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Abstract. Taking a geometric view on a problem occurring in the context of phylogenetic footprinting, we

study the so-called Best Barbeque Problem. The Best Barbeque Problem asks for simultaneously stabbing a

maximum number of differently colored intervals from K arrangements of colored intervals. This geometric

problem leads to a combinatorial optimization problem, a decision version of which is shown to be NP-

complete. Due to its relevance in biological applications, we propose algorithmic variations that are suitable

for detecting footprint clusters in some real world instances of phylogenetic footprints.

1. Introduction

Alignment algorithms take an important role in many parts of bioinformatics research and its
applications. Aligning nucleotide sequences with established state-of-the-art algorithms (see [10])
is a major ingredient of studying evolutionary development, genome annotation, binding site iden-
tification or phylogenetic footpriting, and numerous other applications in biology. Most alignment
algorithms deal with aligning sequences and are usually founded on dynamic programming tech-
niques. Such algorithms typically construct order-preserving mappings between sequence segments.
If a variable number rather than two sequences are to be aligned, the underlying longest common
subsequence is known to be NP-complete [8].

The biological motivation of alignment tasks usually is to discover what elements have been
conserved due to a certain function exhibited by these elements. The problem that we deal pursuits
the same purpose, namely discovering elements that have been conserved for functional reasons.
In our setting, the underlying structures (and hence the resulting algorithms), however, differ
substantially from the usual notion of alignments: since the elements that we deal with, i.e.,
transcription factor binding sites (occuring as short fragments on genomic sequences), exhibit their
function independent of their order of occurence along a genomic sequence, but rather by occuring
clustered within a genomic region of limited size, we are confronted with a non-sequential alignment
problem. This leads to novel algorithms that we present in this work. As it turns out, the problem
we deal with in general is NP-complete in a similar way as the longest common subsequence
problem becomes NP-complete if a variable number of sequences is involved. However, we identify
algorithms whose time and memory demand is exponetial in (rather subtly hidden) parameters
that are small in practice, and hence we obtain algorithms that are practical for most instances
that occur in biological applications.

The outline of this paper is as follows: In the following two sections, we give a formal problem
description, and provide the basic ideas of the biological relevance of the problem we deal with.
Although our starting point is a string matching problem, it turns out that taking a geometric
point of view is much more convenient in this setting. Our geometric characterization leads to the
Best Barbeque Problem which deals with simultaneously stabbing intervals of the same color from
several interval arrangements and can be rephrased as a combinatorial optimization problem. In
Section 5.1, we show that this combinatorial version of the Best Barbeque Problem is NP-complete.
We then provide branch-and-bound-like algorithms, with some results from a biological application
demonstrating the practical relevance of the problem. Each of these algorithms is exponential in a
different input parameter, hence the algorithms are useful for different types of instances.
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The problem of detecting cis-regulatory modules has been adressed only very recently, see [11, 6].
As opposed to the approaches investigated in previous research, our approach carries the concept
behind multiple alignments into discovering cis-regulatory modules, founded on a novel type of
algorithms.

2. Biological Background

Understanding the mechanisms of gene expression is a major challenge of current genomics.
Transcription in eukaryotic cells is regulated by a complex assembly of proteins that specifically
bind to the DNA. Indeed, experimental evidence from a variety of sources shows that a major mode
of developmental gene evolution is based on the modification of “cis-regulatory elements”, i.e., DNA
motifs that are recognized by components of the transcription complex [3]. The investigation of the
molecular evolution of these cis-regulatory elements is difficult because of the absence of a reliable
“genetic code for non-coding sequences”. Binding sites for transcription factors are usually short
and variable and are thus hard to identify unambiguously, in particular if the transcription factors
involved are not known a priori [14, 7]. It has been noted for a long time, however, that non-coding
sequences can contain islands of strongly conserved segments, so-called phylogenetic footprints [13].
In many cases phylogenetic footprints have experimentally been shown to be indicative of functional
cis-regulatory elements, see e.g. the reviews [4, 5].

Phylogenetic footprints are almost always detected in clusters that comprise multiple transcrip-
tion factor binding sites, each of which is often less than 10 nucleotides long. In order to be
functional, neither the order nor the the orientation of these individual binding sites is relevant,
but merely the fact that they occur clustered. While order and orientation are typically conserved
in homologous genes (i.e., for the same gene in different species), this is not necessarily true for
genes within the same organism that are nevertheless regulated by the same combination of tran-
scription factors. The problem that biologists need to solve in this context therefore is to find a
maximum set of short sequence fragments that occur clustered (i.e., close to each other) on several
large genomic sequence fragments.

3. L-occurences and Interval Arrangements

Throughout this paper, let Σ denote some finite alphabet. When dealing with genome sequences,
we usually have Σ = {C,G, T,A} denoting the four types of nucleotides occurring in DNA. As a
notational convention, let [a : b] := {a, a + 1, . . . , b} denote the integer interval between a and b for
any two integers a, b if a ≤ b. Given an integer µ and an integer interval [a : b], we say that µ stabs
[a : b] iff µ ∈ [a : b]. Furthermore, given a string S = σ1 . . . σn, let [S] denote its length and for any
two integers a, b we write S|a,b for the substring σaσa+1 . . . σb. We say that a string U occurs in T

at position x iff 1 ≤ x ≤ x + [U ] − 1 ≤ n and T |x,x+[U ]−1 = U . Due to the combinatorial nature
of our original problem, all our considerations will refer to integer intervals. Many results that we
obtain, however, hold for intervals over the reals as well.

As mentioned above, footprint regions, i.e., evolutionary conserved sequence parts, are clus-
tered occurences of short fragments along a genome. We formally grasp the notion of clustered
occurences by introducing a cluster length L and say that fragment occurrences are (L-)clustered
if the occurences are contained within an interval of size L along the genome:

Definition 1. Let S = {s1, . . . , sm}, T ∈ Σ∗, L ∈ N and A ⊆ S with |A| =: ℓ. We say that A is an
L-occurence in T w.r.t. S if there is a mapping i : A → N associating an index is with each s ∈ A

such that

(O1) s occurs in T at position is for each s ∈ A and
(O2) |is + [s] − it| ≤ L for all s, t ∈ A.

Correspondingly, we refer to A together with the mapping i satisfying the above conditions as an
L-occurence of A in T w.r.t. S.
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In general, we are interested in finding L-occurences of maximum cardinality.
However, before we turn to the problem that is relevant for phylogenetic footprint cluster detec-

tion – namely finding L-occurences that can be found simultaneously in several genomes T1, . . . , TK

treated in Section 4 – we study the scenario involving a single sequence T . A building block of the
algorithms we develop in the sequel is a certain set of colored intervals. We write colored intervals
as pairs, i.e., ([h : i], c) denotes the interval [h : i] with color c ∈ [1 : m]. Given S = {s1, . . . , sm}
as in Definition 1, we obtain a set of colored intervals in the following way: first, identify each
fragment s ∈ S with a color cs by means of a bijective mapping c : S → [1 : m]. Now, introduce an
interval [p + [s] − L : p] with color cs whenever some s ∈ S occurs at position p in T . We will also
refer to the set of colored intervals

{([p + [s] − L : p], cs) | s occurs at position p in T}

as the set of intervals induced by S in T with cluster length L. These intervals are in fact closely
related to L-occurences in T :

Lemma 2. Let I denote the set of intervals induced by S = {s1, . . . , sm} in T with cluster length
L. Furthermore, let A ⊆ S. Then, the following statements are equivalent:

(1) There is an integer x such that for all s ∈ A, x stabs an interval in I with color cs.
(2) A is an L-occurence in T w.r.t. S.

Proof.
(1)⇒(2): Since x stabs one interval of each color contained in A, x is contained in at least one
interval with color cs, for each s ∈ A. Let [hs : is] denote the corresponding interval with color cs

stabbed by x for s ∈ A. Note that by construction of I, we have hs = is + [s]−L for s ∈ A. Since,
by construction of I, sa occurs at position is for each s ∈ A, condition (O1) of an L-occurence is
satisfied, and it remains to prove that condition (O2) holds.

Note that due to x ∈ [hs : is] for all s ∈ A, we particularly have, for all s ∈ A,

x ≤ is

Now, pick s, t ∈ A arbitrarily. We distinguish two cases, starting with is ≤ it. Then x ∈ [is+[s]−L :
it] implies

x ≥ is + [s] − L.(1)

Correspondingly, x ∈ [it + [t] − L : it] implies

x ≤ it.(2)

If we subtract Eq. (2) from Eq. (1), we obtain

L ≥ is + [s] − it.

Since is ≥ it, we particularly have L ≥ |is + [s] − it|. Furthermore, since we picked s and t

arbitrarily, this proves that condition (O2) is satisfied. The proof for the second case it > is works
correspondingly with the roles of s and t exchanged.
(2)⇒(1): Let A be an L-occurence in T . Then, by condition (O1), for each s ∈ A, there is an
index is such that s occurs at position is in T . Without loss of generality, let

x = min{is | s ∈ A}.(3)

Then, applying (O2), we get

|is + [s] − x| ≤ L.

Dropping the absolute value due to x ≤ is, we get x ≥ is + [s] − L. Together with Eq. (3), this
yields x ∈ [is + [s]− L : is] for all s ∈ A. Since for each s, the latter interval is contained in I with
color cs and is stabbed by x, we are done. �
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Figure 1. Example of an (I1,I2,I3)-barbeque A = {1, 4}, which also is a best barbeque.

Given a set of fragments and a genome, we are particularly interested in L-occurences of maxi-
mum cardinality. Using the above lemma, we can rephrase this problem as maximizing the number
of colors that one can stab in an interval arrangement. In fact, this is better illustrated if we assign
one of m different barbeque ingredients instead of a color to each interval and identify the string T

with a barbeque plate. Then, in order to have a tasty barbeque, our goal is to stab as many differ-
ent features as possible with a skewer by stabbing only once into the plate. If only one barbeque
plate is involved, this constitutes the single person Best Barbeque Problem. Before we generalize
this problem to more than one barbeque plate, we sketch a simple algorithm for the single person
Best Barbeque Problem.

The algorithm is based on sweeping the arrangement I of colored intervals. We call an interval
C a cell w.r.t. C if each x ∈ C stabs the same set of colors and every interval C ′ ⊃ C contains
at least one x′ ∈ C ′ that stabs a different set of colors than some x ∈ C. Each cell C of the
arrangement induced by I is uniquely associated with a set of colors AC – namely, we have j ∈ AC

iff the cell C is covered by an interval of color j. (In fact, we will often refer to a cell simply as a
set of colors). While sweeping over the interval arrangement, we can maintain the number and the
set of all colors active in the current cell together with the maximum number of active colors that
has been encountered in any of the preceding cells. Since between two neighbored cells, at most m

changes between the corresponding sets can occur, all this can be achieved in O(m) time using a
boolean array of length m. Moreover, the arrangement contains at most N := [T ] many cells and
sorting the interval borders takes O(N log N) time, so that we obtain an overall running time of
O(N(m + log N)).

4. The Best Barbeque Problem

The Best Barbeque Problem becomes a much more delicate problem if more than one barbeque
plate is involved. The idea behind the generalization to K barbeque plates is as follows: suppose
we have K guests invited to a barbeque, for each of whom we have prepared one plate with a
selection of our m different barbeque ingredients randomly placed on the plate (where the same
type of ingredient may be contained an arbitrary number of times on the plate). Now, we want
to prepare one skewer for each each guest by stabbing once into each barbeque plate. In order to
treat all our guests as equally as possible, the set of ingredients that is contained on all skewers is
to be maximized. Note that in addition to the ingredients stabbed on every skewer, some skewers
may contain additional features. For an example of the formal definition below, see Fig. 1.

Definition 3. Let I1, . . . ,IK denote K sets of intervals, each interval being assigned a color j ∈
[1 : m]. We say that a set A ⊆ [1 : m] is an (I1, . . . ,IK)-barbeque if for each i ∈ [1 : K] , there is
an integer xi such that for each color a ∈ A, xi stabs at least one interval of color a in Ii.

A barbeque of maximum cardinality will also be referred to as a best barbeque of I1, . . . ,IK .
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This definition immediately suggests to state the following optimization problem, together with
the naturally associated decision problem:

Problem 4. Instance: Integers m,K; I1, . . . ,IK denote K sets of intervals, each interval being
assigned a color j ∈ [1 : m].
Best Barbeque Problem (BBQ): What is the best barbeque of I1, . . . ,IK?
Barbeque Decision Problem (DBBQ): Given an integer θ, is there an (I1, . . . ,IK)-barbeque
whose cardinality is at least θ?

Before we turn to the computational complexity of finding best barbeques, we explain its biolog-
ical relevance using the equivalence of arrangements of colored intervals and L-occurences stated in
Lemma 2: this equivalence tells us that a best barbeque in K sequences corresponds to a clustered
L-occurence that simultaneously occurs in K genomes. This is in fact what biologists want to
find out: whether there is an L-occurence that simultaneously occurs in several genomes and, in
addition, involves a significant number of the candidate fragments sj, then it is very likely that this
clustered occurence constitutes a functionally relevant region. Hence, the fragments involved can
be identified as being functionally responsible for some trait shared by the species corresponding
to the K genomes.

Beyond this biological application, note that the definition of the Best Barbeque Problem nat-
urally generalizes to colored arrangements of arbitrary geometric objects (such as discs or balls in
higher dimension) rather than intervals in one dimension.

4.1. Combinatorial Barbeques. Given a set of colored intervals I, we canonically obtain an
equivalence relation between integers – each integer x stabs a certain set of colors in I; we define
x ∼ y (w.r.t. I) iff x stabs the same set of colors in I as y does. We refer to the equivalence class
of I as the cells induced by I (since, in fact, the equivalence classes result from cells of an interval
arrangement [12]).

Given K sets of colored intervals I1, . . . ,IK , the cells induced by each Ii yield a set of subsets of
[1 : m]. Instead of our original geometric setting, we are now in a purely combinatorial situation: we
only need to work with the sets C1, . . . , CK , where Ci denotes the cells induced by Ii. Corresponding
to the geometric setting, we say that a set A is a (C1, . . . , CK)-barbeque iff for each i ∈ [1 : m],
there is a Ci ∈ Ci such that A ⊆ Ci. It is easy to see that every (I1, . . . ,IK)-barbeque is a
(C1, . . . , CK)-barbeque and vice versa.

Hence, computing the induced cells for each Ii leaves us with the following problem:

Problem 5. Instance: Integers m,K; C1, . . . , CK denoting K sets of subsets of [1 : m], with
λi := |Ci| and Ci = {Ci,1, . . . , Ci,λi

}.
Combinatorial Best Barbeque Problem (CBBQ): Maximize

| ∩i∈[1:K] Ci,νi
|,

with (ν1, . . . , νK) ∈ [1 : λ1] × · · · × [1 : λK ].
Combinatorial Barbeque Decision Problem (DCBBQ): Given an integer θ, determine whether
there are integers (ν1, . . . , νK) ∈ [1 : λ1] × · · · × [1 : λK ] such that

| ∩i∈[1:K] Ci,νi
| ≥ θ.

There are two naive strategies to solve CBBQ (and, correspondingly DCBBQ):

(A1) Enumerate all (ν1, . . . , νK) ∈ [1 : λ1]× · · ·× [1 : λK ] and, for each of these vectors, compute
| ∩i∈[1:K] Ci,νi

|, and keep track of the vector (ν̃1, . . . , ν̃K) that yields the largest cardinality
intersection.

(A2) Enumerate all subsets of [1 : m]. For each A ⊆ [1 : m], check whether there are suitable
indices ν1, . . . , νK such that A ⊆ ∩i∈[1:K]Ci,νi

. Keep track of the largest cardinality subset

Ã for which suitable indices were found.
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Both of these approaches unfortunately lead to exponential time algorithms – the first algorithm
is exponential in K, the second one exponential in m. In fact, we will prove in the next section that
DCBBQ is NP-complete, so that there is little hope to find a polynomial time algorithm. However,
since the problem is of practical relevance, we provide branch-and-bound approaches in Section
5.2, implementations of which demonstrate to be useful in some real world instances with limited
values for m and K. These will be presented in Section 6.3. Finally, we provide an algorithm that
is exponential in another, rather subtly hidden parameter, which is done in Section 6.

5. Complexity and Algorithms

5.1. NP-completeness Results. Our goal in this section is to prove the following:

Theorem 6.

(1) DCBBQ is NP-complete.
(2) DBBQ is NP-complete.

First of all, note that DCBBQ obviously is in NP: given a solution (ν1, . . . , νK), this solution can
be trivially verified by computing the cardinality of the intersection | ∩i Ci,νi

| in O(mK) time. An
analogous argument shows that DBBQ is in NP.

Our reduction from a K-clique in a K-partite graph to CBBQ will start with the problem of
deciding whether there is a K-clique in a K-partite graph. Let G = (V,E) denote an undirected
K-partite graph, i.e., we have V = V1∪· · ·∪VK as the disjoint union of the layers Vi and |Vi∩e| ≤ 1
for any i ∈ [1 : K] and e ∈ E (writing edges of G as two-element subsets of V ). As has been noted
by several authors and formally proved by Azarenok et al. in [2], deciding whether G has a K-clique
is NP-complete.

Given a K-partite graph G, we now construct a collection C1, . . . , CK of subsets of [1 : m] such
that there is a barbeque of cardinality K iff G has a K-clique. We start with defining

N(v) := {w ∈ V | {v,w} ∈ E }

for v ∈ V . Furthermore, for v ∈ V , define Cv := N(v) ∪ {v}. The following Lemma establishes
close connections between the graph G and intersections of the sets Cv:

Lemma 7. Using the notation introduced above, let v1 ∈ V1, . . . , vK ∈ VK . The following holds:

(1) {u, v} ∈ E ⇐⇒ {u, v} ⊆ Cu ∩ Cv,
(2) ∩i∈[1:K]Cvi

⊆ {v1, . . . , vK},
(3) | ∩i∈[1:K] Cvi

| = K ⇐⇒ G has a K-clique.

Proof. (1): Let {u, v} ∈ E. Then, by construction, we have u ∈ Cu and u ∈ N(v), and hence also
u ∈ Cv. This proves u ∈ Cu ∩ Cv. The proof for v ∈ Cu ∩ Cv works analogously, so that we have
{u, v} ⊆ Cu ∩ Cv.
Conversely, let {u, v} ⊆ Cu ∩ Cv. Then, v ∈ Cu implies v ∈ N(u), and hence {u, v} ∈ E.
(2): Let x ∈ ∩i∈[1:K]Cvi

, and assume that x 6∈ {v1, . . . , vK}. Furthermore, w.l.o.g, assume that
x ∈ V1. Then, in particular, we have x ∈ Cv1

. Now, by construction, the only vertex from V1

contained in Cv1
is v1 itself. However, we assumed that v1 6= x ∈ Cv1

, which is a contradiction.
(3): Let | ∩i∈[1:K] Cvi

| = K. Then part (2) of this Lemma implies that ∩i∈[1:K]Cvi
= {v1, . . . , vK}.

It remains to be shown that {vi, vj} ∈ E for all i, j ∈ [1 : K]. To this end, observe that we have
{vi, vj} ∈ Cv1

∩ Cv2
. Using part (1) of this Lemma, this implies {vi, vj}.

Conversely, let {v1, . . . , vK} be a K-clique in G. Then, for arbitrary i, j ∈ [1 : K], we have
vi ∈ N(vj), and hence vi ∈ Cvj

. By construction, we also have vi ∈ Cvi
. Altogether, we obtain

{v1, . . . , vK} ⊆ ∩i∈[1:K]Cvi
, implying | ∩i∈[1:K] Cvi

| ≥ K. Claim (2) of this Lemma immediately
implies | ∩i∈[1:K] Cvi

| ≤ K, so that we have | ∩i∈[1:K] Cvi
| = K. �

Proof of Theorem 6. We start with the proof of (1).
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Figure 2. Constructing a set of colored intervals from a set Cµ = {j1, . . . , jp} ∈ Ci.

Since choosing Ci := {Cvi
| vi ∈ Vi} for all i ∈ [1 : K] together with θ := K gives us an

instance of the combinatorial barbeque decision problem, part (3) of Lemma 7 reduces the decision
problem whether a K-partite graph has a K-clique to the combinatorial barbeque decision problem.
Since the construction can be performed in polynomial time, this immediately yields the desired
NP-completeness proof.

The proof of (2) is rather technical and hence we only provide a sketch. We provide a reduction
from DCBBQ to DBBQ that essentially works as follows: given an instance of DCBBQ with sets
C1, . . . , CK of subsets of [1 : m], we construct an instance of DBBQ of intervals I1, . . . ,IK colored
with [1 : m] that has exactly the same best barbeque. To this end, observe that we can add certain
sets to each Ci without changing the best barbeque: if we have a set M satisfying M ⊆ C for some
C ∈ Ci, then C1, . . . , Ci ∪ {M}, . . . , CK obviously has the same best barbeque as C1, . . . , CK .

We now construct Ii from Ci as follows: let Ci = {C1, . . . , Cλ}. For each µ ∈ [1 : λ], we introduce
|Cµ| =: p many intervals, in a way such that none of the intervals constructed from Cµ intersects
with an interval constructed from any C ′ ∈ Ci other than Cµ. The crucial idea is that the intervals
constructed from Cµ induce a cell that is equal to Cµ, beside a limited number of cells that are
subsets of Cµ (which, as noted above, do not change the best barbeque).

Writing Cµ = {j0, . . . , jp−1}, we construct |Cµ| =: p colored intervals of length m from Cµ,
namely for each r ∈ [0 : p − 1] we introduce the interval [2(m + 1)µ − m + 1 − r : 2(m + 1)µ − r]
colored with jr (see Fig. 2 for an illustration). This way, we obtain an interval arrangement where
2(m + 1)µ − r stabs Cµ. Note that all other cells induced by the p intervals we constructed from
Cµ are subsets of Cµ and hence do not change the best barbeque.

Altogether, the interval arrangements I1, . . . ,IK can be shown to satisfy the following properties:

(i) For each i ∈ [1 : K] and for each C ∈ Ci, there is a cell induced by Ii that equals C.
(ii) For each i ∈ [1 : K] and for each cell A induced by Ii, there is a C ∈ Ci such that A ⊆ C.

Based on these two properties, in turn, one can show that the combinatorial best barbeque of
C1, . . . , CK is equal to the geometric best barbeque of I1, . . . ,IK . �

Note that the above reduction only needs a slight modification to obtain a reduction from DCBBQ
to finding maximum L-occurences: take Σ := {O, α1, . . . , αm}, and, rather than introducing an
interval [2(m+1)µ−m+1−r : 2(m+1)µ−r]in Ii, we place character αr at position 2(m+1)µ−r

in the string Ti. Ti is constructed as a string of length 2(m + 1)|Cµ|. All positions in Ti that are
not filled with a character αr by the above construction will be filled with O. This already yields
the reduction, as can be seen from Theorem 6 using Lemma 2.

5.2. Branch-and-Bound Algorithms. Studying the algorithm specified in the last paragraph
of Section 4.1 in more detail, one realizes that the branch-and-bound principle can be applied as
follows: Suppose we have already found a vector (ν̃1, . . . , ν̃K) such that ∩i∈[1:K]Ci,ν̃i

= θ. Now,
when enumerating index vectors (ν1, . . . , νK), we start with picking ν1, then we pick ν2, and so on.
If at some point, we have picked ν1, . . . , νa (with a < K), and we find that ∩i∈[1:a]Ci,νi

≤ θ, we know
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that no matter how we choose νa+1, . . . , νK , the cardinality of the intersection ∩i∈[1:K]Ci,νi
cannot

exceed θ. In terms of a branch-and-bound algorithm, this means that if t denotes the cardinality
of the best barbeque so far, then | ∩i∈[1:a] Ci,νi

| ≤ t is an upper-bound-criterion for the set of all
instances {(ν1, . . . , νa, µa+1, . . . , µK) | µi ∈ [1 : λ1]}. Whenever the upper bound is smaller than
the best solution so far, this set of instances can be ignored by the algorithm.

As can be easily seen, Algorithm (A1) (as well as the branch-and-bound version) takes O(KmλK)
time, where λ denotes the maximum of all of all λi. In practice, the branch-and-bound version
of Algorithm (A1) applied to the phylogenetic footprinting problem can be observed to yield a
significant speed-up.

We now turn to algorithm (A2), which can also be improved using a branch-and-bound-like
approach. To this end, observe that if some A ⊆ [1 : m] is not an (I1, . . . ,IK)-barbeque, then all
sets A′ with A ⊆ A′ are not barbeques either. In particular, sets that are not barbeques cannot be
best barbeques. In terms of a branch-and-bound algorithm, this means that if we encounter a set
A that is not a barbeque, we do not need to examine the set of instances

{A′ ⊆ [1 : m] | A ⊆ A′}.

As another improvement for Algorithm (A2), note that not necessarily all subsets of [1 : m] need
to be enumerated – one can limit the algorithm to consider only sets A ⊆ [1 : m] such that some
superset of A is contained in at least one Ci. Finally, it is easy to see that, with Λ := |C1|+· · ·+|CK |,
the running time of Algorithm (A2) is O(2mΛm).

6. Variants of the Best Barbeque Problem

6.1. Bounded Differences. In the barbeque-party illustration of our optimization problem, the
optimal solution may sometimes appear rather unfair: although all guests share a maximum number
of equal ingredients, some guests might get a large number of extra ingredients, while others get no
extra ingredients at all. To treat our guests more equally, we might consider to limit the number
of extra features. This limitation, in fact, has further advantages: first of all, the computational
complexity of the problem is reduced – the algorithms we obtain will turn out to be exponential
in the maximum number of extra features rather than the overall number of features. Secondly,
bounding the number of extra features makes sense in our biological problem setting: if there is a
large number of extra features within a cis-regulatory module, this means that within one footprint
cluster, a large number of “foreign” binding sites is present, so that the function of the relevant
binding sites might be disturbed.

In our formal problem setting, we reduce ourselves to considering combinatorial best barbeques
with a bounded number of extra features; our considerations, however, carry naturally to geometric
barbeques as well as to L-occurences.

Suppose we are given an instance of the combinatorial best barbeque problem, together with a
barbeque B = ∩iCi,νi

. The number of “extra” features occuring in Ci,νi
now reads as |Ci,νi

\ B|.
Correspondingly, we say that B is a δ-bounded barbeque if there are indices ν1, . . . , νK sucht that,
for each i, |Ci,νi

\ B| ≤ δ. We now consider δ as an additional input parameter and want to
compute the largest cardinality δ-bounded barbeque. To this end, observe that for δ = 0 and given
an arbitrary B ⊆ [1 : k], we can check in O(Km log Λ) time whether B is a 0-bounded barbeque.
To see this, note that we merely need to check whether B ∈ Ci for each i. Clearly, this can be done
using binary search by canonically identifying a subset X of [1 : m] with a number between 0 and
2m − 1 (where the j-th bit is 1 iff j ∈ X). Since each comparison during our binary search takes
O(m) time, we obtain the running time claimed above.

Now, computing the largest cardinality 0-bounded barbeque is easy: Taking C := ∪iCi, we test
for each B ∈ C and for each i ∈ [1 : K] whether B ∈ Ci. If for some B, we have B ∈ Ci for all
i ∈ [1 : K], we check whether |B| exceeds the largest solution found so far. Doing so for all B ∈ C
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common labels: { , , , }
weight: 88.8204

HsA_13-11.fa

977 1177

MmA_13-11.fa

1008 1208

RnA_13-11.fa

923 1123

common labels: { , }
weight: 59.7469

HfM_13-11.fa

1031 1231

PsA_13-11.fa

7686 7886

LmA_13-11.fa

427 627

Figure 3. A significant cluster of binding sites among evolutionary closely related
species (Human, Mouse and Rat) (left). Searching for the same set of candidate
binding sites in evolutionary more unrelated species, one obtains a smaller and
hence less significant – probably non-functional – cluster (right). Both clusters were
obtained with the implementation of a weighted version of Algorithm (A2).

yields the largest cardinality 0-bounded barbeque. Since we test |C| = Λ many sets B whether B

is a 0-bounded barbeque, so that the overall running time amounts to O(ΛKm log Λ).
This idea carries to finding largest cardinality δ-bounded barbeques. To this end, each of the

sets Ci needs to be supplemented as follows:

C′
i := ∪A∈Ci

∪D∈Pδ(A) A \ D.

Here, Pδ(A) denotes the set of all subsets of A whose cardinality is at most δ. The algorithm
for finding largest cardinality δ-bounded barbeques now works the same way as the algorithm
for 0-bounded barbeques, with C1, . . . , CK substituted by C′

1, . . . , C
′
K and C substituted by C′ :=

C′
1, . . . , C

′
K . Since each |C′

i| is bounded by mδ|Ci|, we obtain a running time of O(mδΛKmδ log(mΛ)).

6.2. Weighted Versions. In this section, we provide a basis to find maximum weighted barbeques.
To this end, given a (finite) set M , define a weighted subset of M as a mapping A : M → R≥0.
Now, given A,B : M → R≥0, we define A ∩ B : M → R≥0 by

(A ∩ B)(i) :=

{

A(i) + B(i) if A(i)B(i) 6= 0
0 otherwise.

The algorithms discussed above carry naturally to the weighted version of the best barbeque prob-
lem resulting canonically from weighted subsets and their intersections. In fact, the practical results
discussed in the following section were obtained with an implementation of such a weighted version.

6.3. Results and Perspectives. As a first and simple example for the application of the BBQ
approach to biological data we consider a particular footprint cluster in the intergenic regions
between the HoxA13 and HoxA11 genes in vertebrates, which have a length between 12000 and
15000 nucleotides. Hox genes are a class of transcription factors that have a crucial role in early
embryonic development [9]. They appear in tightly linked gene clusters. We used the region
between HoxA13 and HoxA11 in K = 3 different species as our genomic sequences, and a set of
m = 15 candidate binding sites obtained with the tool tfsearch [1] on a preselected region of the
intergenic region under consideration, which is supposed to play a role in limb development. See
Fig. 3 for a visualization and brief discussion of the results.

Obtaining the above results (with K = 3, m = 15 and genomic sequences with a length between
12000 and 15000) with an implementation of Algorithm (A2) took few seconds of computation time
on a standard desktop computer with a 2.8 MHz processor. Using the bounded difference method
from Section 6 and using δ = 2 as a bound, even instances with K = 5 and m = 300 can be
computed within below one minute.
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Determining L-occurences as described in this work provide means by which one may discover
structural or spatial features shared by several objects. Looking at Algorithm (A1), the complexity
of the Best Barbeque Problem is somewhat related to finding longest common subsequences [8]:
If the number K of sequences – in our case interval arrangements – is fixed, then there is an
O(NK) time algorithm; if K is an input variable, the problem is NP-complete. Since computing
certain weighted variants of longest common subsequences – multiple sequence alignments – is a
very common and relevant task in computational biology, numerous approximation algorithms have
been developed for this task.

Beside the analogy in computational complexity, it is also important to note the conceptual simi-
larity between multiple sequence alignments and best barbeques: the reason why multiple sequence
alignments take an extremely important place in biological applications is that simultaneous com-
parison of many sequences allows one to find similarities that are invisible in pairwise comparisons.
Now, sequence alignments are always based on finding order preserving mappings between regions
of sequences, so that the concept of sequence alignments cannot be carried into non-sequential
objects. The key difference between multiple sequence alignments and the best barbeque approach
is that the Best Barbeque Problem does not involve a linear order on the objects. This allows a
generalization of a multiple-alignment-like concept to non-sequential structures and objects – as
long as in some way, features are available as the basis for obtaining colored arrangements.
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