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Abstract—One important aspect of computational systems biol-
ogy includes the identification and analysis of functional esponse
networks within large biochemical networks. These functioal
response networks represent the response of a biological stgm
under a particular experimental condition which can be usedto
pinpoint critical biological processes.

For this purpose, we have developed a novel algorithm to cale

late response networks as scored/weighted sub-graphs spead by
k-shortest simple (loop free) paths. Thek-shortest simple path
algorithm is based on a forward/backward chaining approach
synchronized between pairs of processors. The algorithm ates
linear with the number of processors used. The algorithm
implementation is using a Linux cluster platform, MPI lam
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and modeling of biological processes and systems by a multi-
level/multi-science approach. One particular emphasthimvi
system biology lies on the understanding of the molecular
'omic’ foundation of a phenomenological systems response.
One particular molecular 'omic’ dataset encompasses tran-
scriptomic expression data. With advanced techniquesdior ¢
centration measurements of macromolecules being dew&lope
time series of mMRNA concentrations for whole organisms are
now available. A potential phenomenological systems nespo
could be the host response against viral infection, as Itheil
introduced as application in section IlI.

and mpiJava messaging as well as the Java language for the Qne particular goal within systems biology is to develop the

application.
The algorithm is performed on a hybrid human network con-
sisting of 45,041 nodes and 438,567 interactions togetheritiv
gene expression information obtained from human cell-lins
infected by influenza virus. Its response networks show theaely
innate immune response and virus triggered processes withi
human epithelial cells. Especially under the imminent thret of
a pandemic caused by novel influenza strains, such as the cemt
HAIN1 strain, these analyses are crucial for a comprehensive
understanding of molecular processes during early phasesfo
infection. Such a systems level understanding may aid in the
identification of therapeutic markers and in drug development
for diagnosis and finally prevention of a potentially dangepus
disease.

Index Terms—Biological and numerical parallel computing;
k-shortest path; response network; host response; infeatius
disease; systems hiology, influenza virus

I. INTRODUCTION

capability for analyzing biological interaction networs they
record the response of a biological system to differentrexte
nal conditions. These so callddnctional response networks
represent the response of a biological system under a partic
ular experimental condition which can be used to pinpoint
critical biological processes. Groundwork with respecthe
analysis of such response networks has been laid in seminal
contributions from Idekeet al. [8], [9] and Zienet al. [18].

This capability is of great importance for the understagdin
of system behavior. We have developed these approaches
further by including mathematical methods for the compeeat
analysis of response networks between different expetithen
conditions [3]. Algorithmically, our original approachlimsed

on solving the k-shortest simple path problem originally
introduced by Hershberger and coworkers (2003) [6]. Fhe
shortest path problem tries to find a set of paths, beginning
from the shortesti = 1), second shortest(= 2) up to the

Systems biology addresses a novel approach to study, akahortest paths, between a pair of nodes in a network. These

lyze and, finally, control biological systems. Unlike tréaainal
research that typically focus on single genes, systemsdyol

paths can be weighted and may or may not be loop free. The
stricter version of thé-shortest simple path problem prohibits

as coined by Leroy Hood, President and Director of theops along such paths.
Institute for Systems Biology, studies complex interattio We have successfully applied the method of response net-

of all levels of biological information; genes, transcigpt

work calculations in the case of stress and drug response

factor binding sites on genomic DNA, RNAs, proteins, protei(ibidem) as well as fatty-acid metabolism in the microbial
complexes, information and biochemical networks. With theathogerMlycobacterium tuberculosig 3].

plethora of interaction and network information availatlew

Genomic technology is now following a faster version of

high-performance analysis tools are required to study suthoore’s law’ for advances in semiconductor technologythwi
large and complex data-sets with 100,000s components dhe resolution for a given cost doubling in less than a year.

connections.

These advances in technology have induced an incredible

Research in Systems Biology is aiming at the understandiimgrease of available sequence information alone. TheoNati



Center of Biotechnology Information (NCBI) at NIH reports Start
to house almost 100 million sequences contributing to 100
billion DNA base pairs. Complete genome information of

more than 800 organisms is available. With respect to other

“omic” information, almost 400,000 gene-expression saspl
have been submitted to the Gene Expression Omnibus (GEO) Construct
repository at NCBI. PathGuide [2], a pathway resource and Network

interaction database tracking site, reports almost 1@&0satall Gene
molecules and 21 million genes and proteins interacting in expression
139,000 pathways and 35 million interactidnghus there Data /
exists the dire need for high-throughput analysis algorih Init/Weight
that are able to process this plethora of available sequamte Network

interaction information. The k-shortest paths problemgsi

known network optimization problem whereby the k shortest

<

paths between two nodes of a network are ranked. Numerous "
approaches fok-shortest path algorithms are available in the

literature, also implementations in parallel exist [5]5[10ur Set Parameters
program, which is constrained to loopless paths, is unique b Seed Nodes

allowing for remote parallel computation without the nedd o
a shared memory between the different processors.

The paper is structured as follows. It will present a new /
method for analyzing biological response data, such asethos Compute
from gene-expression arrays, by combining it with compu- Subnetwork

tationally derived network information. This method wis
a weightedk-shortest simple path algorithm. The paper will

discuss a particular implementation of this algorithm in a /
parallel computing environment. Specifically, it will inttuce End/
methods for constructing network maps from “omic” data Iterate

(Section 11-A), discuss how seed nodes for the computa-

tion of a subnetwork are chosen, evaluated and optimizg'oa{sgmo
(Section 11-B). Finally, the paper elucidate the algoritfion

finding k-shortest simple paths (Section 1I-C) and issues of the
parallel implementation (Section 1I-D). The impact of thes
studies will be the identification of response networks inyve €nzymes, has been used in textbooks for decades. For example
large network maps with potential applications for biokzgi the ornitine cycle that is responsible for urea synthesis in

Overview of the architecture of our approach. Thegioriand
n of the “Omics™-Data is explained in SectiopAll

systems modeling and analysis. living cells has been discovered by Krebs and Henseleit in
1932 [11]. Alternative, more recent, representationsuidel
Il. METHOD AND IMPLEMENTATION enzyme centered networks with enzyme as nodes and utilized

In the following, we give an overview of the architecture othemicals as edges between corresponding enzyme pairs have
our approach (see Figure 1) and describe the different tsspdreen defined [17]. More comprehensive representations of
of the algorithm to compute response subnetworks by spgnnimetabolic networks are based on Petri-Nets [14] or hyper-
k-shortest simple paths and its implementation in paradlso( graphs [17].

see Figure 3). In this study, we are considering enzymes and other proteins
as the most relevant objects for the response network compu-
) ] ) _ tation. Hence, nodes in the network represent proteinsen th
_ The systems that we want to investigate, e.g. interactiopgnective observed system. The information about the-abun
in cells responding to viral infects, stress or drug targe#® yance of proteins in a system can be gathered from sources
be represented as networks. Thus, the first step is to COOSU o otein-protein interactions or metabolic reactiohstther,
these networks using several kinds of data about the Systefflere are three types of interactions/relations betweeseth
Biochemical networks have been represented by differgfiiieins that we determined as important for the task oftiigdi

nof[ations across_science discip_lines. Particularly.tlpeet?cen-. response networks. Thus, we regard three different types of
tation of metabolic pathways, with nodes presenting chal®ic ;1< which will be annotated as particular edge properthin

and edges referring to chemical transformation catalyaed Rework. Having different types of labeled interactiongtie

Lhitp://www.ncbi.nlm.nih.gov/Genbank/genbankstatalht petwork is of significant advantage C(_)mpared to_ typ|calqprnt
2http:/Avww.ncbi.nlm.nih.gov/geo/query/browse.cgi interaction networks that do not provide further inforroaton
3http://www.pathguide.org/statistics.php the type of interactions.

A. Network Construction



Links of the first type are protein-protein interactiongnd the comparison sample that was collected under special
between the proteins represented by connected nodes. Toeditions, e.g. stress, drug insertion, or viral infectidhe
information about these interactions is extracted fronrees latter sample type can be a single measurement or a time-
in literature, e.g. by automated or curated natural languageries of gene expression measurements. The values of the
processing systems, such as iHOP by Hoffmatral. [7], comparison sample are normalized relative to the reference
and special interaction databases BioGRID16], (DIP°, sample, i.e. values are equal or greater than zero; values
IntAct [10], or derived from annotated genomes. Proteimelow 1 indicate down-regulation; values above 1 indicate
protein interactions play vital roles in most processesviridg  up-regulation. The normalized expression values, fiodd-
cells, e.g. kinases in signal transduction as a special. cagdganges are used directly as node weights. For the edge
The latter have been identified by predicting in vivo kinaseveights, expression values for both adjacent nodes ara take
substrate relationships, that augment consensus motifs wihto account. If only one value per node is available, a sempl
context for kinases and phosphoproteins. Another intieigstlog cost is used, which is the logarithm of the sum of the
relation between proteins is their cooperation in metaboliwo values (Equation 1). Some more complex cost functions
pathways. Therefore, we use data about metabolic reacti@as be chosen, but are not explained here. For time-series as
from specialized databases (BioCy&«EGG') to form the values, the Pearson correlation (Equation 2) defines the cos
links of the second type. For the network, this implies thdtinction for the edge weights. Sometimes it is useful to use
two nodes are connected if their respective proteins haee dorward or backward Pearson correlations (Equation 3, 4).
or more metabolites in common. Finally, we consider also

gene-regulatory interactions from a variety of data-sesirc LO(X,Y) = log(|X +Y) 1)

by focusing on causal relationships such as “activatiord an

“inhibition”. _ (E(XY) - E(X)E(Y))
Considering all different types of connections, as mergibn PC(X,Y) = Var(X)Var(Y) 2)

above, potentially induces more than one edge between a pair

of proteins. For example, between the “v-yes-1 Yamaguchi sa FPC(X,Y) = PC(X@™y®n-1) (3)

coma viral related oncogene homolog” (Lyn) and “hematopoi-
etic cell-specific Lyn substrate 1” (Hclsl) are seven intera
tions reported; one protein interaction identified by Affjri BPC(X,Y) = PC(Y®m xn=h) (4)
(;apture Western and reported_by B'OGR.ID.’ three |nter. efinition A network here is a directed, weighted graph=
tions recorded by IntAct - physical association by 2-hybri . :

S . L > (V,E, f,g) comprising a set of vertices (noddg)and edges
and anti bait co-immuno precipitation, one co-localizatio

. ; . : . : jnks) E C V x V. Heref : V — R is a mapping that
by imaging techniques and one direct interaction by a pLiLsigns each nodee V its normalized expression value (or
{

down experiments. The seventh interaction has been peedic . . X
. ) o : : e mean of its values) as weight. The mappingE — R
by computational methods with directional information ang . . .
efines for each edge= (v,w) € E a weight according to

has been rep.orted by Networkin; a phosp.horllzatlon of ﬂ%ﬁe expression values of its nodes. For this mapping one of
phosphoprotein Hcls1 by the Tyrosine-protein kinase Lyn. the above functions (LC,PC,FPC,BPC) is chosen,

Some of the extracted information described above is dis-
carded before constructing the network. For each protein-Some additional data structures are build up during the
protein interaction aZ-score, indicating similarity betweennetwork construction. For every node in the network the
the two proteins, is calculated. Links are only added to themeapestincoming and outgoing links and pathways aredstore
network if they are below the threshold < 2. Also the set Hence we have four maps with information for all nodes. The
of metabolic reactions is reduced before implementing themaps for links and pathways contain similar informatiorha t
as links. If two proteins have a highly abundant metaboliteeginning, but the pathway map is updated during the pathway
such as ATP or Water, as their only common substrate, this ligeneration algorithm (Section 1I-C). The number of chetapes
will not be further regarded. To be exact, we have removed &tks and pathways that is stored is defined by the user.
chemicals from reactions between enzymes that do not g#ansf ) ) o
carbon-atoms, according to Ma & Zeng [12] and Arita [1]. B. Sub-network Choice, Evaluation and Optimization

The next step of the network construction is the addition Since we do not want to regard the entire network, we
of weights for nodes and links. The information for thehoose a set of corner points which we will call seed nodes.
weights is thereby derived from gene expression data frohhe set of seed nodes either stems from a prior analysis of
cells of the observed system. Ideally, two different measurthe network or an arbitrary number of nodes with the highest
are processed, a reference sample with normal conditiomede weights is chosen, which is then further improved. From

these seed nodes we will span the sub-network. For this aim,

:Egpfx‘é"_w"(;"thebig_gridl'orgd/ o/ we build all possible pairs of seed nodes and generaté-the
Ghugz//b:g'cy?;e(;?;/lluc a.ecuidip shortest simple pathways between them (Section 11-C). @hos
Thitp:/Avww.genome.jplkegg/ pathways are then used to build up one particular sub-n&twor

8http://www.pathguide.org/ of the original network.



As described above (Section II-A) all links are assigned
weights from which we can calculate the pathway cost, as
we will see in Section II-C. To obtain a score for the sub-
network, the costs of all relevant pathways that make up the
sub-network are summed up.

Assigning scores to the sub-networks allows for compariso
of sub-networks spanned from different seed node sets. The
first use of this will be to check to what extent the currentisee
nodes contribute to the sub-network score. If the contidiout

of a node is zero, this node will be discarded from the seed
node set. Further, we can apply evolutionary optimization
algorithms, such as simple hill-climbing, Monte Carlo S¢ar

or Genetic Algorithms on the seed node set, using the sub-
network cost as the fitness function. Seed nodes with low
contributions will be exchanged with nodes apart from the (a) (b)
seed nodes. If the new sub-network has a higher score, the
replacement becomes permanent. Repeating in this way, th
optimal sub-network can be found.

C. k-shortest simple Path Algorithm

After determining the seed nodes and building all-to-all
pairs, thek-shortest simple pathways (see Definition below)
are generated in a forward/backward chaining approach.
Starting from two opposite nodes, the seed and the target
node, we expand the pathways that span between them
(Figure 2b). In the network construction step (Section
[I-A) we created sets with shortest outgoing and incoming
connections. From the seed node we will expand all links
from the outgoing set. Accordingly, for the target we expand
by the incoming link set. The nodes that were added during
insertion of links to the seed node are now checked with all (© (d)
nodes connected to the target node. If a node is found that
is part of pathways to both, seed and target node, then thos
pathways are connected, evaluated and stored (Figurerfc). |
the next steps this procedure is repeated until no new nodes
can be added anymore or the pathway lengths reach a certain
user-defined threshold (Figure 2c-e). In each step the numb
of pathways from the seed or to the target, respectively, i
reduced to a certain number, that is again specified by the
user, before starting the next expansion cycle. Only theesod
added in the previous step are considered for the expansion.
Further it is ensured that no duplicate nodes are inserted in
a pathway.

If a common node is found by the forward chaining from the
source and the backward chaining from the target, all pessib
combinations between pathways from source to the common
node and pathways from the common node to the target node ) ()

are generated. This means, if we hawepathways ending

in the common node and pathways originating from the Fig. 2. k-shortest simple Path Algorithm. Dark Red = Seed Node, Déuk B
common nodem xn Comp|ete pathways are produced. = Target NOd(.?, Red = Expanded Nodes (forward)_, Blue = Exphmidiades
Redundant pathways are avoided by assigning unique path mg:gg: 'g?gése:d gﬁﬁiﬂ '}‘\IOO%‘ZS ,(fggtvﬁ\:fa)il L,l,gorgf't’ae) d{fg ms
ID's. The ID of a complete pathway is a combination ofetwork; (b) First Step: Expansion from Source and TarggtSecond Step:
the ID’s of its two intermediary pathways, from source tdreduction to k’-shortest pathways (k'=4) and Expansiost ftommon Node

reen) found; (d) Third Step: Reduction + Expansion, CommNode found;
common node and from the common node to the targ{%) Fourth Step: Reduction, no new Expansion; (f) The foughted shortest

respectively. The check for duplicate nodes is done inthlici pathways through the network.
During the expansion steps it is always ensured that the




1. Sub-network choice . .
2. Sub-network evaluation the sub-network handling (Section 1I-B) and the forward

3. Sub-network optimization and backward chaining routines (Section II-C). There is one
master process responsible for the sub-network handlidg an
all other processes will be assigned either a forward chgini
task or a backward chaining task. The network construction
(Section II-A) is executed by all processes in the beginning
The communication between the single processes can be
described as follows (Figure 3). After the computation
of the seed node pairing, the master process assigns the
task by sending to each process the information about its
appointed role (forward or backward chaining), the seed
nodes for this process and the corresponding partner goces
as well as the address of the partner process for the further
Candidate Node message i_nteracf[ion between forward and backward process.
1. Pathway generationf} 1. Pathway generation In return it receives acknowledgments of start and end of
2. Connect Pathways the computation from the respective processes. Using this
Fig. 3. Overview of tasks and message passing. In circlesharelifferent information, the master process builds up and maintais lis
process roles. Numbered are the tasks for each role. Edgesimethe content Of free and busy processes needed for the next round of
and direction of the passed messages. assigning seed node pairs. After all pathway generatidstas
are done, every process sends thghortest simple pathways,
] ) ) ] stored throughout the computation, to the master process.A
intermediary pathways do not contain duplicate nodege fina| step, the single-shortest pathway sets are combined
Additionally, by determining common nodes in the forwarghi one graph representing the response network.
and backward chaining procedures we make sure that R&qitional communication is performed between the process
common node is the only intersection of the two pathwaygyirs je. the process responsible for the forward chginin
that are being combined. Hence, we generate simple (1098t (source) and the corresponding process for backward
free) pathways. . chaining (target). After receiving the necessary infoiiorat
Finally, the cost of all pathways is calculated and thgnqt the appointed task, as described above, the processes
pathways are sorted by their cost. The cost of a pathwg¥nerates and expands theshortest simple pathways. With
p is computed from the sum of the costs of all its linkg,ch expansion cycle, the backward chaining process sends
l € Ly, divided by the pathway length (|, the number of 4 newly discovered nodes, one by one, to the partner
links). Optionally, the former term can be divided by & pow&f,ocess. The forward chaining process then checks if the
|L|*, with the pathway length as the base and a real numhgEeived nodes occur in any of its pathways. It returns all
k >0 as the exponent, if longer pathwayst 1) or shorter tq,nd pathways in separate messages, or one message stating
pathways § < 1) are preferred. that no pathway was found. Finally the backward chaining
ZZGLP LinkCost(l) process sgnds a notifica_ltion message to its partner when it
PathwayCost(p) = - (5) is done with the expansion, such that both process can stop
L] their computation.
From the final sorted list of pathways, the top k pathways are
returned to the sub-network handling.

Master
Process

Seed + Target Seed + Target

All Pathways

Yes/No + Pathways

Forward
Chaining

Backward
Chaining

IIl. APPLICATION

D. Parallel Implementation We have applied the algorithm to analyze response net-
The kPathA program is implemented in Java, using mpiJawmrks with respect to human host response against avian flu
for the communication between the parallel processing siodafections. For this purpose, Normal Human Bronchial Ep-
It is written for the use on Linux clusters, but worksthelial Cells (NHBE) have been infected by H5N1 influenza
on several other platforms as well. The requirements fairus with a Multiplicity Of Infection (MOI) of 0.01. Gene
the platforms are working LAM/MPI or MPICH/MPI expression data has been obtained by using an Agilent DNA
packages and the restrictions of the respective packagesp 24h after Mock infection (no influenza infection base)i
The information exchange between the processes is damal after infection with HSN1 virus. Gene expression values
exclusively by message passing, thus, no shared membave been normalized and p-values calculated using a one-
is needed. Therefore, kPathA allows for real remote amsdmple Student’s t-test according to Agilent. Only datahwit
distributed computing. p-values below a certain cutoff value were deemed to be
Although kPathA can be run on an arbitrary numbestatistically significant. The cutoff value was chosen stint
of parallel processes, a minimum of three processes léss than one false positives can be expected per experiment
suggested, since three different roles will be assigned fas outlined in section II-A, we used normalized expression
the three distinct parts of the algorithm. These parts avalues between Oh and 24h (fold-changes) as node weights
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Fig. 4. Human response network after 24h of H5N1 influenzeciidn measured against Mock infection. The cell cycle radling genescdk2 and thecdc
genes are prominently expressed and up-regulated by viegation, whereas the anti-inflammatory response g¢negjun are down-regulated. Red nodes
refer to up-regulated genes, blue nodes denote down-teduigenes, white nodes indicate genes with no changes inexgnession. Yellow edges refer to
high edge scores. Arrows denote metabolic reactions, rveips stand for protein-protein binding, diamonds it activation, Ts indicate inhibition of
gene expression, circles refer to phosphorylation.

in the constructed human network. In the case that geti@n modulates the cell cycle control and induces apoptogis
expression for a particular gene has not been measured ordék cycle arrest. The transcription factors Egrl, Jun aod F
measurement has been determined to be insignificant, a fadde early responders during infection, inflammation aneioth
change ofl, i.e. no change between baseline and measuremeellular stress. Influenza infection seems to inhibit thdyea
was assigned for this particular gene in the network. As viemune response triggered by this group of defense genes. A
were focusing on a single normalized measurement at 24h, similar response has been reported by Djawnal. (2007)
were using a simple log cost (Eg. 1) to assign edge weightsfter infection with the lymphocytic choriomeningitis ug
. . . . LCMV) in a monkey model for Lassa fever [4]. Interested
Figure 4 ShOWS a simple response network using this d areport with this respect is a regulatory network identifie
after cal_culatlon by kPathA. The network has been pf“r_‘%‘% Djavani et al. that includes Egrl, Egr2, Fos, Jun and
by allowing a maximum Oﬂ? " 3 paths b_etween e_ach pairp gs2 (Figure 5). In contrast to Djavaat al, Ptgs2, lllra
of seed nodes and by resricting the maximum -vvelg.h.ted Pl 111r12° are up-regulated. These results indicate moderately
lengthl to 13 or shorter. The response network identifies WQitterent host responses during different viral infecticeven

well known processes affected by viral infections - immunﬁ)r such a compact and highly connected network of major
response and cell cycle activation. The cell division Cyc'ﬁost responding genes

regulators (Cdc6, Cdca5 and Cdc45l) are prominently acti-
vated together with the minichromosome maintenance prtei
(Mcm10, Mcm6, Mcm2). It is know that influenza virus infec- °Not shown: as well as 111r2



modating weighted directional networks with differentégmof

s S interactions. Weights have been calculated from expettahien
expression data by utilizing a variety of scoring functions
including arithmetic and geometric mean between exprassio
levels of connected genes or correlation functions in trse ca
of time-resolved expression data.

The kPathA program has been implemented in Java, using
mpiJava for the communication between the parallel precess
ing nodes. It has been written for the use on Linux clusters, b
can easily be implemented on several other platforms throug
LAM/MPI or MPICH/MPI as well. The information exchange
between the processes is done exclusively by message pass-
ing, thus, no shared memory is needed. Therefore, kPathA
allows for real remote and distributed computing such asl Gri
Computing, for example.

— < We have tested the algorithm on a Fedora Linux compute

cluster with up to 15 CPU$ (2x3.0 GHz and 4GB). Data
) _ for the computation originates from a hybrid human network
Fig. 5. A sub-network of the response network from Figure dp@r left = oqngisting of 45,041 nodes and 438,567 interactions and
corner) reveals interactions between the major gene ptedaffected by L . . ! .
virulent infections. This network is in accordance with tig 5 of Djavaniet J€N€ expression information obtained from human celkline
al. (2007) [4]. In contrast to Djavaret al, Ptgs2, Ilira and Il1ri1 (not shown: infected by influenza virus. Speedup of the computation is
as well as Il1r2) are up-regulated. Egrl, Egr2, Fos, Fosbtrarescription |inear for large cut-off values for the maximal path-length
factors. Ptgs2 encodes prostaglandin-endoperoxide aymt, IL1A/B code .
for interleukin 1 and I11rl1 belongs to the interleukin 1 eptor famiy. ( (Figure 6). For shorter cut-off values the processes spend
Color coding is according to Figure 4. Oval nodes refer to &s@mtology most of their time in message passing and negotiating with
terms of the “Biological Processes” sub-ontology with dalarrows to the the master node due to unsuccessful path-connection betwee
corresponding genes. )

the forward and backward chaining processes.

Overall, we have developed a novel algorithm, kPathA, for
the k-shortest simple path problem that is capable to identify
response networks in large biochemical network maps. We

1000

I - have tested kPathA on a large human network together with
800 =12 human host response against viral influenza infection deszbr

- by gene expression experiments.
6001 These response networks provide a window into potential

cellular processes during the early innate immune respamde

virus triggered processes within human bronchial epigthel

cells (Figure 4), e.g. for the identification of essentigjuia-

tory networks during early virus infection response (Fegbr

Especially under the imminent threat of a pandemic caused

by novel influenza strains, such as the current HIN1 strain,

| these analyses are crucial for a comprehensive understandi

R A P of molecular processes during early phases of infectioohSu
a systems level understanding will aid in the identificatidn

Fig. 6. The reduction of computation time by parallel congpion. For therapeutic markers and in drug development for diagnasis a

extensive computations, e.g. larger pathway length (gretbe speedup is s ; ; ;
almost linear. However, it is limited by the message passhignce the fma”y prevention ofa potentlally dangerous disease.

flattening at the end of all curves.

computation time in s
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