

It remains to determine the values of δu for u /∈ {x, y, z}. This turns out
to be not so trivial, since δu is, in contrast to δx, δy, and δz, not uniquely
determined by the last unequal crossover in Gehring’s model event.

To see this more clearly, let us first consider the case n = 4. It is well
known that every metric on four points can be represented as a “box graph”
as shown in Fig. 4. The box dimensions can be computed from 2u = (dps +
dqr)− (dpq +drq) and 2(u−v) = (drp+dqs)− (dpq +drs). The key ingredients,
thus are the three different pairs of distances emphasized by parentheses. For
more details see [34]. Now let us start from an arbitrary distance matrix D
on {x, y, u} and construct z as a recombinant. In the following, we will use
abbreviations for the three pairs of distance sums, thus

A = d′xz + d′uy B = d′yz + d′ux C = d′uz + d′xy . (13)
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Algorithm 2 Recognition of type R distance matrices

Require: Distance matrix D′, n = |V | ≥ 4
repeat

for (x, y, z) ⊆ V do
for {u, v} ⊆ V \ {x, y, z} do

compute a using Eqn.(9)
end for
if a ∈ [0, 1] is the same for all u, v then

if a 6= 0, 1 then
compute δz using Eqn.(7)
compute dxy using Eqn.(11)
compute δx, δy using Eqn.(12)
δu ← 0 for u ∈ V \ {x, y, z}
compute D as dpq = d′pq − δp − δq for all p, q ∈ V

end if
D′ ← D without row and column z
n← n− 1

end if
end for
if no (x, y, z) was found then

return false
end if

until n = 4
return true

Using the definitions of dxz, dyz, and duz we can compute

C −A = a(dxy + dxu − duy) ≥ 0

C −B = (1− a)(dxy + dyu − dux) ≥ 0
(14)

using again the triangle inequality. The terms C−A and C−B correspond to
twice the sides of the box in the quadruple graph, shown in Fig 4; note that
they are independent of δx, δy, δz, and δu. We obtain a tree whenever the box
degenerates to a line, i.e., if a = 0 or a = 1.

In the general case this becomes hu = δu+(1/2) minv,w(duv+duw−dvw) ≥
0, where the minimum runs over all v 6= w ∈ V different from 0. It follows
that δu ≥ 0 cannot be determined. Intuitively, this comes from the fact that
a contribution δu + δv is added to duv after every duplication event. This
contribution cannot be divided unambiguously between the individual steps
in complete analogy to the situation for additive tree metrics in the previous
section.

Hence we can set δu = 0 for every u /∈ {x, y, z} and assume the entire
length of hu stems from previous events. This yields the recursive Alg. 2 for
recognizing type R distance matrices. It requires O(|V |) decomposition steps,
each of which needs in the worst case O(|V |5) computations to identify the
triple (x, y, z) corresponding to the last duplication event. Note that it suffices
to consider x < y. If a = 0 or a = 1, then z was obtained as a faithful copy of
x or y, resp., and hence it can just be dropped. If a candidate triple {x, y, z} is
found, the previous distance matrix D′ is computed in quadratic time. Thus
Alg. 2 runs in O(|V |6) time.
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For |V | = 4 the remaining distance matrix is represented by a unique box
as in Fig. 4, which implies a unique circular order of the remaining four nodes,
say u, x, y, z. The fourth node therefore must be the result of unequal crossover
of two nodes that are placed a diagonally opposite corner of the box. Therefore
(u, y : x), (x, z : y), (y, u : z) and (z, x : u) are equivalent.

3.2 Linear Type R Matrices

Definition 2 A type R distance matrix is called linear (with order π) if,
starting from V = {x, y}, in each vertex addition step the two parents x and
y are adjacent and their offspring z is placed between x and y.

Alg. 2 identifies triples (x, y : z) so that z was obtained as a recombinant
of x and y, i.e., that z is located between x and y together with a possible
temporal order of these events. It is difficult in general to determine whether a
linear order exists that is compatible with an arbitrary collection of between-
ness triples: the so-called Betweenness Sorting Problem is NP complete [40,
10]. Here, however, we have much more information. We call a type R matrix
generic if for every z both parents are uniquely defined. We say that (u, v : w)
is a successor of (x, y : z) if {u, v} = {x, z} or {u, v} = {y, z}. A triple without
a successor is a leaf triple.

With a leaf triple (x, y : z) we can associate the path pxy := x− z− y. If a
triple (x, y : z) has only one successor, say (x, z : u1), we set pxy = pxz(z−y). If
it has two successors, these are of the form (x, z : u1) and (z, y : u2), and we set
pxy = pxzpzy. This is, the paths corresponding to the two “intervals” x−z and
z − y are joined at the common vertex y. By construction of type R matrices,
each triple has at most one predecessor, hence the path pxy is uniquely and
completely defined for every triple. A triple (x, y : z) has no predecessor only
if x and y are two of the three ancestral nodes. There are at most two such
triples by construction of linear type R matrices, which necessarily have one
node in common. The paths are joined at this common node. The type R
matrix is linear if the final concatenation result is a single path, in which each
node appears exactly once. By construction, z is located between x and y for
all triples (x, y : z), i.e., the final path encodes the desired linear order of the
nodes.

Representing the paths pxy as lists, joining at their end points can be per-
formed in constant time. Any triple (x, y : z) can be a left or right successor
to another triple on (x, y), accept a left successor on (x, z), or accept a right
successor on (z, y). For each triple, joining to already processed triples and/or
generating references for later triples can be achieved in O(1) utilizing these
tuples as keys in associative arrays (one per connection type), e.g. using a
quadratic array or (sparse) hash-maps. The successor/predecessor relation be-
tween the O(n) triples can therefore be established in linear time if the triples
that account for duplications are already known. Thus, linearity of a type R
matrix can be checked in linear time (see Alg. 3 in the Appendix).
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z
1

x

z
2

Fig. 5 Representation of a successor-predecessor tree
after two duplications of the same gene x: (x : z1) and
(x : z2). As the time order of duplications to z1 and z2
are unknown, so is their relation in the genome. Both
x− z1 − z2 and x− z2 − z1 are proper solutions.

This algorithm can also be extended to the non-generic case. Instances
with a = 0 or a = 1 duplications result in (x : z) relations with unknown
second flanking gene, which can cause several problems. While the algorithm
above can always find one linear configuration, this is no longer unique in
the non-generic case. Any pair obtained as “clones” from the same parent
have no defined order among themselves, unless a later triple with 0 < a < 1
can resolve it (see Fig. 5). Hence, the predecessor-successor relationship is no
longer binary, but rather any gene might relate to an unlimited number of
perfect copies. This requires careful indexing on individual genes, as listing
gene tuples would create exponential growth of open references.

Let us now turn to the connection of type R matrices and circular orders.

Definition 3 A distance matrix D = (dij) satisfies the Kalmanson condition
if there is a circular order / of the points so that the inequality

max{(dij + dkl), (dil + djk)} ≤ dik + djl (15)

for every four points so that i ≺ j ≺ k ≺ l.

If (dij) satisfies Eqn.(15) then the corresponding TSP is solved by the unit per-
mutations, i.e., π = (1, 2, 3, . . . , n) [23]. Equivalently, if / is a circular ordering
of the taxa set V and π the permutation of V associated with an arbitrary
linearization of /, then (dij) is Kalmanson iff

max{(dπ(i)π(j) + dπ(k)π(l)), (dπ(i)π(l) + dπ(j)π(k))} ≤ dπ(i)π(k) + dπ(j)π(l) (16)

for i < j < k < l. In this case L(π) in Eqn.(2) is a shortest Hamiltonian cycle
for (dij).

With each circular ordering / we can associate a set S/ of splits, i.e., non-
trivial bipartitions of the set X of taxa. {A,X \ A} ∈ S/ if and only if (i)
A 6= ∅, (ii) A 6= X, (iii) there is i, j ∈ A and k, l ∈ X \ A so that (a) for all
p ∈ A and q ∈ X \A holds / i p j and / k q l and (b) / i j k and / k l i. We write

Sij := {{π(i+ 1), π(i+ 2), . . . , π(j)}, {π(j + 1), π(j + 2), . . . , π(i)}} (17)

with i, j taken mod |X| for the splits of S/, where π is again an arbitrary
linearization of /. A metric is called circular decomposable [2] if there is a
circular ordering / (with a corresponding permutation π), and αij ≥ 0, i 6= j
so that

dxy =
∑
i<j

αijδSij (x, y) , (18)
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where the split pseudometric δSij is defined as δSij (x, y) = 1 if the split Sij
separates x and y, and δSij (x, y) = 0 otherwise. Such expressions are known as
“Crofton formulas” [9]. The isolation indices of the splits Sij can be computed
as

αij = α(Sij) =
1

2

(
dπ(i)π(j) + dπ(i+1)π(j+1) − dπ(i)π(j+1) − dπ(i+1)π(j)

)
(19)

It is shown in [11,9] that a metric satisfies the Kalmanson condition if and
only if it is circular decomposable. These can represented as so-called split
graphs and computed efficiently using the NeighborNet algorithm [4,5].

As shown in [26, Thm.37], the solution of the TSP on a generic circular
decomposable metric is unique. Thus, one can use the TSP solutions of (dxy)
directly for finding circular orderings to be used in NeighborNet [25,4,5]. Note
that this is not true for special case of additive tree metrics.

Theorem 2 Every linear type R distance matrix satisfies the Kalmanson con-
dition.

Proof We only need to show that the distance matrix on X∪{z} is Kalmanson
provided the distance matrix on X is Kalmanson. Suppose z is the recombinant
of j and j′. In the general case we have i ≺ j ≺ z ≺ j′ ≺ k ≺ l, since by
circularity of the ordering it does not matter whether we duplicate i, j, k, or
l. In addition to the general case we have to consider the special cases with
i = j and/or j′ = k. The proof repeatedly makes use of the simple observation
that max(a+ p, b+ q) ≤ max(a, b) + max(p, q).

We assume that the Kalmanson inequalities hold for all quadruples in X
with an appropriate circular order. For the general case we have, by substitut-
ing the definition of the distances involving the recombinant vertex z,

max{diz + dkl, dil + dzk}
= max{a(dij + dkl) + (1− a)(dij′ + dkl), a(dil + djk) + (1− a)(dil + dj′j)}
≤amax{dij + dkl, dil + djk}+ (1− a) max{dij′ + dkl, dil + dj′k}
≤a(dik + djl) + (1− a)(dik + dj′l) = dik + adjl + (1− a)dj′l

=dik + dzl .

In the fourth line we use that the Kalmanson inequality holds for i ≺ j ≺ k ≺ l
and i ≺ j′ ≺ k ≺ l by assumption, the last line used the definition of
dzl. Analogous computations for the three special cases (omitting the ana-
log of the second and third line above) yield: max{djz + dkl, djl + dzk} ≤
amax{dkl, djl + djk}+ (1− a) max{djj′ + dkl, djl + dj′k} ≤ a(djl + djk) + (1−
a)(djk + dj′l) = djk + dzl; max{diz + dj′l, dil + dzj′} ≤ amax{dij + dj′l, dil +
djj′ +(1−a) max{dij′ +dj′l, dil} ≤ a(dij′ +djl)+(1−a)(dij′ +dj′l) = dij′ +dzl;
max{dij + dzj′ , dij′ + djz} ≤ amax{dij + djj′ , dij′} + (1 − a) max{dij , dij′ +
djj′} = a(dij + djj′) + (1 − a)(dij′ + djj′) = djj′ + diz. We conclude that
all quadruples involving z satisfy the Kalmanson inequality provided the dis-
tances (dij) from a Kalmanson metric on V : we have used the Kalmanson
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conditions for i ≺ j ≺ k ≺ l as well as the triangle inequality in our proof.
As the distances that do not involve the new offspring z remain unchanged by
the construction principle of type R matrices, we conclude that the distances
(dij) on X ∪ {z} also satisfies the Kalmanson inequalities. ut

3.3 Robinsonian Distances and Hamiltonian Paths

The basic idea of converting a TSP into a shortest Hamiltonian path problem
is folklore. One simply adds a dummy node 0 between 1 and n with d0π(i) = c
large enough. Then a shortest Hamiltonian path will use 0 as an endpoint to
avoid using 2c in the solution. The resulting expanded distance matrix (dij)
on V ∪ {0} is circular decomposable if and only if the Kalmanson conditions
also hold for quadruples involving the dummy node, i.e., if and only if

max{d0i + djk, d0k + dij} ≤ d0j + dik (20)

holds for all 0 ≺ i ≺ j ≺ k. Since d0i = c this simplifies to the condition

max{dij , djk} ≤ dik for all i < j < k . (21)

A dissimilarity d is called Robinsonian if there is a permutation π so that

max{dπ(i)π(j), dπ(j)π(k)} ≤ dπ(i)π(k) for all i < j < k. (22)

The so-called serialization problem [44,27] of linearly ordering objects is solved
by the order π for Robinsonian dissimilarities. This result appears to be folk-
lore, we have not found a simple direct proof.

Lemma 3 If d is Robinsonian, then π is a shortest Hamiltonian path.

Proof W.l.o.g. we assume π = ι = (1, 2, . . . , n). Consider an arbitrary permu-
tation ξ. Then there is a bijection ϕ between the adjacencies [ξ(i)ξ(i+1)] w.r.t.
ξ and the adjacencies [p, p+ 1] w.r.t. ι so that ξ(i) ≤ p < p+ 1 ≤ ξ(i+ 1)]. To
see this we argue by induction. For n = 2 the statement is trivial. In general
ξ is either (1) the extension of a permutation ξ′ on {1, 2, . . . , n − 1} by one
of the adjacencies [1, n] or [n − 1, n], or (2) ξ is obtained by inserting n into
the adjacency [ξ′(k)ξ′(k + 1)] = [u, v] with u = min(ξ′(k), ξ′(k + 1)) and v =
max(ξ′(k), ξ′(k+ 1)) In case (1) ϕ is the extensions of ϕ′ by [1, n] 7→ [n− 1, n]
or [n− 1, n] 7→ [n− 1, n]. In case (2) we obtain ϕ from ϕ′ by replacing [u, v] 7→
[p, p+ 1] with [u, n] 7→ [p, p+ 1] and adding [v, n] 7→ [n− 1, n]. The Robinson
condition (21) implies dξ(i),ξ(i+1) ≥ dp,p+1 for ϕ([ξ(i)ξ(i+ 1)]) = [p, p+ 1] and
hence L(ξ) ≥ L(ι), i.e., ι is a shortest Hamiltonian path. ut

The Robinson property also plays an important role in cluster analysis,
where it characterizes certain generalizations of hierarchies [14,24,43]. So-
called quadripolar Robinson dissimilarities that also satisfy the Kalmanson
condition are studied in some detail in [12].
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Lemma 4 Suppose (dij) satisfies Eqn.(21) on V . Then the distance matrix on
V ∪{z} obtained by inserting the recombinant node z between adjacent parents
j′ and j′′ also satisfies the Robinson condition Eqn.(21).

Proof Suppose j = z is the new node derived from parents j′ ≺ z ≺ j′′. Then
for i < j′ and k > j′′ we have diz = adij′ + (1 − a)dij′′ and dzk = adkj′ +
(1− a)dj′′k. Thus max{diz, dz,j} ≤ amax{dij′ + dj′k}+ (1− a)(dij′′ + dj′′k) ≤
dik. The special case i = j′, k > j′′ yields: dj′z = (1 − a)dj′j′′ and thus
max{(1 − a)dj′j′′ , adj′k + (1 − a)dj′′,k} ≤ adj′k + (1 − a) max{dj′j′′ , dj′′,k} ≤
adj′k + (1 − a)dj′k = dj′k. An analogous computation works for i < j′ and
j′′ = k. Finally, for i = j′ and k = j′′ we have, by construction dj′z =
(1− a)dj′j′′ ≤ dj′j′′ and dzj′′ = adj′j′′ ≤ dj′j′′ . ut

It is important to note that the choice of δk can destroy the inequality:
From max{dij , djk} ≤ dik we cannot conclude that {dij + δi + δj , dij + δj +
δk} ≤ dik + δi + δk}. Hence, very uneven evolution rates or a mechanism that
makes the “middle” genes in a gene cluster evolve much faster can destroy the
betweenness conditions. The Robinson condition should be satisfied at least
in very good approximation if the evolution rates of the offspring are not too
different. Gene conversion, which effectively reduces distances, should make it
even easier to satisfy Eqn.(21).

4 Simulations and Application to Real-Life Data

4.1 Inference of Gene Order from Distance Data

The theory outlined above predicts that “well-behaved” gene clusters, i.e.,
those that (i) evolved by duplication of single genes only and (ii) did not ex-
perience rearrangements should be Robinsonian. In other words, the short-
est Hamiltonian path w.r.t. the genetic distances between its constituents
should be co-linear with the genomic order. It is therefore of interest to study
the length distribution of Hamiltonian paths. Associating a pseudo-energy
f(π) =

∑n
i=2 d(πi−1, πi) with a path/permutation π we may construct a prob-

abilistic model where Prob[π] ∝ exp(−βf(π)) with an “inverse temperature”
parameter β. In [45,46] we have shown that this model is tractable by a vari-
ation of the well-known exponential-time dynamic programming approach to
the Travelling Salesman Problem [3]. In brief, the ensemble (p,A, q) of paths
starting in p, ending in q and running through all elements of A is of the form
(p,A, q) =

⋃
u∈A(p,A \ {u}, u) ◦ (u, q). Using a variant of algebraic dynamic

programming on sets, this simple decomposition can be used to compute the
posterior probabilities of adjacencies in the ensemble of Boltzmann-weighted
paths as well as the posterior probabilities of vertices p and q to be endpoints
of a Hamiltonian path. Further details on the method can be found in [45,46].
It is implemented in the Gene Cluster Evolution Determined Order software
package Gene-CluEDO. 1

1 http://hackage.haskell.org/package/Gene-CluEDO
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Since the genetic distance matrix is expected to have the Kalmanson prop-
erties the NeighborNet [4,5] algorithm can be used as an alternative method
to infer the expected gene order. The consistency theorem for NeighborNet

[4,5] in particular guarantees that the correct order will be obtained for ideal
input data, i.e., input data that satisfies the Kalmanson condition. In practice,
NeighborNet has turned out to be rather resilient to noise. Hence, it can be
expected to produce good approximations to the gene order also for imperfect,
noisy input data. Concurrence of Gene-CluEDO and NeighborNet can thus be
used as support for the correctness of the reconstructed order, see Fig. 6.

4.2 Simple Simulation of Gene Cluster Evolution

In order to test whether sequence evolution indeed approximates type R dis-
tances we generated artificial amino acid sequence data starting from a random
initial sequence of length N . For the data reported here we use N = 1000 and
a uniform distribution of the 21 amino acids (including selenocystein). In each
iteration, first a recombinant sequence z is produced from two adjacent par-
ents x and y so that z is placed between x and y. To model unequal crossover
in Gehring’s model we randomly choose a breakpoint position k and produce z
as concatenation of y[1, k] and x[k+1, n]. In the first step, the initial sequence
is simply copied. We also consider the case where the breakpoint is outside the
“gene”, i.e., instead of producing a recombinant sequence z we use a copy of
x or y with probability ψ. If ψ = 1, we obtain the limit of tree-like evolution.

The second part of each iteration consists of independent mutations applied
to all sequences. To this end, we replace with probability µ the amino acid in
each sequence position by a randomly chosen alternative. The per site mutation
rate µ must be chosen large enough to ensure a measurable divergence in each
step. On the other hand, the sequence divergence should not saturate after n
duplication-mutation steps, i.e., the expected total number of mutations per
sites should not substantially exceed 1. Thus 1/N . µ . 1/n.

Since we do not simulate insertions and deletions, the sequences are already
properly aligned. In order to obtain an approximately additive distance matrix
from the simulated sequences we use the Jukes-Cantor transformation [22] to
account for multiple mutations hitting the same site. Fig. 6 shows data for
simulation with only local gene duplications in (a) and with unequal crossover
in Gehring’s model in each step in (b) to (e).

The gene order in the cluster and the reconstructed order in either the
Gene-CluEDO or the circular order inferred using NeighborNet do not match
for tree-like evolution. The reason is that in this case many orders, namely all
outlines of any planar embedding of the tree, are equivalently perfect data. The
simulated sequence data by construction contain stochastic noise that breaks
this symmetry in a random manner. More precisely, distances empirically in-
ferred from sequences will satisfy the equality in equ.(3) only approximately.
As a consequence, the tree edge belonging to the split xy|uv will be expanded
to narrow box as in Fig. 4. It is completely up the noise, whether the sec-
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ond split is xu|yv or xv|yu, an thus, whether the circular order is x, u, v, y or
x, v, u, y.

In contrast, both Gene-CluEDO and circular order reproduce the gene order
in the cluster in the vast majority of simulations with unequal crossover in
Gehring’s model. The choice of the mutation rates µ makes little difference as
long as the genetic distances between the sequences are not saturated.

An exception is Fig. 6(c), where NeighborNet “misplaces” sequence 1. A
detailed analysis of the data shows that both 3 and 9 are unequal crossover
products involving 1, however by chance the breakpoint was located so that
only a tiny fraction of 1 was included in 3 and 9. The example thus contains an
“almost tree-like” step, which does not retain sufficient ordering information.

4.3 Analysis of Gene Clusters

4.3.1 Pairwise Distances

In the following we illustrate the application of the theoretical results to the
analysis of several gene clusters. To this end, we retrieved the amino acid
sequence data of the annotated proteins from the NCBI data base, constructed
and—where necessary—manually curated sequence alignments, and used these
to compute the matrices of pairwise genetic distances that are taken as input
by both Gene-CluEDO and NeighborNet.

Multiple sequence alignments were computed with T-Coffee [36]. Since
highly variable regions in the proteins mostly introduce noise into the align-
ment and the subsequent reconstruction of the phylogenetic network, we re-
moved highly variable alignment columns using noisy [16]. From the processed
alignment we then computed the evolutionary distances interpreting gap char-
acters as additional characters. The resulting raw distances are transformed
into evolutionary distances using the Jukes-Cantor correction [22]. For the
lancelet Hox cluster we obtained an extremely gap-rich alignment. We there-
fore constructed an alternative alignment using the block-based dialign ap-
proach [1], which identifies a chain of significant local alignments. We retained
only the alignment blocks with a non-zero significance score.

4.3.2 Hox gene cluster

We already showed in previous work [46] that the Hamilton path method im-
plemented in Gene-CluEDO can be applied to investigating the ancient evolu-
tion of Hox gene clusters. Cephalochordates harbour the largest known single
Hox gene clusters, comprising 15 members [41]. The Hox gene clusters are
known to have expanded independently in the major deuterostome lineages
[42] making them a particularly interesting model system for testing Gehring’s
model. The results of this analysis are shown in Fig. 7. Over all, the amphioxus
cluster behaves as expected. In line with the analysis of Hox clusters from the
coelacanth [46], both Gene-CluEDO and NeighborNet reproduce the genomic
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Fig. 7 The Hox gene cluster of B. lanceolatum. How the pairwise distances are created is
described in Section 4.3.1. The left site is a composite of three rows. The first row shows the
cluster and the order on the genome. In the second and third row the results of Gene-CluEDO
are displayed. They are created with β = 0.0025. The size of the black box in a cell coincides
with the likelihood of this cell. The second row shows the probability that a sequence is on
the edge of the cluster. The third row gives the probability that two sequences are adjacent
to each other in the cluster. The right site then shows the network that is created with the
NeighborNet [4,5] algorithm. The network scale is indicated by a grey scale bar.

arrangement. There are a few notable deviations, however: Both methods re-
port a reversed ordering of HOX1 and HOX2. A blastp search, however,
confirmed that the sequences of these two genes unambiguously belong to the
HOX1 and HOX2 paralog groups that are present in all deuterostomes. We
suspect that adaptive evolution of one of these genes may be responsible for
the observed discrepancy. NeighborNet shows HOX11 and HOX12 in reverse
order. However, the splits involved in establishing this ordering have very small
weights, suggesting that this reversal is not significant.

We conclude, therefore, that the evolution of the HOX gene cluster most
likely followed Gehring’s model. Another aspect supporting this conclusion is
the placement of splits in the network created by NeighborNet. The genes are
placed in a nearly perfect circle around the center of the network. Comparing
its topology to the topologies of the clusters created by simulating Gehring’s
model, we can see high similarity in the network structures (see Fig. 6).

4.3.3 PSG gene cluster

The pregnancy-specific glycoproteins (PSG) play an important role in the im-
mune system during pregnancy [8]. They form a well-defined subfamily of
the Carcinoembryonales Antigen gene family, which in turn belongs to the
immunoglobulin gene superfamily. The PSG family forms a cluster that has
independently expanded in some mammalian classes, most prominently in ro-
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Fig. 8 The PSG gene cluster of Homo sapiens. For additional legends see Fig. 7.

dents and primates. Here we analyzed the human PSG gene cluster, which
contains ten PSG genes. Five CEACAM pseudogenes are interspersed in the
cluster. The results of this analysis are shown in Fig. 8.

The data shows two remarkable properties. Consistent with evolutionar-
ily recent duplications the PSG genes are very similar to each other. The
second remarkable property is that the orders inferred with Gene-CluEDO

and NeighborNet do not fit to the real genomic order. In fact only three
(Gene-CluEDO) or four (NeighborNet) genes appear in the order of their ge-
nomic positions. The data are not consistent with the prediction from Gehring’s
model.

Two aspects provide possible explanations. Mouldi et al. [48] proposed that
the PSG gene cluster in primates evolved under purifying selection for gene
conversion. Chang et al. [8] proposed that a high number of unequal crossover
events had occured in primate evolution. A very large number of duplicates,
however, may reduce the selection pressure on single gene copies such that
gene loss is no longer lethal. This may lead to missing genes and to large
differences in evolution rates of individual copies. The latter may account for
a violation of the Robinson property, and thus deviations between the observed
genomic gene order and the order inferred by Gene-CluEDO from the genetic
distances. An observation that supports these explanations is that PSG11 and
PSG2 stand out of the other genes as relative diverse (see NeighborNet plot).
Possibly genes that could close this gap were lost due to unequal crossover.



22 Sonja J. Prohaska et al.

rH
ox
4a

rH
ox
4b

rH
ox
2e

rH
ox
2f

rH
ox
3f

rH
ox
2a

rH
ox
3c

rH
ox
2d

rH
ox
2b

rH
ox
2c

rH
ox
3e

rH
ox
3a

rH
ox
4c

rH
ox
4d

rH
ox
4e

rH
ox
4f

rH
ox
3g

rH
ox
2g

rH
ox
4g

rH
ox
3h

rH
ox
2h

rHOX3G

rHOX4F
rHOX4G
rHOX4BrHOX4DrHOX4ErHOX4C

rHOX4A

rHOX2D
rHOX2G

rHOX2C
rHOX2B
rHOX2A
rHOX2ErHOX2F

rHOX2H

rHOX3F rHOX3HrHOX3CrHOX3ArHOX3E

10

Fig. 9 The α-Rhox gene cluster of Mus musculus. Genes oriented in the opposite reading
direction are indicated by darker boxes and underlined gene names. For additional legends
see Fig. 7.

4.3.4 α-Rhox gene cluster

The Rhox genes [29] are expressed during both embryogenesis and in adult
reproductive tissues. In the mouse they are located in a single cluster on the
X chromosome comprising 33 genes in three subclusters (α,β and, γ). The
Rhox cluster is notable for its unusually rapid evolution. Here we included 23
well annotated genes of the α-Rhox cluster, after removing the pseudogene
rHox3d, the highly diverged rHox1 sequence, as well as rHox3b, for which no
translation is reported in the NCBI.

Fig. 9 shows that the data set is divided into three groups. All rHox2 genes
are in one group (left), all rHox3 genes form the second group (bottom) and
all rHox4 genes build the third group (top right). These groups are clearly
separated from each other. The α-Rhox gene cluster clearly has not evolved
conforming to Gehring’s model. As described e.g. in [28], the basic unit of
tandem duplications is a block comprising an rHox2, rHox3, and rHox4 gene.
Subsequent gene losses further restructured the cluster. In addition the cluster
was subject to an inversion. Our analysis does not contradict this scenario.

4.3.5 ADH gene cluster

The alcohol dehydrogenases (ADH) family exists in a wide range of taxa, from
bacteria to plants and humans [39]. Their main function in animals is to break
down alcoholes that are otherwise toxic. Most members of this gene family
appear in a well-studied gene cluster. The Human ADH gene cluster comprises
seven genes, one each belonging to classes 2-5 as well as three paralogous of
class 1 ADHs. Here, we find three elements in the cluster, which also cluster
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Fig. 10 The ADH gene cluster of Homo sapiens. For additional legends see Fig. 7.

together regarding the results of Gene-CluEDO and NeighborNet, shown in
Fig. 10.

As the genes are relatively similar to each other, genetic distances are
small. The reconstructed cycle order inferred with both Gene-CluEDO and
NeighborNet is the same as the genomic gene order. Gene-CluEDO identified
ADH1A and ADH6 as the extreme ends in terms of genetic distance. These
two genes are located adjacent to each other in the middle of the cluster.
This may be an artefact of the small distances, since ADH5 and ADH7, for
instance, have more or less the same distance to the split point inferred by
Gene-CluEDO.

Our analysis thus suggests that the cluster evolved in line with Gehring’s
model. The order is perfectly reconstructed. It is argued in [39] based on the ob-
servation that different exons of the genes resulted in different maximum parsi-
mony trees that the ADH1 genes have not been subject to gene conversion [39].
This observation is also consistent with the assumption of unequal crossover
within the gene as mechanism underlying the duplications: in this scenario,
duplicate genes are composed of two parts of two distinct genes, with differ-
ent evolutionary history. Gene duplication following Gehring’s model therefore
provides an explaining for the differences in exon-specific tree reconstructions
as observed vor ADH gene clusters.

5 Conclusions

In this contribution we have investigated in some detail a model of gene cluster
evolution that goes beyond identical tandem copies. Based on Walter Gehring’s
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ideas, we saw that unequal crossing over events produce genes that are hybrids
of their adjacent genes. The distances between the members of a gene cluster
therefore are not expected to be tree-like. Instead they form a distinctive sub-
class of circular decomposable (Kalmanson) distances, which we have termed
here type R. As a consequence, the genomic gene order matches the circu-
lar order associated with the Kalmanson-type genetic distance matrix. The
NeighborNet algorithm [4], a commonly used tool for the inference of phy-
logenetic networks, readily infers this order. This provides a simple method
to check whether a gene cluster evolves according to Gehring’s model or not.
To better characterize type R distances, we showed that they are recognizable
in polynomial time and that the sequence of unequal crossover events can be
inferred from a given type R distance matrix.

Additive tree metrics, which arise if the crossover breakpoints are located
between genes, are a special case of type R distances. In this case, the circular
order is ambiguous since an arbitrary decision can be made at each interior
vertex of the phylogenetic tree. More precisely, all planar embeddings of the
phylogenetic tree yield a valid circular order.

The genetic distances of gene clusters evolving according to Gehring’s
model of unequal crossover within genes also satisfy the Robinson condition, at
least as long as selective pressures and thus evolutionary rates on paralogous
members are not too different. This implies that shortest Hamiltonian paths
w.r.t. the genetic distance should be co-linear with the genomic order of genes.
Numerical simulations show that this type of co-linearity can be used to distin-
guish clusters that evolve through unequal crossover within genes from clusters
where unequal crossing over occurs (mostly) between genes. The tree-like evo-
lution in the latter case yields equivalent solutions of the shortest Hamiltonian
path problem, again corresponding to arbitrary planar embeddings of the tree.
Small amounts of noise in the data then typically yield optimal solutions that
differ substantially from co-linearity with the genomic arrangement.

We tested these ideas using well-studied gene clusters as examples. The Hox
cluster of the lancelet, for instance, essentially follows Gehring’s paradigm.
This is also true to a certain extent for the ADH gene cluster. Other clus-
ters, such as the cluster of rodent Rhox genes or the PSG immunoglobulines,
however, show little or no indication of unequal crossover within genes, and
drastic deviations from co-linearity between gene orders inferred from genetic
distances and their actual genomic arrangements.

The work presented here focused on the mathematical foundations and
the demonstration that genetic distance matrices are informative about the
mode of gene cluster evolutions. Several open problems remain, in particular
related to practical applications. The recognition algorithm Alg. 2 requires
an exact type R structure. Since the conditions for a metric to be type R
involves equalities, an empirically determined distance matrix generically will
not be type R due to noise. This begs the question how a best-fitting type R
matrix can be identified, and how the deviation from a type R matrix should
be quantified most appropriately. Together with the approximation of a type



Gene Clusters and Shortest Hamiltonian Paths 25

R matrix it would be useful to compute the most likely sequence of unequal
crossovers.

In this contribution we have considered only the special case that unequal
crossover is restricted to adjacent genes. This assumption does not cover all
cases of biological interest, as the case of the Rhox cluster shows: there, the unit
of duplication is a sequence of three genes. It will be interesting to see, whether
unequal crossover events that lead to the duplication of larger subclusters leads
to similar mathematical structures, and whether such events could be inferred
from a careful analysis of the genetic distance matrix.
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Predecessor Relation of Crossover Events

Alg. 3 utilizes the associative properties of gene identifiers that allow constant time
mapping between pairs of genes and recombinant triples. If triples are derived from a linear
type R matrix, they form a natural binary tree that is to be established by the algorithm,
where each triple (x, y : z) can be a left or right successor to another triple on (x, y), accept
a left successor on (x, z), or accept a right successor on (z, y).

Each triple is added in turn, checking for connections to already added triples using
associative arrays (map) for each connection type. If a connected triple was already added,
an open entry is found in the corresponding map, else a new entry will be added to the
according inverse map. For instance, an added left successor needs to look at an open
predecessor. If a single tree was created, the linear order of genes can be found by traversing
the tree. If no linear order exists, multiple trees will be created, as necessary connectors are
either never added to an open map or have been removed since entries in open maps are
only used for a single connection.
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Algorithm 3 Establishes the successor/predecessor relation of triples

Require: set T = {t1, .., tn} of triples in the form ti = (xi, yi : zi)
Initialize Map open predecessor
Initialize Map open left successor
Initialize Map open right successor
for ti = (xi, yi : zi) ∈ T do

if xizi in open predecessor then
ti.left child ← open predecessor[xizi]
remove open predecessor[xizi]

else
open left successor[xizi] ← ti

end if
if ziyi in open predecessor then
ti.right child ← open predecessor[ziyi]
remove open predecessor[ziyi]

else
open right successor[ziyi] ← ti

end if
if xiyi in open left successor then

open left successor[xiyi].left child ← ti
remove open left successor[xiyi]

else if xiyi in open right successor then
open right successor[xiyi].right child ← ti
remove open right successor[xiyi]

else
open predecessor[xizi] ← ti

end if
end for
traverse tree for order


