In silico Evolution of Early Metabolism

Alexander Ullrich

Bioinformatics University of Leipzig

Jena, November 25

Motivation

- Understand evolutionary mechanisms of biological systems
- Study the early development of metabolism
 - not observable by conventional approaches
- Analyse different hypotheses for pathway evolution
 - finding scenarios for observations in present data
- Investigate the emergence of systemic properties
- Answers beyond analyzing real-world data
- \rightarrow a multi-scale computational model of early metabolism

Simulation

- Protocellular entity
- Bag of ribozymes
- Algebraic chemistry model
- Exchange of molecules with the environment

Simulation - Overview

Mapping from Gene to Enzyme - How?

RNA-Sequence

- RNA-Structure
- reduced Structure
- Features
- ITS ID
- ITS
- Graph-rewriting Rule

RNA sequence-to-structure map

- Redundancy: Many more sequences than structures.
- Sensitivity: Small changes in the sequences may lead to large changes in the structure.
- Neutrality: A substantial fraction of mutations does not alter the structure.

Walter Fontana & Peter Schuster, J. Theor. Biol. 194:491-515 (1998)

Reaction Classification

$\mathsf{CH}_3\mathsf{CO}_2\mathsf{Et} + \mathsf{HCI} + \mathsf{H}_2\mathsf{O} \Longrightarrow \mathsf{CH}_3\mathsf{CO}_2\mathsf{H} + \mathsf{EtOH} + \mathsf{HCI}$

Fujita, Hendrickson, ...

From structure to function

Neutrality is higher than in the RNA sequence-to-structure map.

Mapping from Gene to Enzyme - Example

Section	Loop	C-G pair	Neighbor > 5 bp	Bond	Valence	Seq. (loop)	Sequence
1 (red)	yes	0	yes (+1)	1 "-"	2	4	4 = C
2 (blue)	yes	1	no	1 "-"	3	1	3 = N
3 (gray)	no		yes (+1)	1 "-"	3	4	4 = C
4 (yellow)	yes	0	no	0 " "	2	4	4 = C
5 (pink)	no	-	yes (+1)	1 "-"	2	2	2 = 0
6 (green)	yes	0	no	0 " "	2	3	3 = N

AUGAGUAUAAGUUAAAGUAAAGUAAAUGUEUUCCACACAUUECAUGUGAGUUEGAUUCUCACUACUCAU

Chemical Reaction as Graph Rewrite Rule

Graph-grammars are a context sensitive language!

Simulation - Growth

Simulation - Stochastic Network Generator

Faulon, J-L, (2001) J Chem Inf Comput Sci 41:894-908

Simulation - Fitness

- Selection based on produced biomass
- maximizing biomass formation by linear optimization

Analysis

- bidirectional, bipartite graph
- nodes: metabolites, enzymes/reactions
- edges: participation in the same reaction
- dot layout: flow of mass downwards in the graph (if possible)

Union graph

Evolution of early Metabolism

Retrograde Evolution

- End-product can be derived from more and more distant metabolites
- Example: glycolytic pathway, histidine biosynthesis

Forward Evolution

- more efficient extraction through deeper break-down of metabolites
- Example: isoprene lipid pathway

Patchwork Evolution

- Enzyme Recruitment from other Pathways
- Example: TIM β/α -barrel fold architecture in modern metabolism

Patchwork Evolution

• Pyrimidine metabolism (from MANET)

Shell Hypothesis

- A core from which pathways can be recruited
- Example:auto-catalytic core of the reductive citric acid cycle

Results

- Quantitive Analysis
 - Connectivity vs Age (Time of Occurence)
 - Evolution of Pathways (Direction)
- Study on Example
 - Evolution of Pathways (Life-time of enzymes, molecules)
 - Geneaology (History of Genes)

Results - QA

- Highly connected metabolites (hubs) originate from early generations.
- Enzymes from later stages have higher specificty.

Results - QA

- First generations are dominated by forward evolution.
- When a certain network size is reached, enzyme recruitment takes over.
- A core of pathways from early generations is kept.

Results - small Example

• Enzyme pattern similar to forward simulation pattern.

Results - small Example

- Genealogy of catalytic functions and gene dosage over 2000 generations.
- Convergent as well as divergent events.

Emergence and Evolution of systematic Properties

General network analysis

- Connectivity Distribution
 - small vs big
 - early vs evolved
- Centrality, Entropy, ...
 - simulated vs real world

low connected <- node degree -> high connected

Connectivity Distribution

Metabolic network analysis

We have sets of edges forming meaningful complex entities $$\downarrow$$ pathways

- number of pathways \rightarrow flexibilty
- change in case of single/multiple knockouts \rightarrow robustness
- number of acceptable knockouts \rightarrow robustness

Metabolic Pathway Analysis

Metabolic Pathway Analysis

Knockout effects

single

multiple

$R_1 - \frac{\sum_{i=1}^r z^i}{\sum_{i=1}^r z^i}$
r + z
$R_3(k) = \frac{\sum_{i=1}^{3(k)} z^i}{(k)}$
s(k) * z

depletion $R_2 =$ overall $R_3 (\leq$

=	$\sum_{i=1}^{n}$	R_1^i		
_ (≤	п К) =	$\sum_{k=1}^{k}$	$R_3(k)p_k$	(
		k=1		

Example sy	ystem	Number of reactions	Number of elementary modes	$R_{1}(1)$	$R_1(2)$	$R_1(3)$	$R_1(\leq 3)$
1	$\langle \cdot \rangle$	4	2	1/2 = 0.5	$1/6 \approx 0.167$	0	0.414
2	$\overline{\overline{}}$	4	2	1/2 = 0.5	1/4 = 0.25	1/8 = 0.125	0.436
3	\rightarrow	4	2	3/8 = 0.375	$1/12 \approx 0.083$	0	0.302
4	\rightarrow	4	2	1/4 = 0.25	0	0	0.189
5	\rightarrow	8	2	$7/16 \approx 0.438$	3/8 = 0.375	$5/16 \approx 0.313$	0.418
6	\rightarrow	8	2	1/2 = 0.5	$3/14 \approx 0.214$	$1/14\approx 0.071$	0.416
	$\searrow \rightarrow \rightarrow \rightarrow$						
7	\checkmark	5	4	13/20 = 0.65	3/8 = 0.375	7/40 = 0.175	0.573
8		5	3	$2/3 \approx 0.667$	2/5 = 0.4	1/5 = 0.2	0.592
	~						

Minimal Knockout sets

Knockout set size distribution \rightarrow Robustness

Knockout set size distribution

Robustness

Work in Progress

Flux barrier analysis

- linear optimization: EMs modeled as system of linear equations
- constraints: limits on reactions, exclusion of combinations of EMs
- barrier tree

Reaction barrier analysis

- linear optimization: stoichiometrix matrix
- constraints: limits on reactions, exclusion of combinations of reactions
- barrier tree

Flux similarity

- Compute pairwise similarity of elementary modes
- similarity between metabolites (in+out / all) through topological indices
- similarity between enzymes/reactions by comparing transition state structure

Conclusion

Summary

- Computational model of early metabolism
- Insights in evolution of complex system
- Combining different pathway evolution hypotheses
- Explaining hypotheses through scenarios
- Vizualisation + Network analysis
- Emergence and evolution of network properties
- Outlook
 - Investigating further porperties (modularity with organizations)
 - Metabolic neutral network

Acknowledgements

Christoph Flamm Peter Stadler Konstantin Klemm Martin Mann Markus Rohrschneider