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Motivation

Understand evolutionary mechanisms of biological systems

Study the early development of metabolism
e not observable by conventional approaches

Analyse different hypotheses for pathway evolution
e finding scenarios for observations in present data

Investigate the emergence of systemic properties

Answers beyond analyzing real-world data

— a multi-scale computational model of early metabolism
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Simulation

Protocellular entity
Bag of ribozymes
Algebraic chemistry model

Exchange of molecules with the environment
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Simulation - Overview




Mapping from Gene to Enzyme - How?

RNA-Sequence
e RNA-Structure

e reduced Structure

e Features

e ITSID

e ITS

e Graph-rewriting Rule

Phenotype




RNA sequence-to-structure map

e Redundancy: Many more sequences than structures.

e Sensitivity: Small changes in the sequences may lead to large
changes in the structure.

e Neutrality: A substantial fraction of mutations does not alter
the structure.

Sequence Space Structure Space

Walter Fontana & Peter Schuster, J. Theor. Biol. 194:491-515 (1998)
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Reaction Classification

CH,CO,Et + HCl + H,0 == CH,CO,H + EtOH + HCl
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From structure to function
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Neutrality is higher than in the RNA sequence-to-structure map.
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Mapping from Gene to Enzyme - Example
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Chemical Reaction as Graph Rewrite Rule

Cope Rearrangement
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Graph-grammars are a context sensitive language!
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Simulation - Growth
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cyanide, formaldehyde glycol; aldolcondensation, tautomerization
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Simulation - Stochastic Network Generator
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Faulon, J-L, (2001) J Chem Inf Comput Sci 41:894-908
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Simulation - Fitness

\

e Selection based on produced biomass

e maximizing biomass formation by linear optimization
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Analysis
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Visualization

bidirectional, bipartite graph

nodes: metabolites, enzymes/reactions

edges: participation in the same reaction

dot layout: flow of mass downwards in the graph (if possible)
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Visualization

Retrograde Evolution Forward Evolution Patchwork Evolution
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Visualization

Flow Concentration
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Visualization

Flow Concentration
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Visualization

Flow Concentration
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Visualization

Flow Concentration

SOURGE
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Visualization

Flow Concentration
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Visualization

Flow Concentration

SOURGE
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generation 10







generation 66




generation 100
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Union graph
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Evolution of early Metabolism

Time Axis Adapted from
i N. W. Pirie
0° years
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Retrograde Evolution

Biomass Biomass Biomass

e End-product can be derived from more and more distant
metabolites

e Example: glycolytic pathway, histidine biosynthesis
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Forward Evolution

e more efficient extraction through deeper break-down of
metabolites

e Example: isoprene lipid pathway
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Patchwork Evolution

Existing New Existing

e Enzyme Recruitment from other Pathways
e Example: TIM /a-barrel fold architecture in modern
metabolism
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Patchwork Evolution
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e Pyrimidine metabolism (from MANET)
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Shell Hypothesis

*

e A core from which pathways can be recruited

e Example:auto-catalytic core of the reductive citric acid cycle
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Results

e Quantitive Analysis

o Connectivity vs Age (Time of Occurence)
e Evolution of Pathways (Direction)

e Study on Example

e Evolution of Pathways (Life-time of enzymes, molecules)
o Geneaology (History of Genes)
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relative enzyme connectivity

Results - QA

=
5

relative metabolite connectivity
o

e Highly connected metabolites (hubs) originate from early
generations.

e Enzymes from later stages have higher specificty.
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relative abundance
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Results - QA
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o First generations are dominated by forward evolution.

e When a certain network size is reached, enzyme recruitment

takes over.

e A core of pathways from early generations is kept.
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Results - small Example
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e Enzyme pattern similar to forward simulation pattern.
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Results - small Example
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Emergence and Evolution of systematic Properties
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number of nodes

General network analysis

e Connectivity Distribution

e small vs big
e early vs evolved

e Centrality, Entropy, ...

e simulated vs real world

random networks

real networks (scale-free)

84 % of all nodes
are averaged
. connected

number of nodes
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Metabolic network analysis

We have sets of edges forming meaningful complex entities

!

pathways

e number of pathways — flexibilty
e change in case of single/multiple knockouts — robustness

e number of acceptable knockouts — robustness
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Metabolic Pathway Analysis
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Metabolic Pathway Analysis
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Knockout effects
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Minimal Knockout sets

{R5, R6}

NO knockout sets

{R2, R3, R4, R5} {R6, R7, R8}

Knockout set size distribution — Robustness
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Knockout set size distribution
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Robustness = 0.51

Robustness
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Robustness = 0.75

Robustness = 0.67

\

\

Robustness = 0.81
\
\
\

48 /56



Work in Progress
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Flux barrier analysis

e linear optimization: EMs modeled as system of linear
equations

e constraints: limits on reactions, exclusion of combinations of
EMs

e barrier tree
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Reaction barrier analysis

e linear optimization: stoichiometrix matrix

e constraints: limits on reactions, exclusion of combinations of
reactions

e barrier tree
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Flux similarity

e Compute pairwise similarity of elementary modes

e similarity between metabolites (in4out / all) through
topological indices

e similarity between enzymes/reactions by comparing transition
state structure
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Conclusion

e Summary

Computational model of early metabolism

Insights in evolution of complex system
Combining different pathway evolution hypotheses
Explaining hypotheses through scenarios
Vizualisation + Network analysis

Emergence and evolution of network properties

e Outlook

e Investigating further porperties (modularity with organizations)
e Metabolic neutral network
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