
Approximately Matching Polygonal Curves

with Respect to the Fréchet Distance

Axel Mosig

Lehrstuhl für Bioinformatik, Universität Leipzig, D-04103 Leipzig

Michael Clausen

Institut für Informatik III, Universität Bonn, D-53117 Bonn

Abstract

In this paper we present approximate algorithms for matching two polygonal curves
with respect to the Fréchet distance. We define a discrete version of the Fréchet
distance as a distance measure between polygonal curves and show that this discrete
version is bounded by the continuous version of the Fréchet distance.

For the task of matching with respect to the discrete Fréchet distance, we de-
velop an algorithm that is based on intersecting certain subsets of the transforma-
tion group under consideration. Our algorithm for matching two point sequences
of lengths m and n under the group of rigid motions has a time complexity of
O(m2n2) for matching under the discrete Fréchet distance and can be modified for
matching subcurves, closed curves and finding longest common subcurves. Group
theoretical considerations allow us to eliminate translation components of affine
transformations and to consider matching under arbitrary linear algebraic groups.

1 Introduction

A typical scenario in geometric pattern matching is as follows: we are given two
geometric objects P and Q as well as a group G of admissible transformations
and a distance measure d for computing the resemblance of P and Q. The
matching task, stated as a decision problem, is to determine whether there
exists a transformation g ∈ G that brings an object Q close to another object
P so that d(P, gQ) ≤ ε; here, gQ denotes the object Q transformed by g.
Sometimes, one is also interested in the optimization problem of finding a
transformation g that minimizes d(P, gQ). Typical applications range from
computer vision and image retrieval to computer aided drug design. For a
survey on geometric pattern matching, we refer to [1].

Preprint submitted to Elsevier Science 30 April 2004

In our case, the objects under consideration are polygonal curves in some real
vector space V ; the transformation groups studied are affine transformations,
in particular translations, rotations and scalings, while the distance measure
considered is (a discrete version of) the Fréchet distance.

Many aspects of the Fréchet distance as a distance measure between polygonal
curves have recently been examined in the field of computational geometry.
Introduced in [2], algorithms for computing the Fréchet distance were devel-
oped. Several authors address the problem of matching curves with respect to
the Fréchet distance: Efrat et al. [3] as well as Alt, Knauer and Wenk [4] de-
signed polynomial time algorithms for matching under the group of arbitrary
two-dimensional translations. In [5], the idea from [4] is generalized to larger
transformation groups using techniques from real algebraic geometry.

We define a discrete version of the Fréchet distance and show that the contin-
uous Fréchet distance is bounded by this discrete version. As a consequence, it
suffices to design algorithms for matching with respect to the discrete version
of the Fréchet distance in order to obtain algorithms for matching approx-
imately with respect to the continuous Fréchet distance. Letting m and n
denote the number of vertices of the two polygonal curves to be matched,
our algorithm’s running time for matching approximately under rigid motions
is bounded by O(m2n2) under the discrete version of the Fréchet distance.
Improving the quality of approximation for matching under the continuous
version, however, results in a running time that depends on the Euclidean
length of the two polygonal curves to be matched. This compares to a run-
ning time of O(n11) (where m ≤ n) for the algorithm proposed in [5] for solving
the matching problem under the continuous version exactly.

Our algorithms for matching under rigid motions rely on elementary algorith-
mic and geometric computations and can hence be implemented easily. Note
that the algorithm from [5] for matching under rigid motions in the plane as
well as the algorithms we propose for some larger transformation groups rely
on techniques from real algebraic geometry. Generally, algorithms relying on
such techniques can be considered as being difficult to implement.

All matching problems we consider are based on intersecting certain subsets
of the underlying transformation groups, which is motivated by the technique
described in [6,7]. This leads to some group theoretical considerations, which
are the subject of Section 3.

2

2 The Discrete Fréchet Distance

We first introduce some notation. Let [x, y] denote the compact real interval
between x and y; moreover, for integers a and b, let [a : b] denote the set
{a, a + 1, . . . , b} of all integers between a and b. Given two sets X and Y , Y X

denotes the set of all mappings from X to Y ; for f ∈ Y X and I ⊆ X, we denote
f [I] := {f(x) | x ∈ I}. Analogously, we denote f−1[J] := {x ∈ X | f(x) ∈ J}
for J ⊆ Y . Since x ∈ X [a:b] is completely described by a sequence of b − a + 1
values in X, we also write x = 〈xa, . . . , xb〉 ∈ X [a:b]. Let V = R

k denote a
Euclidean vector space with the Euclidean norm ‖.‖ := ‖.‖2. A curve in V
is a continuous mapping f ∈ V [a,b] with a, b ∈ R; a polygonal curve of length
m ∈ N, is a mapping P ∈ V [0,m], such that for all i ∈ [0 : m − 1], P |[i,i+1] is
affine, i.e., P (i + λ) = (1 − λ)P (i) + λP (i + 1) for all λ ∈ [0, 1].

For f ∈ V I , let ‖f‖∞ := supt∈I ‖f(t)‖. The Fréchet distance between P ∈
V [0,m] and Q ∈ V [0,n] (for some m, n > 0) is defined as dF(P, Q) = min(α,β) ‖P ◦
α − Q ◦ β‖∞, where (α, β) ranges over all continuous, weakly increasing and
surjective mappings α ∈ [0, m][0,1] and β ∈ [0, n][0,1]. In the sequel, we denote
the set of all continuous, weakly increasing and surjective mappings from a set
X to another set Y by Mon(X, Y) and write Monm,n := Mon([0, 1], [0, m]) ×
Mon([0, 1], [0, n]). In case m ∈ N and P ∈ V [0,m] denotes a polygonal curve,
we can identify P with the mapping [0 : m] 3 i 7→ P (i) =: pi, and hence we
also write P ∈ V [0:m].

2.1 Definition and Basic Properties

Given two polygonal curves P ∈ V [0:m] and Q ∈ V [0:n], we define the discrete
Fréchet distance as dF(P, Q) = min(κ,λ) ‖P ◦ κ − Q ◦ λ‖∞, where the pairs
(κ, λ) range over the set Monm,n := Mon([1 : m + n], [0 : m]) × Mon([1 : m +
n], [0 : n]). Correspondingly, one can define dF for polygonal curves P ∈ V [a:b]

and Q ∈ V [c:d] for integers a, b, c, d by adapting domain and range of the
reparametrizations. Note that the integer interval [1 : m + n] substitutes the
real interval [0, 1] as the common domain for the two reparametrizations. The
discrete Fréchet distance is similar to the dynamic time warping distance that
is defined as dW(P, Q) := minκ,λ ‖P ◦ κ − Q ◦ λ‖2, where (κ, λ) range over
∪K∈[max(m,n),m+n]Mon([0 : K], [0 : m]) × Mon([0 : K], [0 : n]), respectively, and
‖f‖2 := (‖

∑

i∈I(f(t))2‖)1/2 for f ∈ V I with |I| < ∞.

Dynamic time warping has been considered in the context of speech signal
processing and time series databases [8], in both cases for V = R. More re-
cently, dynamic time warping has been used for matching polygonal curves
in the plane under the group of translations [9]. The results presented in the

3

sequel can be seen as a bridge between these works and the results obtained
in the area of computational geometry.

We can compute the discrete Fréchet distance between P ∈ V [0:m] and Q ∈
V [0:n] in a straightforward way. Defining di,j := dF(P |[0:i], Q|[0:j]), we compute
dm,n in O(mn) time using dynamic programming:

d0,0 := ‖p0 − q0‖;
for j := 1 to n do d0,j := max{d0,j−1, ‖p0 − qj‖};
for i := 1 to m

di,0 := max{di−1,0, ‖pi − q0‖}
for j := 1 to n

di,j := max(min{di,j−1, di−1,j, di−1,j−1}, ‖pi − qj‖);
end

end

return dm,n.

2.2 Bounding dF by dF

A major property of the discrete Fréchet distance is that it is bounded by
the continuous Fréchet distance. Before we can state this bounding property,
we require the notion of sampling and oversampling polygonal curves. We say
that P ∈ V [0:m] is δ-sampled if ‖pi − pi−1‖ ≤ δ for all i ∈ [1 : m].

Two polygonal curves P and P ′ are called equivalent if and only if their Fréchet
distance is zero. The Fréchet distance defines a metric on the equivalence
classes of polygonal curves. We say that a polygonal curve P is reducible if
and only if, for some i, the vertex pi is contained in the line segment 〈pi−1, pi+1〉.
Eliminating pi from the sequence yields another curve P ′ with dF(P, P ′) = 0.
This elimination process finally yields a curve that cannot be reduced any fur-
ther. Obviously, in each equivalence class there is one unique such irreducible
curve. All other members of this class can be viewed as oversamplings of this
irreducible version. Also, we can produce oversampled versions of a polygonal
curve by inserting additional vertices that leave dF unchanged. As can be seen
easily, oversampling decreases dF, while dF is left unchanged. This fact clearly
suggests that dF can be bounded by dF. However, there are no obvious tight
bounds. In this section, we provide distance bounds between dF and dF that
are tight.

Theorem 1 Let P ∈ V [0:m] and Q ∈ V [0:n] be δ-sampled polygonal curves.
Then,

dF(P, Q) ≤ dF(P, Q) ≤ dF(P, Q) + δ/2.

4

PROOF. We start with the proof of the first inequality. Let (κ, λ) ∈ Monm,n

be optimal in the sense that dF(P, Q) = ‖P ◦ κ − Q ◦ λ‖∞. By affine inter-
polation, one obtains (α, β) ∈ Monm,n with α(i

m+n
) = κi and β(i

m+n
) = λi.

Then,

dF(P, Q) = min
α′,β′

max
t∈[0,1]

‖P (α′(t)) − Q(β ′(t))‖

≤ max
t∈[0,1]

‖P (α(t)) − Q(β(t))‖

= max
s∈[1:m+n]

‖P (κ(s)) − Q(λ(s))‖ = dF(P, Q),

where the last but one equality follows from the fact that for line segments
L = 〈L0, L1〉 and L′ = 〈L′

0, L
′
1〉, dF(L, L′) = max{‖L0 −L′

0‖, ‖L1 −L′
1‖}. This

proves the first inequality.

For the proof of the second inequality, let (α, β) ∈ Monm,n be optimal, i.e.,
dF(P, Q) = ‖P ◦ α − Q ◦ β‖∞. Define

µj := min β−1[j] and νi := min α−1[i] (1)

for i ∈ [0 : m − 1] and j ∈ [0 : n − 1] as well as µn := 1 and νm := 1.

Since α and β are weakly increasing, we have µj−1 ≤ µj and νi−1 ≤ νi for all
i and j.

Now, let θ0 ≤ θ1 ≤ · · · ≤ θm+n+1 denote the ordered sequence of all m + n + 2
values µi and νj, including multiplicities. This allows us to define

κs := bα(θs)e and λs := bβ(θs)e, (2)

where bxe assigns the nearest integer to x ∈ R, i.e., bxe := bxc if x − bxc < 1
2

and bxe := dxe if dxe − x ≤ 1
2
.

The sequences κ := 〈κ1, . . . , κm+n〉 ∈ [0 : m][1:m+n] and λ := 〈λ1, . . . , λm+n〉 ∈
[0 : n][1:m+n] are weakly increasing, since the sequence θ := 〈θ0, . . . , θm+n+1〉 is
weakly increasing and the mappings α, β as well as b.e are order preserving.

The surjectivity of λ follows from the fact that the sequence 〈µ0, . . . , µn〉 is
contained in θ as a subsequence, and bβ(µj)e = bβ(min β−1[j])e = bje = j;
note that since θ0 = θ1 = 0 and θm+n = θm+n+1 = 1, we can omit λ0 and
λm+n+1 without losing surjectivity. The surjectivity of κ follows analogously.

So far, we know that (κ, λ) ∈ Monm,n. It remains to be shown that ‖pκs
−

qλs
‖ ≤ dF(P, Q) + δ/2 for all s ∈ [1 : m + n]. To this end, observe that since

P and Q are δ-sampled, we have ‖P (x) − P (bxe)‖ ≤ δ/2. Additionally, we

5

have ‖P (α(θs)) − Q(β(θs))‖ ≤ dF(P, Q) for all s ∈ [1 : m + n]. For each
s ∈ [1 : m + n], either θs = νi or θs = µj for some i ∈ [0 : m] or j ∈ [0 : n]. If
θs = µj, we have λs = bβ(µj)e = bβ(min β−1[j])e = bje = j = β(µj), in other
words, ‖Q(β(µj))−Q(bβ(µj)e)‖ = 0. If θs = νi for some i, we similarly obtain
‖P (α(νi) − P (bα(νi)e)‖ = 0.

Now, using the triangle inequality, we get:

‖P (κs) − Q(λs)‖≤ ‖P (κs) − P (α(θs))‖ + ‖P (α(θs)) − Q(β(θs))‖

+‖Q(β(θs)) − Q(λs)‖

≤ δ/2 + dF(P, Q).

Altogether, we have constructed (κ, λ) ∈ Monm,n such that

dF(P, Q) + δ/2≥ max
s∈[1:m+n]

‖P (κs) − Q(λs)‖

≥min
κ′,λ′

max
s∈[1:m+n]

‖P (κ′
s) − Q(λ′

s)‖

= dF(P, Q).

�

The bounds stated are tight, as the following examples for V = R
2 show: For

P = Q, we have dF(P, Q) = dF(P, Q) = 0, so that the first bound ist tight. For
the second bound, set P := 〈(0, 0), (0, 1)〉 and Q := 〈(0, 0), (0, 1), (0, 0), (0, 1)〉.
Both P and Q are 1-sampled, and we have dF(P, Q) = 1

2
as well as dF(P, Q) =

1, so that dF(P, Q) = dF(P, Q) + 1
2
.

3 Pattern Matching via Transporter Sets

In the last section, we have seen bounds between dF and dF. In this section, we
let a group G act on the polygonal curves. The bounds from the last section
carry into distance bounds between a polygonal curve P and the G-orbit of
a second curve Q, so that algorithms for matching with respect to dF yield
approximate algorithms for matching with respect to dF.

Let G denote a subgroup of AGL(k), the group of all affine transforma-
tions in V = R

k. Since G acts on V , G also acts on the set of all finite
sequences of points in V . Furthermore, G acts on the set of all polygonal
curves. This motivates us to write gP := 〈gp0, . . . , gpm〉 for g ∈ G and

6

P ∈ V [0:m]. We now define the set of all (G, ε,dF)-matches of Q with re-
spect to P as G(P, Q, ε,dF) := {g ∈ G | dF(P, gQ) ≤ ε}. Analogously,
G(P, Q, ε, dF) := {g ∈ G | dF(P, gQ) ≤ ε}. The matching task we deal with
in the sequel can now be stated as the following decision problem: Given
P ∈ V [0:m], Q ∈ V [0:n] and ε ≥ 0, determine whether G(P, Q, ε,dF) is empty
or not.

The bounding property of dF and dF from Theorem 1 immediately yields a
relation between matches with respect to dF and matches with respect to dF:

Corollary 2 Let P ∈ V [0:m] and Q ∈ V [0:n] be δ-sampled polygonal curves.
Then, for G ≤ AGL(k), we have G(P, Q, ε, dF) ⊆ G(P, Q, ε + δ/2,dF) ⊆
G(P, Q, ε + δ/2, dF).

3.1 A Basic Matching Algorithm

Our approach for solving the decision problem is based on considering (G, ε)-
transporter sets for points p, q ∈ V defined as

τG,ε
p,q := {g ∈ G | ‖p − gq‖ ≤ ε}. (3)

The next remark shows the close relation of transporter sets to (G, ε,dF)-
matches.

Remark 3 Let P ∈ V [0:m] and Q ∈ V [0:n]. Then,

G(P, Q, ε,dF) =
⋃

(κ,λ)∈Monm,n

⋂

s∈[1:m+n]

τG,ε
pκ(s),qλ(s)

.

In particular, G(P, Q, ε,dF) 6= ∅ iff
⋂

s∈[1:m+n] τ
G,ε
pκ(s),qλ(s)

6= ∅ for some (κ, λ) ∈
Monm,n.

For P ∈ V [0:m] and Q ∈ V [0:n], we consider the family (τG,ε
pi,qj

)i∈[0:m],j∈[0:n] of
(m + 1)(n + 1) transporter sets. According to the above remark, we would
like to decide whether at least one of the intersections

⋂

s∈[1:m+n] τ
G,ε
pκ(s),qλ(s)

is

non-empty. To this end, we define an equivalence relation on G such that every
intersection of transporters is a union of equivalence classes. If we compute
a subset C of G containing from each equivalence class at least one element,
then G(P, Q, ε,dF) 6= ∅ iff C ∩ G(P, Q, ε,dF) 6= ∅ (such a C will be called a
(P, Q, G, ε)-suptransversal). Thus, for deciding G(P, Q, ε,dF) 6= ∅, it suffices
to test each g ∈ C for membership in G(P, Q, ε,dF).

7

The announced equivalence relation on G is defined by g ∼P,Q,G,ε g′ if and
only if for all i, j we have g ∈ τG,ε

pi,qj
⇔ g′ ∈ τG,ε

pi,qj
, i.e., g is contained in

exactly the same transporter sets as g′. We call the ∼P,Q,G,ε-equivalence class
the (P, Q, G, ε)-cell of g.

Algorithm 4

Input: P ∈ V [0:m], Q ∈ V [0:n], G ≤ AGL(k), ε ≥ 0
Output:

g ∈ G(P, Q, ε,dF) if G(P, Q, ε,dF) 6= ∅

false otherwise.

Match(P, Q, G, ε)
compute a (P, Q, G, ε)-suptransversal C ⊆ G
for each g ∈ C do

if dF(P, gQ) ≤ ε then return g
end

return false

end.

The complexity of the above algorithm mainly depends on the size of the
suptransversal C and the time it takes to compute C. We now study an ex-
ample for the case V = R

2 where a cell enumeration can be done with ele-
mentary geometric computations: let SC(2) denote the group of all uniform
scalings (without reflections) in the plane, i.e., SC(2) is the matrix group
{λ id2 | λ ∈ R>0}, where id2 denotes the 2 × 2 unit matrix.

Figure 1 provides a geometric construction of an (SC(2), ε)-transporter, show-
ing that each such transporter can be characterized as a (possibly empty or
unbounded) closed interval on the real line. In order to use Algorithm 4, we
need to enumerate one representative from each cell defined by a set of closed
intervals. Note that the cells are closed intervals also, and the border of each
cell belongs to the border of at least one transporter τ SC(2),ε

pi,qj
. Thus, it suffices

to compute all (upper and lower) borders of the (m + 1)(n + 1) intervals in
the parameter space. This can be done in O(mn) time (since computing a
transporter’s interval borders as in Figure 1 takes O(1) time), yielding a total
running time of O(m2n2) for matching with respect to dF under the group
SC(2).

Matching with respect to the group SO(2), i.e., the group of rotations around
the origin, works very similar. The group SO(2) can be parametrized by the
unit circle. As shown in Figure 1, a single transporter can be characterized
as a circular arc in this parameter space. Now, the cells defined by a set of
circular arcs are also circular arcs. Each border of a single cell corresponds
to the border of (at least) one transporter τ SC(2),ε

pi,qj
, and just as for the case

G = SC(2), we can compute a suptransversal by enumerating all transporters’

8

Fig. 1. Construction of τG,ε
p,q ≡ {λ | ‖σ0‖/‖q‖ ≤ λ ≤ ‖σ1‖/‖q‖} for G = SC(2) (left)

and τG,ε
p,q ≡ <)(θ0, θ1) for G = SO(2) (right).

borders. Computing these takes O(mn) time, and the total time complexity
obtained for Algorithm 4 amounts to O(m2n2) as well.

3.2 Projecting Transporter Sets

In this section, we present some group theoretical considerations in order to
decrease the computational complexity of matching tasks. As demonstrated
in [4] and [3], translating the starting point of Q (which is a reference points
in the sense of [10]) onto the starting point of P can easily be shown to yield
an approximate solution for matching under translations with respect to dF.
We generalize this result (for dF) by showing that the starting points of P
and Q can be used to eliminate translation components of the transformation
group. This is related to a result from [10]. In this work, Alt, Aichholzer and
Rothe demonstrate that reference points for the Hausdorff distance can be
used to eliminate translation components of the group of similarity motions.
Our group theorical point of view allows us to state results for dF that hold
for arbitrary subgroups of affine motions in R

k, for any k > 0.

A group G is called the semidirect product of its subgroup H and its normal
subgroup N if G = {nh | n ∈ N, h ∈ H} and N ∩ H = {1}; in this case we
sometimes write G = N o H. The most important example of a semidirect
product used in the sequel is the affine general linear group AGL(k) = T (k)o

GL(k), where T (k) denotes the group of all translations in R
k.

The groups SC(2) and SO(2) that we have studied so far are both subgroups
of GL(2). Transformation groups that are relevant in practical applications –
rigid motions, homothetic motions or similarity motions – are usually affine
linear groups, i.e., they additionally contain the subgroup of translations. In
the sequel, we study the case that G = T (k)oH for some H ≤ GL(k) in more
detail. Since the Euclidean distance is translation invariant, i.e., ‖x − y‖ =
‖tx− ty‖ for any t ∈ T (k) and x, y ∈ R

k, the following Lemma will be of some
use later on:

9

Lemma 5 Let N be an abelian group acting transitively on V , i.e., for each
pair (v, w) ∈ V 2 there exists an n ∈ N with nv = w. Furthermore, let d
be an N-invariant metric on V . Then d(nx, n′x) = d(ny, n′y), for arbitrary
n, n′ ∈ N and x, y ∈ V .

PROOF. Since N acts transitively on V , we can write x = ty for some t ∈ N .
As N is abelian and d is N -invariant, we get d(nx, n′x) = d(nty, n′ty) =
d(tny, tn′y) = d(ny, n′y). �

According to Remark 3, Algorithm 4 can be seen as an algorithm that decides
whether certain intersections of transporters are empty, presuming we can
compute a (P, Q, G, ε)-suptransversal for the group under consideration. For
the groups SO(2) and SC(2), computing a (P, Q, G, ε)-suptransversal could be
done by elementary geometric computations. For most other groups, however,
there is no obvious way to compute such suptransversal.

Given a group G = T (k)oH, H ≤ GL(k), we show how to reduce the problem
of matching with respect to G to the problem of matching with respect to H.
As a result, we will obtain matching algorithms for matching with respect to
rigid motions (in place of SO(2)) and homothetic motions (in place of SC(2)).

To this end, we apply the projection η of G onto H with kernel T (k), i.e.,
η(th) := h, for t ∈ T (k) and h ∈ H. This projection is well defined since for
every g ∈ G, there is a unique t ∈ T (k) and h ∈ H so that g = th, which is
due to the fact that G is the semidirect product of T (k) and H. Instead of a
set A ⊆ G, we work with its η-image:

η[A] := {h ∈ H | ∃t ∈ T (k) : th ∈ A}.

Theorem 6 Let V = R
k and G = T (k) o H for some H ≤ GL(k). Given

P ∈ V [0:m] and Q ∈ V [0:n] as well as (κ, λ) ∈ Monm,n, define

p̃i := 1
2
(pi − p0), q̃j := 1

2
(qj − q0) and

Hs,ε := τH,ε
p̃κ(s),q̃λ(s)

as well as

Gs,ε := τG,ε
pκ(s),qλ(s)

(4)

Then, we have

(a)
⋂

s∈[1:m+n] Hs,ε = ∅ =⇒
⋂

s∈[1:m+n] Gs,ε = ∅.
(b)

⋂

s∈[1:m+n] Hs,ε 6= ∅ =⇒
⋂

s∈[1:m+n] Gs,2ε 6= ∅.

We prepare for the proof of the theorem.

10

Lemma 7 Let V = R
k for some k > 0 and P, Q ∈ V [0:1] be two line segements

in V , and let P̃ = 〈−p̃, p̃〉, Q̃ = 〈−q̃, q̃〉 ∈ V [0,1] denote the centered versions of
P and Q, respectively, so that p̃ = 1

2
(p1 − p0) and q̃ = 1

2
(q1 − q0). Moreover,

let G = T (k) o H for some H ≤ GL(k). Then, the following holds:

(a) ‖P̃ − Q̃‖∞ ≤ ‖P̃ − nQ̃‖∞ for any n ∈ T (k).
(b) η[τG,ε

p0,q0
∩ τG,ε

p1,q1
] = τH,ε

−p̃,−q̃ = τH,ε
p̃,q̃ .

PROOF. (a) We have ‖P̃ − Q̃‖∞ = max{‖ − p̃ − (−q̃)‖, ‖p̃ − q̃‖} = ‖p̃ − q̃‖
and ‖P̃ − (Q̃ + 〈n, n〉)‖∞ = max{‖p̃− q̃ +n)‖, ‖p̃− q̃ −n‖}. As for any a ∈ V ,

‖a‖ = ‖
1

2
(a+n)+

1

2
(a−n)‖ ≤

1

2
(‖a+n‖+‖a−n‖) ≤

1

2
·2 max{‖a+n‖, ‖a−n‖},

our claim follows with a = p̃ − q̃.
(b) We start with the second equality. Since for any h ∈ GL(k), we have
−hq̃ = h(−q̃), the equality follows from ‖p̃ − hq̃‖ = ‖(−p̃) − h(−q̃)‖, for all
h ∈ H.

We get to the proof of the first equality. Note that η[τG,ε
−p̃,−q̃ ∩ τG,ε

p̃,q̃] = η[τG,ε
p0,q0

∩

τG,ε
p1,q1

], since P̃ and Q̃ are translated versions of P and Q, respectively. Now,

it suffices to prove η[τG,ε
−p̃,−q̃ ∩ τG,ε

p̃,q̃] = τH,ε
p̃,q̃ .

τH,ε
p̃,q̃ ⊆ η[τG,ε

−p̃,−q̃ ∩ τG,ε
p̃,q̃] follows immediately from ‖P̃ − hQ̃‖∞ ≤ ε for any

h ∈ τH,ε
p̃,q̃ , and it remains to show the reverse inclusion τH,ε

p̃,q̃ ⊇ η[τG,ε
−p̃,−q̃ ∩ τG,ε

p̃,q̃].

To this end, let h ∈ η[τG,ε
−p̃,−q̃ ∩ τG,ε

p̃,q̃]. By definition of η, there is a translation

t such that th ∈ τG,ε
−p̃,−q̃ ∩ τG,ε

p̃,q̃ , in other words, ‖P̃ − thQ̃‖∞ ≤ ε. From part

(a), we get ‖P̃ − hQ̃‖∞ ≤ ‖P̃ − thQ̃‖∞ ≤ ε, so that h ∈ τH,ε
−p̃,−q̃ ∩ τH,ε

p̃,q̃ , and in

particular, h ∈ τH,ε
p̃,q̃ . �

PROOF of Theorem 6. To prove (a), it suffices to show that
⋂

s∈[1:m+n]

τG,ε
pκ(s),qλ(s)

6= ∅ =⇒
⋂

s∈[1:m+n]

τH,ε
p̃κ(s),q̃λ(s)

6= ∅.

To begin with, let g ∈ ∩sτ
G,ε
pκ(s),qλ(s)

. Now, (κ, λ) ∈ Monm,n implies g ∈

G(P, Q, ε,dF). Since κ(1) = λ(1) = 0, we get g ∈ τG,ε
p0,q0

. This implies

g ∈ ∩s(τ
G,ε
pκ(s),qλ(s)

∩ τG,ε
p0,q0

).

Since G = T (k) o H, we can write g = th for uniquely defined t ∈ T (k) and
h ∈ H, yielding for all s ∈ [1 : m + n]

h ∈ η[τG,ε
pκ(s),qλ(s)

∩ τG,ε
p0,q0

] = τH,ε
p̃κ(s),q̃λ(s)

,

11

where the last equality follows from Lemma 7.(b). This proves implication (a).

For the proof of (b), let h ∈ ∩sτ
H,ε
p̃κ(s),q̃λ(s)

. From Lemma 7.(b) and the definition

of p̃i and q̃j, we know that for all s ∈ [1 : m + n]

h ∈ τH,ε
p̃κ(s),q̃λ(s)

= η[τG,ε
p0,q0

∩ τG,ε
pκ(s),qλ(s)

]. (5)

We claim that the group element g := t0h with t0 := p0 − hq0 is contained in
∩sτ

G,2ε
pκ(s),qλ(s)

.

First, we observe that gq0 = p0. Furthermore, due to Eq. (5), we get for all
s ∈ [1 : m + n]:

∃ns ∈ T (k) : gs := nsh ∈ τG,ε
p0,q0

∩ τG,ε
pκ(s),qλ(s)

. (6)

Using Eq. (6), the triangle inequality and Lemma 5, we get

‖pκ(s) − gqλ(s)‖≤ ‖gqλ(s) − gsqλ(s)‖ + ‖gsqλ(s) − pκ(s)‖

≤ ‖t0hqλ(s) − nshqλ(s)‖ + ε

≤‖t0hq0 − nshq0‖ + ε

= ‖p0 − gsq0‖ + ε ≤ 2ε.

�

With Theorem 6, we get an approximate algorithm for matching polygo-
nal curves with respect to dF by computing P̃ := 〈p̃0, . . . , p̃m〉 and Q̃ :=
〈q̃0, . . . , q̃n〉 as defined in Eq. (4) and then match P̃ and Q̃ using Algorithm 4
with respect to SO(2) or SC(2). Since computing P̃ and Q̃ takes O(m + n)
time, the following algorithm runs in the same asymptotical time as Algorithm
4.

Algorithm 8

Input: P ∈ V [0:m], Q ∈ V [0:n]; p, q ∈ V ; G = T (k) o H, H ≤ GL(k); ε ≥ 0.
Output: Projection-Match(P, Q, p0, q0, G, ε) =

g ∈ G(P, Q, 2ε,dF) if G(P, Q, ε,dF) 6= ∅

false if G(P, Q, 2ε,dF) = ∅

g ∈ G(P, Q, 2ε,dF) or false otherwise.

12

Projection-Match(P, Q, p, q, G, ε)

P̃ := 1
2
(P − p) and Q̃ := 1

2
(Q − q);

h := Match(P̃ , Q̃, H, ε);
if h 6= false then t0 := p0 − hq0; return t0h else return false;

end.

We now study the use of this algorithm for matching with respect to dF under
two subgroups of AGL(2). Let RM(k) := T (k) o SO(k) denote the group of
rigid motions and HM(k) := T (k)o SC(k) the group of homothetic motions in
the plane. Then, we can use Algorithm 8 for matching with respect to RM(2)
and HM(2); the time bounds we obtain are exactly the same as for matching
under SO(2) or SC(2). The only price for matching under HM(2) instead of
SC(2) is that Algorithm 8 has an indecision interval of size ε. The indecision
interval for matching with respect to dF stated in Corollary 2 increases by a
factor of 2 correspondingly.

3.3 Matching Subcurves and Closed Curves

We now turn to the partial Fréchet distance ~dF for measuring resemblance of
Q ∈ V [0:m] as a subcurve of P ∈ V [0:n] and the discrete Fréchet distance for
closed polygonal curves, d◦

F. As for the discrete Fréchet distance, we first show

how to compute ~dF as well as d◦
F, and then propose algorithms for matching

with respect to these distance measures.

For measuring whether Q ∈ V [0:n] is a subcurve of P ∈ V [0:m], we define the
partial Fréchet distance as

~dF(P, Q) := min
[a:b]⊆[0:m]

dF(P |[a:b], Q).

In order to adapt the discrete Fréchet distance to closed curves, we view P
as cyclically continued, i.e., for i > m we let P (i) := P (i mod m + 1). In
analogy to the continuous Fréchet distance for closed curves in [2], we define

d◦
F(P, Q) := min

a∈[0:m]
dF(P |[a:a+m], Q).

An important concept we use for deciding ~dF(P, Q) ≤ ε and d◦
F(P, Q) ≤ ε

is the discrete ε-free space [2] of two polygonal curves, defined as Fε(P, Q) =
{(i, j) ∈ Z × Z | ‖pi − qj‖ ≤ ε}. Defining a monotonic path of length K
as a mapping π ∈ (Z × Z)[0:K] with the property that π(i) − π(i − 1) ∈
{(1, 0), (0, 1), (1, 1)} for all i ∈ [1 : K], we can state a basic property of dF:

13

Theorem 9 Let P ∈ V [0:m] and Q ∈ V [0:n] be polygonal curves and let ε ≥ 0.
Then, we have dF(P, Q) ≤ ε iff there is a monotonic path of length K ≤ m+n
within Fε(P, Q) that starts at (0, 0) and ends at (m, n).

SKETCH OF PROOF. Let dF(P, Q) = ‖P ◦ κ − Q ◦ λ‖∞ ≤ ε, for suit-
able reparametrizations (κ, λ) ∈ Monm,n. Then the monotonic curve is given
by all pairs (κ(i), λ(i)), omitting pairs that yield loops (i.e. (κ(i), λ(i)) =
(κ(i − 1), λ(i − 1))). Conversely, given a monotonic curve, we obtain suitable
reparametrizations by introducing a loop for every diagonal step of the curve
(i.e., (κ(i), λ(i)) = (κ(i − 1) + 1, λ(i − 1) + 1)). �

Carrying this result to algorithms for deciding ~dF(P, Q) ≤ ε and d◦
F(P, Q) ≤ ε,

we need to determine whether there is a monotonic path from (a, 0) to (b, n)

for some [a : b] ⊆ [0 : m] (in case of ~dF) or whether there is a monotonic path
from (a, 0) to (a+m, n) for some a (in case of d◦

F). This idea is crucial for the
decision algorithms we propose.

Lemma 10 Let P ∈ V [0:m],Q ∈ V [0:n] and ε ≥ 0. Then, ~dF(P, Q) ≤ ε as well
as d◦

F(P, Q) ≤ ε can be decided in O(mn) time.

PROOF. We start with a decision algorithm for ~dF(P, Q) ≤ ε. Consider the
following algorithm: for i ∈ [0 : m] and j ∈ [0 : n], define ri,j := max{a ∈
[0 : i] | dF(P |[a:i], Q|[0:j]) ≤ ε} (and ri,j := −∞ if no such a exists). Using
dynamic programming as in the algorithm from Section 2 for computing dF,
we can compute in O(mn) time the values ri,n for each i ∈ [0 : m]. We have
~dF(P, Q) ≤ ε if and only if ri,n > −∞, for some i ∈ [0 : 2m].

Deciding d◦
F(P, Q) ≤ ε works similar as deciding ~dF(P, Q) ≤ ε. We compute

ri,j as well as Ri,j := max{b ∈ [i : 2m] | dF(P |[i:b], Q|[j:n]) ≤ ε} for all i ∈ [0 :
2m] and j ∈ [0 : n], which can also be done in O(mn) time using dynamic
programming as follows: We start with computing Rm,n; then, the algorithm
continues as the algorithm for computing dF(P, Q), except for the for-loops:
these run from m downto 0 rather than running from 0 to m and, analogously,
from n downto 0 rather than from 0 to n.

We claim that d◦
F(P, Q) ≤ ε if and only if for some i, ri+m,n ≥ i and Ri,0 ≥

i+m. The necessity of this condition follows immediately from the definitions
of d◦

F(P, Q), ri,j and Ri,j; for the proof that the condition is sufficient, we
follow the construction shown in Figure 2:

By definition of d◦
F, it suffices to regard the free space restricted to [0 : 2m]×[0 :

n] instead of the complete free space in Z × Z. We have two paths contained

14

in Fε(P, Q), one from (i + c, 0) to (i + m, n) for some c ≥ 0 (since ri+m,n ≥ i)
and one from (i, 0) to (i + m + e, n) for some e ≥ 0 (since Ri,0 ≥ i + m).
As demonstrated in Figure 2, these two paths intersect in some point (i′, j ′).
Hence we can construct a path from (i, 0) via (i′, j ′) to (i + m, n) that is
completely contained in Fε(P, Q), which proves the claim. �

The stated upper bounds of O(mn) for deciding ~dF(P, Q) ≤ ε and d◦
F(P, Q) ≤

ε are slightly smaller than the upper bounds of O(mn log(mn)) from [2] for
deciding whether the continuous Fréchet distance for closed curves or partial
correspondences is at most ε.

Fig. 2. Deciding d
◦
F(P,Q) ≤ ε can be done using ri+m,n and Ri,0 for i ∈ [0 : m]. In

the example shown, we have m = n = 3 and ri+m,n ≥ i (left) as well as Ri,0 ≥ i+m
(right) for i = 2.

Next, we consider matching with respect to ~dF and d◦
F. For matching under the

groups SO(2) and SC(2), we can use the idea of enumerating (P, Q, G, ε)-cells

as in the first section. Since both G(P, Q, ε, ~dF) and G(P, Q, ε,d◦
F) are unions

of (P, Q, G, ε)-cells, we can apply Algorithm 4; instead of testing dF(P, gQ) ≤ ε

for each cell, we test ~dF(P, gQ) ≤ ε or d◦
F(P, gQ) ≤ ε, respectively. Hence, we

obtain exactly the same time bounds as for matching with respect to dF.

We now apply the technique of projecting transporters for matching approxi-
mately with respect to ~dF and d◦

F. Let G = T (k)oH, H ≤ GL(k), be a trans-
formation group. Our goal is to decide approximately whether G(P, Q, ε,d) 6=

∅, where d ∈ {~dF,d◦
F}. We need to modify the algorithms from Section 3.2

slightly, since the proof of Theorem 6 (and hence Algorithm 8) relies on the fact
that κ(1) = λ(1) = 0, so that q0 is always matched with p0. This only holds for

dF, not for ~dF or d◦
F. For the latter distance measures, we only know that q0

is matched with some vertex pa. Hence, we try each of the m vertices of P if it
can be matched with q0 by computing Projection-Match(P, Q, pa, q0, G, ε)
for each a ∈ [0 : m]. This introduces an extra factor of m to the time complex-
ity of the resulting matching algorithm. Thus, matching approximately with
respect to ~dF or d◦

F under RM(2) or HM(2) can be done in O(m3n2) time;
the resulting approximation property reads analogous to Theorem 6.

15

Finally, we propose a method for finding common subcurves of P and Q.
We restrict our considerations to curves that are not cyclically continued and
define

LCSC(P, Q, ε) := max{b ∈ [0 : m] | ∃ a, c, d ∈ N : a + b ≤ m, c + d ≤ n,

dF(P |[a:a+b], Q|[c:c+d]) ≤ ε}

as the length of the longest common subcurve of P and Q. Stated as a match-
ing problem, we want to find LCSC(P, Q, G, ε) := maxg∈G LCSC(P, gQ, ε).
LCSC(P, Q, ε) can be computed in O(mn) time: we define Li,j := max{b ∈ [0 :
i] | ∃ c ∈ N : dF(P |[i−b:i], Q|[c:j]) ≤ ε} if such b exists and Li,j := −∞ otherwise.
Using dynamic programming, we can compute Li,j for all (i, j) ∈ [0 : m]× [0 :
n] in O(mn) time. Determining the maximum Li,j yields LCSC(P, Q, ε).

Observe that every (P, Q, G, ε)-cell is LCSC(P, Q, ε)-invariant in the sense
that for g ∼P,Q,G,ε g′, we have LCSC(P, gQ, ε) = LCSC(P, g′Q, ε); in fact, we
could use any mapping L : V [0:m]×V [0:n] → R, where R is some totally ordered
set and we have the property that g ∼P,Q,G,ε g′ implies L(P, gQ) = L(P, g′Q).
Due to this invariance property of each cell, we can apply Algorithm 4 again
by computing LCSC(P, gQ) (or, L(P, gQ) in general) instead of deciding
dF(P, gQ) ≤ ε for each cell representative g; the maximum LCSC(P, gQ) over
all g ∈ C yields the longest common subcurve’s length. Since LCSC(P, Q, ε)
can be computed in O(mn) time using dynamic programming, we obtain a
running time of O(m2n2) for G = SC(2) and G = SO(2).

Applying transporter projection for computing LCSC(P, Q, G, ε) gets one or-

der of magnitude more complex than matching with respect to d◦
F or ~dF,

since for the latter distance measures, we used the fact that q0 is matched
with some vertex pa. However, q0 is not necessarily part of the longest com-
mon subcurve. All we know is that some vertex qc is matched with some vertex
pa. Hence, we try all (m + 1)(n + 1) possible combinations of vertices pa and
qc as a substitute for p0 and q0 in Algorithm 8. I.e., we compute Projection-

Match(P, Q, pa, qc, G, ε) for each a ∈ [0 : m] and c ∈ [0 : n]. This results
in a total time complexity of O(m3n3) for finding longest common subcurves
under the groups RM(2) or HM(2).

3.4 Other Transformation Groups and Distance Measures

The algorithms proposed so far rely on the fact that enumerating all (P, Q, G, ε)-
cells can be done efficiently using only basic geometric calculations. This ap-
plies to the groups SO(2) and SC(2). For larger groups and transformations in
higher dimensional spaces, cell enumeration can be done using methods from
algebraic geometry.

16

We consider the case that G ≤ GL(k) is a linear algebraic group [11]. In this
situation, the group G also is an algebraic subset of R

K, for some K > 0. In
addition, the transporter sets are semialgebraic subsets of G: let p, q ∈ R

k

and g ∈ G. As G acts rationally on R
k, each coordinate of p − gq is a

rational function in the K coordinates of g; the coefficients of this ratio-
nal function depend on the coordinates of p and q. Hence, the condition
‖p − gq‖2 ≤ ε2 can be described by one polynomial inequality up,q,G,ε ≤ 0,
with a suitable polynomial up,q,G,ε ∈ R[X1, . . . , XK]. Consequently, the family
(τG,ε

pi,qj
)i∈[0:m],j∈[0:n] of (m + 1)(n + 1) transporters is described by the family

UP,Q,G,ε := (upi,qj ,G,ε)i∈[0:m],j∈[0:n] of (m+1)(n+1) polynomials. For computing
a (P, Q, G, ε)-suptransversal, we use the following result by Basu, Pollack and
Roy [12,13]:

Theorem 11 Let d > 0, W ∈ R[X1, . . . , Xd] and let d′ denote the real dimen-
sion of the variety V = {x ∈ R

d | W (x) = 0}. Furthermore, let U denote a
subset of R[X1, . . . , Xd] with cardinality ` < ∞. Define an equivalence relation
on V by x ∼U,V y iff for all u ∈ U sign(u(x)) = sign(u(y)). If all u ∈ U
have degree at most D, then a (U,V)-suptransversal C can be computed in
O(`d′+1DO(d)) time. Furthermore, |C| is bounded by O(`d′O(D)d).

We use this result as follows: We set V := G and U := UP,Q,G,ε, so that
d = K and d′ is the real dimension of the group variety G. Now, g ∼U,V g′

implies g ∼P,Q,G,ε g′, so that a (U,V)-suptransversal also is a (P, Q, G, ε)-
suptransversal. Hence, a (P, Q, G, ε)-suptransversal can be computed in the
time bounds stated in Theorem 11.

For a fixed linear algebraic group G ⊆ R
K, the time for computing a (P, Q, G, ε)-

suptransversal is O((mn)d′+1), since the degree of a polynomial up,q,G,ε is
bounded by some D > 0, independent of m and n. Since d = K is a con-
stant for a fixed group G, the factor DO(d) is constant as well. For the same
reason, the cardinality of the suptransversal is bounded by O((mn)d′). As a
result, the running time of Algorithm 4 equipped with the above mentioned
technique for computing a (P, Q, G, ε)-suptransversal is O((mn)d′+1). Using
the technique of transporter projection from Section 3.2, we obtain the same
running times for groups G = T (k) o H for matching under H with respect

to dF. For matching with respect to ~dF and d◦
F, the results from Section

3.2 yield a running time of O(m(mn)d′+1). Computing LCSC(P, Q) requires
O((mn)d′+2) time. The implications of these general running times for some
common transformation groups are shown in Figure 3.

Finally, it should be mentioned that Algorithm 4 in combination with the
technique of cell enumeration can be applied to other distance measures be-
tween point sets, such as the directed or the undirected Hausdorff distance
as well as the bottleneck distance; the only requirement a distance mea-
sure d needs to satisfy for the correctness of Algorithm 4 is that every set

17

SO(2), SC(2) RM(2), HM(2) RM(3)

dF O(m2n2) O(m2n2) O(m4n4)

~dF,d◦
F O(m2n2) O(m3n2) O(m5n4)

LCSC O(m2n2) O(m3n3) O(m5n5)

Fig. 3. Running times obtained by our algorithms for the different distance measures
proposed and some typical transformation groups. The running times stated for the
groups RM(2), HM(2) and RM(3) refer to approximate matching algorithms using
the technique of transporter projection.

of (G, ε,d)-matches is a union of intersections of (P, Q, G, ε)-cells. Further-
more, largest common subcurve computation can be generalized as follows.
Given f : V [0:m] × V [0:n] → R with the property that g ∼P,Q,G,ε g′ implies
f(P, gQ) = f(P, g′Q), for all P ∈ V [0:m] and Q ∈ V [0:n]. Then, we can solve
the maximization problem (P, Q) 7→ maxg∈G f(P, gQ) by computing f(P, gQ)
for each g contained in a (P, Q, G, ε)-suptransversal. This way, we obtain ap-
proximate algorithms for finding largest common point sets with respect to the
bottleneck distance, as studied in [14]. For details on this generalized scenario,
including a generalized result on eliminating translation components based on
reference points, we refer to [15].

References

[1] H. Alt, L. J. Guibas, Discrete geometric shapes: Matching, interpolation, and
approximation, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational
Geometry, Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000,
pp. 121–153.

[2] H. Alt, M. Godau, Computing the Fréchet distance between two polygonal
curves, Internat. J. Comput. Geom. Appl. 5 (1995) 75–91.

[3] A. Efrat, P. Indyk, S. Venkatasubramanian, Pattern matching with sets of
segments, in: Proc. 12th ACM Symp. on Discrete Algorithms, 2001.

[4] H. Alt, C. Knauer, C. Wenk, Matching polygonal curves with respect to the
Fréchet distance, in: Proc. 18th Int. Symp. on Theoretical Aspects of Computer
Science, 2001, pp. 63–74.

[5] C. Wenk, Shape matching in higher dimensions, Ph.D. thesis, Freie Universität
Berlin (2003).

[6] M. Clausen, F. Kurth, Content-based information retrieval by group theoretical
methods, in: Proceedings of the NATO Advanced Study Institute on
Computational Noncommutative Algebra and Applications, Kluwer Academic
Publishers, Dordrecht, NL, 2003, to appear.

18

[7] M. Clausen, F. Kurth, A Unified Approach to Content-Based and Fault Tolerant
Music Recognition, IEEE Transactions on Multimedia To appear.

[8] L. Rabiner, B. Juang, Fundamentals of Speech Recognition, Prentic Hall,
Englewood Cliffs, N. J., 1993.

[9] M. Munich, P. Perona, Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification, in: IEEE
International Conference on Computer Vision, Vol. 1, Corfu, Greece, 1999, pp.
108–.

[10] H. Alt, O. Aichholzer, G. Rote, Matching shapes with a reference point,
Internat. J. Comput. Geom. Appl. 7 (1997) 349–363.

[11] J. Humphreys, Linear Algebraic Groups, Springer, New York, Heidelberg,
Berlin, 1975.

[12] S. Basu, R. Pollack, M.-F. Roy, On the number of cells defined by a family of
polynomials on a variety, Mathematika 43 (1996) 120–126.

[13] S. Basu, R. Pollack, M.-F. Roy, On computing a set of points meeting every
semi-algebraically connected component of a family of polynomials on a variety,
Journal of Complexity 13 (1) (1997) 28–37.

[14] C. Ambühl, S. Chakraborty, B. Gärtner, Computing Largest Common Point
Sets under Approximate Congruence, in: Proc. Europ. Symp. Alg., 2000.

[15] A. Mosig, Efficient algorithms for shape and pattern matching, Ph.D. thesis,
Institut für Informatik III, Universität Bonn (2004).

19

