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Alignments, i.e., position-wise comparisons of two or more strings or ordered
lists are of utmost practical importance in computational biology and a host
of other fields, including historical linguistics and emerging areas of research in
the Digital Humanities. The problem is well-know to be computationally hard
as soon as the number of input strings is not bounded. Due to its practical
importance, a huge number of heuristics have been devised, which have proved
very successful in a wide range of applications. Alignments nevertheless have
received hardly any attention as formal, mathematical structures. Here, we
focus on the compositional aspects of alignments, which underlie most algo-
rithmic approaches to computing alignments. We also show that the concepts
naturally generalize to finite partially ordered sets and partial maps between
them that in some sense preserve the partial orders.

1 Introduction
Alignments play an important role in particular in bioinformatics as a means of comparing
two or more strings by explicitly identifying correspondences between letters (usually called
matches and mismatches) as well as insertions and deletions [11]. The aligned positions are
interpreted either as deriving from a common ancestor (“homologous”) or to be functionally
equivalent. Alignments have also been explored as means of comparing words in natural
languages, see e.g. [5, 9, 33, 51], as a convenient way of comparing ranked lists [16], for
comparison of text editions [53, 58], and to analyse synteny in the comparison of genomes
[21, 55].

The literature on alignments is extensive. However, it its concerned almost exclusively
with practical algorithms and applications. The alignment problem for two input strings
has an elegant recursive solution for rather general cost models and has served as one of
the early paradigmatic examples of dynamic programming [44, 49]. Since these algorithms
have only quadratic space and time requirements for simple cost models [19, 44], they are
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(a) (b) (c) (d)
A 0000111110000 A 0000111110000 B 000011011---- B 000011011
B 000011011---- C ----100010000 C ----100010000 C 100010000

s = 4 s = 2 s = -5 s = 5

Figure 1: Alignments of three binary sequences A, B, and C with a simple column-wise score of +1 for
matches, 0 for mismatches, and −1 for gaps. Alignment (c) is transitively implied by (a) and (b), but
is it not an optimal pairwise alignment of B and C.

of key importance in practical applications. The same recursive structure easily generalizes
to alignments of more than two sequences [8, 38] even though the cost models need to be
more restrictive to guarantee polynomial-time algorithms [31]. The computational effort
for these exact solutions to the alignment problem increases exponentially with the number
of sequences, hence only implementations for 3-way [20, 32, 34] and 4-way alignments [51]
have gained practical importance. A wide variety of multiple sequence alignment problems
(for arbitrary numbers of input sequences) have been shown to be NP-hard [6, 14, 28, 30, 56]
and MAX SNP-hard [40, 57]. The construction of practical multiple alignment algorithms
therefore relies on heuristic approximations. These fall into several classes, see e.g. [3, 12]
for reviews.
(1) Progressive methods typically compute all pairwise alignments and then use a “guide
tree” to determine the order in which these are stepwisely combined into a multiple align-
ment of all input sequences. The classical example is ClustalW [35]. The approach can be
extended to starting from exact 3-way [32, 34] or 4-way alignments [51].
(2) Iterative methods starting to align small gapless subsequences and then extend and
improve the alignment until the score converges. A paradigmatic example is DIALIGN [42].
(3) Consistency-based alignments and consensus methods start from a collection of partial
alignments (often exact pairwise alignments) to obtain candidate matches and extract a
multiple alignment using agreements between between the input alignments.

Most of the successful multiple alignment algorithm in computational biology combine
these paradigms. For example T-COFFEE [45] and ProbCons [10] use consistency ideas in
combination with progressive constructions; MUSCLE [13] and MAFFT [29] combine progres-
sive alignments with iterative refinements.

A key assumption underlying consistency based methods is transitivity: considering
three input sequences x, y, and z, if xi aligns with yj and yj aligns with zk, then xi should
also align with zk. While this property holds for the pairwise constituents of a multiple
alignment, it is a well known fact that the three score-optimal alignments that can be
constructed from three sequences in general violate transitivity, see Fig. 1. TRANSALIGN
[39] uses transitivity to align input sequences to a target database using an intermediary
database of sequences to increase the search space. Here, intermediary sequences show
which subsequences of input and target sequence can be transitively aligned. This may
result in a few well aligned subsequences that are then extended to one aligned region via
a simple scoring function. The same notion of transitivity is also used in psiblast [2] to
stepwisely increase the set of sequences that are faintly similar to an input sequence.

Practical applications distinguish whether the complete input sequences are to be
aligned, or whether a maximally scoring interval is to be considered. In the latter case one
allows an additional “unaligned state” for prefixes and/or suffixes of the input. This leads
to slight changes in exact algorithms, exemplified by an extra term in the local Smith-
Waterman algorithm [50] compared to the global Needleman-Wunsch [44] algorithm. This
idea can be generalized to mixed problems in which a user can determine for each of the
two ends of each input sequence whether it is to be treated as local or global [48]. For
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the purpose of the present contribution (partially) local alignments require a slight, trivial
extension of the presentation, which we – for the sake of clarity if the presentation – only
briefly comment on.

Alignments are usually constructed from strings or other totally ordered inputs, hence
the columns of the resulting alignment are usually also treated as a totally ordered set.
Consecutive insertions and deletions, however, are not naturally ordered relative to each
other: gugugu--acgggcca guguguac--gggcca

gucuguug--gggccc gucugu--uggggccc (1)

are alignments that are equivalent under most plausible scoring models. The idea to con-
sider alignment columns as partial orders was explored systematically in [37] and a series
of follow-up publications [22, 36]. Here, (mis)matches are considered as an ordered back-
bone, with no direct ordering constraints between an insertion and a deletion. The resulting
alignments are then represented as directed acyclic graphs (DAGs), more precisely, as the
Hasse diagrams of the partial order. The key idea behind the POA software [37] is that
a sequence of DAGs can be used as an input to a modified version of the Needleman-
Wunsch algorithm [44]. Recently this idea has been generalized to the problem of aligning
a sequence to a general directed graph [47, 54].

Despite the immense practical importance of alignments, they have received very little
attention as mathematical structures in the past. The most comprehensive treatment, at
least to our knowledge, is the Technical Report [43], which considers (pairwise) alignments
as binary relations between sequence positions that represent matchings and preserve order.
We use many of these ideas here. The notion of a composition of pairwise alignments –
formalized as composition of partial maps that represent the matching – first appears in
[39]. We will return to this point in Section 3. Following our earlier work [46], we will use
a language that is closer to graph theory than the presentation of [43].

2 Alignments and Partial Orders
Consider a finite collection X of two or more finite totally ordered sets Xa. It will be
convenient in the following to denote an element i ∈ Xa by (a, i). The following definition
rephrases the approach taken e.g. in [43, 52]. It will be generalized below to deal with
partial orders instead of total orders.

Definition 1 ([46]). A total alignment of the totally ordered sets Xa is a triple (X,A,<)
where (X,A) is a graph and < is a total order relation on the set of connected components
C(X,A) satisfying1

(1) Q ∈ C(X,A) is a complete subgraph of (X,A).

(2) If (a, i) ∈ Q and (a, j) ∈ Q, then i = j.

(4) If (a, i), (b, j) ∈ P and (a, k), (b, l) ∈ Q with i < k then j < l.

(5) If (a, i) ∈ P , (a, j) ∈ Q and i < j then P < Q.

The connected components of (X,A) are usually called the alignment columns. Condi-
tion (2) ensures that every alignment column contains at most one element of each ordered
set Xa. Conversely, every element (a, i) is contained in exactly one connected compo-
nent, i.e., alignment column. Condition (4) requires that alignment columns do not cross.

1There is no condition (3) due to synchronization with the definitions for partial orders defined later.
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Condition (5) ensures that the order on the columns is such that the projection of the
alignment columns to each individual row exactly recovers the input order. Conditions (4)
and (5) in general only specify a partial order as the following result shows:

Lemma 2. Let (X,A) be the graph of an alignment and denote by ≺ the relation on
C(X,A) defined by P ≺ Q whenever there is (a, i) ∈ P and (a, j) ∈ Q with i < j. Then
the transitive closure ≺̈ of ≺ is a partial order on C(X,A).

Proof. Clearly ≺̈ is antisymmetric. If P ≺ Q, then there there is a sequence of columns
P = Q0≺̈Q1≺̈ . . . Qk = Q. Since the sequence of elements (a, i) belonging to the same
Xa is strictly increasing with the column index j for each a along any such sequence of
columns, it follows that the transitive closure of ≺̈ is still antisymmetric, and thus a partial
order.

As an immediate consequence, there is also a (not necessarily unique) total order <∗
of the alignment columns, obtained as an arbitrary linear extension of ≺̈, which by con-
struction satisfies

P <∗ Q, (a, i) ∈ P, and (a, j) ∈ Q implies i < j. (2)

Hence, whenever conditions (1), (2), and (4) in Definition 1 are satisfied, there indeed
exists a total order on C(X,A) that satisfies condition (5).

In order to treat (partially) local alignments it is necessary to distinguish aligned and
“unaligned” columns. Each unaligned column may contain only a single element – note
however, that also regular columns may contain only a single entry from each row. Fur-
thermore, all “unaligned” positions for a prefix and/or a suffix of each input (Xa, <a) form
“unaligned” columns.

In this condition we will consider a more general setting. Instead of totally ordered
sets Xa we will consider finite partially ordered sets (Xa,≺a).

Definition 3. An alignment of X is a triple (X,A,≺) where (X,A) is a graph and ≺ is
a partial order on the set of connected components C(X,A) such that

(A1) Q ∈ C(X,A) is a complete subgraph of (X,A).

(A2) If (a, i) ∈ Q and (a, j) ∈ Q, then i = j.

(A3) If (a, i) ∈ P , (a, j) ∈ Q and (a, i) ≺a (a, j) then P ≺ Q.

(A4) P ≺ Q, (a, i) ∈ P and (a, j) ∈ Q implies (a, i) ≺a (a, j) or (a, i) and (a, j) are
incomparable w.r.t. ≺a.

Condition (A3) constrains the partial order on the columns to respect the partial order
of the rows. Condition (A4) insists that columns also must not cross indirectly.

Condition (A4) obviously implies the following generalization of (4):

(A4∗) (a, i), (b, j) ∈ P and (a, k), (b, l) ∈ Q and (a, i) ≺a (a, k) implies (b, j) ≺b (b, l) or
(b, j) and (b, l) are incomparable w.r.t. ≺b.

However, (A4∗) is not sufficient to guarantee that the alignment columns form a partially
ordered set. A counterexample is shown in Fig. 2. It is therefore necessary to require the
existence of the partial order ≺ on C(X,A) in Definition 3.
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1 2 3 4

a

b

Figure 2: Property (A4∗) is not sufficient to ensure the existence of a partial order ≺ on C(X,A).
Consider the partial orders (a, 4) ≺a (a, 1) and (a, 2) ≺a (a, 3) and (b, 1) ≺b (b, 2) and (b, 3) ≺a (b, 4),
with alignment colums {(a, i), (b, i)} for i = 1, 2, 3, 4. Clearly (A2), (A3), and (A4∗) holds, but the
directed cycle shows that no partial order on the colums exists that is consistent with both partial
orders.

In order to model partially local alignments of PO-sets we consider the set A of aligned
columns and a partition of the set of “unaligned columns” into two not necessarily non-
empty subsets P and S such that for all U ∈ P, V ∈ A and W ∈ S it holds that
W 6� V and V 6� U , i.e., no “unaligned” suffix column preceeds an aligned column, and
no “unaligned” prefix column succeeds an aligned column. “Unaligned” prefix columns
belonging to different rows (Xa,≺a) are considered mutually incomparable; the same is
assumed for “unaligned” suffix columns. With the caveat that “unaligned” columns need to
be marked as such, there is no structural difference between local and global alignments.

If all (Xa,≺a) are totally ordered then condition (A4) implies the non-crossing condition
(4) because (b, j) and (b, l) cannot be incomparable w.r.t. ≺b, and thus the required partial
order ≺ is obtained as the transitive closure of the relative order of any two columns.
Definitions 1 and 3 therefore coincide for totally ordered rows.

The existence of (non-trivial) alignments of any collection of finite partial orders (Xi,≺i),
i = 1, . . . , N is easy to see: each of the partial orders can be linearly extended to a total
order (Xi, <i). Any alignment of these total orders is also an alignment of the underlying
partial orders, with a suitable partial order of the columns given by Lemma 2.

It may be interesting to explore alignments satisfying a (much) stronger version of
axiom (A4), which stipulates that (Xa,≺a) is recovered as projection of (X,A) onto row
a, i.e.,

(A5) P ≺ Q, (a, i) ∈ P and (a, j) ∈ Q implies (a, i) ≺a (a, j).

As argued above, (A4) and (A5) are equivalent if all (Xa,≺a) are totally ordered. In
general this is not the case, as the example in Fig. 3 shows.

The following simple, technical result is a generalization of Lemma 2, showing that
condition (A5) is sufficient to guarantee the existence of a partial order on the columns.

Lemma 4. Let (X,A) be a graph with connected components C(X,A) satisfying (A1) and
(A2). Let ≺ denote the transitive closure of the relation ≺̇ defined by (A3), i.e., P ≺̇Q
whenever (a, i) ∈ P , (a, j) ∈ Q and (a, i) ≺a (a, j) then P ≺ Q. Finally assume that
axiom (A5) holds. Then ≺ is a partial order on C(X,A)

Proof. It suffices to show that ≺ is antisymmetric. It is clear from the construction that
by (A5) we know that ≺̇ is antisymmetric. If ≺ is not antisymmetric, then there is
a finite sequence of columns Pi, i = 0, . . . , k such that P0≺̇P1≺̇ . . . ≺̇Pk≺̇P0 such that
any two consecutive columns Pi and Pi+1 have at a pair of entries, say (ai, h) ∈ Pi

and (ai, h
′) ∈ Pi+1, in the same row. For the transitive closure this would imply both
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Figure 3: Top: Pairwise alignments of partially ordered sets. Thin black edges show the Hasse diagram,
to be read from left to right. Alignment edges are shown in green.
Bottom: The induced partial order of the alignment columns with corresponding points vertically
aligned. The partial order is again shown as a Hasse diagram, with superflous edges omitted. Both
the l.h.s. and the r.h.s. example satisfy (A4), i.e., none of order relations ≺1 and ≺2 is violated in the
alignment. The red edges highlight two comparabilities introduced by partial order of the columns that
are absent in the input posets. Red edges therefore imply a violation of condition (A5). Hence the
l.h.s. alignment violates (A5), while the r.h.s. alignment does not.

(ai, h) ≺ (ai, h
′) from (ai, h)≺̇(ai, h

′) and (ai, h
′) ≺ (ai, h) by going around the cycle,

contradictiong axiom (A5).

Condition (A5) implies that the restriction of the partial order ≺ on the columns to any
subset of columns in which a given set of rows is represented coincides with the induced
partial order on the corresponding vertex set in (Xa,≺a). Regarding the (Xa,≺a) as
graphs, the aligned columns form a common induced subgraph. The alignment problem
for partially ordered sets under axiom (A5) thus can be seen as a generalized version of a
maximum induced subgraph problem. We refer to [7] for a discussion of the relationships
of edit distances and maximum common subgraph problems in a more general setting.

The following result generalizes Lemma 1 of [46]:

Lemma 5. Let (X,A,≺) be an alignment and let Y ⊆ X. Then the induced subgraph
(X,A)[Y ] with the partial order ≺ restricted to the non-empty intersections Q ∩ Y for
Q ∈ C(X,A) is again an alignment. Furthermore, if (X,A,≺) satisfies (A5), then the
restriction to (X,A)[Y ] again satisfies (A5).

Proof. Every induced subgraph of a complete graph is again a complete graph, hence
(A1) holds for (X,A)[Y ], hence the connected components of (X,A)[Y ] are exactly the
non-empty intersections of Y with the components Q of (X,A). Condition (A2) remains
unchanged by the restriction to Y . Finally, the partial order ≺ satisfying (A3) restricted
to the non-empty intersections Q ∩ Y for Q ∈ C(X,A) is a partial order that obviously
still satisfies (A4) since the restriction to Y only removes some of the conditions in (A4).

To see that the restriction of (X,A)[Y ] again satisfies (A5) it suffices to recall that
the partial order in the colums is given by P ∩ Y ≺ Q ∩ Y whenever P ≺ Q and both
P ∩ Y 6= ∅ and Q ∩ Y 6= ∅. If one of the intersections is empty, axiom (A5) becomes void
since the empty set is not a column in (X,A)[Y ]. On the other hand, if the two restricted
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columns have entries (a, i) and (a, j) in the same row, then (A5) for (X,A,≺) ensures
(a, i) ≺a (a, j), i.e., the implication (A5) remains true for the restricted alignment.

Note that additional partial orders on connected components of the induced subgraph
(X,A)[Y ] may exist that are not obtained as restrictions of the partial order on C(X,A).
The reason is that omitting parts of the columns may allow a relaxation of their mutual
ordering.

Rooted trees can be seen as partially ordered sets, with the natural partial order defined
by x ≺ y if y lies on the unique path connecting x and the root of the tree. This special
case is thus covered in the general framework outlined here. Usually, tree alignments are
defined on rooted oriented trees, however, where the relative order of siblings is preserved
[4, 23, 27], thus imposing additional restrictions on valid alignments. We will return to
this point in some generality in the discussion section.

3 Composition of Alignments
The fact that alignments are again totally or partially ordered sets implies that one can
also meaningfully define alignments of alignments. More precisely:

Lemma 6. Let (X,A,≺) be an alignment and consider a non-trivial partition P of the set
of objects, i.e., the rows. Denote the site sets of the classes of P by X1, X2, . . . , Xp and
consider the sub-alignments (X,A,≺)[Xi]. Then (X,A,≺) is isomorphic to the (vertex)
disjoint union of the (X,A,≺)[Xi] augmented by extra edges (x′, x′′) whenever there is a
column Q of A with x′ ∈ Q ∩Xi and x′′ ∈ Q ∩Xj for Xi 6= Xj.

Proof. The alignments (X,A,≺)[Xi] are induced subgraphs of (X,A). Their disjoint union
lacks exactly all edges that connect pairs of vertices that are in the same connected com-
ponent of (X,A) but are not in the same subgraph (X,A)[Xi]. Since the partial order
on the colums of (X,A)[Xi] is the one inherted from (X,A,≺), the re-composition of the
columns also recovers the original partial order.

The (X,A,≺)[Xi] can also be interpreted as partially ordered sets whose points are the
non-empty restrictions Q ∩Xi of the connected components of (X,A).

Definition 7. We denote by (X,A)/P the quotient graph whose vertices are the columns
of the alignments (X,A)[Xi], that is, the non-empty sets Q ∩Xi where Q is a connected
component of (X,A). Its edges are the pairs (Q ∩Xi, Q ∩Xj) for which both Q ∩Xi and
Q ∩Xj are non-empty.

The connected components of the graph (X,A)/P are therefore of the form Q′ :=
Q/P = {Q ∩ Xi|Q ∩ Xi 6= ∅}. Note that Q′ is non-empty since the column Q of (X,A)
contains at least one element, which belongs to at least one of the (X,A)[Xi]. Thus there is
a 1-1 correspondence between the connected components of (X,A) and those of (X,A)/P.
The columns of (X,A)/P naturally inherit the partial order ≺ of C(X,A). We write
(X,A,≺)/P for the quotient graph with this partial order on its connected components.

Lemma 8. (X,A,≺)/P is an alignment.

Proof. Consider the quotient graph (X,A)/P. By construction, each column Q′ is a
complete graph and contains at most one node for each class of P since it is the quotient
of a column of (X,A,≺) w.r.t. P. Also by construction, we have P ′ ≺ Q′ for the columns
of (X,A)/P whenever P ≺ Q in (X,A,≺). Since there is a 1-1 correpondence between
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columns of (X,A,≺) and (X,A,≺)/P, ≺ also serves as a partial order on the columns
of (X,A)/P, which is by construction consistent with the partial order on each of the
(X,A)[Xi].

As a consequence, every alignment can be decomposed into an alignment of alignments
w.r.t. an arbitrary partition of the rows. The constituent alignments (Xi, A,≺i) have
at most the same number of columns since “all gap” columns, Q′ = Q ∩ Xi = ∅, are
removed. By Lemma 8, the decomposition can be used recursively until each constituent
is only a single partially ordered set (Xa,≺a). Any such recursive composition is naturally
represented as a tree T whose leaves are the input posets (Xa,≺a). Each internal node of
T corresponds the an alignment of its children, with the root corresponding to (X,A,≺),
the alignment of all the data.

The reverse of this type of decomposition underlies all progressive alignment schemes.
One starts from a guide tree T whose leaves are the (Xa,≺a) and for each inner node of T
constructs an alignment (or a set of alternative alignments) from the (set of) alignments
attached to its children. It is important to note that a score-optimal alignment (X,A,≺)
in general is not the score-optimal alignment (X,A,≺)/P of score-optimal consitutents
(Xi, Ai,≺i), or, in other words, if (X,A,≺) is score-optimal, there is no guarantee that
there is any partition of the rows P such that all the restrictions (X,A,≺)[Xi] are score-
optimal subalignments. Progressive alignments methods thus can only approximate the
solution of the multiple alignment problem. Practical results depend substantially on the
choice of the guide tree T. It is has been suggested early [17], that T should closely resemble
the evolutionary history of the input sequences. Usually T is constructed from distance or
similarity measures between all pairs of input sequences – and usually pairwise alignments
are employed to obtain these data. A special case of progressive alignment adds a single
sequence in each step, instead of also considering alignments of alignments.

4 Blockwise Decompositions
On the other hand, we can also decompose alignments into blocks of columns. More
precisely, if (X,A,≺) is an alignment and Q is a partition of the X with classes Yk such
that

(i) If P ∈ C(X,A) then P ⊆ Yk for some class Yk ∈ Q.

(ii) There is a partial order / on Q such that for any two distinct classes Y ′, Y ′′ ∈ Q
such that Y ′ / Y ′′ whenever there are columns P ∈ Y ′ and Q ∈ Y ′′ with P ≺ Q.

We call the classes of such a partition blocks. By Lemma 5 each block (X,A,≺)[Yk] is
again an alignment.

Lemma 9. Given blocks (X,A,≺)[Yk] and the partial order /, there is an alignment
(X,A,≺′), where ≺′ is an an extension of ≺ defined by P ≺′ Q if and only if P ≺ Q for
P,Q ∈ Y for some Y ∈ Q and P ≺′ Q for P ∈ Y ′ and Q ∈ Y ′′ with Y ′ / Y ′′.

Proof. Each alignment block consists of the disjoint union of alignment column(s), thus
the disjoint union of complete subgraphs. Given the partial order of alignment columns
given by P ≺ Q, this order is preserverd inside the alignment blocks Yk as each block is an
alignment, too. Given an alignment block Y with P ≺ Q for P,Q ∈ Y for some Y ∈ Q,
one can decompose this into two blocks Y ′ and Y ′′ with at least one column in each block
such that P ∈ Y ′ and Q ∈ Y ′′. Based on the decomposition of Y into Y ′ and Y ′′ one can
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restore the order of the alignment blocks such that Y ′ / Y ′′ based on Y . Thus, one gets
the order of P ≺′ Q that is present for the alignment columns P and Q as well as for the
alignment blocks Y ′ and Y ′′.

In the case of totally ordered inputs, the restriction Xa ∩ Y of a block Y to an input
Xa is an interval of Xa and the columns in Y form an interval of the columns of (X,A,<).
Similarly, one can restrict choice of blocks in such a way that / just “mirrors” the initial
partial order, i.e., Y ′ / Y ′′ if and only if P ≺ Q for P in Y ′ and Q in Y ′′, in which case
≺′ = ≺ and the original alignment is recovered by the concatenation of the blocks. In
particular, this also guarantees that valid block decompositions can be constructed for
alignments satisfying (A5).

Each alignment can thus be recursively decomposed into blocks. This sets the stage for
Divide-and-Conquer algorithms such as DCA [52], which cuts the sequences to be aligned
into subsequences and then concatenates the subalignments so as to optimize a global
score. In order to find the best cut-points, the algorithm recurses on differently cut subse-
quences. Algorithms such as dialign [42] work in a conceptually similar manner but use
a bottom-up instead of a top-down approach: they first identify blocks with high sequence
conservation as “anchors” and recurse to construct alignments for sequences between them.

An extreme case of the block-wise decomposition is to consider the division of an
alignment (X,A,≺) into a single maximal (or minimal) alignment column P , and the rest
(X \ P,A′,≺) of the alignment. In order for X \ A / P to hold, we have to ensure that
pa 6≺a qa for all pa ∈ P and qa ∈ X \P , i.e., the column P must entirely consist of suprema
of the respective input posets. Under this condition, we obtain a recursive column-wise
decomposition of alignments. As we shall see in the following section, this recursion can
also be used constructively.

5 Recursive Construction
Given a PO-set (Y,≺) we say that P ⊆ Y is a bottom set if, for all p ∈ P , every p′ ≺ p
satisfies p′ ∈ P . By definition, the empty set, Y itself, as well as the set {p′ ∈ Y |p′ � y}
for each y ∈ Y are bottom sets. Note, however, that P also may contain points that are
incomparable to all other elements of P . Denote by supP the set of suprema of P , i.e.,
the points such that there is no p′ ∈ P with p ≺ p′. Clearly, if P is a bottom set and
p ∈ supP then P \ {p} is again a bottom set. The latter observation suggests that there
is a recursive construction for the set of alignments of (X1,≺1) and (X2,≺2).

Denote by AP
Q the set of all pairwise alignments on bottom sets P in X1 and Q in X2.

An alignment A ∈ AP
Q is necessarily of one of three types:

(i) A = A′(p
q ) with A′ ∈ AP ′

Q′ ,

(ii) A = A′( p
−
)
with A′ ∈ AP ′

Q , or

(iii) A = A′(−q ) with A′ ∈ AP
Q′ ,

where P ′ := P \ {p} for p ∈ supP , Q′ := Q \ {q} for q ∈ supQ, and A∅∅ contains only the
empty alignment.

The three cases correspond to a (mis)match, insertion, and deletion. It is important to
note that this recursion is in general not unique because the columns extracted from A in
consecutive steps are not necessarily ordered relative to each other whenever | supP | ≥ 1
or | supQ| ≥ 1. It is, however, a proper generalization of the Needleman-Wunsch recursion
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[44] for the pairwise alignment of ordered sets (strings): If the ≺a are total orders, then
supPa always contains a single element, and we recover the usual Needleman-Wunsch
algorithm. In order to have a proper start and end case for the recursion and thus DP-
algorithm, it is convenient to introduce “virtual” source and a sink nodes being connected
to all start or end nodes of the poset, respectively.

This idea generalizes to alignments of an arbitrary number of partial orders in the
obvious way. Denote by A(P1, P2, . . . , PN ) the set of all alignments where the Pa are a
bottom set of (Xa,≺a).

Theorem 10. Every alignment A ∈ A(P1, P2, . . . , PN ) is of the form A′Ξ where the
alignment column Ξ is a supremum w.r.t the partial order of ≺ of alignment columns
and A′ ∈ A(P ′1, P ′2, . . . , P ′N ). The column Ξ contains in row a either a gap row a, in which
case P ′a = Pa, or pa ∈ supPa, in which case P ′a = Pa \ {pa}, and does not entirely consist
of gaps. For every column Υ of A′ we have either Υ ≺ Ξ or Υ and Ξ are incomparable.

Proof. The P ′a are again bottom sets, hence A′ is an alignment. By assumption, there is
a partial order on the columns ≺ of A′. Since every non-gap entry in Ξ is a pa ∈ supPa,
it follows that this partial order extends to A if and only if Ξ is a supremum, i.e., it is
either incomparable with or larger than any column in A′. Now suppose that the column
Ξ contains a qa /∈ supPa, i.e., there is a pa ∈ Xa with pa � qa. Consider the column Υ
containing pa. Then either no partial order ≺ on the columns exists (contradicting that
A′ is an alignment), or Υ � Ξ (contradicting that Ξ is a supremum for the alignment
columns.

The bottom sets are of course uniquely defined by their suprema. Clearly supP is an
antichain, i.e., its elements are pairwisely incomparable. Conversely, every antichain U in
(Xa,≺a) uniquely defines a bottom set P := {p ∈ Xa|p � U}. It is obvious therefore that
for two bottom sets P and Q it holds that P = Q if and only if supP = supQ. Hence there
is a 1-1 correspondence between the antichains of a partial order and their bottom sets.
The recursion in the theorem can be written in terms of the antichains of the (Xa,≺a).

In order to capture the more restrictive notion of alignments satisfying (A5) the recur-
sion has to be modified in a such a way that for every (mis)match between two rows it
can be ensured that all previously formed columns are either comparable in both rows or
incomparable in both rows. This is non-trival because this information is not purely local.
For ease of discussion, we only consider the case of aligning two posets. There are at least
two strategies to maintain this information.

Attempting to construct a similar recursion as in the (A4) case, one could store with
each pair P ∈ X1 and Q ∈ X2 also all the set M of all matchings (p

q ) “to the right” of
P and Q, i.e., p ∈ X1 \ P and q ∈ X1 \ Q. Then every allowed matching/column

(
p′

q′

)
,

p′ ∈ supP and q′ ∈ supQ must satisfy: for all (p
q ) ∈ M holds: either p′ ≺ p and q′ ≺ q,

or both p′, p and q′, q are incomparable. Every such pair can be appended to M, with
corresponding updates P → P \ {p′} and Q→ Q \ {q′}. Insertions and deletions of course
only require the removal of either p′ from P or q′ from Q, respectively. Initially, P = X1,
Q = X2, and M = ∅. Every set of valid partial alignments is characterized by a triple
(P,Q,M).

An alternative approach is to store instead for each p ∈ P and q ∈ Q also the sets
cQ(p) and cP (q) that can form matches

(
p
q′

)
, q′ ∈ cQ(p) and

(
p′
q

)
, p ∈ cP (q), respectively.

Initially, we have P = X1, Q = X2, cQ(p) = Q for all p ∈ P and cP (q) = P for all q ∈ Q.
Whenever a an alignment is continued with a (mis)match (p

q ), p ∈ supP , q ∈ supQ, we
have to remove all candidates from cP (q′) and cQ(p′) that are inconsistent with (p

q ). That
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is: if q′ ≺ q, then cP (q′) ← {p′ ∈ cP (q′)|p′ ≺ p}. If q and q′ and incomparable, then
cP (q′) ← {p′ ∈ cP (q′)|p′, p incomparable}. The cQ(p′) are updated correspondingly. In
the case of an insertion

( p
−
)
, we only need to remove p from fP (q′), q′ ∈ Q. Similarly,(−

q

)
implies that q has to be removed from the fQ(p′) for all p′ ∈ P . We suspect that an

encoding of alignment sets of the form (P, fQ : P → 2P ;Q, fP : Q → 2P ) will be efficient
if the poset has only small antichains. A more detailed analysis of this kind of recursive
construction from the point of view of algorithmic efficiency will be considered elsewhere.

The POA algorithm [37] computes the alignment of two posets satisfying (A5), albeit
with the restriction that one of the two inputs is totally ordered. This removes all ambigu-
ities in the totally ordered po-set and implies that, given any match (u

v ) in the alignment,
all preceeding matches

(
u′

v′

)
satisfy v′ < v in the totally ordered set and thus u′ must be

a predecessor of u. The alignment thus must follow a single path in the Hasse diagram of
the unrestricted input poset.

6 Pairwise Alignments as Relations
Pairwise alignments have a particularly simple structure. In particular, they are bipartite
(undirected) graphs, and hence can be regarded equivalently as symmetric binary relations
R ⊆ X1 ×X2. More precisely, we can identify a relation R with an undirected graph with
vertex set X1∪̇X2 and (undirected) edges {x1, x2} whenever (x1, x2) ∈ R. We write this
graph as (X1∪̇X2, R).

Relations have a natural composition. For R ⊆ X × Y and S ⊆ Y ×Z is is defined by

(x, z) ∈ S ◦R iff ∃y ∈ Y s.t. (x, y) ∈ R and (y, z) ∈ S (3)

In the following we will be interested in the following properties of binary relations:

(M) (x, y) ∈ R and (x, z) ∈ R implies y = z and (x, z) ∈ R and (y, z) ∈ R implies x = y
and

(P’) There is a partial order ≺ on R such that u ≺1 x or v ≺2 y implies (u, v) ≺ (x, y).

(P) If (x1, y1) ∈ R and (x2, y2) ∈ R then x1 ≺ x2 if and only if y1 ≺ y2.

Lemma 11. The composition of two binary relations satisfying (M) and (P) is again a
binary relation satisfing (M) and (P).

Proof. Suppose (x, z) ∈ R ◦ S. Then there is y such that both (x, y) ∈ R and (y, z) ∈ S.
By (M), there is no other y′ 6= y with (x, y′) ∈ R and no z′ 6= z such that (y, z) ∈ S, hence
in particular there is no z′ 6= z such that (x, z′) ∈ R ◦ S. Analogously, one argues that
there is no x′ 6= x such that (x′, z) ∈ R ◦ S. Thus R ◦ S again satisfies (M).

Suppose (x1, z1), (x2, z2) ∈ R◦S. By (M) there are unique vertices y1 and y2 such that
(x1, y1), (x2, y2) ∈ R and (y1, z1), (y2, z2) ∈ S, respectively. Now suppose x1 ≺1 x2. Then
(P) implies y1 ≺2 y2, and using (P) again yields z1 ≺3 z2. Starting from z1 ≺3 z2, the
same argument yields z1 ≺1 z2. Conversely, suppose (x1, z1), (x2, z2) ∈ R ◦ S and x1, x2
are incomparable. By (M) there are unique vertices y1 and y2 with (x1, y1), (x2, y2) ∈ R
and (y1, z1), (y2, z2) ∈ S, for which (P) now implies that they are incomparable. Using
the same argument again shows that that z1 and z2 also must be incomparable. Hence
concatenation preserves not only the relative order but also comparability, i.e., R◦S again
satisfies (P).
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It is easy to see that Axiom (P’) is in general not preserved under concatenation:
Requiring only (P’) allows the intermediate vertices y1 and y2 to be incomparable. Hence it
is possible in this scenario to have x1 ≺1 x2, incomparable vertices y1 and y2, and z2 ≺3 z1
with (x1, y1), (x2, y2) ∈ R and (y1, z1), (y2, z2) ∈ S while the concatenation violates the
(P’).

A relation satisfying (M) and (P’) can easily be extended to an alignment (X1∪X2, R)
considering each edge (x1, y1) and considering all unmatched positions, i.e., every {x′}
such that there is no y ∈ X2(x′, y) and every {y′} such that there is no x ∈ X1(x, y′) as
alignment columns. The relative order of these columns is inherited from the partial order
(X1,≺1) and (X2,≺2).

Lemma 12. Every pairwise alignment satisfying (A1), (A2), (A3), and (A4) can be writ-
ten as an extension of the a binary relation R ⊆ X1 ×X2 satisfying (M) and (P’). Con-
versely, every binary relation R ⊆ X1 × X2 satisfying (M) and (P’) gives rise to an
alignment satisfying (A1), (A2), (A3), and (A4).

Proof. By definition, all edges are incident to one vertex in X1 and one vertex in X2, thus
the graph is a bipartite matching. Condition (M) is therefore equivalent to (A1) and (A2)
for the case of two input posets. Axiom (A3) implies the ordering required by (P’) as well
as its extension to the in/del columns. (A4) and (P’) equivalently guarantee the existence
of the partial order on the columns that satisfy (A3).

Lemma 13. Every pairwise alignment satisfying (A5) corresponds to a binary relation
R ⊆ X1 ×X2 satisfying (M) and (P).

Proof. Axiom (A5) simplifies to (P) in the case of only two inputs. The existence of the
required partial order on the set of all columns is guaranteed by Lemma 4.

This suggests that the more restrictive condition (A5) may be a more natural condition
for defining alignments of partially ordered sets. As a down-side, however, it seems that
there is no convenient recursive construction of the search space similar to the dynamic
programming approaches for sequence alignment. Instead, it seems more natural to treat
this class of alignment problems as maximum induced subgraph problems.

Composition of binary relations is a powerful tool to construct multiple alignments.
Suppose we are given a set of posets (Xa,≺a) and a set R of pairwise relations satisfying
(M) and (P) such that the graph representation of R is tree, then there is a unique multiple
alignment satisfying (A5) obtained as the transitive closure of the graph on X with edges
defined by the R ∈ R. However, not every alignment can be represented in this manner.
As a simple counterexample consider the alignment of the three sequences

a A-C a A-C a A-C
b -BC b -BC b -BC b -BC
c AB- c AB- c A-B-

where the composition of any two pairwise alignments gives rise to two different columns for
in/del columns of the pairwise components, in the example of two A entries. On the other
hand the progressive approach, in which sequence c is aligned to the pairwise alignment
of a and b yields the example alignment. In fact, Lemma 8 implies that in principle every
alignment can be obtained by a progressive alignment scheme.

If R contains cycles, then there is no guarantee that the transitive closure Â of
⋃

R∈RR
is an alignment: In general, both conditions (A1) and (A2) will be violated. So-called
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transitive alignment approaches deliberately accept this at an intermediate stage. Various
heuristics can be used to remove superfluous edges from the graph (X, Â), that is they
construct a subgraph (X,A), A ⊆ Â that again satisfies all conditions of a valid alignment.

7 Discussion
An interesting idea that follows quite naturally from the discussion above is a general
approach towards graph comparison for sets of graphs: it seems natural to generalize the
idea of progressive alignments in the following manner: (1) Given two graphs G1 and
G2 and a common induced subgraph H (strictly speaking together with an embedding of
H into G1 and G2) the graph defined by identifing the copies of H in G1 and G2 can be
thought of as pairwise alignment. If G1 and G2 have vertex labels αi : V (Gi)→ Ai, i = 1, 2
for some alphabets Ai, on labels G1 •H G2 with label pairs (α1(x), α2(x)) for x ∈ V (H),
(α1(x),−) for x ∈ V (G1 \H) and (−, α2) for x ∈ V (G2 \H). Naturally, an optimization
criterion such as “maximal common induced subgraph” will be used in practice. Since
G1 •H G2 is again a (labeled) graph, the procedure can be repeated e.g. along a line of
guidetrees. This gives raise to a natural notion of a multiple alignment of graphs Ga with
vertex sets V (Ga) and edge sets E(Ga). Let X =

⋃̇
V (Ga) and A be a set of undirected

edges on X and let C(X,A) be the set of connected components of the graph (X,A). Then
(X,A,E∗) is a multiple alignment of the graph Ga, where E∗ denotes the set of edges on
C(X,A).

(G1) Q ∈ C(X,A) is complete subgraph of (X,A).

(G2) If (a, i) ∈ Q and (a, j) ∈ Q, then i = j.

(G3) If (a, i) ∈ P , (a, j) ∈ Q for some P,Q ∈ C(X,A) and ((a, i), (a, j)) ∈ E(Ga) then
(P,Q) ∈ E∗

(G5) If (P,Q) ∈ E, (a, i) ∈ P , and (a, j) ∈ Q then ((a, i), (a, j)) ∈ E∗

The graph (C(X,A), E∗) can be constructed as the quotient graph (X,A∪
⋃

aE(Ga))/C(X,A)
obtained by adding in all the edges of Ga and collapsing all columns (connected compo-
nents) of (X,A) to a single vertex. A plausible generalization of (A4) might be to require

(G4) If (P,Q) ∈ E∗ then there is a row a with (a, i) ∈ P , (a, j) ∈ Q and ((a, i), (a, j)) ∈
E(Ga),

i.e., (G3) completely determines the edges between alignment columns. In this setting (G4)
does not impose additional conditions on the columns. However, if both the input graphs
Ga and the alignment graph (C(X,A), E∗) are restricted to particular graph classes, such
constraints appear. The graphs of partially ordered sets, i.e., the transitive acyclic digraphs
discussed at length in the previous sections, of course, serve as a non-trivial example.

It is important to note the graph alignment in the sense used here – namely requiring
a matching between vertices and notion of structural congruence between the alignment
and its consitutent graphs – are more restrictive than some concepts of “graph alignments”
discussed in the literature. In particular, we make a sharp distinction here between “graph
alignments” and various approaches of comparison by means of graph editing, see e.g. [15]
for a recent review.

The example of graph alignments and oriented tree alignments suggests to consider an
even broader class of structures: Given a (finite) collection of sets Xa, each endowed with
a set of relational structures (or more general set systems), we may ask for collections of
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partial maps between any pair of them that satisfy (G1) and (G2), i.e., define a partition
on
⋃

aXa such that each class contains at most one element of each Xa and the relation
(or set system) structure is preserved in a sense similar to conditions (G3) and (G5) above.
Such constructions are of practical interest e.g. for alignments of oriented trees (or forests)
[4, 23, 27], where two distinct partial orders are defined, one capturing the order implied
by parent-child relationship and another one representing the relative order of siblings.
Alignments of ordered trees preserve both partial orders, since the alignment is defined
as an ordered tree on the columns such that each ordered input tree (with vertices Xa)
is obtained as a restriction to exactly the columns in which row a does not have a gap
entry. Intuitively, this seems to require that (1) a super-object G exists for a pair of objects
G1 and G2 such that G1 and G2 can be obtained as projections and (2) an intersection
of the embeddings of G1 and G2 into G defines an induced sub-object H common to G1
and G2 is well defined. While the super-object corresponds to the alignments, the sub-
object takes on the role of matches in the alignment. A similar notion of alignment is
used in computational biology for RNA structures, where base pairs need to be preserved
in addition the total order of the input sequences [41]. Here, however, only consistency
similar in flavor to (A4) is enforced, suggesting that it may be of interest to relax the
requirement of induced sub-objects.

The recursive formulation of the poset alignments is an extension of the well-known
Needleman-Wunsch alignment algorithm. Beyond many implementations of the Needleman-
Wunsch algorithm, the implementation based on ADPfusion (Algebraic Dynamic Program-
ming with compile-time fusion of grammar and algebra) [24] is designed in a way to be
extendable to different scoring functions, problem descriptions, and data structures [25].
Future work thus will include the adaptation of the ADPfusion framework written in a
functional language (Haskell) to the data structure of posets. Earlier adaptations of the
Needleman-Wunsch algorithm to trees, forests and sets already exist [4, 26].

It may also be possible to implement the poset alignment algorithm for the (A5)-notion
of alignments in a way similar to the graph alignment algorithm above, i.e., starting from a
maximal induced common subgraph that is then extended. Depending on the structure of
the posets, this might be more efficient than the recursive DP algorithm where additional
information has to be stored and updated in each step.

Finding maximal induced common subgraphs is well known to be a NP-complete prob-
lem. Nevertheless, DP algorithms have been devised for restricted settings such as planar
graphs [18]. These proved practical for moderate size problems even though their resource
requirements still scale exponentially.

For general graphs, there exist algorithms to detect common subgraphs [1]. However,
as the problem is NP-complete, the problem can only be solved for small instances of the
input structures in a reasonable amount of time. For small graphs such as representations
of small chemical molecules, the DP algorithm might be able to solve the maximal common
subgraph problem as described in [1]. Here, the DP algorithm is based on the analogous
version for trees where the vertex degree has to be bounded in order to find a solution in a
reasonable time frame. The algorithm divides the input structures in (overlapping) bicon-
nected components and tries to find the best match between both input graphs preserving
the order of the biconnected components of the original graph.

Finally, it seems natural to consider multiple alignments at a more abstract level: In
order to properly define them, it seems sufficient that (induced) sub-objects can be used to
“glue together” two (and recursively more) objects in such a way that the resulting super-
object projects down to the given inputs. It is natural to ask how such structures can be
characterized in the language of category theory. Is there an interesting class of categories
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that admit well-defined alignments objects, and do the resulting alignments themselves
from categories with useful properties?
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