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Chapter 1

Introduction

The problem of shape matching (sometimes also referred to as pose estimation or pattern
matching) is a problem that raises naturally in many applications: suppose we have a reference
pattern P and a query pattern @), can we transform ) so that the transformed version of )
is similar to P? This general problem usually entails further questions:

e How can we model objects?
e What is a suitable class of admissible transformations?
e How can we define similarity between objects?

Finding answers to these questions usually depends on the application scenario as well as the
availability of appropriate algorithms.

In this thesis, a general approach to certain pose estimation tasks is proposed. The focus is
set on geometric patterns, i.e., the patterns are objects contained in a Euclidean vector space.

Modeling Objects. A straightforward way of modeling objects is to view an object as a set
of points. As an example from chemistry, a molecule can be viewed as a set of atoms, where
each atom has a coordinate in three-dimensional space. Another example comes from image
processing: image data can be viewed as two-dimensional point sets by extracting a set of
characteristic points (possibly with certain features containing color information attached to
the points) from an image.

Another natural way of modeling objects is to describe objects as (polygonal) curves. From
image data, for example, one can often extract the boundary of a shape resulting in an object
described by a polygonal curve. In molecular biology, the backbone of a protein, i.e., the
spatial arrangement of the amino acid sequence, can also be considered as a polygonal curve.
Polygonal curves are one dimensional objects. The natural generalization of polygonal curves
to higher dimensions are simplical complezes. Correspondingly, surfaces in three dimensions
(the surfaces of molecules, for instance) are often modeled as two dimensional simplicial
complexes that can be thought of as surfaces patched together from triangles.

The objects considered in this thesis are point sets and polygonal curves in a finite dimensional
Euclidean vector space.

Classes of Transformations. The most simple class of transformations are translations, i.e.,
objects can be shifted in space, but not rotated, scaled or reflected. Rotations, scalings
and reflections are other typical classes of transformations. Particularly important are rigid
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motions that we obtain by composing translations and rotations. If we admit scalings in addi-
tion, we get the group of similarity motions. Another common class of transformations is the
composition of translations and scalings, which is also known as homothetic transformations.
All aforementioned classes of transformations have in common that they are groups in an
algebraic sense: each transformation has an inverse transformation, there is a neutral trans-
formation, and combining transformations is associative. Structural properties of these groups
take an important place in different parts of this thesis. As a consequence, algebraic consid-
erations play an important role.

Measuring Similarity between Objects. Instead of measuring similarity between two objects,
we consider distance measures between objects, i.e., functions that rather measure a dissimi-
larity. Some of these distance measures satisfy the properties of a metric, others are closely
related to distance measures that are metrics. Pose estimation (or pattern matching) based
on distance measures has mostly been studied in the area of computational geometry. Many
distance measures that have been considered in this area share common properties and are
identified as one certain class of distance measures in this thesis. Furthermore, a new distance
measure is introduced and its relations to formerly known ones examined.

Problems of pose estimation (or geometric pattern matching in general) have been studied in
many different areas of computer science and its applications. One important field dealing
with geometric pattern matching problems is Computer Vision. Classical methods for solving
pose estimation problems that emerged from Computer Vision include the (Generalized)
Hough Transform [14], Pose Clustering [63], the Alignment Method [44] or Geometric Hashing
[48], that are sometimes also referred to as voting schemes.

As already mentioned above, pattern matching based on distance measures between objects
has mostly been studied in the area of computational geometry. The first studies of such
issues are due to Alt et al. [10], for a survey see [7]. This thesis mainly deals with problems
typically studied in computational geometry. Whenever possible, we refer to related work
that has been studied in other areas.

1.1 Overview and Results of this Thesis

Chapter 2. As a starting point for this thesis, Chapter 2 introduces basic concepts and
notation that are needed in other chapters.

Chapter 3. This chapter uses the notion of G-inverted lists developed in [23, 22] and sets
up relations between G-inverted lists and pattern matching with respect to the directed
Hausdorff distance. This does not immediately lead to efficient algorithms. However, the
notion of transporter sets that occurs in this context is a major foundation for the results and
matching algorithms developed in Chapters 4 through 7.

Chapter 4. Based on the notion of transporter sets from Chapter 3, we study intersections
of transporter sets. These intersections occur in the pattern matching tasks dealt with in
Chapter 5 and can hence be seen as a preperation for the practical and theoretical results
of Chapter 5. From a computational point of view, we deal with the problem of deciding
whether the intersection of finitely many transporter sets is empty or not.

Major attention is put on characterizing the stuctures occuring in this context from an al-
gebraic and algebraic geometry point of view. In particular, the observation that the groups
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that are typically considered as transformation groups are linear algebraic groups allows to
specify natural generalizations of some results known for particular groups to almost arbitrary
(i.e., linear algebraic) groups in arbitrarily high dimensional spaces.

Chapter 5. The algorithmic results from Chapter 4 — deciding the emptiness of the intersec-
tion of transporter sets — are not of practical relevance. However, these intersections occur
when matching with respect to distance measures belonging to the set of relational distance
measures. Examples of relational distance measures are the Hausdorff- and the bottleneck
distance. As the major result of Chapter 5, generic matching algorithms are developed that
work for matching with respect to arbitrary relational distance measures under an arbitrary
linear algebraic group.

Furthermore, we discuss certain properties of relational distance measures that allow us to
state faster matching algorithms, sometimes at the cost of obtaining only an approximate
solution of the problem. These improved algorithms generalize a number of ideas that were
used to speed up matching algorithms for special distance measures and special transformation
groups.

In a second part of Chapter 5, we provide an algorithm for matching with respect to the
root-mean-square Haudorff distance (which does not belong to the class of relational distance
measures) under arbitrary linear algebraic groups. To the best of the author’s knowledge,
these are the first results for larger groups than pure translations or rigid motions in the
plane (which have been studied in [1] and [46], repsectively). Furthermore, these results
generalize to a whole class of non-relational distance measures that evolve from relational
distance measures by exchanging a certain norm that is part of many relational distance
measures.

Chapter 6. The practical value of the algorithms from Chapter 5 is limited for large transfor-
mation groups of high dimension by the fact that it relies on techniques from real algebraic
geometry. These are generally hard to implement for polynomials involving more than one
variable. In fact, many of these techniques have not yet been implemented successfully, as
discussed in Chapter 2. For the group of rigid motions in three dimensions, however, one can
apply ideas known for matching with respect to the directed Hausdorff distance and general-
ize these for matching with respect to arbitrary relational distance measures. Again, one can
make use of certain properties of relational distance measures for speeding up the matching
algorithms.

Chapter 7. The topic of Chapter 7 is the Fréchet distance which is a well-known distance
measure for (polygonal) curves. First, a discrete version of the Fréchet distance is introduced.
After providing some combinatorial structures underlying this distance measure, we show
that the discrete Fréchet distance is a pseudo-metric.

Furthermore, it is shown that this discrete version is upper bounded and lower bounded by
the continuous version of the Fréchet distance arbitrarily tight by considering oversampled
versions of polygonal curves. Due to these bounds, any algorithm for matching with respect
to the discrete Fréchet distance yields an approximation algorithm for matching with respect
to the continuous Fréchet distance.

Matching algorithms for the discrete Fréchet distance result from Chapter 5, since we are
dealing with a relational distance measure. Furthermore, we show that the discrete Fréchet
distance is related to the Dynamic Time Warping Distance (studied in the context of com-
puter vision and handwriting recognition in [54]) in the same way as the root-mean-square

3
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Hausdorff distance is related to the Hausdorff distance. Hence, we can use the ideas from
Chapter 6 in order to design algorithms for matching with respect to the Dynamic Time
Warping distance. This problem has been addressed before only under the group of transla-
tions, and the (rather theoretically relevant) results obtained in this thesis are the first ones
for matching with respect to larger groups than pure translations or rigid motions in the
plane.

Chapter 8. Many of the algorithms described in Chapters 3 through 7 can be implemented
and have been tested in practice. A description of these implementations as well as some of
the running times obtained in practice are presented in this final chapter.



Chapter 2

Basic Concepts and Notation

Many aspects of the problems arising in geometric pattern matching can be characterized
algebraically. Therefore, this chapter summarizes some basic algebraic concepts. In particular,
concepts from group theory and algebraic geometry will be introduced.

2.1 General Notation

Let [z, y] denote the compact real interval between the two reals z and y; moreover, for integers
a and b, let [a : b] denote the set {a,a + 1,...,b} of all integers between a and b. We also
use (a : b), [a : b) and (a : b] in order to denote open and “half open” integer intervals. Given
two sets X and Y, Y~ denotes the set of all mappings from X to Y; for f € YX and I C X,
we denote f[I]:= {f(x) | z € I'}. Analogously, we denote f '[J] := {z € X | f(z) € J} for
J C Y. Since z € X% ig completely described by a sequence of b — a + 1 values in X, we
also write £ = (zq,...,2) € X[, Let V = R* denote the k-dimensional Euclidean vector
space with the Euclidean norm |[.|| := ||.||2. For P € VX for some set X, we define the norm

[P lloo := supsex [|P(z)]-

2.2 Group Theory

Let G be a group and M an arbitrary set. A map o: G x M — M is called a group action if
lgom = m for allm € M (where 15 denotes the neutral element of G) and (gh)om = go(hom)
for all g,h € G and m € M. As a shorthand notation, we also write gm instead of g o m,
and sometimes we will call a group G acting on a set a transformation group and the set
M a G-set. The set Gm = {gm | g € G} is called the G-orbit of m. The G-orbits are
the equivalence classes of the equivalence relation m ~ m' iff m' = gm, for some g € G.
A set R C M is called a system of representatives if the union of all G-orbits is M, i.e., if
M = U,crGr, where LI denotes the disjoint union. Given a system of representatives R, there
is a unique 1y, € R for each m € M so that m = g,,r, for some g, € G. Note that in
general, g,, is not unique — the so-called stabilizer subgroup G, := {g € G | gm = m} may
contain more than one element. If all elements of M are contained in the same G-orbit, i.e.,
M = Gm for any m € M, we say that G acts transitively on M.

As it will turn out to be useful for the pattern matching task considered in Chapters 4, 5 and
7, we study the structure of transformation groups. We write U < G if U is a subgroup of G
and U < @ if, in addition, U # G. A subgroup N < G is called a normal subgroup if for all

5
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n € N and g € G, we have gng~! € N. If N is a normal subgroup of G, we write N < G. If
we have a group G with N<G, H <G, HNN ={1} and G={nh|ne€ N,h € H}, we call
G the semidirect product of N and H, denoted by G = N x H for short. If G = N x H, each
g € G can be decomposed uniquely into ¢ = nh with n € N and h € H. Furthermore, we
have (nh)(n'h’) = (nhn'h~1')(hh') (where nhn'h~' € N) and (nh) ' = (A~ 'n"'h)h~! (where
h='nh € N).

Often, the G-set M is the k-dimensional Euclidean vector space V := RF with the group
T(k,R) of translations acting on V. We are particularly interested in subgroups G of the affine
group AGL(k, R) which is the semidirect product of the abelian normal subgroup 7'(k, R) and
the general linear group GL(k,R), i.e., AGL(k,R) = T'(k,R) x GL(k,R). We are usually
interested in the case G = T'(k,R) x H with H < GL(k,R). In typical applications, V = R¥,
and H is the group of rotations SO(k, R) or the group SC(k, R) := R.-id, of uniform scalings
(where idj denotes the k x k unit matrix) or the product of these two groups

RS(k,R) := {gh | g € SO(k,R), h € SC(k,R)}.

We denote SE(k,R) := T'(k,R) x SO(k,R) for the group of rigid motions (sometimes also
referred to as the special Euclidean group), HT(k,R) := T'(k,R) x SC(k,R) for the group of
homothetic motions and SM(k,R) := T'(k,R) x RS(k,R) for the group of similarity motions.
Whenever we do not specify the ground field of these groups (for instance by writing T'(k)),
we implicitely assume that the ground field is R (i.e., T'(k) = T'(k,R)).

Typical pattern matching tasks involve a vector space V equipped with a metric d and a class
of transformations, whose elements allow modifications of those objects; in most cases, we
have V = R* and the transformation group contains the group 7T'(k) of all translations in V'
as a subgroup. More formally, we have a group G (with neutral element 1) acting on V. A
metric space (M, d) with a group G acting on M will be called a metric G-space. Sometimes,
we require the transformation group G to be invariant with respect to the metric d, i.e.,
d(gv, gw) = d(v,w), for all ¢ € G and all v,w € V.

Finally, for a set M, let P(M) denote the set of all subsets of M, and let P;(M) denote the
set of all finite subsets of M. If M is a G-set, both P(M) and P(M) become G-sets by
defining gA := {ga | a € A} for g € G and A € P(M) or A € Py(M), respectively.

2.3 Algebraic Geometry

We now introduce some concepts from algebraic geometry, and in particular concepts from
real algebraic geometry, needed in Chapters 4 and 5. For comprehensive studies of algebraic
geometry and real algebraic geometry, we refer to [26] and [17]. For the introduction of some
basic concepts from Algebraic Geometry in the following, we mostly pursue the approaches
from Humphreys [41].

2.3.1 Basic Concepts

Let C[T] := C[T},...,T,] denote the algebra of n-variate complex polynomials. An affine
variety in C" is the set

V(F):={z € C"|Vf € F: f(z) = 0}.

6
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of common zeros of a subset F' of C[T], so that V(F) C C". In turn, if X is a subset of C",
then
I(X):={f eC[T] |Vz € X: f(z) =0}

is an ideal in C[T'], the vanishing ideal of X. An ideal I of C[T] is called radical iff
I=VI:={f|3r>0:f eI}

Theorem 2.3.1 (Hilbert’s Nullstellensatz) The operators V,1 set up a 1-1 inclusion-
reversing correspondence between the collection of all radical ideals in C[T] and the collection
of all affine varieties in C". O

AsV(0) =C", V(C[T]) =0, VINJ) =VI)UV(J), and V(3 c 4 La) = Npeca V(Ia) (for
ideals I, J, I, of C[T]), the affine varieties in C" are the closed subsets of a topology on C", the
so-called Zariski topology. By Hilbert’s Basis Theorem, this topology is Noetherian, i.e., every
descending chain of closed sets becomes finally stationary. Thus every affine variety X has
only finitely many maximal irreducible subsets Xi,..., X, with X = Xj U--- U X,,. (Recall
that X; is irreducible iff X; cannot be written as the union of two proper, nonempty closed
subsets.) It turns out that in this topology, a subset X of C" is irreducible iff the vanishing
ideal I(X) is prime. In this case, the algebra C[X] := C[T"]/I(X), which can be viewed as the
algebra of polynomial functions on X, is an integral domain. Its field of fractions, denoted
C(X), is called the field of rational functions on X. The transcendence degree of the field
extension C(X) D C is called the dimension dim X of X. Roughly speaking, dim X is the
minimal number of parameters to describe X.

A morphism of affine varieties X C C" and Y C C™ is a map ¢: X — Y that is described
by m polynomial functions 1, ..., ¢, € C[X1,...,X,], i.e, ¢(z) = (Y1(x),...,Yn(x)), for
allz € X. If X CC" and Y C C™ are affine varieties, then X x Y is Zariski-closed in C**™
and its induced topology defines the Zariski-product topology on X x Y. Let G be both a
group and an affine variety. G is called a linear algebraic group iff the multiplication map
p: G x G — G, p(z,y) := x -y, and the inversion map i: G — G, i(g) := g~!, are both
morphisms of varieties.

Within the scope of this thesis, the groups we are mainly interested in are linear algebraic
groups. As an example (for the case that the ground field is R), consider the group SO(2, R)
of rotations in R?: Since every rotation can be identified with a point on the unit circle (and
vice versa), we have a group structure on the set S* = {(s,c) € R? | s2 + ¢ — 1 = 0}. Note
that this parameter space is the set of roots of one polynomial. Before we get to subgroups of
GL(k,R), we study subgroups of GL(k,C). As a group with a complex algebraic parameter
space, consider the group GL(n,C), which is a principal open subset of C**" = C" defined
by the non-vanishing of the determinant:

GL(n,C) = {A € C**™ | det A # 0}.
This group can be viewed as an affine variety in CV*+1 defined by
V(Y -det —1) = GL(n,C),

where Y is a new indeterminate. A linear algebraic group G is a Zariski-closed subgroup of
some GL(n,C). Further examples of linear algebraic groups are the following:

1. The group T(k,C) of translations in C*. For any k > 0, the underlying variety is C* itself.

7



CHAPTER 2. BASIC CONCEPTS AND NOTATION

2. The groups O(k,C) and SO(k,C). In case of O(k,C), the underlying variety is a subset of
c*’ (i.e., a subset of all £ x k-matrices). The polynomials describing the variety result from
the equality M M= id, where M is a k x k-matrix. For SO(k, C), the variety is described
by the polynomial equalities M M= id; and det M = 1.

3. Semidirect products of linear algebraic groups. If G = N x H, where N and H are linear
algebraic groups and H acts morphically on N, then G is a linear algebraic group (see [41],
Section 8.4). As a result, the affine general linear group AGL(k,C) = T'(k,C) x GL(k,C)

becomes a linear algebraic group.

4. Uniform scalings in C¥. For the group of uniform scalings, we can identify the set Z :=
{A € C| XA # 0} with the group GL(1,C). An algebraic representation of Z into GL(k,C) for
any k > 0 is given by p(())) := Aid.

5. Rigid motions. Taking the semidirect product of T'(k,C) and SO(k,C), we obtain the
group of rigid motions (sometimes also referred to as the special Euclidean group) in CF
denoted by SE(k, C).

6. Similarity motions. Let n € SO(k,C) and g € RS(k,C). Since det(gng ') = 1, the group
RS(k,C) is the semidirect product of SC(k,C) and SO(k,C). By Example 3, RS(%,C) is a
linear algebraic group, too. We have SM(k,C) = T'(k,C) x RS(k,C), so that SM(k,C) is a
linear algebraic group also.

So far, all considerations took place over the algebraically closed ground field C. In the
pattern matching scenario, the field of real numbers is more appropriate. So it is our next
concern to transfer the above notions to the real field.

Let k be a subfield of C. (We are mainly interested in the case k = R.) A closed subset X of
C" is said to be k-closed if X = V(F) for some F C k[T]. The k-closed sets are the closed
sets of a topology on C", the Zariski-k-topology. X is said to be defined over k iff I(X) is
generated by polynomials in k[T']. In characteristic 0, X is k-closed iff X is defined over k.
If X CC" is k-closed, then X (k) := X Nk™ denotes the (possibly empty) set of its k-rational
points. In the following, we will encounter numerous groups that are R-rational points of
certain linear algebraic groups.

For the group SO(3,R), there is a more convenient way to desribe the underlying variety than
applying the aforementioned general algebraic description of SO(k,C) for £ = 3. We have
already seen that SO(2,R) can be parameterized algebraically by the unit circle. For SO(3, R),
we use unit quaternions to specify an algebraic parameterization, as proposed in [49] and [61].
The set of all unit quaternions can be described by the variety S® = {u € R* | |jul| = 1}.

A unit quaternion u = (ug, u1, us, u3) defines a rotation matrix as follows:

2uf +uf) =1 2(urup — upus) 2(urus + ugus)
p(ug,ut,uz,uz) = | 2(uiug +uguz) 2(ud +u) — 1  2(uguz — uguy)
2(uuz — ugua) 2(ugus + uour) 2(ud +u3) — 1

From now on, we only consider subgroups of AGL(d, R), and whenever the ground field is R,
we write AGL(d) := AGL(d, R). Analogously, we ommit the ground field for all subgroups of
AGL(k) defined above.



2.3. ALGEBRAIC GEOMETRY

2.3.2 Real Algebraic Geometry

By R[X], we denote the ring of univariate polynomials over the reals, and by R[X},..., Xi],
we denote the set of all polynomials in the real variables X1,..., X; analogously, R(X) and
R(X; ..., X%) denote the field of all rational functions in variable X and variables X1,..., Xj
over the reals, respectively. For z € R, let sign(z) = 0 if x = 0, sign(z) = 1ifz > 0
and sign (z) = —1 if z < 0. As in the complex case, one associates to every subset F' of
R[X1,..., Xi] the set of common zeroes V(F) = {z € R" | Vf € F: f(z) = 0}. In turn,
every subset S of R* defines its vanishing ideal

In contrast to the complex case, for every affine variety S C R¥ we have S = V(f): Since I(S)
is finitely generated by Hilbert’s Basis Theorem, we have (f,..., f,) = I(S). Furthermore,
defining f := fZ2+--- + f2, we have S = V({f1,..., fr)) = V(f).

An atomic polynomial expression over RF is a mapping A: R¥ — {0,1} of the form A(z) =
1 & P(z) = 0 for all z € R¥, where € {=,<,>,#,>,<} and P € R[Xy,...,X;]. A
polynomial expression is a mapping A: RF — {0,1} of the form A(z) = Ai(z) A--- A Ay(x),
where each A; is an atomic polynomial expression. A set S C R is semialgebraic if, for some
polynomial expression A, it can be written as

S={zecR|A®x) =1}

Figure 2.1: Example of a semialgebraic set S = {(z,y) | 2 + 4> -1 <0,y — 2> > 0}.

Let A C R¥ and B C R™ be semialgebraic. A mapping f: A — B is called a semialgebraic
function if the set

graph(f) = {(z,y) € Ax B |y = f(z)}

is semialgebraic. We can also associate a dimension to every semialgebraic set, based on the
following fact:

Theorem 2.3.2 Every semialgebraic set A C RF can be written in the form
A=A U---UA,,

where each A; is a point or semialgebraically homoemorphic to (0,1)%.
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Definition 2.3.3 Using the notation from Theorem 2.3.2 above,

d := max d;
i€[1ir]

is called the (real) dimension of A.

Since real varieties are semialgebraic sets as well, the above definition assigns a dimension to
each real variety as well. Note that for algebraic sets, this notion of dimension is equal to the
Krull-dimension, which is defined as the maximum length of a chain of prime ideals

Remark 2.3.4 Semialgebraic sets and semialgebraic functions have the following properties:
e Semialgebraic sets are closed under (finite) intersections and unions.

o Let S CRY be semialgebraic. Defining distg: RF - R, z — infyes ||z —yl|| for z € Rk,
we get a semialgebraic function, since

graph(dists) = {(z,t) |VYyeR*:y€ S = |z —y| >t and t minimal}
is a set described by a first order formula (see Section 2.3.3).

e Given a semialgebraic function f: RE — R and a semialgebraic set S C RF as well as
some € > 0, the set

{zeS|f(S)<e}
1s semialgebraic.

e Given a semialgebraic function g: R¥ — R and a semialgebraic set S C RF=1, the set

9(S.y) :=={g(z,y) | z € S}
is a semialgebraic set.

e Given a semialgebraic set S and a semialgebraic function f: S — R¥ | the set

fI81={f(s) | s € 5}

is a semialgebraic set.

2.3.3 Quantifier Elimination and Cell Enumeration

Certainly the most important result in conjunction with semialgebraic sets is the Tarski-
Seidenberg principle, which states that quantified formulas over the reals (composed by +, x, =
and >) allow quantifier elimination, i.e., each such quantified formula defines a semialgebraic
set. Algorithms performing the task of quantifier elimination are usually based on cell enu-
meration procedures that we focus on next.

Let ~ be an equivalence relation defined over some set M. Then ~ partitions M into equiva-
lence classes. We call a set X C M a ~-transversal of M iff X contains precisely one element
from each equivalence class and a ~-suptransversal of M iff X contains at least one element
from each equivalence class.

10
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If we have a family of k-variate polynomials P = (P;),.; for some index set I, we define
the sign vector of P at z € R? as signP(z) := (sign (P;(z)));c;- We obtain an equivalence
relation ~p (induced by P) on R* by defining z ~p 2’ iff z and 2’ lie in the same connected
component of the set {y € R¥ | signP(y) = signP(z')}. Such an equivalence class will also
be referred to as a P-cell. The set of all P-cells partitions R* into disjoint regions. By %(P),
we denote the set of all sign vectors whose P-cells are non-empty, i.e.,

Y(P)={o€[-1:1] |3z e RF: o = (sign (P;(2)));c; }-

If V is a variety in R*, each family of polynomials P partitions V into equivalence classes.
We refer to these equivalence classes as (P, V)-cells. A set X C V will be called a (P, V)-
suptransversal if X contains at least one point from each (P, V)-cell.

The following two problems related to semialgebraic sets and P-cells will play an important
role in Chapters 4 and 5:

1. Emptyness of semialgebraic sets: Given a semialgebraic set S = {z € RF | A(x) = 1}
for some polynomial expression A, decide whether S is empty or not.

2. Cell enumeration: Given a family of k-variate real polynomials P and a real variety
V C R¥, enumerate all (P, V)-cells.

Obviously, every cell enumeration algorithm can be used to solve the emptyness problem.
Numerous algorithms for solving these two problems have been proposed. The first imple-
mentable method for solving the cell enumeration problem was Cylindrical Algebraic Decom-
position, which was introduced by Collins [24].

2.3.4 Cylindrical Algebraic Decomposition and Related Techniques

A Cylindrical Algebraic Decomposition is a particular way of partitioning R¥ into connected
semialgebraic sets. In the following definition, we write f < g for f,g: D — R, iff f(z) < g(x)
for all z € D. For f,g: D — R, we denote

band(f,9) == {(z,y) € D xR [ f(z) <y < g(x)}.

Furthermore, note that each semi-algebraic subset of R' can be decomposed as the union of
finitely many points and open intervals.

Definition 2.3.5 A Cylindrical Algebraic Decomposition (c.a.d. for short) is a sequence
Ci,...,Ck, where for each i € [1: k], C; is a finite partition of R® into semialgebraic subsets
(called cells), satisfying the following three conditions:

1. each cell c € Cy is either a point or an open interval.

2. For every i € [1 : k — 1] and for every ¢ € C;, there are finitely many continuous
semialgebraic functions

—00 = feo < o < fepq1: =00, feirc— R,

with the property that the cylinder ¢ X R can be decomposed into the disjoint union

cxR= || egraph(fe;) U || band(fej, fejt).
GE[1:£e] J€[0:Lc]

11
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Figure 2.2: Example of a cylindrical algebraic decomposition adapted to P = (22 + 3% — 1).
We have C = (c1,1 := (—00,—1),c12 :={-1},c13 :=(=1,1),¢c14 :={1},c15 :== (1,00)) as
well as ley | = ley s =0, bey, = Ley, = 1 and fe ,1 = fe; 4,1 = 0. Finally, we have £, , = 2,
fersn =—V1—1?and f., ,2 = V1 — 22 Altogether, this c.a.d. partitions R? into 14 cells.

3. Ciq1 consists of all those graph(f. ;) and all band(f.j, fc.j+1), for ¢ € C;.

The concept of c.a.d. is particularly interesting if each cell of a c.a.d. is a subset of some
P-cell, where P is a family of polynomials. We call such a c.a.d. adapted to P. In the sequel,
the notion of Cylindrical Algebraic Decomposition will usually refer to a c.a.d. adapted to
some P. The time complexity for computing an adapted c.a.d. is doubly exponential in the
number of variables, i. e., computing an adapted c.a.d. essentially requires O(ﬁQd) time, /£
denoting the number of polynomials and d the number of variables involved. Generally, c.a.d.
is considered impractical for more than three variables. The time complexity of c.a.d. is due
to the fact that the number of c.a.d.-cells is doubly exponential in the number of variables.
So far, we know a bound for the number of cells of a c.a.d. adapted to P. Now, a single
P-cell may be decomposed into several c.a.d.-cells, and hence the number of cells of a c.a.d.
adapted to P can be significantly larger than the number of P-cells. The question arises
whether the bound for the (doubly exponential) number of c.a.d.-cells is also a tight bound
for the actual number of all P-cells, in other words: is Cylindrical Algebraic Decomposition
an optimal description for the set of all P-cells? As results on non-c.a.d.-based algorithms
for quantifier elimination by Canny [18] and Renegar [57] as well as Basu, Pollack and Roy
[16] suggest, the answer to this question is no — c.a.d. is not an optimal description for the
set of all P-cells. Basu, Pollack and Roy [16] obtain algorithms that are single exponential in
the number of variables. Just as well, they (theoretically) provide algorithms for computing
cell enumerations that are single exponential in the number of variables. Their results can be
summarized as follows:

Theorem 2.3.6 Let d > 0, W € R[Xy,...,Xy] and let d' denote the real dimension of the
variety V.= {z € RY | W(z) = 0}. Furthermore, let U € R[Xy,..., X4]! be a family of
polynomials with |I| =: ¢ < oo. Define an equivalence relation on V by = ~yv y iff for
all w € U sign(u(z)) = sign(u(y)). If all w € U have degree at most D, then a (U, V)-
suptransversal can be computed in O(Ed/"'lDO(d)) time. Furthermore, the number of cells is

bounded by O(£* O(D)%).

12
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In Chapters 4 and 5, we will mostly be interested in semialgebraic sets that partition a
subvariety of R? rather than R? itself into cells. The subvariety of R¢ usually is a linear
algebraic group.

An important issue that needs to be considered is that all non-c.a.d.-based methods for
computing cell enumerations did not prove to be of practical value — in fact, currently
available implementations of quantifier elimination such as the QEPCAD [25] and the c.a.d.
implemented in Mathematica [64] rely on improvements of Collin’s method [25] and not on
the — at least in theory — asymptotically faster algorithms by Canny, Renegar or Basu et
al. [18, 57, 16]. The running times for some of the matching algorithms in Chapters 4 and 5
based on these results should hence be considered as theoretical upper bounds only. Finding
practical algorithms that match these time bounds remains an interesting challenge in real
algebraic geometry and its applications.

2.3.5 Ordered Cell Enumeration

Sometimes it is useful and possible to enumerate the cells of a system of polynomials in a
more systematic way. Given P = (P,),.; € R[X1,..., X;]’, we define a neighborhood relation
on the set of all sign vectors (and hence on the set of all P-cells) by defining two sign vectors
to be neighbored iff the union of the corresponding P-cells is connected and they differ in at
most one sign condition. Taking each (non-empty) P-cell as a vertex and the set of all pairs
of neighbored cells as edges, we obtain a graph that we call the cell graph of P, denoted by
r(P).

Figure 2.3: Example of a P-suptransversal (left) and the corresponding cell graph I'(P)
(right).

Now, let {o1,...,01} be the set of all sign vectors whose P-cells are non-empty. The output
of a cell enumeration algorithm is a sequence (o(1),...,0x(r)) for some permutation 7. For
solving some problems more efficiently, it is helpful if the sign vectors o (;) and o ;1 1) differ
in precisely one position. We formalize this type of cell enumeration as follows:

Definition 2.3.7 Let I denote a finite index set and P € R[X1,..., X' a family of poly-
nomials. Furthermore, let V be a subvariety of R and L € N. An ordered (P,V)-cell
enumeration (or ordered (P, V)-suptransversal) is a pair

($07<($1;'L.1),--. , (mL,iL)>) € R? x (Rd % I)[I:L}’
such that

13
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(1) the set {zg,...,z} is a (P, V)-suptransversal and

(2) forallj € [0: L—1], the sign vectors sign P(z;) and sign P(x;41) differ only in position
Tt
Trivially, one can take the output of an arbitrary (non-ordered) cell enumeration algorithm,
set up I'(P) and then produce an ordered sequence of sign vectors using depth-first-search
or breadth-first-search. However, setting up T'(P) is prohibitively expensive, since it takes

O(L?) time, L denoting the cardinality of the suptransversal. There are two special classes
of polynomials where ordered cell enumeration can be done more efficiently:

e If the polynomials in P are univariate, the computed cell representatives can be sorted
in O(Llog L) time. Enumerating these cells in the order obtained by sorting yields an
ordered sequence of sign conditions.

e If the polynomials in P are linear (i.e., the polynomials’ degree is 1), the cells of P are
polytopes. For this special case, other methods for cell enumeration than c.a.d. and its
relatives are known; reverse search from [62] is an ordered cell enumeration algorithm
for polytopes.

Ordered cell enumeration will be useful for providing more efficient matching algorithms in
Chapters 4 and 5.

14



Chapter 3

Pattern Matching using G-Inverted
Lists

The notion of G-inverted lists in [22, 23] provides a group-theoretical approach to pattern
matching. The concept of G-inverted lists generalizes inverted files [45] that are used in full-
text retrieval. G-inverted lists are based on group theoretical concepts and have been applied
in various applications and prototypes. The applications range from music- and audio retrieval
([59]) to image databases [58] and indexing three dimensional surfaces [52]. Thus, G-inverted
lists build a bridge between full-text retrieval and a large class of pattern matching problems.
The results presented in this chapter extend the concept of G-inverted lists to problems that
are typically considered in geometric pattern matching.

We present a connection between G-inverted lists and the directed Hausdorff distance which
is a state-of-the-art distance measure used in geometric pattern matching (see [42, 21] and
[7] for a survey on related problems). Although the results presented in this chapter do
not immediately yield practical and efficient algorithms, they form the basis for the results
obtained in all later chapters — all pattern matching methods presented in this work share
the property that in some way subsets of transformation groups are intersected.

We first give a brief survey on G-matches and G-inverted lists (that are used for efficiently
computing G-matches), as presented in [23, 22]. The notion of G-matches will then be general-
ized to (G, e)-matches and (G, €)-inverted lists, which are immediately related to the directed
Hausdorff distance.

3.1 G-Matches and G-Inverted Lists

As a general scenario for pattern matching, we view a pattern P as well as a query @) as a
finite subset of some set M, i.e., P € Py(M), where Py(M) denotes the set of all finite subsets
of M.

Let G be a group and M a G-set. Since G also acts on P;(M), it also acts on a pattern P
and a query Q.

In [23, 22], the scenario is generalized to a database of N patterns Pj,..., Py. In the fol-
lowing, we restrict ourselves to the situation where only a single pattern P is given, which
simplifies notation significantly. We also omit preprocessing steps for the document P which
can formally be treated as G-morphisms, as demonstrated in [23, 22].
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We now define the set of all G-matches of Q) with respect to P as the set of all group elements
g that move ) so that the transformed version g() is a subset of P, or, more formally,

Gp(Q):={ge€G|gQ C P}. (3.1)
For m € M, we define the G-inverted list of m as
Gp(m) = Gp({m}) ={g € G| gm € P}, (3.2)
and it can be shown that for any h € G
Gp(hm) = Gp({mP)h~" = {gh™' € G| gm € P}. (3.3)

Given a system R of representatives of the G-orbits of M, the G-inverted list of m can now
be written as G p(rm)g;ll, where m = g, 7, and 1, € R denotes the representative of the
G-orbit of m. Thus, G-inverted lists only need to be computed for representatives r € R.
From these lists, G-inverted lists for arbitrary m € M can be computed.

Observe that the set of G-matches of a query ) can be written as

Gr(Q) =) Grla), (3.4)
q9€Q

so that using Eq. (3.3) the set of G-matches can be computed using the intersection

Gpr(Q) =) Grlrog, " (3.5)
qeQ

In terms of constructing an index (i.e., the set of all G-inverted lists for a pattern P), this
means that we only need to compute G-inverted lists for each representative r € R; to be
more precise, an inverted list is constructed for each r € {s € R | 39 € G: gs € P}. For
computing G-matches, the intersection in Eq. (3.5) can be computed efficiently using binary
search based on an ordering of GG; in case that the operation of the group preserves this order
(i.e., g1 < g2 <= ¢1h < goh for all g1, g9, h € G), the intersection can be performed even
more efficiently; also, some results about adaptive set intersections can be applied, see [27, 15].
In [23, 22], some extensions of the general framework of G-matches and G-inverted lists are
described for allowing different types of fault tolerance:

e The notion of G-matches can be extended to (G, k)-matches so that |¢g@Q \ P| < k.
Answering this type of query is also referred to as k-mismatch searching.

e Fuzzy queries can be specified. A fuzzy query is a family (F;);c; of subsets of M; a
G-match g € G of a fuzzy query transforms at least one element of each fuzzy set F;
into an element of P: gF; N P # (), for all 7 € 1.

e Further fault tolerance can be achieved by assigning a probability distribution over each
fuzzy set contained in a fuzzy query.

Many methods for solving geometric pattern matching problems use certain distance measures
such as the Hausdorff or the bottleneck distance (see [65, 7] for detailed surveys) for specifying
the fault tolerance. Thus, it is our next concern to examine in which ways G-matches are
related to pattern-matching with respect to these distance measures.

16



3.1. G-MATCHES AND G-INVERTED LISTS

3.1.1 Pattern Matching in G-Sets

We are now prepared to set up some general notion for the pattern matching tasks considered
in this work. To this end, let G be a group, M a G-set and d a mapping d : M x M — Rxq.
M will usually be some object space, like the set of all finite point sets in the plane or the set
of all polygonal curves in some Euclidean vector space. The mapping d serves as a distance
function, measuring the “dissimilarity” of two objects in M; d is not necessarily a metric.
In this scenario, we are usually given two objects P,QQ € M as well as a fault tolerance
parameter ¢ > 0 and want to gain some information about the set of all (G, e,d)-matches of
Q with respect to P defined as

G(P,Q,e,d) :={g € G| d(9Q, P) < ¢e}. (3.6)

Usually we want to decide whether G(P, Q. e,d) is empty or not and, if not empty, we want
to find some g € G(P,Q,¢,d).

3.1.2 (G,e)-Matches and (G, ¢)-Inverted Lists

The most immediate connection from G-matches to distance measures used in geometric
pattern matching is the relation to the directed Hausdorff distance dy, which is defined for
two compact (in particular finite) subsets P, () of a metric space (M, d) as

d , P) := maxmind(q, p). 3.7
1(Q, P) = maxmin d(q, p) (3.7)
We also say that dy is the Hausdorff distance with respect to d, since in some cases there might

be more than one metric defined on M. As opposed to the undirected Hausdorff distance,
which is defined as

du(P, Q) := max{du(P, Q),du(Q, P)}, (3.8)

the directed Hausdorff distance does not define a metric, since it does not satisfy the triangle
inequality. However, it is the directed version that is usually studied in pattern matching,
since () can be thought of as an approximate subconstellation of P if dy(Q, P) is small.
In particular, we have Q C P iff dig(Q,P) = 0. This motivates the following definition of
(G, e)-matches of Q with respect to P:

Gp(Q):={9€ G |dn(9Q,P) <e}. (3.9)

An easy computation shows that G%(Q) = Gp(Q); thus (G, e)-matches generalize the notion
of a G-match. At the same time, (G, ¢)-matches are a special type of fuzzy queries and are
thus also a special case of G-matches.

There are basic differences between G-matches and (G, €)-matches. If the stabilizer of each
m € M is finite, then Gp(Q) is a finite set as well. We will see, however, that G%(Q) consists
of infinitely (and even uncountably infinitely) many group elements in many cases even if the
stabilizers of all m € M are finite. In these cases, it does not make sense to compute the
set of all (G, €)-matches. Instead we focus on the decision problem by asking whether G%(Q)
is empty or not; in case G%(Q) # (0 we are also interested in computing at least one single
g € G%(Q) as a “witness” for the non-emptiness of the set of all (G, €)-matches.

The optimization problem asking for the smallest € so that G%(Q) # 0 will not be considered
further; it has, however, been studied for example in [36]. There is also work dealing with
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the decision problem; comparing the results from [36] and other related work with the ones
obtained in this thesis is left to Chapter 5, where we develop different matching algorithms
with respect to the directed Hausdorff distance.

It seems reasonable to solve our decision problem by techniques similar to those developed
for computing G-matches. This motivates us to define the (G, ¢)-inverteted list of m € M as

Gp(m) := Gp({m}) ={g € G | du({gm}, P) < €}, (3.10)
which is equivalent to writing
Gp(m) ={g € G|3p € P: d(gm,p) < e},
since dg({gm}, P) <e <= 3dp € P: d(gm,p) < e. Thus, the equivalence
g€ Gp(m) <= dpeP:d(gm,p) <c¢ (3.11)

holds, which we will need in the following. Again, it can easily be seen that G%(m) = Gp(m)
for all m € M.

Let us now study the properties of (G, ¢)-inverted lists and their use for algorithms for the
decision problem stated above. As we will see, properties analogous to those of G-inverted
lists hold for (G, ¢)-inverted lists.

Lemma 3.1.1 For Q € Py(M), we have

G5(Q) = [ Gr(a)- (3.12)
9€Q

Proof. We have

9 € Gp(Q) dr(9Q,P) <e

max min d <e¢
max min (¢,p) <

max min d <e
max min (99:p) <

Vq € Q : min d(gq,p) <
qgeQ min (9g,p) < ¢

VgeQ :dy({gq},P) <e
VgeQ : geGpq),
in other words: G(Q) = (,co G7(9)- O

This property is a generalization of Eq. (3.4). We will now see that Eq. (3.5) can also be
generalized to (G, e)-inverted lists in a straightforward way:

1t111e

Lemma 3.1.2 For g € G and m € M, we have
Gpgm) = Gp(m)g".

Proof.
r € Gp(gm) <= dup({zgm},P)<ce¢
= 1z9€ GH(m)
< JheGH(m): h=uzg
< 3JheG%(m) : z=hg™!
— z€G%m)g L O
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3.1. G-MATCHES AND G-INVERTED LISTS

Thus, the set of all (G, e)-matches of QQ with respect to P can be written as

GH(Q) = [ Go(ro)g, (3.13)
qeQ

where for a system of representatives R C M of the G-orbits of M, we write ¢ = g,r, With
rq € R for each ¢ € Q.

3.1.3 Construction of (G,¢)-Inverted Lists

So far, we have seen how (G, ¢)-matches can be described as the intersection of (G, )-inverted
lists. However, we have not said anything yet about the construction of the inverted lists
involved in the intersection. Therefore, we present a number of characterizations of (G, ¢)-
inverted lists that are of some use in constructing these lists and, later on, in actually com-
puting the intersection from Eq. (3.13) with the help of techniques developed in Chapter 4.

In order to see that this task requires some effort consider the example shown in Figure 3.1:
let G = SO(2,R) act on M = R? by matrix-vector multiplication. Then, R := R>¢ x {0}
is a system of representatives. Given a pattern P := {p:}, p1 := (0,2), a query Q := {q1 },
q1 = (—2,0) and € := 1, we observe that G%(q1) # 0, although the points p; and ¢ lie
in different G-orbits. The results provided in this section will help to understand how the
(G, e)-inverted lists are constructed both in this example and in general.

\j

Figure 3.1: Elements from different G-orbits of M = R? match in case G = SO(2).
Before characterizing G%(r,) formally, we define the set
Rp:={reR|3dpePgeG:p=gr} CR

for a point set P € Ps(M), i.e., the set of all representatives whose G-orbits contain elements
of P.
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CHAPTER 3. G-INVERTED LISTS

A major role in the characterization of (G, €)-inverted lists will be taken by transporter subsets
of the transformation group G. Given two subsets A and B of the G-set M, we define the
G-transporter from A to B as

Trang (4, B) := {g € G | gA C B}; (3.14)
analogously, we define for a,b € M

Trang(a, B) :={g € G | ga € B} and

Trang(a,b) :== {g € G | ga = b}. (3.15)

As it turns out, the lists G%(s) to be constructed consist of building blocks
ng’f = {heqG|dhz,y) <e} (3.16)
= Trang(z,U:(y)) (3.17)

that we will refer to as the (G, ¢)-transporter from = to y. Thus ng’f denotes the set of
all group elements A € G that may act on x € M, so that the transformed element hx is
contained in the e-neighborhood of the second object y.

If d is G-invariant, i.e., if d(z,y) = d(gz,gy) for all z,y € M and g € G, these transporter
subsets can be characterized by representatives of z and y; therefore, let r,s € R and g, h € G,
so that x = gr und y = hs. Then we get:

ngf {a € G | d(agr,hs) < &}

d G-invariant {acq| d(h_lagr, s) < el

9 gl € G| d(brys) <€) (3.18)

h{be€ G |d(br,s) <e}g !
h G,E —1
Trd g .

<

b=

>

Furthermore, the complex product of two subsets of a group will simplify the characterization
of (G, e)-inverted lists. The complex product X - Y of X,Y C G is defined as

X -YVi={2ylzeX,yeY}
and, as can easily be shown, has the property

XYV =Y. (3.19)
zeX

These definitions finally allow us to characterize G%(s) for any s € M.

Lemma 3.1.3 Let M be a G-set and let d: M x M — Rxq be G-invariant. Then,

Go(s)= |J Gp(r)-75r. (3.20)
r€ERp

Proof. First we note that for arbitrary g,h € G and r,s € R, we have
d(hs,gr) <e <= h¢€ ng;E, (3.21)

20



3.2. EXAMPLES

as the following equivalences show:

d(hs,gr) <e vy d(g ths,r) <e

3.16 _
( ) g lh c Tgr’-g
— he grlr.

Furthermore we note that for arbitrary p,p’ € M with p’ = hp for some h € G, we have

pr= U o'} (3.22)

g€Trang(p',p)

Now we get

5(s) = {h€G|du({hs},P)<e}
= {heG|3pecP:dhsp) <e}
= | J{heGd(hs,p) <e}
peEP

(3:22) U U {heGldhs,gpry) <e}

pEP gpeTrang(rp,p)

(3:21) U |J {heGlhegls
PEP gpeTrang(rp,p)

= U U T

PEP gy€Trang(rp,p)

= U U e

r€Rp geGp(r)

= U Gp(r) - 7'5(’;;18.

r€ERp

O

Remark 3.1.4 The union ranging over all representatives Rp stated in the preceding lemma
can be further simplified; it suffices to let the union range over representatives in the e-
neighborhood of s. This requires a suitable distance between representatives. In fact, it makes
sense to use the Hausdorff distance between the orbits of r,s € R, i.e., do(r,s) == dy(Gr,Gs).
(Note that this requires the orbits to be compact.) Defining the closed neighborhood Up(e,r) 1=
{s € R|do(r,s) < e}, one can show that it suffices to let the union range over Rp NUp(e, s)
instead of the whole set of representatives Rp.

3.2 Examples

We will now consider simple examples of (G, ¢)-inverted lists for two different G-sets M. For
more complex groups than the group of translations in R% or the group of rotations in the
plane — the group of rigid motions, for example — the construction of G-inverted lists becomes
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more complex and leads to difficult intersection problems; for these more complex groups, it
does not make sense to compute (G, ¢)-inverted lists in a precomputed index. However, the
intersections to be computed still yield efficient algorithms that will be studied in Chapters
4 and 5.

From the results of the last section, we know that, given a G-set M and a G-invariant distance
function, we have to follow three steps for characterizing (G, ¢)-inverted lists:

1. Identify a system of representatives R.
2. Characterize T,«Ciég for r,s € R.

3. Characterize the effect of left-multiplication by some g € G and right-multiplication by
some h € G, i.e., characterize gﬂ%’gh.

Complete (G, e)-inverted lists are then characterized as the union of several building blocks
of the type gTE 3°. For computing (G, ¢)-matches, a right multiplication is performed on
the (G, e)-inverted lists involved, and thus building blocks of the type gT,«? :°h need to be
intersected.

3.2.1 Translations in R?

Let M = R? and let G := T(2) (where T'(k) denotes the group of all translations in R¥, as
introduced in Chapter 2). Furthermore, as the metric underlying the Hausdorff distance we
use d := do, where d, denotes the metric induced by the norm ||.||oc. The metric dy, is
T'(2)-invariant, so we can follow the three steps stated in the beginning of this section:

1. Since T'(2) acts transitively on R?, there is only one orbit. Hence, we choose R := {(0,0)}
as a straight-forward system of representatives for the single 7'(2)-orbit of R?.

2. We only have one orbit, so we only need to characterize 7'(7(;(3))’(60 0)° The set of all
translations T'(2) can be identified with R?, and T{Jﬁf ’(EO o) can easily be identified with
the square

T(2),
T(ofo)),(go,o) ={z € R | ||z[lsc < €}

which is centered at the origin.

3. Multiplying such square with some g = (g1,92) € T'(2) simply moves the square by g;
in the z component and g in the y-component — no matter if the multiplication is from
the left or from the right, since 7'(2) is abelian.

Due to these three properties, computing the set of (G,e)-matches of Q = {q1,...,qn} with
respect to P = {p1,...,pm} only requires a family of n sets of rectangles, each of which
contains m equal-sized squares, to be intersected. A complete example is shown in Figure 3.2.
For solving this rectangle intersection problem algorithmically, methods based on orthogonal
range searching exist, see [29].

Note that the methods described here in two dimensions also work in higher dimensions, i.e.,
for M = R¥ and G = T'(k).
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A pattern P = {p1,p2,p3} C R? and a
' ' bl 9
q:9 P Py query Q = {q1,q2} C R2.

\/

4,0

| G400y

(G,¢)-inverted list G%((0,0)). Since
translations act transitively on R?, it suf-
fices to construct one (G, e¢)-inverted list
for the point (0,0).

\/

.

Construction of the (G,¢)-matches

G5(Q) = G%(q1) N G%(g2). Note that
the lists G%(g;) are shifted versions of

G5((0,0)).

Gitg) —H
P
a

Gpay)

Figure 3.2: Construction of (G, ¢)-inverted lists and (G, €)-matches for G = T(2) and M = R?
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3.2.2 Rotations in R?

In our next example, we consider M := R? and G := SO(2) acting on R? by matrix-vector
multiplication as rotations around the origin. As our metric d, we consider d := do, i.e., the
Euclidean distance which is SO(2)-invariant.

1. In the example shown in Figure 3.1, we have already seen that the set R := R>¢ x {0} is
a set of representatives of the SO(2)-orbits. This set of representatives has the special
property that the distance dp between the G-orbits as defined in Remark 3.1.4 equals
the Euclidean distance between the two orbits’ representatives.

2. A transporter subset T,«(,; s° can be characterized as a circular arc on the unit circle.

3. Since SO(2) is an abelian group, we have gresh = ghrs®, so it suffices to consider
left-multiplication. If g represents the rotation by an angle ¢ around the origin, then

Ge . Ge
gTrs corresponds to the circular arc 7,y rotated by ¢.

A pattern P = {p1,p2,p3} and a query Construction of G%(Q) = G%(q1)NGH(q2)
Q = {Qh QQ}

Figure 3.3: Construction of (G, ¢)-inverted lists and computation of (G, €)-matches for G =

SO(2).

Thus, for constructing G%(s) for some s € R, it suffices to take the union in Eq. (3.20) over
all  with d(r,s) <e.

For computing (SO(2), )-inverted matches of Q@ = {q1,...,q,} wrt. P = {p1,...,pm} we
need to compute the intersection of n sets of circular arcs, each of these consisting of m
circular arcs. This can be done by unrolling the circular arcs to the interval [0, 27), which
will be studied more detailed in Chapter 4.

Very similar results as for G = SO(2) hold for the group of uniform scalings SC(2) acting on
R?. The unit circle S* can be used as a system of representatives, and the transporter sets Tg i
can be identified with closed real intervals; SC(2) is abelian, and multiplying a transporter
set Tg i by g € SC(2) corresponds to shifting the closed interval along the real line.
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Note that constructing (G, e)-inverted lists and intersecting them for the cases G = SO(2)
and G = SC(2) can be done using elementary geometry only. The reason for this is that
these groups only have dimension one — SO(2) is parametrized by the unit circle, and SC(2)
is parametrized by the real line; the resulting characterization of the transporter sets TS i
as circular arcs or closed intervals leads to easily solvable computational problems. For the
case of translations in R¥, the construction and intersection of (G, ¢)-inverted lists is easy
because the transporter sets can be identified with orthogonal closed intervals in R¥, and for
intersecting these intervals, well-studied data structures and algorithms can be applied.

For more complex groups such as rigid motions or the group SO(3) of rotations in R?, there
are no simple data structures to represent the transporter subsets to be intersected. In fact,
intersecting these groups’ transporter subsets requires some effort, which is left to the next
chapter.
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Chapter 4

Intersecting Transporter Subsets

As we have seen in the previous chapter, (G, ¢)-inverted lists allow us to match patterns with
respect to the (directed) Hausdorff distance — as long as we are able to handle the intersection
of the (G, ¢)-transporters involved. In this chapter, we focus on the problem of intersecting
(G, e)-transporters. To be more precise, we focus on the problem of deciding whether the
intersection of a given finite family of (G, €)-transporters is empty or not, where G always is
a subgroup of the affine group AGL(k) acting on V' = RF. This problem is equivalent to the
following one studied in the work by Alt, Mehlhorn, Wagener and Welzl [10]: Let (p1,...,pn)
and (q1,...,qn) be two sequences of points of equal length. Determine whether there exists
a transformation g that maps each ¢; into the e-neighborhood of p;.

The algorithm we propose allows to decide whether a family of (G, ¢)-transporters is non-
empty. In case G contains translations as a subgroup, we propose an approrimate version
of this algorithm based on eliminating the translation components of the transporter sets;
these methods will be studied in detail for different transformation groups. The problem of
intersecting transporter sets is not of immediate interest in pattern matching applications.
However, gaining insights into intersections of transporter sets will be helpful in the follow-
ing chapter, since these intersections are related to algorithms for matching with respect to
distance measures such as the Hausdorff- and the bottleneck distance. The algorithms pre-
sented in the sequel are approximate algorithms that yield smaller time complexities than
algorithms that solve the problem exactly. Furthermore, the results apply to a large class of
transformation groups.

4.1 Notation and Basic Concepts

Throughout this chapter, V' denotes the Euclidean vector space R, where ||z — y| denotes
the Euclidean distance between z and y, and G denotes a subgroup of the affine group
AGL(Ek). Furthermore, G contains the group of all translations in V' as a subgroup, i.e.,
T(k) < G < AGL(k).

Since they play a crucial role in this chapter, we repeat the definition of the (G, ¢)-transporter
from q € V to p € V from Chapter 3, which we had defined as

TG = {ge G| |gg—pll <e).

We now consider a metric space that is induced by (V. |.||): for fixed K € N>g, consider the
set VIO-E=1] of a1 sequences of K vectors in V. Then, G acts on (po, .- PK—1) € VI0:K-1] i
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a canonical way via g(po,...,pr—1) := (gpo. . .., gpK—_1). Furthermore, defining d¥(P, Q) :=
max; ||p; — ¢i||, we obtain a metric space (VI0:K=1 gK),

To verify that d¥ indeed defines a metric, one can easily see that d*(P,Q) =0< P = (Q as
well as d¥ (P, Q) = d¥ (P, Q) are immediately inherited from the corresponding properties of
the Euclidean distance between two points. In order to show that d¥ satisfies the triangle
inequality, let P,Q, R € VIK=1_ Obviously, there is an i € [0 : K — 1] so that ||p; — ri|| =
d¥(P,R). Due to ||p; — ¢ < d¥(P,Q), |l¢i — ri|| < d¥(Q, R) and the triangle inequality
holding for the Euclidean distance, it follows that d* (P, R) < ||pi —ri| < |lpi —aqil| + /g —7i|| <
d¥(P,Q) + d¥(Q, R).

For sequences P = (pq, ...,px_1) and Q = (qo, . .., qx—1) in VK= the set of all (G, d",e)
matches of @ and P is the intersection of (G, ¢)-transporters corresponding to the components
of P and Q:

G(P,Q,e,d")={ge G |d"(PgQ) <e} = () 5. (4.1)
0<i<k

We study the problem of matching point sequences, which essentially consists of determining
whether the intersection of a finite number of (G, ¢)-transporters is empty or not.

The problem we focus on is the following: given ¢ > 0 and P,Q € VI%E-11  decide whether
G(P,Q,e,d") is empty. By Eq. (4.1) this transporter set is the intersection of the individual
transporters 74 ;. In general, there are no obvious algorithms and data structures for hand-
ling (G, e)-transporters and their intersections for arbitrary groups G < AGL(k). In order
to simplify the intersection problem, we develop an approximate algorithm for the group of
translations in the following section. This idea can be used to eliminate translation com-
ponents of transporter sets, which simplifies the intersection significantly. Finally, applying
techniques from real algebraic geometry, we generalize the idea underlying this algorithm to
larger transformation groups in a later section.

4.1.1 Approximately Intersecting Translation Transporter Sets

For Euclidean vector spaces V = R¥, the group T'(k) of all translations in V has the pleasing
property that T'(k) is the additive group (V,+) of the vector space, and we can identify each
p € V with a translation and vice versa. As a result, a transporter set Tg > can be written
as an e-neighbourhood in V, namely U.(q¢ — p), and can hence be identified with a closed
hypersphere in V (e.g., a disk for V = R? and a sphere for V = R3). For the intersection task
to be solved, this means that we only have to decide whether the intersection of a family of
equal sized hyperspheres is non-empty.

Suppose we are given a radius € and a family of K hyperspheres with centers <ti>z‘e[0: K—1]"
We can state a simple method for approximately deciding whether the intersection of the K
hyperspheres of radius € is non empty as follows: if ||tg —t;|| < 2e for all 4 € [1 : K —1], let the
algorithm answer non-empty, and empty otherwise. Apparently, the algorithm answers non-
empty if N;U:(t;) # 0. As shown in Figure 4.1, the reverse statement does not hold. However,
one can easily see that M;Us-(t;) = () implies that the algorithm answers empty. In other
words, our simple algorithm has an indecision interval of € and hence yields a 2-approximate
solution to the decision problem whether N;U.(;) is empty or not. Considering a vector space
V of fixed dimension, the running time of the algorithm is O(K), as a distance ||tg — t;|| is
computed K times.
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Figure 4.1: An arragement of translations and translation transporters

Note that ty plays a special role as a “reference translation”. The choice of tg is arbitrary; we
could also use t; for any other i € [0 : K —1].
The idea behind this simple algorithm will now be generalized to larger transformation groups.

4.1.2 Eliminating Translation Components

For larger transformation groups than pure translations, we consider a transformation group
G that is the semidirect product of the group of translations T'(k) and some other group
H < GL(k), i.e., G =T(k) x H. In order to simplify the intersection problem, we apply the
projection n of G onto H with kernel T'(k), i.e., n(th) := h, for t € T'(k) and h € H. Instead
of sets A C GG, we work with the n-image of such a set A:

nA]:={h e H|3teT(k): the A}.

This projection is well defined since for each g € G, there is a uniquely defined ¢ € T'(k) and
h € H so that g = th, which is due to the fact that G is the semidirect product of T'(k) and
H.
Looking at Eq. (4.1), an analogous statement does not hold for the intersection of n-images of
individual (G, ¢)-transporters: for p,q € V we always have n[rey] = H, so that Nin[re 5] =
H. Thus to get non-trivial transporters we use projected transporter sets

T][Tgif N ch,;”;,] ={he€e H|3teT(k): the ’rg]’f,th € ’rqc,i’;,} (4.2)
as our building blocks.
A natural question that is raised by Eq. (4.2) is how we obtain pairs of transporters in order
to get projected transporters that are non trivial. Recall that the method for intersecting
translation transporters from Section 4.1.1 uses a reference translation ¢y for an approximate
algorithm. Generalizing this idea, we now intersect each transporter Tg”gf with the same
reference transporter T,gf,i. This motivates us to define

H; := 77[7'(](;:;0 N Tg”;i]. (4.3)

Now, consider the case that N; H; # (), so that there is some h € N; H;. We define translations
t; := p; — hg; and use ty = py — hqo as our reference translation. Intuitively speaking, for
each h € N; H;, we get one instance of intersections of K hyperspheres. As it turns out, with

29



CHAPTER 4. INTERSECTING TRANSPORTER SUBSETS

Figure 4.2: An arrangement of translations and translation transporters

t; = p; — hq;, the simple algorithm from the last section always computes output non-empty
when deciding whether N;U.(t;) # (. For proving this by the considerations from the previous
section, it suffices to prove that ||t; — #o]| < 2¢ for all ¢ € [1 : K], which can be shown as
follows: Since h € n[7py’5o N Tpi g, there is a translation n; for each i € [1 : K — 1] such
that ||p; — nihqi|| < € and ||po — nihqol| < €. As can be formally shown (see Figure 4.2
for an illustration), we have |n; — t;|| < € as well as ||n; — tg]| < &, and hence we obtain
Iti — to|| < 2e. (Instead of a formal proof, we refer to Theroem 4.1.2, where the idea sketched
above is elaborated and completely formalized.)

Altogether, the above considerations yield that tgh € mirﬁﬁf , and, in particular, ﬂﬂﬁﬁf # (.
Note that we obtained this conclusion about the intersection of the complete transporters from
just looking at the projected transporters H; — we did not have to deal explicitly with the
translation part of the transformation group. Again, for an elaboration of the ideas sketeched
so far, we refer to Theroem 4.1.2.

We have just seen that examining intersections of projected transporters may be used to
draw conclusions about the intersection of the complete transporters. Our next concern is to
formalize this idea and to obtain provable results about approximate transporter intersections.
After that, it remains to characterize the projected transporter sets n[T,IGOf,O N Tg,’gi].

A major key for formalizing approximate transporter intersections are interesting structural
properties of the group of translations in a vector space: T'(k) is abelian and acts transitively
on V. Furthermore, the Euclidean distance is T'(k)-invariant. Hence, the following Lemma,
which will be of some use later on, holds:

Lemma 4.1.1 Let N be an abelian group acting transitively on V, i.e., for each pair (v, w) €
VIl there exists an n € N with nv = w. Furthermore, let d be an N -invariant metric on V.
Then d(nx,n'z) = d(ny,n'y), for arbitrary n,n’ € N and z,y € V.

Proof. Since N acts transitively on V', we can write x = ty for some ¢t € N. As N is abelian
and d is N-invariant, we get d(nz,n'z) = d(nty,n'ty) = d(tny, tn'y) = d(ny,n’y). O

As shown in the following Theorem, this property allows us to ignore translations and focus
on merely intersecting projected transporter subsets.

Theorem 4.1.2 Let V,G, H,K,c > 0 be defined as above. For P,Q € VI*K=1 and every
i €1[0: K —1] define

G
Gie:=1qp and H;.:=n[Go:NG;g].
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The following implications hold:
(1) ﬁie[l:K—l}LIz',e =0 = ﬂie[(];K_l]Gi’E = (.
(2) mie[l:K—l}LIi,E 7"é 0 — mie[O:K_l]Gi’Qg 75 0

Proof. (1) Tt suffices to show that Nicjo.x—11Gie # 0 = Nicpix—11Hie # 0. Thus, let
9 € Nicjo:k-1]Gie- Then g € Go. N G for arbitrary ¢ € [0 : K — 1]. Writing g = nh for
uniquely defined n € T'(k) and h € H, this implies h € 5[Go N G; ] for any i. Thus, we have
h € N; H; ¢, in other words, N; H; . # 0.

(2) To begin with, let h € N; H;.. We claim that the group element gy := toh, with the
translation tg := pg — hqo, belongs to N;G; .

First of all, we observe that gogo = po. As h € H;. = n[Go. N G, ] for any i € [0 : K — 1],
there is an n; € T'(k) such that

L - ) _ GE GE
g; ‘=n;h € Go,e NG, £ = Tqopo N Tqispi-

Using this fact, the triangle inequality and Lemma 4.1.1 applied to hg; and hqg, we obtain
for arbitrary ¢ € [1 : K —1]:

lgogi —pill < llgoas — giaill + llgiai — pill
< |[tohg; — nihg;|| + €
= “tghq() — nithH + €
= lpo — giqoll + € < 2e.
This proves the second claim. O

Expressed in simple terms, the preceding Theorem states that deciding whether the intersec-
tion N; H; . is non-empty yields an approximate solution to the decision problem asking if the
intersection ﬂZTqu »; 1S non-empty.

We now take a closer look at the projected (G, e)-transporters n[7a 5, N7e5:]. To this end, we
observe that for any G < AGL(k) it suffices to compute ng’Q for centered line segments P and
Q, i.e., line segments whose center is located at the origin. Obviously, centered line segments
are point symmetric with respect to the origin. This fact in combination with further nice
properties of centered line segments allows us to state the following lemma.

Lemma 4.1.3 Let V =RF for some k > 0 and P,Q € V% be two line segements in V, and
let P = (—p, D), Q= (—q,q) € VIOl denote the centered versions of P and Q, respectively, so
that p = 2(101 —po) and § = (g1 — qo). Moreover, let G = T(k) x H for some H < GL(k).
Then, the following holds:

(1) IIP = Qllc < 1P = Qo for any n € T(k).
He _ _H,
(2) 77[7710,;00 N Tq1,p1] = T_q,g_p' = Tq,p'g'
Proof. (1) We have ||P — Qllc = max{| = — (=@)Il, 6 — dll} = Ip — qll and |P — (Q +
(n,1))lloc = max{[|p — g +n)|,[Ip — ¢ = nl}. As for any a €V,

2max{lla +nl], |la —nl[},

1 1 1 1
lall = lI5(a +n)+ 5(a—n)ll < 5(la+nll +la—nl) < 5

5
31



CHAPTER 4. INTERSECTING TRANSPORTER SUBSETS

our claim follows with a = p — ¢.

(2) We start with the second equality. Since for any h € GL(k), we have —h§ = h(—¢), the
equality follows from ||p — hq|| = ||[(—p) — h(—4q)||, for all A E H.

We get to the proof of the first equality. Note that [t 15 50N Tgf] = 77[7',]0,,,0 N qu,pl]

since P and ) are translated versions of P and Q, respectlvely. Now, it suffices to prove
755N TquE] - ;I;I;E'

T2 C 77[ - q N 7' 5 ] follows 1mmedlately since hQ is centered, too, and 1t remains to show
the reverse 1nclu810n 7'~ ; © D q[rCs ;N7 ] To this end, let h € g[7% N7 q’ﬁ “]. By definition

~G,—p ~G,—p
of 7, there is a translatlon t such that th € TG{: =N TquE, in other words, ||P —thQ| e < e.

From (1), we get |[P — hQ|lo < ||P —thQ||les < €, so that h € T_q pﬂTM , and in particular,
h e Tgﬁ . O
Let P,Q € VI%! be arbitrary point pairs, and let ¢p and tg denote the translations that
move the center of P and @, respectively, to the origin, so that P :=tpP and (@) := tgQ are

centered. Since P and P as well as Q and Q only differ by a translation, we have

G, G, _ G.e
77[7—110 ;0 N Tq ;1] 77[ Tdo Po Tijl:ﬁl]'

Finally, by Lemma 4.1.3, we get

G, Ge 1 _ . He
77[ tIO ;0 N T(Il 1691] - Tijl,ﬁl‘ (4‘4)

This allows us to state Theorem 4.1.2 in a more convenient way, showing that it suffices to
intersect (H,e)-transporters instead of (G, ¢)-transporters:

Theorem 4.1.4 LetV,G, H,K,e > 0 as above. For P,Q € VI% =1 and everyi e 0: K—1],
let p; == %(po —p;) and q; :== %(qo —qi). The following implications hold:

(1) Nign:r—17; H =0 = Nico:x- 1}Tq(ipz 0.

H G
(2) mie[l:K—l}Tqi,}i #0 = mie[l:K—l}Tqi,ﬁf # 0.

Proof. The claim follows immediately from Theorem 4.1.2, Lemma 4.1.3 and Eq. (4.4). O

4.1.3 Rotations and Scalings in 2-Space

We now study two transformation groups for point sequences in R?, namely rigid motions and
homothetic motions, applying the results of the last section to provide efficient algorithms for
handling transporter intersections.

The first goal of this section is to show the following:

. SO(2
e We may characterize each Tq’p( e

. qu, ,(,3(2)’8 can be identified as a closed interval on the real line.

as a closed interval on the unit circle S!.

Circular arcs and real intervals are geometric objects whose intersection can be handled
easily, and by Theorem 4.1.4, dealing with these simple intersections suffices for handling the
intersections of (SE(2), e)-transporters and (HT(2), )-transporters, respectively.

The constructions shown in Figures 4.3 and 4.4 yield intervals on S' and over R, respectively,
for Tq 2. The idea behind these constructions is to compute HqN U, (p), i.e., the intersection
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4.1. NOTATION AND BASIC CONCEPTS

Figure 4.3: Construction of Tﬁ;g = [601,03] for H = SO(2). Elementary geometric computa-
tions yield the angles 6; and 6s.

of the H-orbit of ¢ and U.(p). Now, the intersection of a circle with a disc is a circular arc for
H = SO(2), namely the circular arc enclosed by the angles 6y and 6, as depicted in Figure
4.3. For H = SC(2), Hq is a straight line. The intersection of a straight line with a disc is
; SC(2),

a line segment, and thus 74,5
4.4.

We now combine the results of Eq. (4.1), Theorem 4.1.4 and the construction shown in Figure
4.4 in order to obtain an efficient algorithm for deciding (approximately) whether ﬂiTqu i 0,
starting with G = HT(2). The projected (G, ¢)-transporters to be intersected according to
Theorem 4.1.4 are compact real intervals. In order to approximately decide whether the
(G, e)-transporter of two point sequences is non-empty, these results suggest that in case
H = SC(2), we only need to decide whether the intersection of a certain family of compact

real intervals is non-empty.

“ can be identified with the closed interval specified in Figure

A ’

Figure 4.4: Construction of Tﬁ;g ={A | llooll/llgll < A <lo1ll/llgl|}idy for H = SC(2) acting
onV =R
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CHAPTER 4. INTERSECTING TRANSPORTER SUBSETS

Remark 4.1.5 Let [z1,91],...,[zn,yN] be compact real intervals. Then Nicpi.n[Ti,yi] =
[max;e(i.n) Ti, minje(i. 1 y5]- In particular, this intersection is non-empty iff max;c.n) z; <
min;e[1:n] Yj-

Since maximum and minimum of a family of K reals can be computed in O(K) time, we
can give an approximate solution to the decision problem whether G(P,Q,e,d®) # § for
G = SC(2) in O(K) time.

Now, let us consider the case H = SO(2). As shown in Figure 4.3, the projected (G,¢)-
transporters to be intersected are circular arcs. We view circular arcs as intervals on the unit
circle. Intervals on the unit circle differ in some respects from intervals over R; for example,
the intersection of two intervals on S’ may consist of up to two disjoint circular arcs.

As a first step for resolving such issues, we define an order over the points on the unit circle
as follows: the unit circle can be parameterized by the real interval [0,27). We define z <y
iff the parameter angle of z is at most the parameter angle of y. Note that computing this
order as well as all other computations described so far can be performed algebraically, i.e.,
involving addition, subtraction, multiplication, division and computing roots of real numbers
and without involving trigonometric functions.

However, there is no property corresponding to Remark 4.1.5, and hence we cannot decide
whether a family of circular arcs is non-empty by computing the maximum of all left interval
borders and the minimum of right interval borders. What we can do, however, is to sort the
left and right borders of the unrolled real intervals and then sweep over this arrangement of
intervals as follows:

1. Compute the O(K) borders of all K transporters and sort them in order to obtain an
ordered cell enumeration.

2. Start with the first cell and mark the polynomials whose sign condition is satisfied. If
all K polynomials are marked, we have found a cell that is contained in the intersection
of the K transporters and we are done.

3. Traverse the cells in the given order. Each time a transition to a new cell is performed,
one transporter needs to be marked, or the mark of one transporter needs to be removed.
If the number of marked transporters is K, return the current cell representative.

4. If at no time, K transporters were marked, return 0.

Obviously, the first step requires O(K log K) time. The second step requires O(K) time,
since the first interval border can be contained in up to K transporters. Finally, updating
one transporter mark for a single border element in Step 3 takes time O(1), so that Step 3
requires O(K) time in total. Hence, the overall running time obtained is O(K log K).

The time complexity for the first cell is O(K), while O(1) time is needed for each of the other
O(K) cells. Hence, the total time complexity is dominated by the O(K log K) time it takes
to sort the interval borders.

We summarize these results in the following

Theorem 4.1.6 Let ¢ > 0, V = R2 and P,Q € VI"E-1U There is an algorithm that
computes output

1 Zf G(P,Q,&‘,dK) # @,

0 or1 otherwise,
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4.2. INTERSECTING ARBITRARY AGL(K)-TRANSPORTERS

in O(K) time for G = HT(2) and in O(K log K) time for G = SE(2).

Studying this approach from an algebraic geometry point of view, one obtains semialgebraic
sets and arrangements defined by semialgebraic sets, which we now study in more detail.

4.2 Intersecting Arbitrary AGL(k)-Transporters

Generalizing the decision algorithm from the last section to larger transformation groups
requires some effort, using methods from computational real algebraic geometry. There is
some related work that also deals with applications of techniques from real algebraic geometry
to geometric pattern matching; the first work using such techniques is the method proposed
by Ambiihl, Chakraborty and Gértner [11] for finding largest common point sets with respect
to the bottleneck distance under different transformation groups. Their algorithm can be
modified in a straightforward way for solving other matching problems, in particular for
deciding exactly (i.e., without an indecision interval) whether G(P,Q,¢e,d*) = (). Another
work using real algebraic geometry for pattern matching has been proposed by Wenk [66] for
matching polygonal curves under the Fréchet distance.

The time complexity of the method stated in Theorem 2.3.6 depends exponentially on the
dimension of the variety that is partitioned into cells by a family of polynomials. In pattern
matching applications, the underlying variety usually is a linear algebraic transformation
group. Since the projection technique from Theorem 4.1.4 allows to ignore translation parts
(at the cost of an indecision interval), our algorithms will be generally dealing with groups of
smaller dimension and will hence yield smaller time complexities.

Note that due to Theorem 4.1.2, it suffices to focus on groups H < GL(k) rather than
subgroups of AGL(k). However, since AGL(k) can be embedded in GL(k + 1), the results
stated below generalize in a straightforward way to arbitrary subgroups of AGL(k).

4.2.1 Transporter sets as semialgebraic sets

Throughout this section, let H be a linear algebraic group acting rationally on R¥. The group
variety H is considered to be an algebraic subset of R? for some d > 0. As a first step towards
describing transporter sets as semialgebraic sets, we consider a vector v := hp with h € H
and p € R¥. Since the group action of H on RF is a rational group action, the i-th coordinate
of v, denoted by wv;, is a rational function in the d coordinates of the group element h. Hence,
we can write v; = e;/d; for some e;,d; € R[X1,..., X,4]. Defining D := [], d;, we obtain a
polynomial condition
D*Y v} —D%* <0
K

that is equivalent to ||p; — ¢;||?> < €2. We summarize this in the following Lemma.

Lemma 4.2.1 Let V = RF and H < GL(k) a linear algebraic group acting rationally on V.
Then, for any p,q € V, Tﬁ;g is a semialgebraic set. In particular, the intersection of finitely
many transporter sets is a semialgebraic set.

For deciding the emptiness of ﬂﬂg,’;i, one can use cell enumeration procedures such as c.a.d.
or the related technique of Theorem 2.3.6. Using the result stated in Theorem 2.3.6, we obtain
the following result:
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CHAPTER 4. INTERSECTING TRANSPORTER SUBSETS

Lemma 4.2.2 Let V,K and H be defined as in Lemma 4.2.1, and let d’ denote the real
dimension of H. Then, given (zq,...,zx_1) € VIOX=U and (yo, ..., yx_1) € VIOE-1 K >
0, one can decide in O(K%*1) time whether ﬂie[O:K_l]Tyi:;i is empty or not.
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Chapter 5

Pattern Matching with Respect to
Relational Distance Measures

The results on intersections of transporter subsets of transformation groups by themselves
only allow matching point sequences in V* of the same length K € Ny with respect to d¥.
In typical applications, however, the objects P and @) to be matched are not point sequences
of the same length. Often, P and @ are point sets that usually are of different cardinality,
and it is not known which points from @ match which points from P, so that d¥ is not
a relevant distance measure. For point sets, the distance measures that have been studied
intensively are the Hausdorff distance and the bottleneck distance as well as some relatives
of these two. In this chapter, we show how the Hausdorff and the bottleneck distance are
related to d®, which finally leads to matching algorithms with respect to these two popular
distance measures, partially improving known upper bounds for such matching algorithms.
In the subsequent chapter, we will study the Fréchet distance that is defined between polygonal
curves. A discrete version of the Fréchet distance will again be very closely related to the
metric space (VX,d¥) from the last chapter.

A major goal of this chapter and of Chapter 7 is to show that the Hausdorff distance, the
bottleneck distance and the discrete version of the Fréchet distance (as introduced in the next
chapter) belong to one certain class of distance measures, so that matching algorithms for
these three (as well as a number of other) distance measures can use the same techniques.

Convention 5.0.3 Throughout this chapter, we use the following notational conventions:
e k denotes the dimension of the Euclidean vector space V := RF.

e P=(p1,....pm) € V™ and Q = (q1,...,qn) € VI denote sequences of m and n
points in V', respectively.

e G =T(k) x H denotes a transformation group acting on V, where H < GL(k).

e ByVt = Ukzlv[ljk], we denote the set of all finite sequences of points in V.

5.1 Related Work

One of the first works that considered distance measures for geometric pattern matching
between point sets is the work by Alt et al. [10]. In this work, the notion of congruence
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CHAPTER 5. PATTERN MATCHING UNDER RELATIONAL DISTANCE MEASURES

between point sets is generalized to approximate congruence, which we refer to as the bottleneck
distance in the sequel. In order to measure the bottleneck distance between two point sets of
equal cardinality, one determines an optimal bijection between the two point sets. A bijection
assignment is optimal if the maximum of all distances between points assigned to each other is
minimal. In [10], algorithms for matching under several transformation groups are considered.
Subsequent works by Schirra [39] as well as Indyk et al. [46] consider different approximate
and randomized techniques in order to obtain faster matching algorithms. Finally, in [11] and
[20] algorithms for finding largest common point sets with respect to the bottleneck distance
as well as applications in molecular biology are considered.

Besides the bottleneck distance, the Hausdorff distance has been considered as a natural
distance measure between point sets. Instead of bijections, the Hausdorff distance minimizes
one-to-many-assignments and hence is also suitable for point sets of different cardinality. The
Hausdorff distance can be computed faster than the bottleneck distance. Thus, the numerous
algorithms developed for matching (and, in particular, approximate matching) under different
transformation groups (see, e.g., [12, 36, 42]) usually have asymptotically smaller running
times than algorithms for matching with respect to the bottleneck distance. Recent work
by Cardoze and Schulman [19] as well as Indyk et al. [46] reduce the geometric problem of
matching with respect to the Hausdorff distance to a combinatorial pattern matching problem,
obtaining the asymptotically fastest of all known matching algorithms. However, the results
from [33] suggest that these theoretical improvements do not yield better running times in
real world applications.

In the rest of this chapter, we systematically develop a class of matching algorithms that
is capable of solving most of the problems addressed in the above mentioned literature. We
compare these methods that are based on the technique of eliminating translation components
and cell enumeration to known results from the works cited above.

5.2 Relational Distance Measures

In this section, we describe a class of distance measures between families of points that are
typically used for geometric pattern matching. Later on, we provide matching algorithms for
distance measures belonging to this class. Besides the directed and the undirected Hausdorff
distance, both of which we already encountered in Chapter 3 in the context of (G, €)-matches
and (G, e)-inverted lists, we will study the bottleneck distance dp (sometimes also referred
to as approximate congruence) that was studied for the first time in the context of pattern
matching by Alt et al. [10].

Definition 5.2.1 Let P,Q € VI The bottleneck distance dg between the two point se-
quences is defined as

dg(P, Q) = min nax (i) — aills

where Sy, denotes the set of all permutations of [1 : n].
We now characterize distance measures such as the Hausdorff and the bottleneck distance by
means of relations. Recall that we work with sequences of points P € V1™ and Q e VIl

rather than with sets of points. Then, for d € {dp, dy, di}, we can decide whether d(P, Q) <
€ by considering the relation

R(P,Q,e) :=={(i,J) | lpi — g;ll < e} S[L:m] x[1:n].
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In case of the bottleneck distance, we have dg(P, Q) < ¢ iff there is a complete matching in
the bipartite graph described by R(P, Q,¢), viewed as a set of edges. In case of the directed
Hausdorff distance, we have dg(P,Q) < ¢ iff for all j € [1 : n], there is an i € [1 : m] such
that (i,7) € R(P,Q,¢); for the undirected Hausdorff distance, the same criterion additionally
needs to be satisfied for all ¢ € [1 : m] vice versa.

Definition 5.2.2 We say that a distance measure d s relational iff for all m,n > 0 there is
a set of relations R(d,m,n) C 2lt™mx[1n] g0 that

d(P,Q) <e < R(P,Q,¢) € R(d,m,n)
for all P € VI™ gnd Q € VIImI,

An essential factor for the time complexity of matching algorithms is the time 7T'(d,m,n)
required to decide whether R(P,Q,e) € R(d,m,n). For the Hausdorff and the bottleneck
distance, we obtain the following time bounds:

e Bottleneck distance: We need to check whether the bipartite graph defined by the
edges given by R(P,Q,¢) contains a complete matching. (In the sequel, we refer to
this bipartite graph given by R(P,Q,¢) as the bipartite distance graph of P and Q
for distance €.) Finding a maximum cardinality matching (and hence deciding whether
there is a complete matching) can be done using the method by Hopcroft and Karp [40],
requiring O(|E|y/]V]) time for a graph with edges E and vertices V, yielding a time
bound of O(n?%) in our case where n denotes the cardinality of P and Q. Better time
bounds can be achieved by using the algorithm by Efrat and Itai from [30] , who obtain
a time complexity of O(n'®logn) for the following problem: Given two sequences of
points in the plane, P and @, define a bipartite graph T'(P, Q) with vertices P U @ and
an edge between each pair (p;,q;) weighted by the Euclidean distance between these
two points. In O(n'®logn) time (where n = |P| = |Q|), the algorithm stated in [30]
determines a minimum value 7 so that there is a matching in I'(P, Q) whose edges all
have a weight of at most r. Obviously, this algorithm may be used for our decision
problem as well. Note that the running time for computing the maximum cardinality
matching is dominated by the time O(n?) required for computing R(P, Q, ).

e Hausdorff Distance: For the directed Hausdorff distance, we only need to test in O(n)
time whether all vertices corresponding to points in ) have an edge adjacent to this
vertex. For the undirected Hausdorff distance, we need to do the same additionally for
all vertices corresponding to points in P, thus requiring O(m + n) time. In both cases,
the time complexity is dominated by the time of O(mn) for computing R(P, Q, €).

5.2.1 Examples and Counterexamples

Besides the Hausdorff and the bottleneck distance, there are several other known distance
measures that turn out to be relational distance measures. First of all, Indyk and Venkata-
subramanian [47] propose the generalized bottleneck distance. The bottleneck distance is
generalized in the sense that the restriction of bijective correspondences between the two
point sets is relaxed to one-to-< p-correspondences for some fixed positive integer p. This re-
laxation is motivated by the fact that the Hausdorff distance can be computed faster than the
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CHAPTER 5. PATTERN MATCHING UNDER RELATIONAL DISTANCE MEASURES

bottleneck distance, so that it is a reasonable idea to identify a class of distance measures that
includes both distance measures as well as “intermediates” between the two distance mea-
sures; the time complexities are expected to lie between the time complexities for computing
dH and dB.

The distance function df one obtains by this relaxation is formally defined by the set of
relations

R(d},m,n):={AC[l:m]x[l:n]|Vbe[l:n]: 1 <|AN([1:m]x{b})] <p},

If we let {4 denote the indicator matrix of A, we have A € R(d}, m,n) if and only if all
column sums of {4 are in [1 : p]. Note that dj = dp and d¥ = dg.

In [47], algorithms are proposed for matching with respect to df; under translations and rigid
motions in R?. These algorithms are (in several repsects) approximate as well as random-
ized algorithms through the use of Hall’s Matching Theorem [37] for finding matchings in a
bipartite graph. The ideas underlying the matching algorithm can also be used for merely
computing d5 (P, Q). The time bounds for computing d4 (P, Q) obtained for p > 1 are smaller
than the time bounds for computing dg(P, Q).

Another class of distance measures that is a subset of relational distance measures are the
variants of the Hausdorff distance proposed by Duboisson and Jain [28], who propose 24
variants of the Hausdorff distance (one of which is dy itself). Ten of these distance measures
result from ranked versions of the directed Hausdorff distance:

i (P,Q) = maXK{ggqu —plll g€ Q}, (5.1)

where max® X denotes the K-th largest value contained in a finite set X C R. The number
K corresponds to a number of mismatches, i.e., a number of points from () that do not need
to match with any point in P; obviously, we have dy = d%. R(d5,m,n) is the set of all
relations R where for at most K of all j € [1 : n], there is no 7 such that (7,5) € R.

In order to demonstrate that there are numerous distance measures that are not relational
distance measures as well, we examine another distance measure described by Duboisson
and Jain. We obtain this modified version of the Hausdorff distance (also referred to as the
mean-value Hausdorff distance in the following) by summing up the distances to each nearest
neighbor of ¢ € @ (instead of taking the maximum of all these distances):

Z min||p — gl

qEQ
This distance measure is not a relational one, as shown in Figure 5.1. A distance measure

closely related to Dy that is not a relational distance measure either is the mean-square
Hausdorff distance studied in [1], which is defined as

D(P,Q) : Zmlnl\p qll*.
qEQ
Sometimes, the root-mean-square Hausdorff distance @/D%(P, Q) is considered. Matching

algorithms for Dy and D are introduced in Section 5.6.

As a rule of thumb, one can say that distance measures involving summation of distances
such as Dy (or the dynamic time warping distance to be introduced in Chapter 7) are not
relational distance measures.
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Figure 5.1: Dy is not a relational distance measure: Let P = (p1), Q = (¢q1,¢2) and Q' =
(4}, 4d5). We have Dy (P, Q) < € and Dy (P, Q') > ¢, but R(P,Q,¢) = R(P,Q’,¢).

5.2.2 Basic Matching Algorithms

There is a close relation between relational distance measures and intersections of transporter
sets that were investigated in the last chapter. The next remark shows the close relation
between the (G,e,d)-matches of a relational distance measure d and the intersections of
transporter sets from the preceding chapter.

Lemma 5.2.3 Let P € V¥ and Q € VI and let d be a relational distance measure.
Furthermore, let G be a group acting on V. Then,

arQed = | () nn
SeR(d,m,n) (i,j)€S
In particular, G(P,Q,e,d) # 0 iff ﬂ(i,j)eS chjjf,i # 0 for some S € R(d, m,n).
Proof. We have

g €GP Q,e,d) < d(PgQ)<e
<~ R(P,gQ,¢c) € R(d,m,n)
— dSe€ R(d,m,n): g € ﬂ(i,j)GSTqu:;i
— 9 €UseRr(d,mn) N(ijes ngf;i,
which proves our claim. O

For P € VI and Q € VIl we consider the family (Tg:;i)ie[lzm],je[lzn] of mn transporter
sets. According to the above remark, we want to decide whether at least one of the inter-
sections ﬂ(i,j)es chjj;i is non-empty. To this end, we define an equivalence relation on G
(depending on P, ), G and ¢) such that every intersection of transporters is a union of
equivalence classes. If we compute a subset C' of G containing at least one element from each
equivalence class, then G(P,Q,e,d) # 0 iff C N G(P,Q,e,d) # 0. Such a C will be called
a (P,Q,G,¢)-suptransversal. In order to decide whether G(P,Q,e,d) # 0, it suffices to test
each g € C for membership in G(P,Q,¢e,d).
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We have an equivalence relation on G defined by g ~pg.¢. ¢ if and only if for all i, j we
have g € T,]ijf,i &4 € chj 'his 1.€., g is contained in exactly the same transporter sets as g'.
The ~p g,q,.-equivalence class that some g € G belongs to will be called the (P, Q, G, ¢)-cell
of g.

Algorithm 5.2.4
Input: P,Q,G, e as in Convention 5.0.3; relational distance measure d
Output:

{ g€ G(P,Q,e,d) if G(P,Q,e,d) #0

false otherwise.

Match(P, @, G,d,¢)
compute a (P,Q,G,¢)-suptransversal C C G;
for each g€ C do
if d(P,gQ) < e then return g;
end;
return false;
end.

(O41)

(1,0)
0,0) LI

T gl g

>G2R>O

Figure 5.2: An arrangement of four SC(2)-transporter sets and two group elements g, ¢’ from
adjacent cells.

In Chapter 2, more efficient algorithms were introduced for the case that a cell representa-
tion of transporter sets could be enumerated in an ordered way according to Definition 2.3.7.
Deciding the intersection problem under the group SO(2) could be sped up to an O(nlogn)
algorithm instead of an O(n?) algorithm. This can be seen as a generalization of the following
observation made in [10] for speeding up matching under the bottleneck distance: If g and
g’ are two group elements from adjacent cells (see Figure 5.2), it is not necessary to com-
pletely compute dg(P, ¢Q) and dp(P, ¢’'Q), because the bipartite distance graph defined by
R(P,gQ,¢) and the one defined by R(P, ¢'Q, ¢) differ in at most one edge. In terms of an al-
gorithm that computes a maximum bipartite matching, this means that only one augmenting
path needs to be examined for updating the maximum cardinality matching in R(P, ¢'Q,¢).
Alt et al. [10] argue that modifying the algorithm by Hopcroft and Karp [40] requires O(mn)
time for updating the maximum cardinality matching if only one edge is added or removed,
since only one augmenting path (instead of O(y/m + n) many) needs to be computed. The
time bound O(mn) compares to O(mn+/m + n) time required for completely computing a
matching “from scratch”. In case of matching with respect to the undirected Hausdorff dis-
tance, the algorithmic advantage that can be drawn from ordered cell enumeration is even
larger.
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As we have seen in the example above, maintaining a dynamic data structure for computing
the distance function in case of ordered cell enumeration can be very useful for develop-
ing faster algorithms. In order to generalize this idea, we give a formal definition of what
operations a dynamic data structure for a relational distance measure d needs to support:

Definition 5.2.5 Letd denote a relational distance measure. Using X AY as the notation for
the symmetric difference between two sets X and Y, we say that a family of sets (Sy.n)mneN
is a dynamic data structure for d if for each m,n € N, there mappings

inity, ollim]x[lm]  _y Smn
statey,, : Smn — o[L:m]x[1:n]
update,, , : Spuax[l:m]x[l:n] — Sy,
testy Smn — {true, false}

with the following properties:
(1) statey, ,(inity, ,(R)) = R for all R € 2ltmlx[tn]

(2) staten, n(update,, ,(R,i,7)) = RA{(i,7)} for all R € oltmix[lin] 5 e [1:m] and j € [1

(3) testy,,(S) =true <= state,, ,(S) € R(d,m,n) for all S € Sy, .

We have already seen one example, namely the dynamic data structure for speeding up
matching under the bottleneck distance proposed in [10]. In this case, init(R) simply computes
one maximum bipartite matching (taking Tl (n) = O(n?\/n) time); test(R) yields true if the
cardinality of the bipartite matching is n and false otherwise (taking Tiest(n) = O(1) time).
The function update(R, 1, j) toggles the edge between the vertices corresponding to p; and g;
and then updates the maximum cardinality matching (taking Typdate(n) = O(n?) time). The
mapping state: S — oll:mlx[L:n] can be thought of as the mapping that yields the bipartite
graph corresponding to the current configuration; it is only needed for defining the semantics
of the other three functions.

As another important example, we now provide a dynamic data structure for dy. In this
case, it is reasonable to define S as all pairs of an integer vector and an integer counter
S=[l:m]" x[1:n]. For § = ((s1,...,5n),N) € S, the value s; at position j counts how
many points in P the point ¢; is mapped to in the currently active configuration. N counts
how many values s; are non-zero. Obviously, the initialization step for this data structure
for some R € 20™x[1n] can be done in Tinii(m,n) = O(mn) time. The test-step simply
consists of returning true iff N = n, hence Tiest(m,n) = O(1). Performing update(R, i, j)
consists of either increasing or decreasing the counter s;. In addition, if s; is increased to
one or decreased to zero, N needs to be increased or decreased correspondingly. This yields
Tupdate(m,n) = O(1).

Corresponding to Definition 2.3.7, we also use the term ordered (P,Q,G,¢)-suptransversal
for (P,Q,G,¢e)-suptransversals with the property that the state of at most one transporter
changes from one cell to another.

Algorithm 5.2.6
Input: P,Q,G.c as in Convention 5.0.3; relational distance measure d with dynamic data
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structure S.
Output:

false otherwise.

Ordered-Match(P, @, G,¢)
compute an ordered (P,(Q,G,d,¢)-suptransversal
(va, <(‘/E17 (ilajl))a SRR (‘/EL’ (iLajL)»;
S = init(R(P, z9Q,¢));
if test(S)==true then return xzg;
for k=1...L do
update(S, (ix, , jk)) ;
if test(S)==true then return xj;
end;
return false;
end.

For the asymptotical running time, we distinguish two cases: non-ordered cell enumeration
and ordered cell enumeration. The time complexity in the first case mainly depends on the
cardinality of the suptransversal and the time to compute such a transversal as well as the
time to compute d(P, Q). We consider the case of a linear algebraic group acting rationally on
R, By Lemma 4.2.1, each transporter set is a semialgebraic set described by one polynomial.
Hence, we can apply the result stated in Theorem 2.3.6 in order to obtain the (theoretical)
running times stated in Table 5.1: let d denote the real dimension of the transformation
group G. There are O((mn)?) cells whose enumeration takes O((mn)%*!) time, the total
time complexity of Algorithm 5.2.4 is O((mn)%(mn + T(d, m,n))), where T'(d, m,n) denotes
the time to compute d(P, Q).

For the case of ordered cell enumeration, the times Tinit(m, 1), Tupdate (M, n) and Tiest (m,n)
need to be incorporated into the analysis of the running time. Obviously, init(R) is called
once, whereas update(S,i) and test(S) are called for each cell. Hence, we obtain an overall
time complexity of O(Tinit(m,n) + Tenumerate (M, 1, G) + (Tupdate + Ttest)L(m, n,G)), where
Tenumerate (M, n, G) denotes the time to compute an ordered cell enumeration and L(m,n, Q)
denotes the cardinality of the computed suptransversal. For example, we have

Tenumerate (m, n, 80(2)) = Tenumerate (m, n, SC(2)) = O(mn IOg(mn))

and L(m,n,SO(2)) = L(m,n,SC(2)) = O(mn). Altogether, we obtain the running times
stated in Table 5.1.

Transformation group || dy,dp dgp

T(k) O((mn)*+1) O((mn)*1y/m +n)
SO(2),SC(2) O((mn)log(mn)) | O((mn)?)
SE(2),HT(2) O((mn)*) O((mn)*y/m +n)
SM(2) O((mn)®) O((mn)>v/m +n)
SE(3) O((mn)7) O((mn)"v/m +n)

Table 5.1: Time complexities for solving matching tasks exactly.
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5.3 Matching Point Sets with Reference Points

Using algorithms similar to those used for intersecting transporter sets in Chapter 4, we now
provide matching algorithms for relational distance measures. Again, we make use of trans-
porter sets, their projections and their characterizations as semialgebraic sets. In Chapter 4,
we used the starting points of two point sequences to be matched as reference points. In the
sequel, we generalize this idea for matching under relational distance measures that also have
such reference points. The concept of reference points was first studied systematically by Alt,
Aichholzer and Rote [3] for the Hausdorff distance.

We define reference points for relational distance functions as follows.

Definition 5.3.1 Let V and G be defined as in Convention 5.0.3. Furthermore, let d denote
a relational distance function on V. For 1 < ¢ € R, a mapping v : VT — V is called a
(V,G,d, ¢)-reference point if

1. 7 is a G-morphism, i.e., r(gP) = gr(P) for allg € G and P € V.
2. r is Lipschitz continuous in the sense that for all families of points P,Q € V™, we have
Ir(P) = r(Q)|| < c-d(P,Q).

Note that if r is a (V, G, d, ¢)-reference point, then it is also a (V, H,d, ¢)-reference point for
any subgroup H of G.

5.3.1 Reference Points for Hausdorff and Bottleneck Distance

Reference points for the Hausdorff distance introduced in [3] are the centroid of the convex
hull and the so-called Steiner point. We summarize the main result from [3] and refer to this
work for further details.

Theorem 5.3.2 ([3]) There is a (R%2,SM(2),dy,4/n)-reference point that can be computed
in O(nlogn + mlogm) time. O

Heffernan and Schirra [39] implicitly use the centroid of a point set as a reference point for
the bottleneck distance under rigid motions in the plane. We state a more general result,
showing that the idea from [39] also fits into the framework of reference points for relational
distance measures, even under the group AGL(k) for arbitrary V' = R,

Lemma 5.3.3 Let V = RE. Then, the centroid of a sequence P € VI'™ denoted by r(P) :=
L Zie[l:m] pi, 18 a (V,AGL(k),dg, 1)-reference point.

m

Proof. Let g € AGL(k). Then, we have gp = hp + t for uniquely defined h € GL(k) and
t e V. Now,

1
rgP) = — Y (pi+t)
7
1
= —(thi)—i-t
m 7
hli 1
= (L5) o

= gr(P).
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It remains to show that r is Lipschitz-continuous with Lipschitz-factor 1. We have

Ir(P) (@I = 11 3o~ ao)ll

i

For an arbitrary permutation w € S,,, we get

Ir(P) = r(Q)]l

~IY

— -m - max|[p; — G|l
m 1

IN

= max [pi = gzl

Since this holds for arbitrary = € S,,,, we get in particular

I7(P) = (@)l < min || max(pi — 40|l = du (P, Q),

which finally proves the claim.

0

The discrete Fréchet distance introduced in Chapter 7 will provide another example of a
relational distance function with a reference point.

5.3.2 Projecting Transporters Using Reference Points

The basic idea of matching patterns using a reference point is that the reference points of P
and @ yield the translation part of a match, and the matching task is reduced to matching
under the group H := G/T(k). Using reference points for projecting transporter subsets as
in Theorem 4.1.4, we obtain the following result:

Theorem 5.3.4 Let V.G and H be defined as in Convention 5.0.3, and let d be a relational
distance measure on V' with a (V, G, d, c)-reference point r. Given P € VvIml gnd Q € vInl,

we define

For E € R(d, m,n), we have
H,
D) Niger 7,5 =0 =

@) Neper Ty 70 =

= %(pz —r(P)) fori€[l:m] and

1

= 55— r(Q) forj € [L:n)

G
ﬂ(z j)EE T‘IJ:pz =0.

m(z j)EE ch’gzcg 74 Q)

Proof. We start with the proof of (1). It suffices to show that

M Tom 70 = N qu;E

(i:4)€E (i.j)€k
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To this end, let g € ﬂ(i’j)eEng;i. As E € R(d, m,n), this implies g € G(P,Q,e,d). Since r
is a reference point, we get

lr(P) = r(g@)| < ce

= |Ir(P) —gr(@)] < ce

— ge€ TG(éi (P)

Asc>1, Tq]’pl - qu,pl, and we get

G,ce
9 € Nijenl q(jpz nr (Q),T(P))'

Since G = T'(k) x H, we can write g = th for uniquely defined ¢ € T'(k) and h € H, yielding

for all (i,7) € E
Gce _ _Hce

G,
h € o p: N T (@) = T35

where the last equality follows from Lemma 4.1.3. This proves (1).

For the proof of (2), let h € Ni,j)eET; M.cs Prom Lemma 4.1.3 and the definition of § p; and ¢q;,
we know that for all (,5) € E
Hy,ce G,ce G,
S Tfij,ﬁi - n[Tr(Q), (P) nr quc)f] (5-2)
We claim that the group element g, := t.h with ¢, := r(P) — r(hQ) = r(P) — hr(Q) is
contained in ﬂ(i,j)eETg;ZfE.
First, we observe that g,r(Q) = hr(Q) + t, = r(P). Furthermore, due to Eq. (5.2), we get
for all (i,7) € E:
G G
Inij € T(k): gi; == nijher (53:?( Py Tq e (5.3)

Using the triangle inequality, Eq. (5.3) and Lemma 4.1.1 (with = := hg;, y := hr(Q) and the
Euclidean distance), we get

Ipi —grgill < llpi — gijaill + llgra; — gi 4l
< ce + |ltrhg; — ni jha;]|
= ce+ ||trhr(Q) — nijhr(Q)]]
= ce+|Ir(P) — g;;r(Q)ll
< ceg+ ce = 2ce.

O
Let us come back to Theorem 4.1.2. Since it can easily be seen that p; is a reference point
for d¥, the preceding theorem can be viewed as a further generalization of Theorem 4.1.4.
Just as Theorem 4.1.4 yielded an approximate matching algorithm for the distance measure
d®, Theorem 5.3.4 yields an approximate matching algorithm for arbitrary relational distance
measures d.
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5.3.3 Matching Algorithms

Theorem 5.3.4 suggests a straightforward method for matching patterns using reference points
under a transformation group G = T'(k) x H:

Algorithm 5.3.5
Input: G,P,Q,e as in Convention 5.0.3; relational distance measure d; reference points
rp=1(P),rq =7(Q) €V for some (V,G,d, c)-reference mapping r

Output: According to Theorem 5.3.6

Reference-Match(P,(Q),d,e,7p, Q)
Compute P and () as defined in Theorem 5.3.4;
return Relational-Distance-Match(P,Q,H ,ce);
end.

The obvious advantage is that one has to deal with the group H, whose dimension is
smaller than that of G (since the k parameters for the translational part can be neglected).
As a further improvement for some groups, Algorithm 5.3.5 can make use of Algorithm
Ordered-Match instead of Algorithm Relational-Distance-Match whenever one knows how
to compute ordered suptransversals for the group H. As has been argued before, this is pos-
sible in the case of rigid motions and homothetic motions in R?.

Theorem 5.3.6 Let P and Q) be families of m and n points in the plane, respectively. Fur-
thermore, let G € {G,,Gs}. Given input as specified, the output of Algorithm 5.3.5 is as
follows:

9 € G(P,Q,ce,d) if G(P,Q,¢,d) #0,
false if G(P,Q,2ce,d) = 0,
false or g € G(P,Q,ce,d) otherwise.

Furthermore, the algorithm takes O((mn)(mn + T(d,m,n)) + R(m) + R(n)) time, where
computing r(P) and r(Q) takes R(m) and R(n) time, respectively.

The time complexities resulting from this theorem are stated in the table below, which also
compares the time bounds achieved to known results for these specific problems.

The quality of approximation can be further improved by running algorithm 5.3.5 not only
for the reference points themselves, but also for a certain number of sample points from the
ce-neighborhood of the reference point. This idea has first been applied by Schirra for the
bottleneck distance. For details, we refer to Schirra’s work [39].

5.4 Matching without Reference Points

We have just seen how reference points can be used for working with projected transporter
sets, yielding efficient approximate matching algorithms. However, for many distance mea-
sures such as the directed Hausdorff distance, no reference points are known; for some distance
measures, such as the directed Hausdorff distance, it can even be shown that there are no
reference points at all. If we want to obtain faster algorithms based on eliminating translation
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Group du ds

Our result Known result Our result Known result
T(k) O((m +n)log(m +n))[3] | O(n*°) O(n')[39]
tm || Otmmlog(ma)) B gy 06y o))
SM(2) O((mn)?) see SE(2) [3] O(n®9)
SE(3) | O((mn)*) O((mn)?) [21] O(n®”) O(n*°) [20]

Table 5.2: Time complexities for solving matching tasks using reference points. Note that the
running times of known methods referred to are much more specialized for the given matching
task and hence yield better asymptotical running times than the algorithms introduced here,
which result from a generic framework.

components in these cases, we have to find alternative ways to provide matching algorithms.
The basic idea in this situation is to try whether some point p; (or some point ¢;) can serve as
a reference point. As a first step, we assume that the distance measure d has the additional
property that if d(P, Q) < e, each point in @ is identified with some point in P. We formalize
this as follows:

Definition 5.4.1 Let d be a relational distance measure. We say that d is right-complete iff
E € R(d, m,n) implies that for each j € [1: n] there is an i € [1 : m] such that (i,j) € E.

Obviously, the directed Hausdorff distance is right-complete. The algorithmic advantage that
can be drawn from right-complete distance measures is that ¢ € G(P,Q,e,d) implies the
existence of some i € [1 : m] such that ||p; — gqi1|| < e. We use the point pair (p;,q1) as our
substitute for the pair of reference points (r(P),r(Q)). Our strategy for designing a matching
algorithm is to try for each ¢ € [1 : m] if p; is a suitable “reference point”. This allows us to
state the following matching algorithm:

Algorithm 5.4.2
Input: P € VI and Q e VIl ¢ >0, G = T(k) x H < AGL(k)
Output: According to Theorem 5.4.3

Right-Complete-Match(P, Q,¢)
for (i €[1:m)])
M:=Reference-Match(d, P, ), e, p;, q1)
if (M € G) then return M;
return false;
end.

We summarize our results in the following

Theorem 5.4.3 Given input as specified, the output of Algorithm 5.4.2, denoted by M, is as
follows:

1. G(P,Q,e,d) # 0 = M € G(P,Q,d, 2¢)
2. G(P,Q,2e,d) =0 = M = false.
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Furthermore, the algorithm takes O((mn)%(m?n + T(d,m,n,€))) time.

In case m = O(n), the asymptotic time bound is the same as for the algorithm proposed
in [21] which, however, allows to (approximately) determine the minimum value of ¢ so that
G%(Q) # 0 for matching under the group of rigid motions; Algorithm 5.4.2 only allows to
solve the decision problem. However, it works for both the group of rigid motions and the
group of homothetic motions in the plane.

Based on the method from [21], Indyk, Motwani and Venkatasubramanian [46] proposed
an approximate algorithm for the decision problem under the group of rigid motions with
respect to the Hausdorff distance. The analysis of their matching algorithm incorporates
combinatorial distance bounds of point sets in R?, leading to asymptotically smaller time
complexities if the specified distance ¢ for the decision algorithm is significantly smaller than
the diameter of the point set ). Similar results on combinatorial distance bounds can be
applied to Algorithm 5.4.2.

Finally, it should be mentioned that the reductions to combinatorial pattern matching prob-
lems (see [46, 19]) yield asymptotically smaller time bounds than the time complexities stated
in Table 5.3. Concerning these results, we refer to the remarks made in Section 5.1.

dn
Our result Known result
SE(2) | O(m?nlog(mn)) O(m?nlogm)
SM(2) | O(m3n*logm)
SE(3) || O(m*n®logm) O(m3nlogm)

Group

Table 5.3: Some time complexities for solving matching tasks approximately involving right
complete distance measures (and, whenever possible, ordered cell enumeration).

The above algorithm can be extended in a straightforward way to work for distance measures
that are not right-complete. One simply introduces an extra for loop so that instead of
testing all m pairs (p;,q1) as a reference point, one tests all mn pairs (p;,q;). The resulting
running time is the time bound stated in Theorem 5.4.3 with an extra factor of n.

5.5 Finding Largest Common Point Sets

The algorithms from the last sections enable us to find out whether some query object @) can
be transformed so that it becomes similiar to P or an (approximate) part of a pattern P. In
some applications, one is interested in the largest subset Q' of @) that has a small distance d
to some (preferably large) subset P’ of P. In this section, we provide the concept of largest
common point sets as a generic approach to tackle such problems under arbitrary relational
distance measures.

We consider weight functions that, given two point sequences P,Q € V' and a fault tolerance
parameter £, assign a weight (or a degree of correspondence) of P and @ with distance ¢, i.e.,
W is a mapping

W V+ X V+ X RZO — Rzo.

As an example for such a weight function, let Wg(P, @,¢) denote the maximum cardinality
matching in the bipartite graph defined by R(P,Q,¢), see Figure 5.3 for an instance where
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5.5. FINDING LARGEST COMMON POINT SETS

Wg(P,Q,e) = 5. The maximum cardinality matching yields maximal sets Q' C @ and
P' C P of equal cardinality such that dg(P’,Q’) < e. In order to apply the technique of
cell enumeration, we usually want the weight function W to be invariant with respect to
~p.Q.Ge-cells in the sense that for any two g,¢' € G, we have

g ~P,Q,Ge gl — W(Pa gQag) = W(Pa nga 6)' (54)

One way to achieve this is to provide a weight function that takes R(P,Q,¢) as a parameter
rather than P, () and € themselves: suppose we have a mapping w: olt:m]x[l:n] _, R>q, then we
obtain a weight function W: V' xV* xRsq — Rxq by defining Wy, (P, Q, €) := w(R(P, Q, €)).
Obviously, W,, satisfies the condition from Eq. (5.4). As an example, consider Wpg: the
maximum cardinality matching can be computed merely by considering the bipartite graph
defined by R(P,Q,¢).

@@
'

1>

O
o

P
0

>

O O O

Figure 5.3: Instance of P,Q and ¢ with Wg(P,Q,e) = 5 (since the maximum cardinality
matching in the bipartite graph defined by R(P, @, ¢) contains 5 edges).

Our goal is to find a transformation g € G that maximizes W (P, gQ, ). For suitable weight
functions W, maximizing W (P, gQ, ) solves the problem of determining a largest common
point set with respect to the Hausdorff and the bottleneck distance, as studied in [11, 20].
Finding largest common point sets will also be a suitable concept for finding largest common
subcurves with respect to the (discrete) Fréchet distance in Chapter 7. This motivates the
following definition.

Definition 5.5.1 Let V = R* be a Euclidean vector space, and let P,Q € V*. Furthermore,
let G < AGL(k) be a group acting on'V and let W: V' x VT x Rsg — Rxq denote a weight

function. The largest common point set of P and ) with distance ¢ and with respect to W
under G is defined as

LCP (P,Q,G,W,¢) := gea();( W(P,gQ,¢).
In case that W is invariant with respect to ~p g ¢ .-cells, LCP (P, Q, G, W, ¢) can be computed
using a variant of Algorithm 5.2.4 based on cell enumeration. If G = T'(k) x H, H < GL(k),
we can make use of projecting transporter sets through Theorem 5.3.4, as shown by Algorithm
5.5.2. This algorithm incorporates the idea behind Algorithm 5.4.2 in the sense that some
pair (p;,q;) serves as a substitute for a pair of reference points. In the case of right-complete
distance measures, only each p; needed to be tested for all 7 € [1 : m], since ¢; was guaranteed
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to match some point p;. In case of computing LCP (P,Q, W, G,¢), this is not guaranteed.
The only fact that can be used is that some ¢; is matched with some p;. Hence, an extra
for-loop running over all g;, j € [1: n], is introduced to the following algorithm.

Algorithm 5.5.2
Input: P e VI Q e VIl ¢ > 0
Output: According to Lemma 5.5.3

Relational-LCP(P, Q,¢)
w 1= —00;
for (i €[1:m)])
for (j €[1:n))
Determine P := {chjj;i |i€[l:m],j€[l:n]};
Compute a set C C RY of cell representatives of P;
for g C
if W(R(P,gQ,¢)) > w
wi= W(R(P,9Q,¢));
return w;
end.

Note that the above algorithm can also make use of ordered cell enumerations. We require a
dynamic data structure for the function W instead of a dynamic data structure for the distance
measure d. The generalization of Definition 5.2.5 is straightforward and hence omitted.

Lemma 5.5.3 Let £ be the output of Algorithm 5.5.2. Then, LCP (G,W,e,P,Q) < ¢ <
LCP (G, W, 2¢, P,Q). Furthermore, the algorithm takes O((mn)¢(m?n? + T (W, m,n))) time,
where T(W,m,n) denotes the time for computing W(R(P, gQ,¢)).

Remark 5.5.4 Computing the largest common point set is very closely related to computing
G-matches allowing a certain number of mismatches (in case of the Hausdorff distance, this
problem is also known as the percentile based Hausdorff distance [43/): Defining

G(P,Q,e,d, k) :={g €G|3Q CQ:1Q>1Q| —kANd(P,Q') < e},

we get

G(P,Q,¢e,d) = G(P,Q,¢,d,0)

and

The algorithms proposed in this chapter can be adapted to compute G-matches allowing mis-
matches with little effort. However, we do not elaborate on this any further.

5.6 Non-Relational Distance Measures by Exchanging Norms

As demonstrated by the example in Figure 5.1, it is easy to find examples of distance measures
that are not relational. In may cases, non-relational distance measures are closely related to a
corresponding relational distance measure. For example, the mean-value Hausdorff distance
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Dy is very closely related the Hausdorff distance. The difference between dy and Dy is
that an £.-norm (taking the maximum of all nearest neighbors) is exchanged by an ¢;-norm
(summing up all nearest-neighbors).

In this section, we show that for some distance measures resulting from such a change of a
norm, one can also find (approximate) matching algorithms by computing suptransversals of
arrangements defined by transporter sets. To begin with, we consider the distance measure Dy
defined in Section 5.2.1. Dy (P, Q) can be computed in O(nlogm) time in the same manner
as dy (P, Q). To the best of the author’s knowledge, the only matching algorithm for matching
with respect to Dy is the one proposed by Agarwal, Har-Peled, Sharir and Wang [1]. Given
two sets P and Q of m and n points, respectively, in V = R¥, they provide a randomized and
approximate O(mn log(mn))-time algorithm for finding a translation ¢t € T'(k) that minimizes
Dy (P, Q). The algorithms proposed in this section apply to matching under arbitrary linear
algebraic groups acting rationally on V' = RF,

Instead of considering all (G, €)-transporters from some ¢; to some p;, we take a look at
a larger set of transporters: for each ¢ € [1 : n|, we consider all (G, f¢)-transporters from
some ¢; to some p;. Hence, we need to deal with the arrangement defined by the family of
transporters

G/
(Tq;p)

i€[Lim],j Le[1:n]’ (5.5)

which is not defined by mn many transporter sets but by mn? many. The matching algorithm

then proceeds in the same way as Algorithm 5.2.4 — for each representative g from the
suptransversal of the arrangement, we compute Dy(P, gQ). If for some representative g,
Dy(P,gQ) < e, then g is returned as output. If for all representatives g, Dy (P, gQ) > e,
false is returned as output.

It remains to be shown that this procedure yields an approximate solution to the problem
of matching with respect to Dy. To be more precise, we claim that the procedure described
above yields the following output:

g€ G(P7Q726aDH) if G(PaQaEaDH) 74 @,
false if G(P,Q,2¢,Dy) =0, (5.6)
false or g € G(P,Q,e,Dy) otherwise.

We first show that G(P,Q,e,Dy) # (0 implies output ¢ € G(P,Q,2¢,Dy). To this end,
observe that G(P,Q,e,Dy) # () implies that there is some ¢’ such that Dy (P,¢'Q) < e. In
particular, this implies

> Ay, — 94l < ne, (5.7)
JE€[1n]

where p,, denotes the nearest neighbor of ¢'q; in P. Eq. (5.7) implies that for all j € [1 : n],
we have ||p,, — ¢'q;ll < ne, in other words, for all j € [1 : n], there is a uniquely defined
¢j € [1:n] such that (¢; — 1)e < |[p,, — ¢'qjll < £je. Hence,

> <o (5.8)
J€[Lm]

In terms of transporter sets, this is equivalent to writing

Gle G,(tj—1)e
g € ﬂ Tgipw, \Tapo; - (5.9)
JE€[1n]
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We now take a closer look at the intersection from Eq. (5.9). Using the triangle inequality in
combination with Eq. (5.8), we obtain for each g contained in this intersection

Y by —gaill < Y e < 2ne
]

J€[1m] JE[1in

Now, computing a cell enumeration of the arrangement defined by the mn? transporter sets,
such g will be computed at some point during the execution of the algorithm, producing the
desired output g € G(P,Q, 2¢, Dy).

In order to prove Eq. (5.6), it remains to be shown that G(P, @,2¢,Dy) = () implies output
false. We show the reverse implication: if the output is not false, we have G(P, Q,2¢,Dy) # (.
This implication obviously holds, since any output g of the algorithm is by construction
contained in G(P,Q,2¢,Dy).

The algorithm described in this section can be modified in a straightforward way to be used
for matching with respect to the mean square Hausdorff distance D%I that was introduced
in Section 5.2.1 as well. Instead of dealing with the arrangement defined by the family of
transporters defined in Eq. (5.5), we work with the arrangement defined by the family of

transporters
< G,E.€2>
45-Pi ’ie[1:m],j,€€[1:n]’

which is defined by mn? many transporter sets as well. The rest of the algorithm works the

same way, yielding the same quality of approximation.

As a closing remark for this chapter, it should be mentioned that in Chapter 7, we show
that a change from an /,-norm to an fo-norm leads from the discrete Fréchet distance to the
dynamic time warping distance.

Finally, the ideas described in the last section can be applied to (approximately) finding
largest common point sets with respect to Dy by means of the ideas from Section 5.5.
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Chapter 6

Pattern Matching Using Candidate
Sets

In the last chapter, we have seen a generic approach for matching families of points with re-
spect to relational distance measures. The results from Chapter 5, however, leave some issues
unresolved — the cell enumeration routines that we refer to for matching under larger groups
than rigid or homothetic motions in the plane cannot be considered to be implementable.
Hence, the question arises whether one can state alternative approaches that are easier to
implement.

We provide (at least partially) an answer in this chapter: we first give a practical, generic
method for matching under rigid motions in the plane with respect to relational distance
measures. In the second part of this chapter, we show how this method generalizes to matching
under rigid motions in three dimensions.

6.1 Introduction and Related Work

The algorithm for matching with respect to a relational distance measure d under the group
SE(3) resulting from Algorithm 5.3.5 cannot be considered to be practical, because it requires
cell enumeration techniques for polynomials in three variables (for a discussion of the practical
relevance of these techniques, we refer to the discussion in Chapter 2). For the special case
of V. = R? and G = SE(3), however, we can state algorithms that can be implemented easily.
In addition to being easier to implement, these algorithms yield approximate solutions to the
minimization problem rather than the decision problem of determining whether G(P, @, ¢, d)
is non-empty.

Throughout this section, we always have V = R% or V = R?, and P € VI as well as
Q € V'l Furthermore, d denotes a relational distance measure, and the transformation
group we consider either is the group G = SE(2) of rigid motions in the plane or the group of
rigid motions in three-space, G = SE(3). We develop an algorithm that gives a £-approximate
solution to the decision problem whether G(P, Q,¢,d) is empty or not, for £ > 6 in the two
dimensional case and £ > 16 in the three dimensional case. The method relies on ideas stated
by Chakraborty et al. [20] for finding approximate largest common point sets with respect to
the bottleneck distance. Their algorithm, in turn, is based on ideas by Goodrich et al. [36]
as well as some work by Akutsu [2]. Like the algorithms based on cell enumeration, this
method computes a finite set C' of transformations and, for each g € C, computes d(P, gQ).
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CHAPTER 6. PATTERN MATCHING USING CANDIDATE SETS

The algorithms presented in this section use certain sets of candidate transformations (or
candidate sets, for short) instead of suptransversals of arrangements.

We start with the simplest and most general case of matching under SE(2) with respect to
an arbitrary relational distance measure d. After that, we show how reference points or
right-completeness can be used to obtain faster algorithms than the algorithm for arbitrary
relational distance measures. The asymptotically best time bounds can be achieved in the
case that the distance measure d has both properties, i.e, d has a reference point and is
right-complete.

After providing algorithms for matching under SE(2) in Section 6.2, we generalize these
methods (in the spirit of Goodrich et al. [36]) to matching point sequences in R® under the
group SE(3) in Section 6.3. Again, we can state faster algorithms for distance measures with
reference points as well as for right-complete distance measures and distance measures having
both, right-completeness and a reference point.

Note that the same structural properties — reference points and right-completeness — are
used in designing algorithms based on candidate sets as well as in designing algorithms based
on cell enumeration. This suggests that these concepts are quite natural properties of rela-
tional distance measures. In fact, we encounter further distance measures satisfying these
properties in Chapter 7, where different discrete versions of the Fréchet distance are intro-
duced.

Before we develop algorithms, we introduce some notation. For z € R%, we write SO,(2) for
the group of all rotations about the point z. For z € R? and y € R, = # y, we denote the
ray starting at = and going through y by [z;y] := {z + A(y —z) | A > 0}. Furthermore, we
write SO,(3) for the group of all rotations about a point z € R3. By SO, (3), we denote the
group of all rotations around the axis [z;y]. Note that SO, ,(3) ~ SO(2). In analogy to the
ray [z;y], [z;y;2] = {z+k(y —z) + A\(z —z) | K € R, X > 0} denotes the half-plane defined
by the three non-collinear points z, y and z.

6.2 Matching under SE(2) Using Candidate Sets

Throughout this section, let V' denote the Euclidean two-space. The notion of candidate sets
is motivated by a simple observation: Suppose we are given two pairs of points in the plane,
(a1,az) and (by,be). Then, there is a uniquely defined rigid motion that transports b; onto
a1 and makes the two straight lines defined by the two point pairs collinear, see Figure 6.1
for an example. This motivates us to formally define a candidate transformation as follows.

Definition 6.2.1 Let V = R? and let A,B € V?, where A = (a1,a2) and B = (b1,bs). We
say that g € SE(2) is an (A, B)-candidate transformation iff

(C1) ay = gby and

(C2) [a1; as] = [gb1; gba].

Note that actually, (C2) implies (C1). For constructing an (A, B)-candidate transformation,
however, it turns out to useful to establish first (C1) and then (C2). Furthermore, note that

if a1 # as and by # by, the candidate transformation is uniquely defined.
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6.2. MATCHING UNDER SE(2) USING CANDIDATE SETS

Figure 6.1: Construction of an (A, B)-candidate transformation g composed of a translation
t and a rotation h € SOg, (2), such that g = th.

6.2.1 Arbitrary Relational Distance Measures

In a pattern matching scenario, we are given two sequences of points P = (p1,...,pp) and Q =
(q1,-.-,qn). The idea underlying our basic pattern matching algorithm based on candidate
transformations is to generate all point pairs (p;,, p;,) contained in P as well as all point pairs
(¢j,+94,) contained in Q. Then, for all A = (p;;,p;,) and for all B = (g;,, g;,), we compute an
(A, B)-candidate transformation g. We also refer to the set of all candidate transformations
as a candidate set. For each element g of such a candidate set, we compute d(P, gQ}) and
determine the candidate transformation h that yields the smallest distance. We now state
the complete algorithm and refer to Figure 6.2 for an illustration.

Algorithm 6.2.2
Input: P € V" and Q € V'™ ; relational distance measure d.
Output: According to Lemma 6.2.3.

Candidate-Match(P, @Q,d)
D = oc;
for (i1,i2) € {(p1,p2) € [L:m] X [L:m] | p1 # pa}
for (ji,j2) € {(v1,v2) € [Lin] X [L:n][v1 #va}

A= (pippiz);
B = (4j,:¢5) 5
Compute an (A, B)-candidate transformation g;
d:=d(P,gQ);
if (d < D) then D:=d; h:=g;
return h;

end.

It remains to be shown in what way this algorithm solves the problem of matching with
respect to d under SE(2).
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(a) Two point sets P = {p1,p2,p3}
and Q = {q1,q92,q3} to be matched
under SE(2) with respect to the
undirected Hausdorff distance.

(b) Altogether, 36 candidate trans-
formations are computed. The fig-
ure on the right demonstrates an
(A, B)-candidate transformation g

for A = (p2,p1) and B = (g3,q2).
However, dy (P, gQ) is rather large.

(¢) The (A, B)-candidate transfor-
mation that yields the smallest undi-
rected Hausdorff distance is the can-
didate transformation h for A
(p2,ps3) and B = (q3,q1). Hence, the
algorithm returns h.

q,
O
P3
CI2O opl *
(@]
CI3 .pz
&4
ngé Js
P
o)
89iP,
hg,

e ohgy Py
.-"O“"—"
hqy=p,

Figure 6.2: Tllustration of Algorithm 6.2.2 for d = dy.
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6.2. MATCHING UNDER SE(2) USING CANDIDATE SETS

Lemma 6.2.3 Let G = SE(2). Given input as specified, Algorithm 6.2.2 computes a trans-
formation h € SE(2) such that
d(P, hQ) < 6e,

for all € > infpeq d(P, hQ).

The proof of this lemma is based on the following observation that is also illustrated in Figure
6.4.

Remark 6.2.4 Let aj,as,a3 € R? such that ||a1 — as|| < |la1 — a3||. Then, h € SO, (2)
implies
llaz — has|| < |las — has]|.

q,

P

Figure 6.3: Sketch for an indirect proof of Remark 6.2.5. Suppose that |||q1 —qa||—||p1 —p2l|| >
€ + ¢ and, w.l.o.g, assume |1 — ¢2|| > ||[p1 — p2||. This results in the situation shown in the
figure. Clearly, there is no point pair (p1,p2) such that |[p1 —q1]] < ¢ as well as |[ps — ¢af| < 6.

Another bound based on some elementary geometric observations that will be useful later on
is shown in Figure 6.3 and is stated in the following remark.

Remark 6.2.5 Let V = RF for some k > 0 and let (p1,p2) € V? as well as (q1,q2) € V2. If
[p1 — @1l <6 and |lp2 — @2|| < &, then

Ilg1 — @2l — |lp1 — p2|l| < e+0.

Proof of Lemma 6.2.3. Let ¢ > infpc d(P, hQ). Then, there is a transformation g € G
satisfying d(P, gQ) = e. Starting with g, we succesively construct group elements g; and go
such that g; satisfies property (C1), and g, satisfies (C1) as well as (C2) for some point pairs
A = (pa;pp) and B = (gc, qa)-

Constructing g1. Let Q' :=={q € Q| Fi € [1: m]: ||p; — gq| < €}, i.e., the set of all points in
@ that are matched with some point in P. Furthermore, let ¢,d € [1 : n] denote indices such
that the pair (g., qq) is a diameter pair of Q'. Since ¢. € @' and d is a relational distance
measure, there is an index a € [1 : m] such that ||p, — ggc|| < € as well as there is an index
b € [1 : m] such that ||p, — ggq] < e.

We now construct g; by defining ¢ as the translation that maps gq. to p,. Then, for all
(i,7) € R(P,gQ,¢e) we have

llgg; — tga;ll = llgae — tgaell = llgge — pall < e.
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Figure 6.4: Tllustration of Remark 6.2.4: Since ||a1 —as|| < ||a1 —as||, we also have ||as —has|| <
|las — has]| if h denotes a rotation about a.

Hence, for all (7, ) € R(P,gQ,¢), we obtain

Ipi — tgq;ll < d(P,gQ) + d(P,gQ) = 2e, (6.1)

for all (7,7) € R(P,Q,d(P,¢Q)). Note that we have tgq. = p,, i.e., g1 := tg satisfies property
(C1) of an (A, B)-candidate transformation for A := (ps,ps) and B := (g, qq) for any index
be[l:m].

Constructing go. We construct go by providing a suitable index b € [1 : m]. To this end,
observe that since ¢4 € @', and, since d is relational, there is an index b € [1 : m] such that
o — gaall < e.

Using Eq. (6.1), we get ||pp — g1q4]| < 2e. We now consider the uniquely defined rotation
h € SO,,(2) satistying [pa;ps] = [Pa; h9194]. As hgige = pa, the element g, := hg; becomes
an (A, B)-candidate transformation.

As an elementary geometric argument shows (see Figure 6.5), we have

19194 — hg1g4l| < 4e. (6.2)

By Remark 6.2.4 and the fact that g4 is the point in Q' farthest away from ¢, this implies
llg1q — h1g14q|| < 4e for all ¢ € Q'. Using the triangle inequality and Eq. (6.1), we obtain

Ipi — 9241l < 6¢ (6.3)

for all (4,5) € R(P,gQ,¢), and hence d(P, g2Q) < 6d(P,gQ). Since h € SO,,(2) leaves p,
unchanged (i.e., hp, = pa), g2 := hg satisfies (C1) as well as (C2) of an (A, B)-candidate
transformation for A = (pg,pp) and B = (¢, qq)-

Now we know that for some point pairs A and B, there exists an (A, B)-candidate transfor-
mation h satisfying d(P, hQ)) < 6e. Since the algorithm checks all possible (A, B)-candidate
transformations for any point pairs A and B from P and @, respectively, our claim follows.
[l

Goodrich et al. [36] state an approximation factor of 4 rather than 6, as presented in the above
proof. Their proof, however, rather suggests to use the factor 6 for their result as well. In
terms of Figure 6.5, they use the inequality |[tgqs — htqq|| < 2¢ instead of ||tgqqs — hitqq|| < 4e.
In fact, Figure 6.5 shows that ||tgqq — htqq|| < 2¢ does not hold. It is, however, not clear
whether the approximation factor 4 for the algorithm holds anyway.
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189,

Figure 6.5: Sketch for the bound claimed in Eq. (6.2). By construction, we have ||pp —tgqq|| <
2¢e, where ¢ := d(P, gQ). Furthermore, we have ||py — htqql| = ||pa — pbl| — ||Ptgq. — htgqal| =
llggc — gqall < 2e (where the last inequality follows from ||p, — gq4|| < € and ||py — gqq|| < e
using Remark 6.2.5 with p; := pa, p2 := Pp, @1 = 9qc, G2 1= gqq and § := ¢). Using the triangle
inequality, we get ||tgqq — hiqq|| < 4e.

The time complexity of Algorithm 6.2.2 obviously is O(m?n?Tyq(m,n)) (where T4q(m,n) de-
notes the time needed for computing d(P,Q)), since the two nested for-loops are passed
through O(m?) and O(n?) times, respectively. In general, the running times of algorithms
depending on candidate sets are determined mainly by the cardinality of the candidate set.

6.2.2 Right-Complete Distance Measures

In some cases, further knowledge about the distance measure d can be used for decreasing the
cardinality of the candidate set that is needed for solving the matching problem. As a first
class of such distance measures, we study right-complete distance measures. Recall that a
distance measure d is right-complete iff for each relation R € R(d, m,n) and for all j € [1 : n],
there is an i € [1 : m] such that (4,j) € R — in other words, whenever d(P, Q) < € for some
P e vlm and Q € V' every point in Q is involved in the matching.

Looking at the proof of Lemma, 6.2.3, we observe that from the point set @', which is the set
of all points from () that are involved in a match, a diameter pair is used to find a suitable
candidate transformation. If d is a right complete distance-measure, all points of ) are
involved in a match. In terms of the proof of Lemma 6.3.3, this means that we always have
Q' = Q. For designing a matching algorithm for right-complete distance measures, we can
draw an essential advantage out of this: we can compute a diameter pair (g.,gq) in advance
instead of trying all pairs (g;,, q;,)-

For an algorithm matching with respect to a right-complete distance measure, the observation
made above suggests the following algorithm: In Algorithm 6.2.6, we remove the inner for-
loop and in place of this loop, we compute a diameter pair of () at the beginning of the
algorithm. In fact, this is the idea underlying the work [36] (which only considers matching
with respect to the directed Hausdorff distance). Algorithm 6.2.2 is a generalization of this
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approach to arbitrary right-complete distance measures.

Algorithm 6.2.6
Input: P € V' and Q € VI'"; relational and right-complete distance measure d.
Output: Analogous to Lemma 6.2.3.

Right-Complete-Candidate-Match(P, @, d)
Compute a diameter pair (q.,qq) of Q.

B := (qe,q4);

D = o0;

for (i1,i2) € {(p1,p2) € [1:m] x [L:m] | py # pa}
A= (piyspin) s
Compute an (A, B)-candidate transformation g;
z:=d(P,gQ);
if (r < D) then D:=z; h:=g;

return h;

end.

The output of the algorithm in fact satisfies the same approximation properties as Algorithm
6.2.2, and for a proof of these bounds, one only needs to modify the proof of Lemma 6.2.3 in
a straightforward way. Hence, this proof is omitted.

For an analysis of the running time, note that the diameter pair of () can be computed in
O(nlogn) time based on the convex hull of (). Then, the remaining for loop runs through
O(m?) cycles, while in each cycle, d(P, gQQ) is computed exactly once. Hence, we obtain an
overall running time of O(n logn +m?Ty(m,n)), where Tyq(m,n) denotes the time needed for
computing d(P, gQ).

6.2.3 Distance Measures with a Reference Point

Another helpful feature of a distance measure that can be used to make the time complexity
of Algorithm 6.2.2 smaller are reference points. Let d denote a relational distance measure
with a (V, G, d, ¢)-reference mapping r for G = SE(2). Just as reference mappings helped
to eliminate translations when matching by means of cell enumeration, reference points can
be used to find the translation part of a candidate transformation. Recall that the proof of
Lemma 6.2.3 starts with defining a translation from a point gq. (for some fixed transformation
g € SE(2)) to a point p,. If we have a distance measure d with a reference mapping r, we
can replace this step by using the translation from gr(Q) to r(P). As a result, the inner and
the outer for-loop in Algorithm 6.2.2 only need to run through m and n cycles, respectively,
instead of over O(m?) and O(n?) cycles.

Algorithm 6.2.7
Input: P € VI Q e V' for V = R?; relational distance measure d; reference points
rp =1(P),rq =1(Q) €V for some (V.G.d, c)-reference mapping r.

Output: According to Lemma 6.2.8.

Reference-Candidate-Match(P,Q,rp,7¢q,d)
D := oc;
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for (i € [.1 :m))
J

for (5 €[l :n])
A= (rp,pi);
B :=(rq.q;);
Compute a candidate transformation g for A and B;
d:=d(P,gQ);
if (d < D) then D :=d; h:=g;
return h;

end.

Lemma 6.2.8 Let G = SE(2). Given input as specified, Algorithm 6.2.7 computes a trans-
formation h € SE(2) such that
d(P,hQ) < 2(c +1)e,

for any € > infycqd(P, gQ).

Proof. The proof works similar to the proof of Lemma 6.2.3.

Let € > inf,cq d(P,¢gQ) and let g € G satisfy d(P, gQ) = e. Starting with g, we succesively
construct group elements g; and gy such that g; satisfies property (C1), and g9 satisfies (C1)
as well as (C2) for some point pairs A = (rp,p,) and B = (rq, qs).

Constructing g1. We construct g; by defining ¢ as the translation that transports grg onto
rp. Since rp = r(P) and rg = r(Q) and r is a reference mapping, we have ||gr(Q) —r(P)|| =
Ir(9Q) — r(P)|| < cd(P,gQ) = ce. Hence, the length of the translation vector ¢ is at most
ce, so that for any point ¢ translated by ¢, we have ||q — tq|| < ce. Using this in combination
with the triangle inequality, we obtain

lpi —tgg;ll < llpi — 9451l + ll9g; — tgg;]|
(6.4)
< e+4ce=(c+1)e,

for all (i,j) € R(P,Q,e). Note that we have tgrg = rp, i.e., g1 := tg satisfies property
(C1) of an (A, B)-candidate transformation for A := (rp,p,) and B := (rq, q4) for any index
be[l:m].

Constructing gs. As in the proof of Lemma, 6.2.3, let Q' denote the set of all points in @ that
are matched with some point in P. Furthermore, let d € [1 : n] denote the index of a point in
Q' that is farthest away from rg. Since ¢4 € @' and d is a relational distance measure, there
is an index b € [1 : m] such that ||py — gqq|| < €.

Using Eq. (6.4), we get ||pp — g1¢4]| < (¢ + 1)e. We now consider the unique rotation h €
SOy, (2) satisfying [rp;py] = [hg17Q; hg1qq). (Note that hgirg = rp.)

Then, using the triangle inequality in combination with Remark 6.2.5 (with § := ¢), we get

lg19a — hgrgall < |lg19a — ol + |lPo — hg144]| (6.5)
< (c+1De+(c+ 1) (6.6)
— e+ 1) (6.7)

By Remark 6.2.4 and the fact that g4 is the point in @)’ farthest away from r¢, this implies
lg1g —h1g1q]] < 2(c+1)e for all ¢ € Q'. Using the triangle inequality and Eq. (6.4), we obtain

lpi — 925l < 3(c+1)e
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for all (4,5) € R(P, gQ.¢€). Since h € SO, (2) leaves rg = g17g unchanged, g» := hg; satisfies
(C1) as well as (C2) and hence is an (A, B)-candidate transformation for A = (rp,p,) and

B = (’rQa Qd)
Since the algorithm checks all (A, B)-candidate transformations for any possible point pairs
A and B, our claim follows. 0

6.2.4 Right-Complete Distance Measures with a Reference Point

Even faster versions of Algorithm Candidate-Matching can be stated if the distance measure
d involved has both a reference point and the property of right-completeness. Observe that
in the proof of Lemma 6.2.8, we constructed the point ¢ € Q' that has the largest distance
to the reference point. If, as it is the case precisely for right-complete distance measures, we
always have Q' = @, i.e., all points of ) are involved in a matching, this point does not need
to be “guessed” by the algorithm (by trying every single point in ), but it can be computed
in advance.

As a result, one for-loop of Algorithm Reference-Candidate-Match can be eliminated and
replaced by computing the point in () that is farthest away from r¢.

Algorithm 6.2.9
Input: P € VI Q e VI for V = R?; relational right-comlete distance measure d;
reference points rp = r(P),rq = r(Q) € V for some (V. G.d, c)-reference mapping r.
Output: Analogous to Lemma 6.2.8.

Ref-Right-Complete-Match(P, Q,rp,rg,d)
Compute the point ¢ € () that has the largest distance to TQ;
B :=(rq,q);
D := oc;
for (i € [1:m))
A= (rPapi);
Compute a candidate transformation g for A and B;
d:=d(P,gQ);
if (d < D) then D :=d; h:=g;
return h;
end.

Again, the proof that the same bounds hold as in Lemma 6.2.8 works very similar to the
proof of Lemma 6.2.8 and is hence omitted. For analysing the running time, note that the
point ¢ farthest away from 7 can be computed in O(n) time in a straightforward way. After
that, the algorithm obviously performs m distance computations, which amounts to a total
time complexity of O(n + mTq(m,n)).

6.3 Matching under SE(3) Using Candidate Sets

The algorithms for matching under rigid motions in the plane from the last section can be
generalized for matching under rigid motions in three dimensions. Throughout this section,
let V = R3. Corresponding to the last section, let P € V"™ @ € VI and let d denote a
relational distance measure. For matching under SE(3), we need to extend the definition of
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candidate transformations — a major property of the definition from the last section was that
the candidate transformation for two point pairs is uniquely defined. This essential property,
however, is not valid anymore in three dimensions: if A = (a1,as) and B = (by,bs), there is
one degree of freedom left to rotate around the axis corresponding to [by; by] without affecting
the property of a candidate transformation. In other words, (A, B)-candidate transformations
as defined for point pairs are uniquely defined modulo SOy, ,4,](2) if we replace R? by R3 in
Definition 6.2.1. A straightforward way to make candidate transformations uniquely defined
in three dimensions (at least in non-degenerate cases) is to extend the definition from the last
section to triplets of points instead of pairs of points. Viewing this from a group theoretical
point of view, this is motivated by the fact that if we let G = SE(3) act on triplets of points,
we obtain trivial stabilizers for each (non-collinear) triplet of points.

Definition 6.3.1 Let V = R3, and let A, B € V3, where A = (a1, as2,a3) and B = (by, by, b3).
We say that g € SE(3) is an (A, B)-candidate transformation iff

(Cl) a; = gby and
(C2) [a1;a2] = [gbi; gbo] and
(C3) If neither ay,as,as nor by, by, bs are collinear, we have [a1; ag;asz] = [gb1; gbe; gbs).

If neither the three points of A nor the three points of B are collinear, the candidate transfor-
mation is uniquely defined. In the degenerate case that either the points in A or the points in
B are collinear, we will be content to find a single transformation from the set of all (A, B)-
candidate transformations. As for the two dimensional case, we start with an algorithm for
arbitrary relational distance measures and show how reference points and right-completeness
can be used to state faster algorithms.

6.3.1 Arbitrary Relational Distance Measures

The basic idea for our basic pattern matching algorithm based on candidate transformations
in three dimensions is the canonical extension of the algorithm in two dimensions: instead of
generating all point pairs (p;,,p;,), we generate all triplets (p;,, pi,, Pis) contained in P. Just
as well, we generate all triplets of points (g;,,¢j,,¢j,) in place of the pairs (g;,, gj,) contained
in Q. Then, for all A = (p;,,pi,,piy) and for all B = (g;,,4j,,9j,), we compute an (A, B)-
candidate transformation g. For each candidate transformation g, we compute d(P, g@Q) and
determine the candidate transformation h that yields the smallest distance.

Algorithm 6.3.2
Input: P € VI and Q € V'™ ; relational distance measure d.
Output: As stated below.

Candidate-Match(P, @Q,d)
D = oc;
for (i1,49,43) € {(p1,p2, p13) € [L:m]® | 1 # po, i1 # 3, pro # pa}
for (j1,42,73) € {(v1,v0,13) € [1:n]3 | vy # 19,11 # v3, 19 # 13}
A= (Piy, Piy» Pia) 5

B = (qj1aqj27qj3);
Compute an (A, B)-candidate transformation g;
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d:=d(P,gQ);
if (d < D) then D :=d; h:=g;
return h;
end.

Again, the fact that the output of the algorithm is a transformation A € SE(3) such that
d(P, hQ) < 16¢, where ¢ := inf cgp(3) d(P,gQ) can be shown similar to the proof of Lemma
6.2.8. The proof for the three dimensional case, however, is somewhat more involved. The
running time obviously is O(m3n3Tg(m,n)), since O(m?) triplets of points in P and O(n?)
triplets of points in () need to be examined.

Lemma 6.3.3 Let G = SE(3). Given input as specified, Algorithm 6.53.2 computes a trans-
formation g € SE(3) such that
d(P, Q) < 16e,

for any € > infycqd(P, gQ).
The proof of this lemma is based on the following apparent generalization of Remark 6.2.4.

Remark 6.3.4 Let ai,a2,a3 € R such that ||a1 — as|| < |la; — a3||. Furthermore, let
bo, b1, b2, b3 € R3 such that by is closer to [bo; by] than bs. Then, the following holds:

(1) If hy € SO, (3), then
lag — hiaz|| < [laz — hias].

(2) [f ho € SObO,bl (3)7 then
b2 — haba|| < ||lbs — habsl|.

Proof of Lemma 6.3.3. Let ¢ > infpcqd(P,hQ), and let g € G satisfy d(P,gQ) = e.
Starting with g, we succesively construct group elements g1, g2 and g3 such that g; satisfies
property (C1), go satisfies (C1) and (C2), and finally g3 satisfies (C1)-(C3) for some pair of
triplets (pa,pp, pe) and (ge, g4, qr)-

The construction of g; and go is almost the same as in the proof of Lemma 6.2.3. Hence, we
only sketch these two steps.

Constructing g1. Let Q' :={q€ Q| Ji € [1:m] | |lpi — gq|l < €}, i.e., the set of all points in
@ that are matched with some point in P. Furthermore, let ¢,d € [1 : n] denote indices such
that the pair (g, qq) is a diameter pair of Q'. Since g.,qq € Q' and d is relational, there are
indices a,b € [1 : m] such that ||p, — gq.|| < € and ||py, — gqq|| < €.

We now construct g; by defining ¢ as the translation that maps gq. to p,. Obviously, we have
lggc — pall < . Translating each gg; by t for all j € [1 : n], we obtain

Ipi — tgqjll < e + e = 2e, (6.8)

for all (i,7) € R(P,gQ,¢). Since we have tgq. = p,, i.e., g1 := tg satisfies property (C1) of
an (A, B)-candidate transformation for A := (pe, py,pe) and B := (qc, q4,qy) for any indices
ec[l:m]and f €[l:n]

Constructing g2. Using Eq. (6.8), we get ||py — g1q4]| < 2¢. We now consider a rotation h €
SOp, (3) with the property that [p,; ps] = [hg19c; hg1qq]. (Note that [hg1qc; hg14d] = [Pa; hg144]
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and, furthermore, h is not uniquely defined.) An elementary geometric argument (cf. Figure
6.5) shows that ||g1g9¢ — hg1¢4]| < 4e. By Remark 6.3.4(1) and the fact that g4 is the point in
Q' farthest away from ¢, this implies ||g1q — h1g1¢|| < 4e for all ¢ € @'. Using the triangle
inequality and Eq. (6.8), we obtain

Ipi — gag;ll < 6¢ (6.9)

for all (i,7) € R(P,gQ,¢). Since h € SOy, (3) leaves p, unchanged (i.e., hp, = pa), 92 := hg1
satisfies (C1) as well as (C2) of an (A, B)-candidate transformation for A = (pa,pp, pe) and
B = (4c,q4,qy) for any indices e € [1: m] and f € [1 : n].

Constructing g3. Let gy be the point in @' such that gogy has the largest distance to the
straight line corresponding to [g2¢c; g2¢4]. Due to ¢y € @', there is an index e such that
(e, f) € R(P,¢Q,¢€), and hence (using Eq. (6.9)) we get ||pe — g2q|| < 4e. We now distinguish
two cases:

(i) pas Db, pe collinear or qc, qq,qs collinear: In this case, go satisfies all criteria of a candidate
transformation, and we are done by defining g3 := ¢o.

(ii) Neither pa,ps,Pe NOT qc,qq,qp are collinear: There is a uniquely defined transformation
ho € SOyp p, (3) so that g3 := hags satisfies (C3). An elementary geometric argument yields

lg2qr — hagaqrll < |lg2qr — pell + |Ipe — hagaqy||
< lg2ar — g1a7|l + llg1ar — pell + [Ipe — hagaqy|| (6.10)
< 2e+ 6e+ 2¢ )
= 10e.

Since goqy is the point in Q' with the largest distance from [pg; ps], Eq. (6.10) in combination
with Remark 6.3.4(2) implies that for all ¢ € Q', we have

llg — hag|| < 10d(P, Q).

Using this in combination with Eq. (6.9) and the triangle inequality, we get

lpi — g3q5ll < llpi — 9245 + l9295 — 934;]|
< 6e 4+ 10e
= 16e.

for all (4, j) € R(P, gQ,¢€). Since the algorithm examines all candidate transformations for all
triplets of points from P and @, our claim follows. O
Generalizing the idea of Chakraborty et al. [20], this algorithm can also be used for finding
largest common point sets with respect to relational distance measures.

6.3.2 Making Use of Reference Points and Right-Completeness

In the case of rigid motions in the plane, reference points as well as right-completeness of a
distance measure allowed us to state asymptotically faster algorithms than for arbitrary rela-
tional distance measures. The ideas used in the two dimensional case also carry into the three
dimensional case. Since carrying these ideas to the three dimensional case is straightforward,
we only provide sketches of the resulting algorithms in this section.
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Figure 6.6: Sketch for the bound claimed in Eq. (6.10). By Eq. (6.8), we have ||p,—g144|| < 2¢,
where ¢ := d(P,¢Q). Furthermore, by Eq. (6.9), we have ||giqf — hgiqf| < 6e. We also
know that |lpy — htgrll = [[pa — pell — [Ih292gc — hagagyll = ll9gc — gyl < 2e (where the
last inequality follows from |p, — gqgc|| < € and |[pe — gqf|| < € using Remark 6.2.5 with
Pl = DarP2 = Desq1 = 9Gc, @2 = gqy and 0 := ¢). Using the triangle inequality, we get
l92q7 — h2gaqyll < 10e.

Right-Complete Distance Measures. Consider the triplet (¢, ¢4, ge) constructed in the proof
of Lemma 6.3.3. These three points are points from the set @' C @ (which is the set of all
points involved in the matching) having the following properties:

® (e, qq) is a diameter pair of Q'
e ¢, is a point that is farthest away from the straight line corresponding to [g.; g4

For a right-complete distance measure, we have Q' = ). Hence, the triplet (q., g4, g) does not
need to be guessed by the algorithm (by trying all O(n?3) possibilities) but can be computed
in advance — and again, in doing so, we obtain the algorithm proposed in [36] for the special
case of matching with respect to di under three dimensional rigid motions.

It remains to analyze the time complexity of the algorithm. To this end, we need to know
an upper bound for computing a diameter pair of a three dimensional point set. Although
diameter pair algorithms in three dimensions are much more involved than algorithms for the
two dimensional case, the problem has been shown to be solvable in O(nlogn) time for three
dimensional point sets as well. We refer to [56] and [38] for further theoretical and practical
results on this (surprisingly difficult) problem. Now, given a diameter pair (g.,qq), the point
ge can be found in linear time in an obvious way.

Since the inner for-loop can be eliminated completely, the remaining running time of the
algorithm is determined by O(m?) distance computations, and altogether we get an asymp-
totical running time of O(m3Tg(m,n) + nlogn). The quality of approximation is the same
as stated in Lemma 6.3.3.

Distance Measures with a Reference Mapping. Just as in the two dimensional case, the
reference points r(P) and r(Q) obtained from a reference mapping r yield a translation that,
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in terms of the proof of Lemma 6.3.3, is used for constructing the transformation g;. The
points r(P) and r(Q) serve as a substitute for the points p, and g., and, in analogy to Lemma
6.2.8, the algorithm computes a transformation h € SE(3) such that

d(P,hQ) < 8(c+1)e,

where ¢ := inficqd(P,gQ). As can be easily seen, the running time of the algorithm is
O(m?n?T4(m,n)), since only all pairs (instead of all triplets) of points from P and @ need
to be tested.

Right-Complete Distance Measures with a Reference Mapping. In this case, we compute a
triplet of points (r(Q), g4, qs) such that

e ¢4 is a furthest neighbor of r(Q) in @
e ¢ is the point farthest away from the straight line corresponding to [(Q); ¢4].

Given these points, one for-loop needs to cycle over all point pairs (py, pe) in P, since the
candidate transformations can be computed for the triplets A := (r(P),py,pe) and B :=
(r(Q),qa,qr). This leads to an overall running time of O(m?T4(m,n) + nlogn).
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Chapter 7

Matching with Respect to the
Fréchet Distance

For all distance measures considered previously, it was not necessary to work with point
sequences. The Hausdorff distance as well as the bottleneck distance can be defined for sets
of points instead of sequences of points as well. In some applications, geometric shapes are not
represented by point sets, but by polygonal curves that can be described by point sequences
rather than sets of points. For polygonal curves, a wide range of distance measures has been
studied; for example, the Hausdorff distance between the set of points on a (polygonal) curve
P and the set of points on another (polygonal) curve @) can be used as a distance measure.
For a survey on further distance measures, see [65]. The distance measure to be examined
in this chapter is the Fréchet distance that is based on reparametrizations of the curves to
be compared. In the context of curve simplification, it has been first examined by Alt and
Godau [4]. For polygonal curves P and @ of lengths m and n, respectively, the Fréchet
distance can be computed in O(mn) time [5]. More recent work is concerned with relations
to the Hausdorff distance [8] as well as matching polygonal curves with respect to the Fréchet
distance under the group of translations in the plane [9]. In [66], the idea underlying the result
of [9] is generalized to larger classes of transformations using techniques from real algebraic
geometry, similar to those by Basu, Pollack and Roy summarized in Theorem 2.3.6.

In this chapter, a discrete version of the Fréchet distance is proposed, as well as bounds
between this discrete version and the continuous Fréchet distance. Since the discrete version
turns out to be a relational distance measure, the results from Chapters 4 and 5 can be
applied to find efficient matching algorithms. Furthermore, the discrete version of the Fréchet
distance (as well as the continuous version) has a reference point. In the last parts of this
chapter, the problem of matching subcurves is addressed. In the terminology of Chapter 5,
matching subcurves with respect to the discrete Fréchet distance leads to a problem involving
a right-complete distance measure.

7.1 Notation and Basic Concepts

Let V denote the Euclidean vector space RF with the Euclidean norm ||.|| := ||.||2 for some
k > 0. A curve in V is a continuous mapping f: [a,b] — V. A polygonal curve of length
m € N is defined as a curve P: [0,m] — V with the property that for all i € [0 : m — 1]
the curve Plj;.q) is affine, ie., P(i + ) = (1 — A\)P(i) + AP(i + 1) for A € [0,1]. Since
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z € Xt s completely described by a sequence of b — a + 1 values in X, we also write
T = (zq,..., 1) € X0,

For f € VI, let |flleo := supes If(#)]l. The Fréchet distance between P € VIl and
Q € VIO (for some m,n > 0) is defined as

dp(P,Q) = min [|Poa— Qo fw,
(a,8)

where («,3) ranges over all continuous, weakly increasing and surjective mappings a €
[0,m]) %1 and 8 € [0,n])*1. In the sequel, we denote the set of all continuous, weakly increas-
ing and surjective mappings from a subset X of R to another subset ¥ of R by Mon(X,Y)
and write Mon,, , :== Mon([0, 1],[0,m]) x Mon([0,1],[0,7]). In case m € N and P € VIO
denotes a polygonal curve, we can identify P with the mapping [0 : m] 3 i — P(i) =: p;, and
hence we also write P € VI More generally, we have the following definition.

Definition 7.1.1 Let v: [a,a’] = V and w: [b,b'] = V be two curves. The Fréchet-distance
dp(v,w) of v and w is defined as

dp (v, 1) = inf ma [o(a(t)) — w(B(0)].

where the infimum is taken over all (o, 3) € Mon([0, 1], [a,a]) x Mon([0, 1], [b, b']).

The Fréchet-distance is a pseudo metric, i.e., dp has all properties of a metric except for
dr(a,b) =0 = a =b, see [34, 31].

Given two polygonal curves P € V%™ and Q € V197 we define the discrete Fréchet distance
as

dr(P.Q) = min |Po K~ Qo .

where the pairs (k, A) range over the set
Mon,, , := Mon([0 : m + n], [0 : m]) x Mon([0 : m + n], [0 : n]).

(Note that for finite subsets X and Y of R, every map f: X — Y is continuous, and hence in
this case Mon(X,Y') is the set of all weakly increasing surjective mappings.) Correspondingly,
one can define dp for polygonal curves P € V¥ and Q € VI¢ for integers a,b,c,d by
adapting domain and range of the reparametrizations. Note that the integer interval [0 : m+n]
substitutes the real interval [0, 1] as the common domain for the two reparametrizations. The
discrete Fréchet distance is similar to the dynamic time warping distance that is defined as

dW(Pa Q) = (Hll}\r; “PO K= Q ° >‘“27

’

where (i, \) ranges over Useelmatmyon-n Mom i and [[f]l2 := (| ey (F(0)2)2 for f €
VI with |I] < co.

Dynamic time warping has been considered in the context of speech signal processing and
time series databases [55], in both cases for V"= R. More recently, dynamic time warping has
been used for matching polygonal curves in the plane under the group of translations [54].
The results presented in this chapter can be viewed as a bridge between these works and the
results obtained in the area of computational geometry.

We can compute the discrete Fréchet distance between P € VI and Q € VI in O(mn)
time using dynamic programming:
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Algorithm 7.1.2
Input: P € yIomlLQeVien ppg v = RE for some integers k,m,n > Q.
Output: dp(P, Q)

do,o == llpo — qoll;
for j:=1 to n do do; := max{dy; 1, |lpo — ¢jll};
for 1:=1 tom
dio = max{d; 1,0, |[pi — qoll}
for j:=1 ton
dij = max{min{d; j 1,d; 14,di 1 1},|lpi — q;ll};
end
end
return dp, .

The verification of Algorithm 7.1.2 is based on the fact that

dij = dF(P|[0:i], Q[O:j})
satisfies
di.j = max{min{d; j_1,di—1,di—1j-1}, [|pi — q;l|}-
(Put dgp =00 ifa < 0 or b <0, and let min{ := 0.)
Computing dp (as proposed in [5]) can be done in O(mn) time as well; the algorithm, however,
is more involved. We require some basic results that have been developed in the context of
computing the Fréchet distance and that have also been used for matching under the group

of translations. Certainly the most important concept is the e-free space of two polygonal
curves P € VI0™ and Q € V[0 which is defined as

Fo(P,Q) := {(s,1) € [0,m] x [0,n] | |[P(s) = Q()]| < e}

The decision problem of determining whether dp(P, Q)) < € can be reduced to the problem of
finding a curve through F.(P, Q) that is monotonic in both coordinates:

Theorem 7.1.3 ([6]) Let P and Q be polygonal curves and let ¢ > 0. The following holds:

(1) If P and Q are line segments, F.(P, Q) is the intersection of the unit square [0,1]> with
a (possibly degenerate) ellipse. In particular, F.(P,Q) is convex. For curves P and Q
of length > 1, the e-free space can be described as

Ui yenm)x i) Fe (Pli—1,, Qlrj—1,57)-
(2) We have dp(P,Q) < e iff there is a curve within F.(P,Q) that starts at (0,0), ends at
(m,n) and is monotonic in both coordinates.
Analogously, we can define the discrete e-free space of two polygonal curves as
Fo(P,Q) ={(i,5) € [0:m] x [0:n] | [lpi — ¢;|l < e}

Using F.(P, Q) instead of F.(P,Q), one can state properties analogous to Theorem 7.1.3. As
a discrete analogue to curves in the free space that are monotonic in both coordinates, we
work with monotonic paths in Z x Z. A monotonic path in Z x Z is a sequence (A1,..., Ar),
A; = (a;,b;) € Z x Z, with the property that both sequences (a1,...,ar) and (by,...,br) are
weakly increasing.

73



CHAPTER 7. THE FRECHET DISTANCE

Theorem 7.1.4 Let P € V10 gnd Q e V107 pe polygonal curves and let € > 0. Then, we
have dp(P, Q) < e iff there is a monotonic path of length K < m + n within F.(P,Q) that
starts at (0,0) and ends at (m,n).

Sketch of Proof. Let dp(P,Q) = ||[Pok — Q o \|| < ¢, for suitable reparametrizations
(k,A) € Mon,, ,,. Then the monotonic path is given by all pairs (x(%), A(¢)), omitting pairs
that yield loops (i.e., (k(i), A(i)) = (k(7 — 1), A(z — 1))). Conversely, given a monotonic path,
we obtain suitable reparametrizations by introducing a loop for every diagonal step of the
path (i.e., (k(i),A(?)) = (k(z —1) + 1,A(i — 1) + 1)). O

7.2 Weakly Increasing Integer Sequences

One important concept in conjunction with the discrete Fréchet distance are weakly increasing
integer sequences. In this section, we provide some basic notation for such sequences as well
as some of their properties that are required in the rest of this chapter.

For k € Mon([a : b],[c: d]), let K 1[j] := {i € [a: b] | k(i) = j}. Furthermore, let

kliled — [a:b].

i = K 1(j) = mink 1[j], (7.1)

and for X C [a : b] define x[X] := {k(z) | # € X}. Note that the mapping j — ~1(j) is
weakly increasing but not necessarily surjective.

Remark 7.2.1 Let k € Mon([a : b, [c: d]). For alli € [a: b], we have

i€k k()] and K '(k(i) <. (7.2)
Analogously, we have

jenlsT )] and w(s7'(j) = (7.3)

for all j € [c:d].

We usually denote some x € Mon([a : b],[c : d]) by the sequence (k(a),...,x(b)). A basic
operation that can be performed on two weakly increasing (not necesarily surjective) integer
sequences is merging the two integer sequences to one single sequence: given two weakly
increasing integer sequences k and A, let k /\ X denote the likewise weakly increasing integer
sequence that contains the elements of x and A, including multiplicities.

Merging will be particularly interesting for a certain type of integer sequences:

Definition 7.2.2 Let k:[a:b] — [c:d] and ¢ : [c : d] — [a : b] be weakly increasing integer
sequences. We say that a pair (k,?) is crossing free if it satisfies

(CF1) j<k(i) = £(y)<i and
(CF2) k(i) <j = 1<4(j)

foralli €a:b] and j € [c: d].
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o 1 2 o 1 2
f O\« f
o 1 2 3 o 1 2 3

Figure 7.1: Left: a pair of weakly increasing, crossing free mappings & : [0 : 2] — [0 : 3],£ :
[0:3] = [0:2]. Right: a pair of mappings that is not crossing free. The arrows violating the
crossing free condition are marked bold.

For examples of pairs of crossing free integer sequences as well as non-crossing-free integer
sequences, see Figure 7.1. In this figure, a directed edge from vertex i to vertex k(i) rep-
resents a pair (i,k(7)), as well as a pair (£(j),j) is represented by an edge from j to £(j).
In the following, we use such sequence diagrams for illustrating pairs of crossing free integer
sequences. Sequence diagrams motivate the use of the term crossing free, since two sequences
are crossing free if and only if the corresponding sequence diagram does not contain edges
that cross each other.

Remark 7.2.3 The above definition can be stated equivalently by the two conditions

(CF1) i<f(j) = k(i)<j and
(CF2Y) £(j) <i = j <k(i),

since (CF1) & (CF1') and (CF2) & (CF2').
Crossing free pairs of sequences are closely related to the discrete Fréchet distance.

Theorem 7.2.4 Let P € VI% and Q € V19" denote two polygonal curves. The following
two statements are equivalent:

(2) There is a crossing free pair of weakly increasing mappings k: [1 : m] — [0 : n] and
£:[1:n] — [0:m] such that [|p; — gl < € and ||pejy — g5ll < € for all i € [1: m] and
j€l:n].

The proof of this close relation between crossing free pairs of mappings and dr relies on some
further properties of crossing free pairs of mappings that we investigate first. The key concept
to be studied in conjunction with crossing free integer sequences is the process of merging
and the reverse process of decomposing sequences:

Definition 7.2.5 Let k € [0 : n]™ and £ € [0 : m]l¥™ be crossing free weakly increasing
mappings. We say that the pair (k,£) is a crossing free decomposition of (k, A) € Mon,,, ,, if
and only if

(7.4)
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Lemma 7.2.6 The following holds:
(1) Every (k,A) € Mon,, ,, has a crossing free decomposition (k,Z).

(2) Let (k,£) be a crossing free decomposition of (k,A). Then, for all s € [1 : m + n|, we
have (k(s),A(s)) € {(£(4),7), (1,k(?))} for some i € [1:m] or j € [1:n].

i 0 1 2 3=m i 2 3=m
/ O\ Ci T\O\ O O
s QO\ 01\12/ 3 ’4/0 S5=m+n /
@) @) @) @)
J 0 1 2=n J 2=n

Figure 7.2: Example of a crossing free decomposition: In the left figure, an arrow indicates a
pair (s,k(s)) or (s, A(s)). The right hand figure shows the crossing free decomposition (k,¢)
of (k,\) as constructed in the proof of Lemma 7.2.6. Here, arrows indicate pairs (i, k(7))
or (j,4(j)). Note that the pairs (0,%(0)) and (0,4(0)) do not belong to the crossing free
decomposition.

Proof. Let (k,)) € Mon,,,,. We claim that the mappings k := (Ao & !)|j,, and £ :=
(ko A‘l)[l:n] define a crossing free decomposition of (k, ). To this end, suppose that (k,¥)
does not comply with (CF1), i.e., there is an 7 € [1 : m] and some j € [0 : n] such that
J < k(i) as well as £(j) > 1.

On the other hand, we know that (i,k(i)) = (k(s),A(s)) for s = x71(i) and (£(j),j) =
(k(s"),A(s")) for ' = A71(j). This yields A(s) > A(s") as well as x(s’) > k(s). Since we
have either s < s’ or s’ < s, either the monotonicity of x or the monotonicity X is violated,
contradicting (k, ) € Mon,, .

Proving that (k,¢) complies with (CF2) works analogously.

For the proof of (2), we have to study the process of merging in more detail by supplying
a procedure that computes (0,...,m) M\ £ and (0,...,n) M\ k simultaneously. This merge
procedure will help to prove our claim. We introduce some definitions that are useful for this
merge procedure. For two integer sequences x and y, we define x o ¢y as the concatenation
of z and y; moreover, let z; := z o (c0). We now consider the following algorithm for
simultaneously computing s and A:

Input: m,n € N; crossing free weakly increasing mappings k: [1 : m] — [0 : n] and £: [1 :
n] — [0 : m].
Output: x =(0,...,m) N Zand A = (0,...,n) Nk

Merge (k,?, m,n)

1 k=k ;¢:=10

2 k(0) :=0;X(0) := 0;

3 i:=1; 5:=1; s:=1
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4 while (s<m+n) /i+j53=5—-1

5 if (j<k()Ve()<i)  (CF1l)V (CF2)
6 k(s) == £(5); A(s) := J;

7 JH; s+

8 else if (k(i)<jVvi<{(j) / (CF1)V(CF2)
9 k(8) == 13 \(8) := k(7);

10 143 s+

11 else // j=k(i)Ni=4L())

12 () = £(7): \(5) 1= J;

13 JH s+

14 K(s) == 13 M(s) := k(7);

15 145 s++

16 end

17 return (k(0),...,k(m +n)),(A(0),..., AX(m +n))
end.

Appending oo as a last element to each of the integer sequences causes the algorithm not to
read further elements from a sequence whose last element has already been read. By induction
on s =1+ j — 1, we can show that the loop invariants

(£(0),...,6(s—=1)) = (£(1),...,4( — 1)) M\ {0,...,7—1) and

(MO), ...y A(s—=1)) =(0,...,5 — 1) M (k(0),..., k(i — 1))
hold w.r.t. Line 4: for s = 1, the claim obviously holds true. Now, let s > 1. By induction
hypothesis, the claim holds before processing any of the Lines 6,9,12 or 14. Using properties
(CF1) and (CF2) from the definition of crossing free pairs of sequences and their equivalences

(CFY’) and (CF2’) from Remark 7.2.1, we find that
after processing Line 6, we have

<H(0)7'-'aﬁ(5)> = (E(l),,g(_]»/)(\((),,l—l)
after processing Line 9, we have

(K(0), ..., 6(s)) = (£(1),..,0(j —1)) M{0,...,5)
0), . AS)) = (0, — 1A (k(1), ..., k()),

(7.5)

(£(0),...,k(s)) = Q),...,L(7)) MN(0,...,i—1)
(MO), ... A(8)) = (0,...,7) M(k(),... . k(z —1)),

<H(0)7'-'aﬁ(5)> = (E(l)aag(]_l»/)(\(()aa'l)
Since in Lines 7, j and s are increased, the loop invariant (7.5) holds after processing Line 7.

Analogously, increasing 4, j and s in Lines 10,13 and 15 restores the loop invariant (7.5) in all
other cases.
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This shows that Merge computes k and A as defined in (7.16) and (7.17), proving the
monotonicity of x and A as well as the properties x(0) = 0,x(m + n) = m,A\(0) = 0 and
A(m +n) =n.

Looking at Lines 6,9,12 and 13, each pair of indices (k(s),\(s)) is assigned either a pair
(1,k(i)) or a pair (£(j),7), which proves our claim. O
Proof of Theorem 7.2.4. Since we have dp(P,Q) < ¢ iff there is some (x,\) € Mon,, ,
such that [|p.(s) — Pags)ll < € for all s € [0 : m + n], the theorem follows immediately from
Lemma 7.2.6. U

7.3 Metric Properties of the Discrete Fréchet Distance

It is well known [34, 31] that the continuous version of the Fréchet distance dr is a pseudo
metric, i.e., dp satisfies all properties of a metric except for dp(P,Q) = 0 = P = Q. For
the discrete version, we provide a proof here that dr is a pseudo metric as well. Proving the
triangle inequality for dr is more involved than proving the triangle inequality for dr, since
the continuous version of the Fréchet distance between any two curves is based on the general
reference interval [0, 1], whereas there is no such general reference interval in case of dp.

Theorem 7.3.1 df is a pseudo metric.

Proof. Obviously, we have dp(P, P) = 0 and dp (P, Q) = dr(Q, P). It remains to prove the
triangle inequality.

Let A = (ag,...,as) € V1% B = (by,...,b5) € V% and C = {(cg,...,c,) € VI We
show that dp(A4,C) < dr(A4, B)+dr(B,C). By Theorem 7.2.4, it suffices to construct a pair
of crossing free integer sequences (u,v) such that [la; — c,)|| < dr(4, B) + dr(B,C) for all
i €[0: a] and [Jay) — ¢jl| < dr(4, B) +dp(B,C) for all j € [1:9].

The proof proceeds in three steps:

(1) Partition both intervals [0 : ] and [0 : ] into # many (possibly empty) intervals, so
that

0:a] = Ugogloe: at41) and

0:9] = Uzl : ve+1)- (7.6)

(2) construct » and v blockwise between the intervals [ay : ay41) and [y : y441) using the
partitionings from Step (1).

(3) Show that [|p; — gyl < dr(4, B) +dr(B,C) and ||py;) — ¢;ll < dr(4, B) +dr(B,C).
Step (1): By definition of dr, there is a pair (u,v) € Mon,, g such that
laysy = bugoll < dr(A,B) forallse€[0:a+pf] (7.7)
We use this pair (u,r) to construct the integers oy (¢t € [0 : 5]) as follows:
ap:=min{r € [0:a]|[Is€[0: a+F]: u(s) =rAv(s) =t} (7.8)
Note that oy = min p[v![t]]. Furthermore, we define g1 := o + 1.
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The construction of the integers 4 (¢ € [0 : §]) works analogously. By definition of dp, there
is a pair (x,\) € Mong , such that

||bn(s) — C)\(S)H <dp(B,C) forallse[0:8+7]. (7.9)
We use this pair (k,\) for constructing the integers ; (¢t € [0 : 3]) as follows:
Ye:=min{r € [0: 7] | Is € [0: B+ 7]: A(s) =7 A K(s) =t} (7.10)

Furthermore, we define yg, 1=y + L.

Due to the monontonicity of ;4 and v, the sequence <O‘t>te[0: B41] is weakly increasing. Analo-
gously, <7t>te[0:7 4] 18 weakly increasing due to the monotonicity of x and .

Defining A; := [y : ay41) and Cy := [y : Yi41), the unions from Eq. (7.6) can be written as
[0:«a] =UA and [0 : 4] = UyCy. (Note that Ay is empty if oy = ay41 and By is empty if
¥ = Yi+1). However, by construction, Ag # 0 # Cs. As a consequence, each i € [0 : a] is
contained in one uniquely defined A;, and each j € [0 : ] is contained in one uniquely defined
Ct-

Step (2): We are now prepared to construct u and v. For each ¢ € [0 : 3], we assign

u(i) = vy forie A

v(j) = max{ay,ap — 1} for j € B. (7.11)

Taking the maximum of oy and 11 — 1 instead of simply defining v(j) := ay+1 —1 is required
for the case oy = ayy1. See Figure 7.3 for an illustration of this construction. Obviously, each
block constructed this way is crossing free.

oy i v(i)=o, -1 %102 CGyi3 oy i v(i)=o -1 %1702 CGye3

) " aee .
Y, =u(i) J Yerr-1 Yee1 Ye2=V143 Y, =u(i) J Yerr-1 Yerr Ye2=Ye43

Figure 7.3: Blockwise construction of u(i) and v(j) for i € Ay = oy, 441) and j € By =
[Ves Ve+1)- In the left figure, an undirected edge (i,t) corresponds to a pair (u(s),v(s)) as
well as an undirected edge (¢, ) corresponds to a pair (k(s),A(s)). The figure on the right
shows the corresponding pairs (4, k(7)) and (£(j),7) constructed in the proof of Theorem 7.3.1
indicated by directed edges.

Due to Eq. (7.6), we have now defined u(i) for all i € [0 : «] as well as v(j) for all j € [0 : S].

Step (3): In order to prove (3), recall that for each i € [0 : «], there is a uniquely defined
t € [0 : (] such that 1 € A;. Just as well, for each j € [0 : 7], there is a uniquely defined ¢
such that j € B;. Note that [cy : ayy1) C p[v '[t]]. Thus for each i € [ay : ayyq) there is
an s € v~ ![t] such that u(s) =i. On the other hand v(s) = . Hence (i,t) = (u(s),v(s)) for
some s €v 1(t) C[0:a+ 3]

Since (by construction) (¢,7y;) = (k(s’), A(s')) for some s’, we can use Egs. (7.7) and (7.9) as
well as the triangle inequality for the Euclidean distance, which proves the first part of (3).
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P 25

O

Py =n

Figure 7.4: Example of a d-sampled version P’ of a polygonal curve P.

Analogously, for each j € [y,v:41), there is an s € [0 : 8+ «] such that (¢,7) = (k(s), A(s)).
Together with (ay,t) = (u(s'),v(s")) for some s', this proves (3) using Eq. (7.9) and the
triangle inequality for the Euclidean distance. O

7.4 Bounding the Discrete Fréchet Distance by the Fréchet
Distance

We now show that one can approximate the Fréchet distance arbitrarily well by the discrete
Fréchet distance by oversampling polygonal curves. We say that P = (pg, ..., pm) is 6-sampled
iff

Vit [|pi-1 — pill < 20.

For arbitrary > 0, we can construct a d-sampled version P’ of P by inserting extra points, as
shown in Figure 7.4. Obviously, if P’ is an oversampled version of P, we have dp(P’, P) = 0.

Using the notion of samplings and oversamplings, we can state an immediate relation between
the continuous and the discrete Fréchet distance:

Theorem 7.4.1 Let P = (pg,...,pm), Q@ = {qo, - - -, qn) be d-sampled polygonal curves. Then,

Note that by oversampling P and @, we can bring dr arbitrarily close to dr. The bounds
stated are tight, as the following examples for V = R? show: For P = @, we have dr(P, Q) =
dr(P, Q) = 0, so that the first bound is tight. For the second bound, set P := ((0,0), (0, 1)
and @ := {((0,0), (0,1),(0,0),(0,1)). Both P and Q are i-sampled, and we have dp (P, Q) =
as well as dp (P, Q) = 1, so that dr(P, Q) = dr(P,Q) + 5. See figure 7.5 for an interpretatio
of Theorem 7.4.1 in terms of the discrete and continuous free space of the two curves.

We prepare for the proof of Theorem 7.4.1. The proof demonstrated in the following is based
on the results on crossing free mappings, mainly on Lemma 7.2.6. Another way of proving
this bound is presented in [53].

)
1
2
n

Lemma 7.4.2 Let P € VI and Q € V1% be polygonal curves, P §-sampled, and let
dp(P,Q) < €. Then for every vertez q; of Q there is a vertex py of P with ||py — ¢;|| < e+9.

Proof. As dp(P,Q) < ¢, there is some real p € [0, m] satisfying ||P(p) — g;|| <e. Now P is
d-sampled. Thus for a suitable k € {|u], [1]} we get ||pr — P(p)|| < 4. Hence ||pr — g;|] <
lpk — P(p)|| + ||1P(1) — gj]| < e+ 4. See also Figure 7.6 for an illustration. 0
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Figure 7.5: Interpretation of Theorem 7.4.1 in terms of free space diagrams: The lower part of
the figure shows the free spaces F.(P, Q) and F.5(P, Q) for the two d-sampled curves P and
@ shown above. Recall that for the discrete free spaces, we have F.(P,Q) = F.(P,Q) N[l :
m] x [1 : n] and and F.y5 N[l : m] x [1 : n]. As indicated by the dashed curve, there is a
curve that is monotonic in both coordinates through F. (P, Q) starting in (0,0) and ending
in (m,n), in other words, we have dp(P,Q) < e. According to Theorem 7.4.1, we have
dr(P,Q) < e+ 6. In terms of the free space, this can be seen from the fact that there is a
monotonic path through F. (P, @), as indicated by the dotted curve. Note that one cannot
find a montonic path through F.(P,Q), i.e., dp(P, Q) > ¢.
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Q g v

Figure 7.6: Sketch for the proof of Lemma 7.4.2

This latter result allows us to construct an integer sequence k = (k(0),...,k(n)) so that
every ¢; is contained in the (¢ + §) neighborhood of py ;). Now, in the context of the Fréchet-
distance, the order of points on curves is very important. Thus, it is our next concern to show
that we can guarantee the integer sequence k to be weakly increasing.

The following monotonicity properties are closely related to the fact that for every a €
Mon([0, 1],[0,m]) both mappings I +— «[I] and J ~ o ![J], where I and J are closed
subintervals of [0, 1] and [0, m], respectively, are order-preserving morphisms when partially
ordering compact intervals by I C I' : <= max [ < min[’.

Another order-preserving map is the rounding operator, which assigns the nearest integer to
every u € R:

m ::{ L] i 0<p—|u] <%
[p] 0 <[pu]—p<s3
Observe that for a d-sampled curve,
[ P(1) = pyall <0 (7.12)

Remark 7.4.3 Ifi € Z and p € R then
(1) i < |p] =i<p and
(2) |p] <i=p<i.

Lemma 7.4.4 Let P,Q be two d-sampled polygonal curves with dp(P,Q) < e. Then there
are weakly increasing integer sequences

k= (k(1),.
0= (0Q),..

.., k(n) =m) and
., 4(m) = n)

such that for all i € [1 : m] and all j € [1 : n] the following holds:
IPey —aill <e+d  and |lpi — quyll < e+

Proof. Obviously, we have ||pg — qo|| < e. As dr(P, Q) < ¢, there are @ € Mon([0, 1],[0,m])
and 8 € Mon([0,1],]0,n]) with ||P(a(t)) — Q(B(t))|| < e for t € [0,1]. This implies for
arbitrary s € [0,n] and t € 871[s] that |P(a(t)) — Q(s)|| < e.

Now define

pj = maxa[B~'[j]] € [0,m] and  k(j) := |u;] (7.13)
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for j € [1: n]. Note that k(n) = m. We claim that ||py;)—g;|| < e+d forallj € [1: n]. We get,
by Eq. (7.12), [|pkj) — P(u;) || < 6; furthermore, the definition of y; yields ||P(u;) — gjl| < e.
By the triangle equality our claim follows.

As both o and 87! induce order-preserving morphisms we know that o[3~'[j]] C o[3~[j+1]];
in particular, p1; < pj41. This implies the monotonicity of the sequence (k(1),...,k(n)), since
|.] also is an order-preserving map.

Exchanging the roles of P and @), the proof for the existence of a weakly increasing integer

sequence (£(1),...,£4(m)) is exactly the same; in place of u;, we put
vi:=max fBla [i]] €[0:n] and £(i):= |v]. (7.14)
O
Note that
j€Bla )] and i€l (7.15)

The two weakly increasing sequences k£ and ¢ will help to closer relate the curves P and Q.
However, we have to solve two problems. First of all, £ and £ typically have different lengths.
Secondly, both sequences may have gaps, i.e., k(j) — k(5 —1) > 1 and £(7) — £(i — 1) > 1 for
some j,4. Instead of k£ and ¢ we will work with the sequences

k= (l(1),...,4(n)) MN(0,...,m) (7.16)
A:=(0,...,n) M (k(1),...,k(m)), (7.17)

Remark 7.4.5 From the facts that the integer sequences k € Mon([0 : m + n], [0 : m]) and

A € Mon([0 : m + n],[0 : n]) are surjective and weakly increasing, we may conclude that
k(s+1) —k(s) € {0,1} and A(s+1) — A(s) € {0,1} for all s € [0:n+m —1].

As for the proof of Theorem 7.3.1, the fact that & and £ are crossing free helps to prove
Theorem 7.4.1.

Lemma 7.4.6 Let P and Q be §-sampled polygonal curves satisfying dp(P,Q) < e. Using
the notation introduced in Equations (7.13) to (7.14), the sequences k and £ are crossing free.

Proof. In order to prove that k& and £ satisfy condition (i) of Definition 7.2.2, let ¢ < k(j).
Then the above remarks and the minimality of k(j) imply that pu; > i. As o and g are
weakly increasing, we get (using (7.15)) v; = maxfla '[i]] < minBla )] < j. If v; is
an integer, £(i) = v; < j, and we are done. Otherwise, v; < j. But then, by Remark 7.4.3,
£(1) = |v;] < j. Altogether, this proves (i).

The proof that k£ and ¢ satisfy condition (77) of Definition 7.2.2 is very similar: Let k(j) < 1.
Then p; < i and hence, by (7.15), j € Bla![u;] E Blor '[i]] 3 v, thus j < v If 14 is an
integer, then j < v; = £(i), otherwise j < |v;| < £(i), which proves (ii). O

Proof of Theorem 7.4.1. We start with the proof of the right hand inequality. Let
¢ := dp(P,Q). Thus, by Definition 7.1.1, there are reparametrizations « and [ such that
|IP(a(t)) — Q(B(t))]| < e for all t € [0,1]. These reparametrizations allow us to construct
integer sequences k and ¢ for P and () according to Lemma 7.4.4 so that we can define x and
A as in Egs. (7.16) and (7.17).
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From the fact that £ and £ are crossing free and by Lemma 7.2.6, we know that every pair
(k(s), A(s)) equals (k(j), ) or (i,£(7)) for some j or 7. According to Lemma 7.4.4, we know
that the inequalities ||p; — o)l < €+ 0 and ||p;) — g5/l < €+ 0 hold for 7 € [0 : m] and
j € [0 : n], which proves dp(P,Q) < ¢ + ¢. Altogether, we have shown that dp(P,Q) = ¢
implies dp(P, Q) < e+ 4.

For the proof of the left hand inequality, let (x,A) € Mon,,, be optimal in the sense that
dr(P,Q) = [[P ok — Qo M. By affine interpolation, one obtains (a, 3) € Mony,, with
a(—=) = k; and B(==) = A;. Then,

m-+n m-+n

dr(P,Q) = min max [[P(a/(t) — Q(B'())]

o/ ,B" te[0,1]

< fnax [1P(a(t)) — Q(BE)

= max [|P(k(s)) — Q(A(s))l| = dr (P, Q),
s€[1:m—+n)]

where the last but one equality follows from the fact that for line segments L = (Lg, L1) and
L' = (Ly, L), dp(L, L") = max{|| Lo — Lgl|,|[L1 — L ||}. This proves the left hand inequality.
[l

7.5 Matching with Respect to the (discrete) Fréchet Distance

The discrete version of the Fréchet distance is defined by an assignment between the vertices
of two polygonal curves. As one can easily see, the discrete Fréchet distance is a relational
distance measure. Hence, we can apply the tools developed in Chapter 5. Alt, Knauer
and Wenk [9] use the fact that the starting point of a polygonal curve is a (R¥, T'(k), dr, 2)-
reference point, yielding a trivial matching algorithm with respect to dr under translations in
the plane as follows: Given P € V%™l and Q € V1%l define ¢ := py — gy and decide whether
dp(P,tQ) < e. This can be put in even more general terms:

Lemma 7.5.1 Let V =R* and P = (pg,...,pm) € vIml  Then, the mapping
r: P+ Po
is a (V, AGL(k),dp, 2)-reference point.

The proof is trivial and hence omitted. This result finally allows us to state the time bounds
shown in Table 7.1.

Theorem 7.4.1 allows us to set up a relation between G(P, Q, ¢, dy )-matches and G(P, Q, ¢, dp)-
matches, as stated in Corollary 7.5.2. Hence, the time bounds stated in Table 7.1 can also be
seen as time bounds for approximately matching with respect to dr. The quality of approxi-
mation, however, depends on the sampling rate and hence on the Euclidean length of the two
curves.

Corollary 7.5.2 Let P and Q be d-sampled polygonal curves in V.= RF. Then, for all
transformation groups G < AGL(k) and € > 0,

G(P,Q,E,dp) - G(PaQa6+57dF) gG(P7Q76+57dF)
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Transformation group | time ¢ | Algorithm
T(k) O(mn) 21535
SO(2),SC(2) O((mn)?) | 1| 5.2.4
SE(2),HT(2) O((mn)*) | 2| 5.3.5
SM(2) O((mn)®) | 2| 5.3.5
SE(3) O((mn)%) | 2 | 5.3.5

Table 7.1: Time complexities for c-approximate solutions for deciding the emptiness of
G(P,Q,¢,dr), where P € V%" and Q e vI0m],

Proof. Let g € G(P,Q,e,dr). Then, dp (P, gQ) < e. Thus, by Theorem 7.4.1, dp(P,gQ) <
e+4d,ie, g€ GPQ,e+6,dp).

The second inclusion follows from dr < dp. O
Put in simple terms, this result states that matching with respect to the discrete Fréchet
distance yields an approximate solution for the problem of matching with respect to the
continuous Fréchet distance; the quality of approximation can be improved arbitrarily by
oversampling the curves to be matched. Thus, we focus on algorithms for matching with
respect to the discrete version.

7.5.1 Using Ordered Cell Enumeration

In Chapter 5, it has been shown that one can obtain faster algorithms for matching with
respect to the Hausdorff and the bottleneck distance when using ordered cell enumeration.
There is no immediate way of making use of ordered cell enumerations when matching with
respect to drp. In fact, dr seems to be more resistant against setting up a dynamic data
structure (in the sense of Definition 5.2.5) than the Hausdorff and the bottleneck distance.
However, we can at least improve practical running times by using the undirected Hausdorff
distance as a lower bound for the discrete Fréchet distance. As can be seen easily, we have

We can state this bound equivalently as an implication
dH(P, Q) >e dF(P, Q) > €. (718)

Now, we apply an ordered cell enumeration to solve the decision problem whether the set
of matches G(P,Q,e,dr) is non-empty as follows: during an ordered cell enumeration, we
use a dynamic data structure S for dy. Whenever we encounter a cell representative g
such that dy (P, gQ) > &, we do not need to compute dp(P, Q) due to Eq. 7.18 — we only
compute dp(P, gQ) if dg(P,gQ) < e. Although this does not lead to asymptotically faster
algorithms, the algorithm runs significantly faster in practice. For experimental results, we
refer to Chapter 8.

7.5.2 Matching with Respect to dvw

In Section 5.6, an algorithm for matching with respect to the mean-value Hausdorff distance
and the mean-square Hausdorff distance have been introduced. The distance measures Dy
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and D% evolve from the directed Hausdorff distance by exchanging the “inner” norm from an
foo-norm to an £1- or £9-norm, respectively. We have the same situation in case of the discrete
Fréchet distance and the dynamic time warping distance — the inner norm is changed from
an {o-norm to an o-norm. In fact, this allows us to carry the ideas underlying the algorithms
from Section 5.6 to design an algorithm that solves the problem of matching with respect to
dw.

To be more presise, the algorithm works as follows: Instead of considering the family of all
(G, e)-transporters from some g; to some p;, we consider the family of all (G, £e?)-transporters
from g; to p;, for alli € [0:m], € [0:n] and £ € [1 : m + n].

Hence, we need to deal with the arrangement defined by the family of transporters

G le?
(Tpisg; )

i€[0:m];j€[0:n];€[1:m+n]’ (719)
which is not defined by mn many transporter sets (as for matching with respect to dg), but
by mn(m + n) many. The matching algorithm then proceeds in the same way as Algorithm
5.2.4 — for each representative g from the suptransversal of the arrangement, we compute
dw (P, gQ). If for some representative g, dw (P, gQ) < €, g is returned as an output. If for
all representatives g, dw (P, gQ) > ¢, false is returned as an output. Proving that the output
of the algorithm is

g€ G(PﬂQa267dW) if G(PaQaEadW) 74 @,
false if G(P,Q,2¢e,dw) =0, (7.20)
false or g € G(P,Q,e,dw) otherwise.

works in the same way as the proof of the analogous statement for Dy from Section 5.6. It
should be noted that there is no obvious way to apply the technique of transporter projection
for matching with respect to dw. Hence, the algorithm described in this section can be
considered practical only under the groups SC(2) and SO(2).

7.6 Matching Subcurves

We now turn to the partial Fréchet distance &F for measuring the resemblance of Q) € y[0:m]
as a subcurve of P € V[97 and the discrete Fréchet distance for closed polygonal curves, dp.
As for the discrete Fréchet distance, we first show how to compute &F as well as df,, and then
propose algorithms for matching with respect to these distance measures.

To determine whether Q € V1" is a subcurve of P € V0™l we define the partial Fréchet
distance as

dF(Pa Q) = [a:br}rél[g:m} dF(P|[a:b]a Q)

In order to adapt the discrete Fréchet distance to closed curves, we view P as cyclically
continued, i.e., for ¢ > m we let P(i) := P(imod(m + 1)). In analogy to the continuous
Fréchet distance for closed curves in [6], we define

dlo?(Pa Q) = min dF(P|[a:a+m],aQ)'

a€[0:m]

We now propose algorithms for deciding aF(P, Q) < e and d3(P, Q) < e. In terms of the
discrete free space F.(P,Q), we need to determine whether there is a monotonic path from
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(a,0) to (b,n) for some [a : b] C [0 : m] (in case of dg) or whether there is a monotonic
path from (a,0) to (a + m,n) for some a (in case of dy). This idea is crucial for the decision
algorithms we propose.

Theorem 7.6.1 Let P € VI Q e VIO gnd ¢ > 0. Then, &F(P, Q) < € as well as
dp (P, Q) < € can be decided in O(mn) time.

Proof. We start with a decision algorithm for aF(P, Q) < e. Consider the following algo-
rithm: for 4 € [0 : 2m] and j € [0 : n], define r; ; := max{a € [0 : 4] | dr(P|[q.], Qljo:]) < €}
(and r;; := —oo if no such a exists). Using dynamic programming as in the algorithm
from Section 7.1 for computing dp, we can compute in O(mn) time the values r;, for each
i €[0: 2m]. We have dp(P, Q) < ¢ if and only if Tin > —00, for some i € [0 : 2m)].

Deciding d} (P, Q) < € works similar as deciding &F(P, Q) < ¢g; in addition to r; ;, we compute
R;j := max{b € [i : 2m] | dp(P|};.4], Ql[jmm]) < €} for all i € [0: 2m] and j € [0 : n], which can
also be done in O(mn) time using dynamic programming as follows: We start with computing
Ry, n. Then, the algorithm continues as the algorithm for computing dr(P, Q), except for the
for-loops: these run from m down to 0 rather than running from 0 to m and, analogously,
from n down to 0 rather than from 0 to n.

We claim that dp (P, Q) < € if and only if for some i, 71y pn > @ and R;o > i+ m. The
necessity of this condition follows immediately from the definitions of dy (P, @), r;; and R; ;.
For the proof that the condition is sufficient, we follow the construction shown in Figure 7.7:
By definition of dp,, it suffices to regard the free space restricted to [0 : 2m] x [0 : n] instead
of the complete free space in Z x Z. We have two paths contained in F (P, @), one from
(i +¢,0) to (i + m,n) for some ¢ > 0 (since 74y, n > @) and one from (i,0) to (i +m +e,n)
for some e > 0 (since R; o > i +m). As demonstrated in Figure 7.7, these two paths intersect
in some point (7',5’). Hence we can construct a path from (7,0) via (7',5") to (i +m,n) that
is completely contained in F. (P, Q)), which proves the claim. O
The stated upper bounds of O(mn) for deciding dp(P,Q) < € and dp (P, Q) < ¢ are slightly
smaller than the upper bounds of O(mn log(mn)) from [6] for deciding whether the continuous
Fréchet distance for closed curves or partial correspondences is at most ¢.

O

@) =42 i+m=5 (i"j")=(42) i+m=5 R,=6
: (6.3) 5—0(63)

NN

=3 i=2

i+m,n

Figure 7.7: Deciding d}.(P, Q) < € can be done using rj,, and R; for ¢ € [0 : m]. In the
given example, we have m = n = 3 and 7y, > @ (left) as well as R; o > i + m (right) for
1= 2.

Next, we consider matching with respect to dp and d}. For matching under the groups SO(2)
and SC(2), we can use the idea of enumerating (P, Q, G, ¢)-cells as in the first section. Since
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both G(P,Q, ¢, &F) and G(P, Q,,d}) are unions of (P, Q, G, ¢)-cells, we can apply Algorithm
5.2.4. Instead of testing dp (P, gQ) < e for each cell, we test dp (P, 9Q) < ¢ or dp(P,gQ) <,
respectively. Hence, we obtain exactly the same time bounds as for matching with respect to
dr.

We now apply the technique of projecting transporters for matching approximately with
respect to dp and dp. Let G =T(k) x H, H < GL(k), be a transformation group. Our goal
is to decide approximately whether G(P, Q,e,d) # 0, where d € {&F, dp}. To this end, note
that both &F and dp are right-complete distance measures. Hence, we can apply Algorithm
5.4.2 in order to obtain the time bounds summarized in Table 7.2 for solving the matching
tasks approximately.

G Time ¢ | Algorithm
T (k) O(n) 2| 5.4.2
SO(2),SC(2) | O(m?n?) | 1] 5.2.4
SE(2),HT(2) | O(m?n?) | 2 | 5.4.2
SM(2) O(m'n%) | 2 | 5.4.2
SE(3) O(m°nb) | 2 | 5.4.2

Table 7.2: Time bounds for c-approximate solutions using Algorithm 5.4.2 for the problem of
matching with respect to dp and dp, .

Finally, we propose a method for finding common subcurves of P and ). We restrict our
considerations to curves that are not cyclically continued and define

LCSC(P,Q,¢) :==max{be[0:m]|Ja,c,de N: a+b<m,c+d<n,
dF(P|[a:a+b]aQ|[c:c+d]) < 5}

as the length of the longest common subcurve of P and (). Stated as a matching problem, we
want to find LCSC(P, @, G,¢) := maxgseq LOSC(P, ¢Q,e). LCSC(P,Q,€) can be computed
in O(mn) time: we define L; ; := max{b € [0 : m] | 3¢ € N: dp(P|}_pq), Ql[c:5)) < €} if such b
exists and L; ; := —oo otherwise. Using dynamic programming, we can compute L; ; for all
(4,7) € [0:m] x [0: n] in O(mn) time. Determining the maximum L; ; yields LCSC(P, Q,¢).
The longest common subcurve is nothing but a special case of a largest common point set with
respect to a relational distance function. LCSC(P,Q,¢) defines a suitable weight function
W (that can be computed in O(mn) time) such that computing LCP (P, Q, Wy, G, ¢) using
Algorithm 5.5.2 yields LCSC(P, @, G,¢) under any linear algebraic group G.

For G = SC(2) and G = SO(2), we obtain a running time of O(m?n?). For finding longest
common subcurves under the groups SE(2) or HT(2), the total time complexity obtained is
O(m3n?).
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Chapter 8

Implementations and Practical
Results

An important aspect of any algorithm is how difficult it is to implement, and whether theo-
retical improvements carry on to lower running times in practice. This aspect is particularly
important for all algorithms described in this thesis that rely on cell enumeration methods.
For this type of algorithm, one needs to be very diligent in order to obtain implementable
algorithms at all: it was argued in Chapter 2 that the theoretical running times one obtains
cannot be achieved in practice if the cell enumeration involves polynomials in more than
one variable. Recall that an implementation of the results stated in Theorem 2.3.6 can be
considered as an open research problem. All implementations presented in this chapter use
cell enumeration for univariate polynomials only; algorithms requiring higher dimensional
cell enumeration have not been implemented at all. However, if the cell enumeration involves
univariate polynomials of low degree only, the algorithms are easy to implement. In particu-
lar, this is the case for the group of rigid motions if one applies the technique of eliminating
translation components — the cell enumeration then needs to be performed for arrangements
of circular arcs only. Within the scope of this thesis, some of the algorithms described in
Chapters 2—-7 have been implemented. In order to give the reader an impression as to what
extent these algorithms are applicable, this chapter provides some experimental results of
these implementations.

Throughout this chapter, let G := SE(2) denote the group of rigid motions in the plane. The
following algorithms have been implemented for matching under the group of rigid motions:

(1) STANDARD-MATCH: An approximate algorithm for matching with respect to the
discrete Fréchet distance based on Algorithm 5.3.5 (using a curves’ starting point as a
reference point) in combination with Algorithm 5.2.4. The asymptotical running time
of this algorithm is O(m?n?).

(2) BOUNDED-MATCH: An improved version of the approximate algorithm for matching
with respect to the discrete Fréchet distance based on Algorithm 5.3.5 and 5.2.6 and the
Hausdorff distance as a lower bound, as described in Section 7.5.1. The asymptotical
running time of this algorithm is O(m?n?) as well.

(3) PARTIAL-MATCH: An approximate algorithm for matching with respect to the partial
discrete Fréchet distance based on Algorithms 5.2.6 and 5.4.2. The implementation uses
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the directed Hausdorff distance as a lower bound, as described in Section 7.5.1; the
asymptotical running time is O(m?®n?).

(4) HAUSDORFF-MATCH: An approximate algorithm for matching with respect to the
directed Hausdorff distance, based on Algorithms 5.2.6 and 5.4.2; the running time is
O(m?nlog(mn)).

In the remaining part of this chapter, we examine different aspects concerning running times
and quality of approximation of these implementations. In case of HAUSDORFF-MATCH, we
compare the results with an implementation of the GRID-method from [33]. The asymptotical
running time of GRID is O(m?®/*n®*\/A), where A denotes the diameter of Q.

The goal of all experiments is to determine in what respects the running times of the algo-
rithms developed in the previous chapters can be considered practical. There is no intention
to determine whether the (discrete) Fréchet distance is a reasonable measure of similarity
for real world shape matching applications. In particular, the quality of the results was not
compared to any other state-of-the-art methods in shape matching. The results presented
here can be viewed as a first step towards using the Fréchet distance as a distance measure
for shape matching in real world applications.

8.1 Results for Matching under Fréchet Distance

8.1.1 Data Sets

A popular data set for testing shape matching algorithms is the Squid data set that was com-
piled by Mokhtarian, Abbassi and Kittler [51]. This data set contains 1100 boundary shapes
of different maritime animals, stored as polygonal curves. For our needs, some preprocessing
steps needed to be performed on this data set:

(1) Each polygonal curve of the squid data set contains 400 to 1000 points. This number
of points turned out to be too large to obtain reasonable running times. However,
all shapes in the Squid data set are significantly oversampled (see Figure 8.1 (top)).
Suitable data were obtained by downsampling the curves in two different ways. First,
the polygonal curves were downsampled by taking only every 5th (or every 20th) vertex,
yielding 2200 very regular polygonal curves (see Figure 8.1 (middle)) with two different
sampling rates.

In order to obtain realistic polygonal curves as query curves, a second way of downsam-
pling was performed. In this second downsampling process, randomized downsampling
was performed: Each vertex of a polygonal curve was removed with a probability of
4/5 (or 19/20), yielding 2200 unregularly sampled polygonal curves. In addition, some
noise was added to each point (see Figure 8.1 (bottom)).

We always used a pair of one regularly downsampled curve P and one randomly down-

sampled curve @ (with equal sampling rate) for computing G(P, Q, €, dr)-matches.

(2) In order to obtain polygonal curves of different lengths, the curves obtained in Step (1)
were cut off after 20, 30, 40, ..., 190 vertices. These truncated curves were used for
testing STANDARD-MATCH and BOUNDED-MATCH.
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(3) From each randomly downsampled curve of length m (m = 20,30,40,...,190) a sub-
curve of length m/2 was generated as a query curve for PARTIAL-MATCH. This query
subcurve was obtained by cutting off approximately m /4 vertices at both ends of each
curve.

(4) The boundary shapes from the Squid data set should usually be considered as closed
curves. For our purposes, however, we neglected this and used them as test data for
curves with a fixed starting point which are not closed. The algorithm for matching with
respect to the discrete Fréchet distance for closed curves was not implemented because
in practice, it turns out that PARTTAL-MATCH can be used for matching two closed
curves P and @ as well if one considers two cycles of P as one non-closed polygonal
curve.

From these data, a number of test instances (i.e., pairs of curves P and @ to be matched) were
selected randomly. All plots of running times presented in the following result from average
running times in the sense that each point in a plot was acquired as an average running time
from at least 9 different instances, each of which was repeated several times. The instances
were chosen so that only few instances (at most every third instance) yields a non-empty set of
matches. This was done because finding out that no matches exist usually takes longer than
finding out that matches do exist, so that data sets with too many pairs of curves matching
each other could produce unrealistically small running times.

=0 B
=y T Y

Figure 8.1: Preprocessing of the Squid data set. The original Squid curve is shown in the
top. The two curves in the middle are regularly downsampled versions, while the two curves
on the bottom represent randomly downsampled curves with noise added to the points.

Remark 8.1.1 All experiments presented here were conducted on a 1GHz-Pentium III pro-
cessor with 512 MByte memory and running the Windows 2000 operating system.
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8.1.2 Running Times in Practice

STANDARD-MATCH wversus BOUNDED-MATCH. We start with experimental results for
the implementations of STANDARD-MATCH and BOUNDED-MATCH. As was pointed out
in Section 7.5.1, it is a difficult problem to determine whether using the Hausdorff distance as
a lower bound for the discrete Fréchet distance yields asymptotically smaller time bounds. At
least in practice, the lower bound yields significantly smaller running times, as demonstrated
in the comparison of the implementations of STANDARD-MATCH and BOUNDED-MATCH
in Figures 8.2 and 8.3. We now discuss these results in some more detail.

8000

$TANDARD-MATCH —+— ' - : : :
BOUNDED-MATCH %

7000

6000 -

5000 |

4000 |

time in msec

3000 |

2000

1000 -
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number of points

Figure 8.2: Running times of STANDARD-MATCH versus running times of BOUNDED-
MATCH. For a fixed fault tolerance ¢, the emptiness of G(P,Q,¢e,dr) was decided, with
|P| = |@| ranging from 20 to 190 in steps of 10.

In Figure 8.2, note that BOUNDED-MATCH is always 7 to 14 times faster than STANDARD-
MATCH. For matching two curves consisting of 190 points each, the running time of BOUNDED-
MATCH is below 600 msec. Some explanation is needed for the decrease in running times
occuring between instances of lengths 90 and 100 as well as between instances of lengths
140 and 150. This phenomenon turns out to be due to an implementation detail of the
distance computation in STANDARD-MATCH. Recall that the running time of algorithm
STANDARD-MATCH depends on the number of distance computations to be performed as
well as the time needed for one single distance computation. The number of distance com-
putations turns out to be strictly increasing with the lengths of the polygonal curves to be
matched. What leads to this rather surprising decrease in running times is the time needed
for single distance computations: since STANDARD-MATCH only solves a decision problem,
we only need to decide whether the Fréchet distance is at most € instead of actually comput-
ing dr. To this end, the dynamic propramming Algorithm 7.1.2 can be terminated early if
during one cycle of the inner for-loop, we have d; ; > ¢ for all j. This small improvement of
the algorithm has a dramatic influence on some instances of a matching problem. In terms of
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average running times, this increases the variance of the running times, and, in some cases,
even leads to such decrease of running times in spite of increasing curve lengths — and in spite
of the fact that each point of the plot is an average running time of 25 different instances. The
asymptotical running time, however, is not affected by this phenomenon and clearly shows
a superlinear increase in running times. It should be mentioned that the early-termination
improvement was observed to yield an average improvement of running times by a factor of
about 10. Without this improvement, STANDARD-MATCH could have been tested on much
smaller instances only.

140000

$TANDARD-MATCH —+—
BOUNDED-MATCH %

120000 [

100000 [

80000

time in msec

60000 |

40000 [

20000 |

20 40 60 80 100 120 140 160 180 200
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Figure 8.3: Running times of STANDARD-MATCH versus running times of BOUNDED-
MATCH. For a fixed fault tolerance € and sampling rate §, a 2-approximate solution to the
emptiness of G(P',Q’', e + d,dr) was computed, with P' and Q" denoting §-sampled versions
of P and @), respectively. Note that we have ¢ = §. By Corollary 7.5.2, this yields a 4-
approximate solution for deciding the emptiness of G(P, Q, ¢,dr).

Although BOUNDED-MATCH also uses the early-termination improvement for computing
dp, the effect does not carry noticeably into the running times measured. This is due to the
fact that the overall amount of time spent on distance computation is much smaller. Recall
that BOUNDED-MATCH uses an ordered cell enumeration. Hence, a significant amount of
time is spent on sorting the O(mn) transporters’ borders and on the dynamic data structure
which keeps track of the Hausdorff distance during ordered cell enumeration.

We now get to the discussion of Figure 8.3. This plot shows running times of almost the
same test data as Figure 8.2; the only difference is that that the curves were d-sampled for
0 = ¢, where the fault tolerance ¢ was fixed over all instances. Looking at the inclusions
from Corollary 7.5.2, this yields a 4-approximate solution to the decision problem whether
G(P,Q,¢e,dp) = 0.

Testing the Quality of Approximation. Using the inclusions from Corollary 7.5.2, we have
seen that any algorithm for matching with respect to the discrete Fréchet distance yields
an approximate solution for matching with respect to the continuous Fréchet distance. Fur-
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thermore, the approximation factor can be made arbitrarily small by oversampling the two
polygonal curves to be matched. Hence, an issue that needs to be considered carefully for
the implementations of STANDARD-MATCH and BOUNDED-MATCH is to examine what
approximation factors can be achieved within acceptable running times.

We now set d := ¢ as our sampling rate, and consider two polygonal curves P and @ as
well as their d-sampled versions P’ and @Q'. By Corollary 7.5.2, deciding the emptiness of
G(P', Q' e+ 0,dp) yields a 2-approximate solution for the problem of deciding the emptiness
of G(P,Q,¢e,dy). This means that for a smaller fault tolerance e, the curves P and @) need
to be oversampled more densely in order to obtain a 2-approximate solution for matching
with respect to dp. As a consequence, the number of points which need to be inserted into P
and () to obtain oversampled versions depends linearly on the Euclidean length of P and Q)
(which in turn depends exponentially on the number of vertices in P and @)). Hence, the time
for computing 2-approximate solutions depends exponentially on the reciprocal of the fault
tolerance €. This is a somewhat more differentiated statement than saying that the running
time depends exponentially on the reciprocal of the quality of approximation. In fact, this
observation gives a good explanation why in most experiments conducted in the context of
this thesis, 2-approximate solutions for matching with respect to dr could be found within
a reasonable amount of time, i.e., within less than 10 seconds or even within less than one
second.

This observation motivates the examination of the following experimental setup: varying
our fault tolerance € over some reasonable values (i.e., € should not exceed the diameter of
the polygonal curve as an upper bound and should not be much smaller than the minimum
distance between any two vertices as a lower bound), we fix § := e. This guarantees a
constant quality of approximation. Furthermore, we fix m = n = 50, obtaining the running
times shown in Figure 8.4. For ¢ = § approaching 0, the exponential increase in running time
can be clearly observed in this figure (keeping in mind the logarithmic scale on the running
time axis).

Looking at Figure 8.4, one also observes that the running time is not strictly decreasing with
increasing €. This phenomenon can be explained as follows: for small values of € and J,
many of the transporter sets (i.e., the circular arcs defining the arrangement the algorithm
is based on) are empty. Increasing fault tolerance means that more of these transporter
sets become non-empty. Now, recall that essentially for each non-empty transporter set the
matching algorithm performs one distance computation. Hence, more non-empty transporter
sets induce more distance computations. This phenomenon of increasing running time for
larger values for € “competes” with the phenomenon of smaller running times resulting from
fewer points in the sampled versions of the curves.

For e = § > 24, we see a steady increase in running times for increasing fault tolerance e.
This is due to the fact that P itself is already J-sampled for § = 24. Hence, the increase in
running time results from more non-empty transporter sets that have to be considered.

PARTIAL-MATCH. For the implementation of PARTIAL-MATCH, we provide some practi-
cal running times for matching polygonal curves with respect to the partial Fréchet distance
JF and, again, we examine the influence of the approximation factor on practical running
times. A special feature of the implementation of PARTTAL-MATCH is that it also detects
partial occurences of @) if P is a closed curve. This is achieved by computing G (]3, Q, ¢, éF)
rather than G(P, Q, e, &F), with P denoting the curve P concatenated with itself. Further-
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Figure 8.4: Dependance of the running time of STANDRAD-MATCH and BOUNDED-
MATCH on the fault tolerance € and the quality of approximation §, choosing € := §. The
lengths of the original (non-oversampled) curves P and @ to be matched were both set to 50
for all matches performed for this plot. Note the logarithmic scale on the running time axis.

more, PARTTAL-MATCH uses ordered cell enumeration by taking the directed Hausdorff
distance as a lower bound for &F, as proposed in Section 7.5.1.

For PARTTAL-MATCH, we evaluated the analougous experimental setup to the one shown
in Figure 8.3, i.e., we fixed ¢ = § and varied the length m of the first curve in steps of 10. The
length n of the second curve (which usually is shorter than the first curve when considering
partial matches) was set to m/2. As in all other plots displayed in this chapter, the resulting
running times shown in Figure 8.5 are average running times of several (in this case nine)
different instances with identical parameters. The results show a clearly superlinear increase
of running times with increasing m; the increase is somewhat smoother than in in Figures
8.2 and 8.3. This is due to the fact that early-termination (which caused some unsteady
behaviour in Figure 8.2) can only be applied in a very limited way when computing &F

As for STANDARD-MATCH and BOUNDED-MATCH, we also examined the influence of
simultaneously decreasing the fault tolerance e, with the sampling rate § set equal to the
fault tolerance. The results shown in Figure 8.6 demonstrate the same exponential growth of
running times with decreasing fault tolerance.

8.2 Results for Matching under Hausdorff Distance

In Chapter 5, we obtained an O(m?n log(mn))-time decision algorithm for matching point sets
with respect to the directed Hausdorff distance. This running time results from Algorithm
Right-Complete-Match (i.e., Algorithm 5.4.2) in combination with ordered cell enumeration;
from now on, we refer to this implementation as HAUSDORFF-MATCH. We compared the
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Figure 8.5: Running times of PARTIAL-MATCH. For a fixed fault tolerance € and sampling
rate §, the emptiness of G(P, Q, ¢,dr) was decided, with |P| ranging from 20 to 190 in steps
of 10, where |Q| = |P|/2.
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Figure 8.6: Dependance of the running time of PARTIAL-MATCH on the fault tolerance e
and the quality of approximation 4, choosing € := § for partially matching polygonal curves.
The lengths of the original (non-oversampled) curve P was set to 50, and the length of
the shorter query curve ) was set to 25 for all matches performed for this plot. Note the
logarithmic scale on the running time axis.
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running times of HAUSDORFF-MATCH with the implementation of the GRID-method which
is described and studied in practice in [33]. In the following, we refer to this implementation
as GRID. With the following experiments, we investigate two aspects:

e Compare the running time of HAUSDORFF-MATCH with state-of-the-art algorithms:
The asymptotical running time of HAUSDORFF-MATCH is similar to the time bounds
achieved by Goodrich et al. in [36] (which was generalized by means of candidate sets in
Chapter 6), which is O(m?nlogn). The GRID-algorithm is a significant improvement
of Goodrich’s method based on a disretization of the transformation space; for typical
values of the fault tolerance ¢ for the decision algorithm, the GRID method performed
best in the experiments conducted in [33].

e Determine potential improvements for matching partially w.r.t. the discrete Fréchet dis-
tance: The significant speed-up achieved by BOUNDED-MATCH over STANDARD-
MATCH indicates that using the undirected Hausdorff distance as a lower bound for the
Fréchet distance is a powerful way to obtain faster algorithms for matching w.r.t. the
Fréchet distance dp. The same holds true for PARTIAL-MATCH, which uses the di-
rected Hausdorff distance as a lower bound for &F

One can easily see that essentially, PARTTIAL-MATCH performs the same steps as
HAUSDORFF-MATCH — the only difference is that whenever HASUDORFF-MATCH
would return a transformation g, PARTTAL-MATCH computes aF(P, 9@). This obser-
vation suggests that faster algorithms for matching w.r.t. the directed Hausdorff distance
might yield faster algorithms for matching w.r.t. dp. In fact, the GRID-algorithm can
be viewed as a (significantly) improved version of pattern matching using candidate
sets. Hence, GRID can be modified in a similar way as HAUSDORFF-MATCH for
matching w.r.t. dr: whenever GRID has found a suitable transformation g with the
property that dp (P, gQ) < ¢, we determine whether we have aF(P, 9Q) < € as well —
if so, g is returned as a match; if not, the algorithm continues with examining further
candidate transformations.

Such modifications seem to be applicable to many algorithms that are used for matching
w.r.t. the directed Hausdorff distance. However, proving whether the aforementioned
procedure yields an approximate solution for deciding whether G(P, Q, ¢, &F) = () be-
comes very lengthy and technical — hence, we only compare the running times of
algorithms for matching under the directed Hausdorff distance in order to demonstrate
the potential of further improvements for matching under &F; the proof of correctness
is left as an open problem (cf. Chapter 9).

8.2.1 Data Sets

As our data set, we used the same data as for testing STANDARD-MATCH, BOUNDED-
MATCH and PARTTAL-MATCH and as described in Section 8.1.1.

Note that the Squid data set has some special properties: since all objects are described by
closed polygonal curves, and since most objects’ boundaries are — very roughly speaking
— ellipsoidal, it makes sense to consider the points as evenly distibuted around an ellipse.
Hence, the distribution of points is significantly different from the data used in [33] — for
these experiments, Venkatasubramanian et al. used point sets which are evenly distributed
in the Euclidean plane. Note that the results from [46] suggest that the distribution of the
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points has an important influence on running times; to the best of the author’s knowledge,
however, there are no theoretical results examining the complexity of matching w.r.t. dy for
special point set distributions.

We decided to use the same data set as for STANDARD-MATCH, BOUNDED-MATCH
and PARTTAL-MATCH because one major goal was to determine whether other methods for
matching w.r.t. the directed Hausdorff distance could improve the running times for matching
w.r.t. JF In general, whenever one considers shape matching applications involving polygonal
curves, it appears to make more sense to consider the point set (i.e., the set of vertices of the
polygonal curve) as evenly distributed around an ellipse rather than evenly distributed in the
plane.

8.2.2 Running Times

For comparing HAUSDORFF-MATCH and GRID, we performeds two test series: first, we
fixed the fault tolerance e and varied the cardinality of the point sets P and @ (Figure 8.7).
In a second test series, the cardinality of P and () was fixed, while the fault tolerance ¢ varied
(Figure 8.8). For both test series, we fixed |Q| = |P|/2.

We start with the discussion of Figure 8.7. Clearly, GRID performs much better — in fact,
the observed increase of the running time of GRID is nearly linear, while the increase of
HAUSDORFF-MATCH is rather quadratic. For m = 150 (and n = 75), GRID is approxi-
mately 100 times faster than HAUSDORFF-MATCH. In terms of finding faster algorithms
(based on the GRID-algorithm) for matching with respect to &F, this can be seen as a promis-
ing result.

Looking at Figure 8.8, we observe that HAUSDORFF-MATCH and GRID behave rather
contrarily: the running time of HAUSDORFF-MATCH grows with increasing fault tolerance
g, while the running time of GRID strictly decreases. The decrease of the running time of
GRID is due to the fact that the larger we choose the fault tolerance €, the coarser is the grid
of the transformation space that GRID uses discretized; note that working with a coarse grid
means that the number of distance computations performed is small.

In case of HAUSDORFF-MATCH, the running time increases with increasing fault tolerance
¢. This phenomen can be explained easily: the runnging time of HAUSDORFF-MATCH
mainly depends on the number of non-empty transporter sets, and as ¢ increases, more and
more transporter sets become non-empty. The running time of HAUSDORFF-MATCH, how-
ever, is not strictly increasing. For example, the running time for ¢ = 20 is smaller than the
running time for ¢ = 18. This suggests that the variance of the number of non-empty trans-
porter sets (and hence the variance of the running times measured in Figure 8.8) is rather
large. In spite of such locally decreasing running times, the overall increasing tendency can
be clearly seen in Figure 8.7.
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Figure 8.7: Test series for fized fault tolerance € and varying cardinality of the point sets P
and Q). With m and n increasing, the running times of both, HAUSDORFF-MATCH and
GRID, increase as well. The running time of GRID increases very slowly and almost linearly,
while the running time of HAUSDORFF-MATCH increases much faster.
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Figure 8.8: Test series for fixed cardinality of the point sets P and Q and varying fault
tolerance €.
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Chapter 9

Summary and Conclusion

9.1 Summary

In this thesis, methods for matching geometric shapes and patterns with respect to numerous
distance measures and under a large class of transformations have been introduced. Most
of these algorithms originate in G-inverted lists which have been studied and generalized to
(G, ¢)-inverted lists in Chapter 3. In this generalization, transporter sets take an important
place. Studying intersections of these transporter sets in Chapter 4 leads to generic pattern
matching algorithms in Chapter 5. These algorithms allow sets (or sequences) of points with
respect to a number of different distance measures and transformation groups to be matched.
In this general setting, we have two patterns P and () as well as a transformation group G
acting on the set of all objects and a distance measure d providing a distance concept between
two objects.

The suitable distance measures for this generic approach to geometric pattern matching have
been characterized as relational distance measures, where admissible assignments between
points are determined by sets of relations. Many well-known distance measures such as the
Hausdorff- and the bottleneck distance belong to this class of distance measures. The class of
transformation groups our generic approach applies to has been identified with the category
of linear algebraic groups. Based on transporter sets, the affine variety underlying the linear
algebraic group is partitioned into equivalence classes, and a suptransversal of this equivalence
relation (i.e., a set containing at least one element from each equivalence class) is computed.
For each element g of the suptransversal, one has to decide whether d(P, g@Q) < ¢, where ¢
is a specified fault tolerance. Several techniques for making this method more efficient and
practical have been studied, involving different properties of the distance measure d. The
cost of improving the efficiency by means of these techniques is that the solutions computed
by the resulting algorithm are only approzximate solutions.

In many applications, one is not interested in a decision procedure for matching where a fault
tolerance ¢ needs to be specified as an input, but one rather wants to compute the minimum
value that can be achieved. For solving this optimization problem, algorithms were proposed
in Chapter 6 for matching under rigid motions in two and three dimensions by computing
sets of candidate transformations. The resulting algorithms work for arbitrary relational
distance measures and yield approximate solutions to the optimization problem. Again,
certain properties of the distance measure d allow for improvements in the asymptotical
running time of the matching algorithms. These properties coincide with those that occurred
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in Chapter 5 for speeding up matching algorithms based on transporter sets.

Finally, in Chapter 7, a discrete variant of the Fréchet distance has been introduced and
shown to be a relational distance measure. Further properties of this distance measure have
been studied: using crossing free integer sequences, it has been shown to be a pseudo-metric.
Furthermore, bounds between the discrete and the continuous Fréchet distance have been
established. Since the discrete Fréchet distance is a relational distance measure, matching
algorithms immediately result from the algorithms stated in Chapters 5 and 6. The bounds
between the discrete and the continuous Fréchet distance finally show that any algorithm
for matching with respect to the discrete Fréchet distance is an approximate algorithm for
matching with respect to the continuous Fréchet distance.

Some of the algorithms described in Chapters 5 through 7 have been implemented. Differ-
ent aspects of the implementations have been tested and the results have been discussed in
Chapter 8.

9.2 Open Problems and Perspectives

Generalization of Candidate Sets: As introduced in Chapter 6, candidate sets allow for the
formulation of approximate matching algorithms under rigid motions in two and three di-
mensions. Some ideas can be generalized easily so as to work under homothetic motions as
well. This raises the question whether one can also define and compute suitable candidate
sets under even larger groups, such as similarity motions in two and three dimensions or
even under the affine general linear group. This would require a generalization of the ele-
mentary geometric properties (such as the bounds stated in Remark 6.2.4) used in Chapter
6. Furthermore, one needs to find certain k-tuples (for some suitable integer k) of points
taking the place of the diameter pair in two dimensions or the place of the diameter pair
with a third point having maximum distance to the straight line between the diameter pair.
Based on these extensions, the generalized definition of a candidate transformation needs to
be uniquely defined (at least for non-degenerate k-tuples of points).

Computing the discrete Fréchet distance in subquadratic time: For the continuous Fréchet
distance, it is unknown whether one can decide in time o(mn) whether dp(P,Q) < . The
same problem holds for the discrete Fréchet distance introduced in Chapter 7. Along with
the discrete Fréchet distance, a rich combinatorial framework — namely crossing free integer
sequences and their relation to pairs of discrete reparametrizations — has been introduced.
This framework might be a useful tool to either find faster algorithms for deciding whether
dr(P, Q) < ¢, or they might be helpful in finding lower bounds for computing dr(P, Q) < ¢.

Faster algorithms for matching w.r.t. relational distance measures: For many specific trans-
formation groups and specific distance measures, there are faster algorithms than the ones
resulting from the generic approaches in Chapters 5 and 6. In many cases, it appears to be
reasonable that faster algorithms for particular transformation groups or particular distance
measures can be generalized to other transformation groups or arbitrary relational distance
measures. As an example, consider the GRID-method for matching under rigid motions in the
plane with respect to the directed Hausdorff distance from [33]. This algorithm works with
a discrete grid of rigid motions, leading to significantly smaller asymptotical time bounds.
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Since the GRID-method is based on the ideas by Goodrich et al. from [36], it appears to
be reasonable that this approach generalizes to other relational distance measures as well.
Note that improving the running time for matching under arbitrary relational distance mea-
sures immediately yields faster algorithms for matching with respect to the discrete Fréchet
distance.

Generalizing the discrete Fréchet distance to higher-dimensional objects: The Fréchet dis-
tance, as it has been considered in Chapter 7, is only defined for one-dimensional objects, i.e.,
curves. By adapting the space of reparametrizations, the Fréchet distance can be generalized
to higher dimensions. Godau [35] provides a generalized definition of the Fréchet distance and
shows that for two-dimensional objects, every approximate solution to the decision problem
whether the Fréchet distance of two simplicial complexes homeomorphic to a triangle is less
than or equal to some € > 0 is NP-hard; however, the question whether this decision problem
is in /P remains unresolved.

Thus, the question arises whether the discrete Fréchet distance can be generalized to higher
dimensions and whether one can establish similar bounds as in Theorem 7.4.1. Such a result
might in turn lead to a nondeterministic polynomial time algorithm showing that the decision
problem is in NP. A general problem arising for simplicial 2-complexes is the following:
finding a reparametrizations for two surfaces with a common domain requires the two surfaces
to be homeomorphic — and one needs to pick the reparametrizations from a suitable space
of reparametrizations. (Note that the problem of determining whether two 2-complexes are
homeomorphic is known to be graph-isomorphism-complete [60]). Even for the case that
both surfaces are homeomorphic to a disc, the specification of a reasonable discrete space of
reparametrizations is a non-trivial problem.

Being aware of the aforementioned N'P-hardness result by Godau, a further question arising
is whether one can identify a set of instances of the decision problem that can be computed
in polynomial time.

Generic Implementation: The approaches to pattern matching based on cell enumeration from
Chapter 5 and candidate sets from Chapter 6 allow for pattern matching to be performed
under different transformation groups and with respect to numerous distance measures. In
terms of implementations, this means that implementations for a large number of pattern
matching tasks can rely on a common basis of source code. For many libraries such as
CGAL [32], Leda [50] or the Standard Template Library (see [13]), the technique of generic
programming in the C++ programming language proved to be a successful way of obtaining
reusable, robust and efficient implementations of algorithms from areas such as Computational
Geometry, graph theory or elementary algorithmics. A generic implementation of the pattern
matching algorithms proposed in this thesis appears to be a reasonable step towards better
applicability of geometric pattern matching algorithms in real-world applications.

Applying Pattern Matching under Fréchet Distance in Real-World Applications: The results
from Chapter 8 suggest that the running times of the algorithms implemented within the scope
of this thesis suit the needs of real world applications. Besides applications of matching two-
dimensional polygonal curves w.r.t. the Fréchet distance, there are interesting applications
of matching polygonal curves in three dimensions in Molecular Biology. Here, one often
encounters polygonal curves in the form of protein backbones: proteins are chains of amino

103



CHAPTER 9. SUMMARY AND CONCLUSION

acids; such a protein chain adopts a (more or less rigid) spatial configuration which can be
viewed as a polygonal curve in three dimensions. The polygonal curve describing this spatial
configuration essentially determines the backbone of the protein.

Given two protein backbones, one can determine their similarity by matching them under
SO(3) (since there is no fixed orientation of a backbone) with respect to the (discrete) Fréchet
distance. Since in most cases, two proteins resemble each other only partially, a more inter-
esting problem is to determine longest common subcurves of two protein backbones. Note
that all this can be done by combining the techniques from Chapters 6 and 7.

104



Appendix A

Symbol Reference

Equivalence of transporter arrangements ............. ... .. ..ol
Symmetric difference between sets ........... .. il
Disjoint union ........... .
Normal subgroup . ...t
Semidirect product ........ ..o
Merge OPEerator . ...ttt e
Affine general linear group ............oiiiiiiiiii i e
Band between fand g .......... .
Bottleneck distance ........... . i
Relaxed bottleneck distance ............ ... . i,
(directed) Hausdorff distance .............c.coiiiiiiiiiiiiiiiian..
undirected Hausdorff distance ........... .. .. . it
Ranked Hausdorff distance ........... ..o i,
Mean-value Hausdorff distance ........... ... ..o i il
Mean-square Hausdorff distance .............. ... ... ... i ..
Fréchet distance ............ i e
Discrete Fréchet distance ......... ... .. i
Discrete partial Fréchet distance ............... ... ... L.
Discrete closed Fréchet distance .......... ... . ... i il
Point sequence distance .......... ..
E-TTEe-SPACE o e
discrete e-free-Space . ...t e
(G,e,d)-matches of Q W.r.t. P ..o
General linear group ... ..o.eeiit i ti e
Graph of f
Cell-Graph of P ..o e
G-matches of QQ ...
G-inverted Llist of ...
(G,e)-matches of Q ... . o
(G,e)-inverted List ...
Group of homothetic motions ........ ... . .o i,
Largest common point set ........ ... i
The set of all natural numbers {0,1,2,...}
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11
38
40
17
17
40
40
40
72
72
86
86
28
73
73
17
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16
16
17
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APPENDIX A. SYMBOL REFERENCE

Pr(M) Finite subsets of M ...
R The set of all real numbers

R[X] Ring of polynomials in X ....... ... ... ..
R(X) Ring of rational functions in X ....... ... ... . oL
R(P,Q,¢) e-relation of P and Q .....o.iiiii i
R(d,m,n) Set of admissible relations ...
sign Sign function . ........oiiiii e
SC(k) Group of uniform scalings ...
SE(k) Group of rigid motions ......... ... .
SO(k) Special orthogonal group ...
T(k) Group of translations ............. .. . i
Trang (A4, B) G-tranSpOTTer .. ..o e
ToE (G, €)-BranSPOTTET ...ttt et et et
7 The set of all integers {...,—2,-1,0,1,2,...}
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