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Abstract. Taking a geometric view on a problem occurring in the context of phylogenetic footprinting,
we study the so-called Best Barbeque Problem. The Best Barbeque Problem asks for simultaneously
stabbing a maximum number of differently colored intervals from K arrangements of colored intervals.
This geometric problem leads to a combinatorial optimization problem, a decision version of which is
shown to be NP-complete. Due to its relevance in biological applications, we propose two branch-and-
bound algorithms to detect footprint clusters in some real world instances of phylogenetic footprints.
Finally, we point out other geometric and combinatorial scenarios where optimizing barbeques might be
of practical relevance.

1. Introduction

Understanding the mechanisms of gene expression is a major challenge of current genomics.
Transcription in eukaryotic cells is regulated by a complex assembly of proteins that specifically
bind to the DNA. Indeed, experimental evidence from a variety of sources shows that a major
mode of developmental gene evolution is based on the modification of “cis-regulatory elements”,
i.e., DNA motifs that are recognized by components of the transcription complex [2]. The
investigation of the molecular evolution of these cis-regulatory elements is difficult because of
the absence of a reliable “genetic code for non-coding sequences”. Binding sites for transcription
factors are usually short and variable and are thus hard to identify unambiguously, in particular
if the transcription factors involved are not known a priori [12, 6]. It has been noted for a long
time, however, that non-coding sequences can contain islands of strongly conserved segments,
so-called phylogenetic footprints [11]. In many cases phylogenetic footprints have experimentally
been shown to be indicative of functional cis-regulatory elements, see e.g. the reviews [3, 4].

Phylogenetic footprints are almost always detected in clusters that comprise multiple tran-
scription factor binding sites, each of which is often less than 10 nucleotides long. In order
to be functional, neither the order nor the the orientation of these individual binding sites is
relevant, but merely the fact that they occur clustered. While order and orientation are typ-
ically conserved in homologous genes (i.e., for the same gene in different species), this is not
necessarily true for genes within the same organism that are nevertheless regulated by the same
combination of transcription factors. The problem that biologists need to solve in this context
therefore is to find a maximum set of short sequences fragments that occur clustered (i.e., close
to each other) on several large genomic sequence fragments.

In this paper, we introduce a computational geometry based approach to this question, which
is based on stabbing colored intervals from a certain arrangement of colored intervals partitioning
a genome into equivalence classes. The outline of this paper is as follows: In the following section,
we give a formal problem description, and provide the basic ideas of the biological relevance of
the problems we deal with. Although our starting point is a string matching problem, it turns
out that taking a geometric point of view is much more convenient in this setting. Our geometric
characterization leads to the Best Barbeque Problem, which can be rephrased as a combinatorial
optimization problem. In Section 4.1 we show that this combinatorial version of the Best
Barbeque Problem is NP-complete. We then provide two branch-and-bound algorithms, with
some results from a biological application demonstrating the practical relevance of the problem.
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Each of these algorithms is exponential in a different input parameter, hence useful for different
types of instances. Finally, we discuss a further geometric generalization that indicates other
potential applications of algorithms for the Best Barbeque Problem.

2. L-occurences and Interval Arrangements

Throughout this paper, let Σ denote some finite alphabet. When dealing with genome se-
quences, we usually have Σ = {C,G, T,A} denoting the four types of nucleotides occurring in
DNA. As a notational convention, let [a : b] := {a, a + 1, . . . , b} denote the integer interval
between a and b for any two integers a, b if a < b. Given an integer µ and an integer interval
[a : b], we say that µ stabs [a : b] iff µ ∈ [a : b]. Furthermore, given a string S = σ1 . . . σn, let [S]
denote its length and, for any two integers a, b, S|a,b the substring σaσa+1 . . . σb. We say that
a string U occurs in T at position x iff T |x,x+[U ]−1 = U . Due to the combinatorial nature of
our original problem, all our considerations will refer to integer intervals. Many results that we
obtain, however, hold for intervals over the reals as well.

As mentioned above, footprint regions, i.e., evolutionary conserved sequence parts, are clus-
tered occurences of short fragments along a genome. We formally grasp the notion of clustered
occurences by introducing a cluster length L and say that fragment occurrences are (L-)clustered
if the occurences are contained within an interval of size L along the genome:

Definition 1. Let s1, . . . , sm, T ∈ Σ∗, L ∈ N and A = {a1, . . . , a`} ⊆ [1 : m] with |A| =: `. We
say that A is an L-occurence in T w.r.t. s1, . . . , sm if there are indices i1, . . . , i` such that

(O1) saj
occurs in T at position ij and

(O2) |iν + [saν ] − iµ| ≤ L for all µ, ν ∈ [1 : `].

Correspondingly, we refer to A ⊆ [1 : m] together with indices 〈i1, . . . , i`〉 satisfying the above
conditions as an L-occurence of sa1

, . . . , sa`
in T .

In general, we are interested in finding L-occurences of maximum cardinality.
However, before we turn to the problem that is relevant for phylogenetic footprint cluster

detection – namely finding L-occurences that can be found simultaneously in several genomes
T1, . . . , TK treated in Section 3 – we study the scenario involving a single sequence T . A building
block of the algorithms we develop in the sequel is a certain set of colored intervals. We write
colored intervals as pairs, i.e., ([h : i], c) denotes the interval [h : i] with color c ∈ [1 : m]. Given
s1, . . . , sk as in Definition 1, we obtain a set of colored intervals in the following way: first,
identify each fragment sj with a color j. Now, introduce an interval [p + [sj ]−L : p] with color
j whenever sj occurs at position p in T . We will also refer to the set of colored intervals

{([p + [sj ] − L : p], j) | sj occurs at position p in T}

as the set of intervals induced by s1, . . . , sm in T with cluster length L. These intervals are in
fact closely related to L-occurences in T :

Lemma 2. Let I denote the set of intervals induced by s1, . . . , sm in T with cluster length L.
Furthermore, let A ⊆ [1 : m]. Then, the following statements are equivalent:

(1) There is an integer x such that for all a ∈ A, x stabs an interval in I with color a.
(2) A is an L-occurence in T w.r.t. s1, . . . , sm.

Proof. Let A = {a1, . . . , a`}.
(1)⇒(2): Since x stabs one interval of each color contained in A, x is contained in at least `
intervals [h1 : i1], . . . , [h` : i`], each with color a1, . . . , a`, respectively. Note that by construction
of I, we have hµ = iµ + [saµ ] − L for µ ∈ [1 : `]. Since, by construction of I, saµ occurs at
position iµ for each µ ∈ [1 : `], condition (O1) of an L-occurence is satisfied, and it remains to
prove that condition (O2) holds.
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Without loss of generality, let i1 ≤ · · · ≤ i`. Due to x ∈ [h1 : i1], we particularly have

x ≤ i1 ≤ · · · ≤ i`.

Now, pick µ, ν ∈ [1 : `] arbitrarily. We distinguish two cases, starting with iν ≤ iµ. Then
x ∈ [iµ + [saµ ] − L : imu] implies

x ≥ iµ + [saµ ] − L.(1)

Correspondingly, x ∈ [iν + [saν ] − L : iν ] implies

x ≤ iν .(2)

If we subtract Eq. (2) from Eq. (1), we obtain

L ≥ iµ + [saµ ] − iν .

Since iµ ≥ iν , we particularly have L ≥ |iµ + [saµ ] − iν |. Furthermore, since we picked µ and ν
arbitrarily, this proves that condition (O2) is satisfied. The proof for the second case iν > iµ
works correspondingly with the roles of µ and ν exchanged.
(2)⇒(1): Let A be an L-occurence in T . Then, by condition (O1), there are indices i1, . . . , i`
such that saµ occurs at position iµ in T . Without loss of generality, let

i1 ≤ · · · ≤ i`.(3)

Then, applying (O2), we get

|iµ + [saµ ] − i1| ≤ L.

Dropping the absolute value due to i1 ≤ iµ, we get i1 ≥ iµ + [saµ ] − L. Together with Eq. (3),
this yields a ∈ [iµ + [saµ ] − L : iµ] for all µ ∈ [1 : `]. Since for each µ, this interval is contained
in I with color aµ, we are done. �

Given a set of fragments and a genome, we are particularly interested in L-occurences of
maximum cardinality. Using the above lemma, we can rephrase this problem as maximizing the
number of colors that one can stab in an interval arrangement. In fact, this is better illustrated
if we assign one of m different barbeque ingredients instead of a color to each interval and
identify the string T with a barbeque plate. Then, in order to have a tasty barbeque, our goal
is to stab as many different features as possible with a skewer by stabbing only once into the
plate. If only one barbeque plate is involved, this constitutes the single person Best Barbeque
Problem. Before we generalize this problem to more than one barbeque plate, we sketch a simple
algorithm for the single person Best Barbeque Problem.

The algorithm is based in sweeping the arrangement I of colored intervals. Each cell C
of the arrangement induced by I is uniquely associated with a set of colors AC – namely,
we have j ∈ AC iff the cell C is covered by an interval of color j. While sweeping over the
interval arrangement, we can maintain the number and the set of all colors active in the current
cell together with the maximum number of active colors that has been encountered in any
of the preceding cells. Since between two neighbored cells, at most m changes between the
corresponding sets can occur, all this can be achieved in O(m) time using a boolean array of
length m. Moreover, the arrangement contains at most N := [T ] many cells, so that we obtain
an overall running time of O(Nm).

3. The Best Barbeque Problem

The Best Barbeque Problem becomes a much more delicate problem if more than one bar-
beque plate is involved. The idea behind the generalization to K barbeque plates is as follows:
suppose we have K guests invited to a barbeque, for each of whom we have prepared one plate
with a selection of our m different barbeque ingredients randomly placed on the plate (where
the same type of ingredient may be contained an arbitrary number of times on the plate). Now,
we want to prepare one skewer for each each guest by stabbing once into each barbeque plate.
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Figure 1. Example of am (I1, I2, I3)-barbeque A = {1, 4}, which also is a best barbeque.

In order to treat all our guests as equally as possible, the set of ingredients that is contained
on all skewers is to be maximized. Note that in addition to the ingredients stabbed on every
skewer, some skewers may contain additional features. For an example of the formal definition
below, see Fig. 1.

Definition 3 (BBQ). Let I1, . . . , IK denote K sets of intervals, each interval being assigned
a color j ∈ [1 : m]. We say that a set A ⊆ [1 : m] is an (I1, . . . , IK)-barbeque if for each
i ∈ [1 : K] , there is an integer xi such that for each color a ∈ A, xi that stabs at least one
interval of color a in Ii.

A barbeque of maximum cardinality will also be referred to as a best barbeque of I1, . . . , IK .

This definition immediately suggests to state the following optimization problem, together
with the naturally associated decision problem:

Problem 4. Instance: Integers m,K; I1, . . . , IK denote K sets of intervals, each interval
being assigned a color j ∈ [1 : m].
Best Barbeque Problem (BBQ): What is the best barbeque of I1, . . . , IK?
Barbeque Decision Problem (DBBQ): Given an integer θ, is there an (I1, . . . , IK)-barbeque
whose cardinality is at least θ?

Before we turn to the computational complexity of finding best barbeques, we explain its
biological relevance using the equivalence of arrangements of colored intervals and L-occurences
stated in Lemma 2: this equivalence tells us that a best barbeque in K sequences corresponds
to a clustered L-occurence that simultaneously occurs in K genomes. This is in fact what
biologists want to find out: if there is an L-occurence that simultaneously occurs in several
genomes and, in addition, involves a significant number of the candidate fragments sj, then it is
very likely that this clustered occurence constitutes a functionally relevant region. Hence, the
fragments involved can be identified as a being functionally responsible for some trait shared
by the species corresponding to the K genomes.

Note that the definition of the Best Barbeque Problem naturally generalizes to arrangements
of other geometric objects than just intervals in one dimension. Some further remarks of such
generalizations are given in Section 5.2.

3.1. Combinatorial Barbeques. Given a set of colored intervals I, we canonically obtain an
equivalence relation between integers – each integer x stabs a certain set of colors in I; we define
x ∼ y (w.r.t. I) iff x stabs the same set of colors in I as y does. We refer to the equivalence
class of I as the cells induced by I (since, in fact, the equivalence classes result from cells of an
interval arrangement [10]).

Given K sets of colored intervals, the cells induced by each Ii yield a set of subsets of [1 : m].
Instead of our original geometric setting, we are now in a purely combinatorial situation: we only
need to work with the sets C1, . . . , CK , where Ci denotes the cells induced by Ii. Corresponding
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to the geometric setting, we say that a set A is a (C1, . . . , CK)-barbeque iff for each i ∈ [1 : m],
there is a Bi ∈ Ci such that A ⊆ Bi. It is easy to see that every (I1, . . . , IK)-barbeque is a
(C1, . . . , CK)-barbeque and vice versa.

Hence, computing the induced cells for each Ii leaves us with the following problem:

Problem 5. Instance: Integers m,K; C1, . . . , CK denoting K sets of subsets of [1 : m], with
λi := |Ci| and Ci = {Bi,1, . . . , Bi,λi

}.
Combinatorial Best Barbeque Problem (CBBQ): Maximize

| ∩i∈[1:K] Bi,νi
|,

with (ν1, . . . , νK) ∈ [1 : λ1] × · · · × [1 : λK ].
Combinatorial Barbeque Decision Problem (DCBBQ): Given an integer θ, determine
whether there are integers (ν1, . . . , νK) ∈ [1 : λ1] × · · · × [1 : λK ] such that

| ∩i∈[1:K] Bi,νi
| ≥ θ.

There are two naive strategies to solve CBBQ (and, correspondingly DCBBQ):

(A1) Enumerate all (ν1, . . . , νK) ∈ [1 : λ1] × · · · × [1 : λK ] and, for each of these vectors,
compute | ∩i∈[1:K] Bi,νi

|, and keep track of the vector (ν̃1, . . . , ν̃K) that yields the largest
cardinality intersection.

(A2) Enumerate all subsets of [1 : m]. For each A ⊆ [1 : m], check whether there are suitable
indices ν1, . . . , νK such that A ⊆ ∩i∈[1:K]Bi,νi

. Keep track of the largest cardinality

subset Ã for which suitable indices were found.

Both of these approaches unfortunately lead to exponential time algorithms – the first al-
gorithm is exponential in K, the second one exponential in m. In fact, we will prove in the
next section that DCBBQ is NP-complete, so that there is little hope to find a polynomial time
algorithm. However, since the problem is of practical relevance, we provide branch-and-bound
approaches in Section 4.2, implementations of which demonstrate to be useful in some real world
instances with limited values for m and K. These will be presented in Section 5.3.

4. Complexity and Algorithms

4.1. DCBBQ is NP-complete. Our goal in this section is to prove the following:

Theorem 6. The combinatorial barbeque decision problem is NP-complete.

First of all, note that DCBBQ obviously is in NP: given a solution (ν1, . . . , νK), this solution
can be trivially verified by computing the cardinality of the intersection | ∩i Bi,νi

| in O(mK)
time.

Note that the combinatorial barbeque decision problem easily reduces to DBBQ, so that the
above theorem (in combination with an analogous argument showing that DBBQ is in NP)
implies the NP-completeness of DBBQ as well. Also, given an instance of DCBBQ, it is easy
to construct an instance of a simultaneous L-occurence having the same solution, so that our
original and biologically relevant problem is NP-complete as well.

Our reduction from a K-clique in a K-partite graph to CBBQ will start with the problem
of deciding whether there is a K-clique in a K-partite graph. Let G = (V,E) denote an
undirected K-partite graph, i.e., we have V = V1∪· · ·∪VK as the disjoint union of the layers Vi

and |Vi ∩ e| ≤ 1 for any i ∈ [1 : K] and e ∈ E (writing edges of G as two-element subsets of V ).
As has been noted by several authors and formally proved by Azarenok et al. in [1], deciding
whether G has a K-clique is NP-complete.

Given a K-partite graph G, we now construct a collection C1, . . . , CK of subsets of [1 : m]
such that there is a barbeque of cardinality K iff G has a K-clique. We start with defining

N(v) := {w ∈ V | {v, w} ∈ E }
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for v ∈ V . Furthermore, for v ∈ V , define Bv := N(v) ∪ {v}. The following Lemma establishes
close connections between the graph G and intersections of the sets Bv:

Lemma 7. Using the notation introduced above, let v1 ∈ V1, . . . , vK ∈ VK. The following holds:

(1) {u, v} ∈ E ⇐⇒ {u, v} ⊆ Bu ∩ Bv,
(2) ∩i∈[1:K]Bvi

⊆ {v1, . . . , vK},
(3) | ∩i∈[1:K] Bvi

| = K ⇐⇒ G has a K-clique.

Proof. (1): Let {u, v} ∈ E. Then, by construction, we have u ∈ Bu and u ∈ N(v), and hence
also u ∈ Bv. This proves u ∈ Bu ∩ Bv. The proof for v ∈ Bu ∩ Bv works analogously, so that
we have {u, v} ⊆ Bu ∩ Bv.
Conversely, let {u, v} ⊆ Bu ∩ Bv. Then, v ∈ Bu implies v ∈ N(u), and hence {u, v} ∈ E.
(2): Let x ∈ ∩i∈[1:K]Bvi

, and assume that x 6∈ {v1, . . . , vK}. Furthermore, w.l.o.g, assume that
x ∈ V1. Then, in particular, we have x ∈ Bv1

. Now, by construction, the only vertex from V1

contained in Bv1
is v1 itself. However, we assumed that v1 6= x ∈ Bv1

, which is a contradiction.
(3): Let |∩i∈[1:K]Bvi

| = K. Then part (2) of this Lemma implies that ∩i∈[1:K]Bvi
= {v1, . . . , vK}.

It remains to be shown that {vi, vj} ∈ E for all i, j ∈ [1 : K]. To this end, observe that we have
{vi, vj} ∈ Bv1

∩ Bv2
. Using part (1) of this Lemma, this implies {vi, vj}.

Conversely, let {v1, . . . , vK} be a K-clique in G. Then, for arbitrary i, j ∈ [1 : K], we have
vi ∈ N(vj), and hence vi ∈ Bvj

. By construction, we also have vi ∈ Bvi
. Altogether, we obtain

{v1, . . . , vK} ⊆ ∩i∈[1:K]Bvi
, implying | ∩i∈[1:K] Bvi

| ≥ K. Claim (2) of this Lemma immediately
implies | ∩i∈[1:K] Bvi

| ≤ K, so that we have | ∩i∈[1:K] Bvi
| = K. �

Proof of Theorem 6. Since choosing Ci := {Bvi
| vi ∈ Vi} for all i ∈ [1 : K] together with

θ := K gives us an instance of the combinatorial barbeque decision problem, part (3) of Lemma
7 reduces the decision problem whether a K-partite graph has a K-clique to the combinatorial
barbeque decision problem. This immediately yields the desired NP-completeness proof. �

4.2. Branch-and-Bound Algorithms. Studying the algorithm specified in the last paragraph
of Section 3.1 in more detail, one realizes that the branch-and-bound principle can be applied
as follows: Suppose we have already found a vector (ν̃1, . . . , ν̃K) such that ∩i∈[1:K]Bi,ν̃i

= θ.
Now, when enumerating index vectors (ν1, . . . , νK), we start with picking ν1, then we pick
ν2, and so on. If at some point, we have picked ν1, . . . , νa (with a < K), and we find that
∩i∈[1:a]Bi,νi

≤ θ, we know that no matter how we choose νa+1, . . . , νK , the cardinality of the
intersection ∩i∈[1:K]Bi,νi

cannot exceed θ. In terms of a branch-and-bound algorithm, this
means that if t denotes the cardinality of the best barbeque so far, then |∩i∈[1:a] | Bi,νi

| ≤ t is
an upper-bound-criterion for the set of all instances {(ν1, . . . , νa, µa+1, . . . , µK) | µi ∈ [1 : λ1]}.
Whenever the upper bound is smaller than the best solution so far, this set of instances can be
ignored by the algorithm.

As can be easily seen, Algorithm (A1) (as well as the branch-and-bound version) takes
O(KmλK) time, where λ denotes the maximum of all of all λi. In practice, the branch-
and-bound version of Algorithm (A1) applied to the phylogenetic footprinting problem can
be observed to yield a significant speed-up.

We now turn to algorithm (A2), which can also be improved using a branch-and-bound-like
approach. To this end, observe that if some A ⊆ [1 : m] is not an (I1, . . . , IK)-barbeque, then
all sets A′ with A ⊆ A′ are not barbeques either. In particular, sets that are not barbeques
cannot be best barbeques. In terms of a branch-and-bound algorithm, this means that if we
encounter a set A that is not a barbeque, we do not need to examine the set of instances

{A′ ⊆ [1 : m] | A ⊆ A′}.

As another improvement for Algorithm (A2), note that not necessarily all subsets of [1 : m]
need to be enumerated – one can limit the algorithm to consider only sets A ⊆ [1 : m] such
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that some superset of A is contained in at least one Ci. Finally, it is easy to see that, with
Λ := |C1| + · · · + |CK |, the running time of Algorithm (A2) is O(2mΛm).

5. Variants of the Best Barbeque Problem

5.1. Weighted Versions. In this section, we provide an approach to find maximum weighted
barbeques. We limit our considerations to weighted versions of the combinatorial version of
the Best Barbeque Problem. These carry immediately into weighted versions of the geometric
version and, in particular, to weighted L-occurences that were our starting point. Weighted L-
occurences are highly relevant for detecting phylogenetic footprint clusters: often, the binding
site fragments sj do not occur exactly within the footprint cluster, but with a (limited) number
of mismatches. Correspondingly, the higher the number of mismatches of an occurence, the
lower the weight associated with the occurence should be. This carries immediately to weights
for the intervals induced by s1, . . . , sm and hence to weighted subsets for the cells obtained from
these intervals.

Moreover, longer binding site fragments can be ranked higher by assigning a length-dependent
weight to each sj . (After all, in the barbeque illustration of the problem, we want to rank large
pieces of ingredients higher than small pieces.) Dealing with weighted sets, we now need to
supply a suitable concepts to handle these. In the face of both the definition of the combinatorial
Best Barbeque Problem and Algorithm (A1) being based on set intersections, we provide a
suitable generalization of set intersections to weighted set intersections.

Given a (finite) set M , define a weighted subset of M as a mapping A : M → R≥0. Now,
given A,B : M → R≥0, we define A ∩ B : M → R≥0 by

(A ∩ B)(i) :=

{

A(i) + B(i) if A(i)B(i) 6= 0
0 otherwise.

Note that this operation can easily be seen to be associative. Moreover, define the weight of
a mapping X : M → R≥0 as w(X) :=

∑

a∈M X(a). Using these notions of weighted subsets, the
specification of Problem 5 immediately yields a weighted version of the Best Barbeque Problem:
we now have a collection of K sets of weighted subsets of [1 : m], C1, . . . , CK , and we say that a
weighted subset A of [1 : m] is a barbeque iff there are weighted subsets B1 ∈ C1, . . . , BK ∈ CK

such that A = ∩iBi. The best weighted barbeque of C1, . . . , CK then is the barbeque with
maximum weight. As one can easily see, this maximum can still be found using Algorithm (A1)
which checks all possible combinations of weighted subsets from the different Ci.

5.2. Generalized L-occurences. As already noted above, the Best Barbeque Problem gener-
alizes canonically to arrangements of other geometric objects than just one dimensional intervals.
A reasonable question that arises is to ask whether there are also corresponding generalizations
of L-occurences and Lemma 2 to higher dimensions. In order to at least partially answer this,
suppose we are given K collections of colored points T1, . . . , TK in a metric space X with distance
function d : X × X → R≥0 (such as the two dimensional plain with Euclidean distance), each
point being attributed with a color (where in practice, each color might correspond to a certain
feature). I.e., each Ti is a subset of X × [1 : m]. Given L ∈ R and A = {a1, . . . , a`} ⊆ [1 : m], we
can now say that A is an L-occurence if, in analogy to Definition 1, there are points p1, . . . , p`

satisfying the following conditions:

(O1′) (pj, j) ∈ T and
(O2′) d(pν , pµ) ≤ L for all µ, ν ∈ [1 : `].

Choosing X := R corresponds to substituting the genome string T with the real line and instead
of occurences of some sj, we simply have points on the real line with color j (such that a point
with color j conceptually corresponds to an occurence of a fragment sj of length 0). Now, instead
of assigning the interval [x − L,L], we identify (x, j) ∈ T with the interval [x − L/2, x + L/2],
i.e., the closed L/2-neighborhood of x. (Note that this corresponds to shifting all intervals by
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Hf Ps Lm Xt Gg Hs Mm Rn

Hf -
Ps CES -
Lm * * -
Xt * (CGS) * -
Gg CES (CGS) * CEGSX -
Hs CES (CGS) * CEGPSX CEGMSX -
Mm * * * CEGX CEGX BCEGX -
Rn * (CNPS) * CGPSX CGSX BCGPSX BCGX -

B Brn-2, C CdxA, E Evi-1, G GATA-1, M v-Myb, N Nkx-2, P Pbx-1, S SRY, X XFD-1.

Table 1. BBQ solution for all pairwise comparisons in the Hox example with
L = 200 and m = 15 and no mismatches. A ∗ indicates solutions outside the
footprint cluster displayed in Fig. 2, solutions in parenthesis match this cluster
in one sequence, while the position of the solution interval in bichir sequence,
which does not contain the footprint cluster according to the tracker results, is
located some 8kb downstream of the cluster.

L/2 and does not change the resulting interval arrangement at all.) Given T ⊆ X × [1 : m]
and letting Nε(x) denote the closed ε-neighborhood of x, we now obtain a set of neighborhoods
induced by T with cluster size L, namely

I := {(NL/2(x), j) | (x, j) ∈ T}.

If A denotes some subset of [1 : m], a generalization of Lemma 2 to metric spaces would need
to set up an equivalence between the following statements:

(1) There is an x ∈ M such that for all a ∈ A, x stabs a neighborhoods in I with color a.
(2) A is an L-occurence in T .

Although (1) indeed implies (2), the other direction does not hold in general. However, at
last a weaker version of the reverse direction can be shown to hold: If A is a L/2-occurence,
then (1) follows. Hence, considering the Best Barbeque Problem on the arrangement of all
L/2-neighborhoods at least gives an approximate solution to determining L-occurences in the
generalized sense.

5.3. Results and Perspectives. As an example for the application of the BBQ approach
to biological data we consider a particular footprint cluster in the intergenic region between
the HoxA13 and HoxA11 genes in vertebrates, which have a length between 12000 and 15000
nucleotides. Hox genes are a class of transcription factors that have a crucial role in early
embryonic development [8]. They appear in tightly linked gene clusters. The tracker program
[9] was used to search for phylogenetic footprints in the region between HoxA13 and HoxA11,
and a particular footprint cluster was singled out for further analysis, Fig. 2.

We solved the pairwise BBQP for all combinations of intergenic sequences using the sequence
fragments shown in Figure 2. The results are summarized in Table 1. Generally, the solutions
for comparisons of two tetrapod sequences contain more distinct putative binding sites and all
recover the target cluster shown in Fig. 2. In contrast, comparisons of tetrapods with shark,
bichir, or latimeria recover only a smaller number of motifs which, in addition, are among the
smallest and hence most frequently found ones in the transfac database.

In the result above, we used an implementation of the branch and bound version of Algorithm
(A1), which gives a significant speed up compared to a brute force implementation of Algorithm
(A1). The main reason we computed a maximum L-occurences of two sequences only is that
already for K = 3, the running times were unacceptably high. Each instance involved in the
results above took few minutes of computation time on a state-of-the-art desktop computer.
However, choosing K > 2 or m significantly larger than 15 rapidly increased the necessary
computation time beyond several hours. Since in typical applications, one is interested in much
larger instances (say, K ≥ 6 and k in the order of up to several hundred), there clearly is
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HfM,    949   −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−
PsA,   1467   −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−
LmA,    943   −AAAATTCAG GAATTGATCT TCGGTGCGGC TTTctttcat cacgtaacac gtgaatttac gttttattct gttattaact tggt−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−ATTT AGTACGCTGT GGCAATATAT TTATtatgcg
XtA,    887   −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− TTTTAATCAA A−ATAGATAT TTGAACAAat cattattttc ctggcTTATT CACTCAAAAA TGGTATCTTG TAAATAAt−− −−−−−AAATT AGAGCACCGT GAACGTGTTT TTGTGCACaa

−−−−−−−−>                       <−−−−−−                                       −−−−−−−−−−−−−−>           
Pbx−1                       CdxA <−−−−−−−−−            CdxA           
−−−−−−−>                <−−−−−−−−−−−−− Evi−1         <−−−−−−−−−−−−−−

SRY                Oct−1 CdxA
−−−−−−−−−−−−−−−−−−−−−−−−>       

======================>       S8       
<=========              XFD−1          
GATA−2

<−−−−−−−>                                           
CdxA           <−−−−−−−                             

<−−−−−−−−−−−−−−−−− CdxA                                
YY1                 −−−−−−−−−−−−−−>              

Oct−1                    
GgA,   1209   GGACGTGTAG GGATTCTTTT T−ACAGCACC TTTTAATCCA A−TCAGTTAT TTCAACCAGC ACATTa−TTT TGTTTTTATT CACTATAAGA AGCTATCGTG TAAATAAAag acaacAAATC AGCGCACTGT GAAAATGTAT TTGTGCAC−−

<−−−−−−−−−−−               <−−−−−−−−−−−           <−−−−−−−                        <=========               <−−−−−−−−−−                −−−−−−−>
TATA                       v−Myb                  CdxA   <−−−−−−−                 GATA−1/2                 GATA−1                         CdxA

SRY                            ==============>
<−−−−−−−−−−                                   XFD−1
Evi−1                                 <−−−−−−−
<−−−−−−−−−−−−−                       CdxA
SRY

HsA,   1081   GAAAGATTAG TGATTCATCT TCACAGCACA TTTTTAATCA A−GCAGTTAT TTCAACCAGC ACATTCGTTT TGTTCATATT CACTATAGAA TGATATCTTG TAAATAAAGA C−−−−−ATTC AGCACACTGT GAAAATGTAT TTGTGCAC−−
<−−−−−−−−>                                                                                  <−−−−−−−−−                                         −−−−−−−>
AP−1                                                                                         Evi−1                                                 CdxA

−−−−−−−−−>          ==============>
Pbx−1          <−−−−−−                    −−−−−−−>           XFD−1                                             

<−−−−−−−−−− SRY                            CdxA
v−Myb                                                          <−−−−−−−    

−−−−−−−−−−−−−−−−−−>        CdxA                                                      
<−−−−−−−    Brn−2        <=========   <−−−−−−                                              
CdxA GATA−2       CdxA                          

MmA,   1046   GAAAGTTTAG GGACTCATCG TCACAGCACA TTTTAAATCA A−GCAGTAAT TTCAGTTCAC ACATTCGTTC TGTTCATATT CACTGTAA−A TGCTATCTTG TAAATAAAGA C−−−−−ATTC AGCACACTGT GAAAATGTAT TTGTGCAC−−
<−−−−−−                                               <−−−−−−−−−                                         −−−−−−−>       
CdxA                                                  Evi−1                                                  CdxA

<−−−−−−                                                          <=========  
<−−−−−−−−−−          CdxA                                                            GATA−1/2/3
GATA−1          <−−−−−−−−−−−−−−−−−                                            <−−−−−−−− 

Tst−1                                                         CdxA          ==============>
−−−−−−−−−−−−−−−−−−>                                                                    XFD−1

Brn−2                                                            <−−−−−−−
CdxA <−−−−−−

CdxA
RnA,   1027   GAAAATTTAG GGATTCATCT TCACAGCACA TTTTTAATCA AaGCAGTAAT TTCAATTCAC ACATTCGTTT TGTTCATATT CACTTTAA−A TGCTATCCTG TAAATAAAGA C−−−−−ATTC AGCACACTGT GAAAATGTAC TTGTGCAC−−

<−−−−−−                                             <=========  
−−−−−−−> CdxA                                     <−−−−−−    GATA1/2   

−−−−−−−>                               SRY                                       Nkx−2 <−−−−−−−−           
CdxA                           −−−−−−−−−>                        <−−−−−−               CdxA                  

Pbx−1 SRY                                   <−−−−−−−
−−−−−−−−−−−−−−−−−>                                                            CdxA <−−−−−−

<−−−−−−−   Brn−2                                                                 CdxA
CdxA ==============>

XFD−1

Figure 2. Detailed view of a single footprint cluster in the intergenic region between HoxA13 and HoxA11 in different
vertebrate species (Hf: horn shark (Heterodontus francisci); Ps: bichir (Polypterus senegalus), Lm: Latimeria menadoensis,
Xt: claw frog (Xenopus tropicalis), Gg: chicken, Hs: human, Mm: mouse, Rn: rat). Below each sequence putative
transcription factor binding sites are annotated using tfsearch by a comparison with the transfac database [5]. Note
that transcription factor binding sites are detected only in the five Tetrapoda, while the three more basal vertebrates,
shark, bichir (a primitive actinopterygian fish) and the coelacanth (a sacropterygian fish widely known as “living fossile”)
do not share this particular footprint cluster.
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a demand to develop better algorithms that can handle such instances. However, the results
shown above also indicate that the approach is of high practical relevance.

Determining L-occurences as described in this work provide means by which one may dis-
cover structural or spatial features shared by several objects. Looking at Algorithm (A1), the
complexity of the Best Barbeque Problem is somewhat related to finding longest common sub-
sequences [7]: If the number K of sequences – in our case interval arrangements – is fixed,
then there is an O(NK) time algorithm; if K is an input variable, the problem is NP-complete.
Since computing certain weighted variants of longest common subsequences – multiple sequence
alignments – is a very common and relevant task in computational biology, numerous approx-
imation algorithms have been developed for this task. Being conceptually closely related to
(local) multiple sequence alignments, some of the underlying ideas might carry into approxima-
tion algorithms for determining L-occurences and allow for computing larger instances of the
problem.

Beside the analogy in computational complexity, it is also important to note the conceptual
similarity between multiple sequence alignments and best barbeques: the reason why multi-
ple sequence alignments take an extremely important place in biological applications is that
simultaneous comparison of many sequences allows one to find similarities that are invisible in
pairwise comparisons. Now, sequence alignments are always based on finding order preserving
mappings between regions of sequences, so that the concept of sequence alignments cannot be
carried into non-sequential objects. The key difference between multiple sequence alignments
and the best barbeque approach is that the Best Barbeque Problem does not involve a linear
order on the objects. This allows a generalization of a multiple-alignment-like concept to non-
sequential structures and objects – as long as in some way, features are available as the basis
for obtaining colored arrangements.
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