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Abstract—One important aspect of computational systems biol-
ogy includes the identification and analysis of functional response
networks within large biochemical networks. These functional
response networks represent the response of a biological system
under a particular experimental condition which can be usedto
pinpoint critical biological processes.
For this purpose, we have developed a novel algorithm to calcu-
late response networks as scored/weighted sub-graphs spanned by
k-shortest simple (loop free) paths. Thek-shortest simple path
algorithm is based on a forward/backward chaining approach
synchronized between pairs of processors. The algorithm scales
linear with the number of processors used. The algorithm
implementation is using a Linux cluster platform, MPI lam
and mpiJava messaging as well as the Java language for the
application.
The algorithm is performed on a hybrid human network con-
sisting of 45,041 nodes and 438,567 interactions together with
gene expression information obtained from human cell-lines
infected by influenza virus. Its response networks show the early
innate immune response and virus triggered processes within
human epithelial cells. Especially under the imminent threat of
a pandemic caused by novel influenza strains, such as the current
H1N1 strain, these analyses are crucial for a comprehensive
understanding of molecular processes during early phases of
infection. Such a systems level understanding may aid in the
identification of therapeutic markers and in drug development
for diagnosis and finally prevention of a potentially dangerous
disease.

Index Terms—Biological and numerical parallel computing;
k-shortest path; response network; host response; infectious
disease; systems biology, influenza virus

I. I NTRODUCTION

Systems biology addresses a novel approach to study, ana-
lyze and, finally, control biological systems. Unlike traditional
research that typically focus on single genes, systems biology,
as coined by Leroy Hood, President and Director of the
Institute for Systems Biology, studies complex interaction
of all levels of biological information; genes, transcription
factor binding sites on genomic DNA, RNAs, proteins, protein
complexes, information and biochemical networks. With the
plethora of interaction and network information available, new
high-performance analysis tools are required to study such
large and complex data-sets with 100,000s components and
connections.
Research in Systems Biology is aiming at the understanding

and modeling of biological processes and systems by a multi-
level/multi-science approach. One particular emphasis within
system biology lies on the understanding of the molecular
’omic’ foundation of a phenomenological systems response.
One particular molecular ’omic’ dataset encompasses tran-
scriptomic expression data. With advanced techniques for con-
centration measurements of macromolecules being developed,
time series of mRNA concentrations for whole organisms are
now available. A potential phenomenological systems response
could be the host response against viral infection, as it will be
introduced as application in section III.

One particular goal within systems biology is to develop the
capability for analyzing biological interaction networksas they
record the response of a biological system to different exter-
nal conditions. These so calledfunctional response networks
represent the response of a biological system under a partic-
ular experimental condition which can be used to pinpoint
critical biological processes. Groundwork with respect tothe
analysis of such response networks has been laid in seminal
contributions from Idekeret al. [8], [9] and Zienet al. [18].
This capability is of great importance for the understanding
of system behavior. We have developed these approaches
further by including mathematical methods for the comparative
analysis of response networks between different experimental
conditions [3]. Algorithmically, our original approach isbased
on solving the k-shortest simple path problem originally
introduced by Hershberger and coworkers (2003) [6]. Thek-
shortest path problem tries to find a set of paths, beginning
from the shortest (k = 1), second shortest (k = 2) up to the
k-shortest paths, between a pair of nodes in a network. These
paths can be weighted and may or may not be loop free. The
stricter version of thek-shortest simple path problem prohibits
loops along such paths.

We have successfully applied the method of response net-
work calculations in the case of stress and drug response
(ibidem) as well as fatty-acid metabolism in the microbial
pathogenMycobacterium tuberculosis[13].

Genomic technology is now following a faster version of
’Moore’s law’ for advances in semiconductor technology, with
the resolution for a given cost doubling in less than a year.
These advances in technology have induced an incredible
increase of available sequence information alone. The National



Center of Biotechnology Information (NCBI) at NIH reports
to house almost 100 million sequences contributing to 100
billion DNA base pairs1. Complete genome information of
more than 800 organisms is available. With respect to other
“omic” information, almost 400,000 gene-expression samples
have been submitted to the Gene Expression Omnibus (GEO)
repository at NCBI2. PathGuide [2], a pathway resource and
interaction database tracking site, reports almost 160,000 small
molecules and 21 million genes and proteins interacting in
139,000 pathways and 35 million interactions3. Thus there
exists the dire need for high-throughput analysis algorithms
that are able to process this plethora of available sequenceand
interaction information. The k-shortest paths problem is awell
known network optimization problem whereby the k shortest
paths between two nodes of a network are ranked. Numerous
approaches fork-shortest path algorithms are available in the
literature, also implementations in parallel exist [5], [15]. Our
program, which is constrained to loopless paths, is unique by
allowing for remote parallel computation without the need of
a shared memory between the different processors.

The paper is structured as follows. It will present a new
method for analyzing biological response data, such as those
from gene-expression arrays, by combining it with compu-
tationally derived network information. This method utilizes
a weightedk-shortest simple path algorithm. The paper will
discuss a particular implementation of this algorithm in a
parallel computing environment. Specifically, it will introduce
methods for constructing network maps from “omic” data
(Section II-A), discuss how seed nodes for the computa-
tion of a subnetwork are chosen, evaluated and optimized
(Section II-B). Finally, the paper elucidate the algorithmfor
findingk-shortest simple paths (Section II-C) and issues of the
parallel implementation (Section II-D). The impact of these
studies will be the identification of response networks in very
large network maps with potential applications for biological
systems modeling and analysis.

II. M ETHOD AND IMPLEMENTATION

In the following, we give an overview of the architecture of
our approach (see Figure 1) and describe the different aspects
of the algorithm to compute response subnetworks by spanning
k-shortest simple paths and its implementation in parallel (also
see Figure 3).

A. Network Construction

The systems that we want to investigate, e.g. interactions
in cells responding to viral infects, stress or drug targets, can
be represented as networks. Thus, the first step is to construct
these networks using several kinds of data about the system.

Biochemical networks have been represented by different
notations across science disciplines. Particularly the represen-
tation of metabolic pathways, with nodes presenting chemicals
and edges referring to chemical transformation catalyzed by

1http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
2http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi
3http://www.pathguide.org/statistics.php

Fig. 1. Overview of the architecture of our approach. The origin and
constitution of the “Omics”-Data is explained in Section II-A

enzymes, has been used in textbooks for decades. For example,
the ornitine cycle that is responsible for urea synthesis in
living cells has been discovered by Krebs and Henseleit in
1932 [11]. Alternative, more recent, representations include
enzyme centered networks with enzyme as nodes and utilized
chemicals as edges between corresponding enzyme pairs have
been defined [17]. More comprehensive representations of
metabolic networks are based on Petri-Nets [14] or hyper-
graphs [17].

In this study, we are considering enzymes and other proteins
as the most relevant objects for the response network compu-
tation. Hence, nodes in the network represent proteins in the
respective observed system. The information about the abun-
dance of proteins in a system can be gathered from sources
for protein-protein interactions or metabolic reactions.Further,
there are three types of interactions/relations between those
proteins that we determined as important for the task of finding
response networks. Thus, we regard three different types of
links which will be annotated as particular edge property inthe
network. Having different types of labeled interactions inthe
network is of significant advantage compared to typical protein
interaction networks that do not provide further information on
the type of interactions.



Links of the first type are protein-protein interactions
between the proteins represented by connected nodes. The
information about these interactions is extracted from sources
in literature, e.g. by automated or curated natural language
processing systems, such as iHOP by Hoffmannet al. [7],
and special interaction databases BioGRID4) [16], (DIP5,
IntAct [10], or derived from annotated genomes. Protein-
protein interactions play vital roles in most processes of living
cells, e.g. kinases in signal transduction as a special case.
The latter have been identified by predicting in vivo kinase-
substrate relationships, that augment consensus motifs with
context for kinases and phosphoproteins. Another interesting
relation between proteins is their cooperation in metabolic
pathways. Therefore, we use data about metabolic reactions
from specialized databases (BioCyc6, KEGG7) to form the
links of the second type. For the network, this implies that
two nodes are connected if their respective proteins have one
or more metabolites in common. Finally, we consider also
gene-regulatory interactions from a variety of data-sources8

by focusing on causal relationships such as “activation” and
“inhibition”.

Considering all different types of connections, as mentioned
above, potentially induces more than one edge between a pair
of proteins. For example, between the “v-yes-1 Yamaguchi sar-
coma viral related oncogene homolog” (Lyn) and “hematopoi-
etic cell-specific Lyn substrate 1” (Hcls1) are seven interac-
tions reported; one protein interaction identified by Affinity-
Capture Western and reported by BioGRID, three interac-
tions recorded by IntAct - physical association by 2-hybrid
and anti bait co-immuno precipitation, one co-localization
by imaging techniques and one direct interaction by a pull
down experiments. The seventh interaction has been predicted
by computational methods with directional information and
has been reported by NetworKin; a phosphorization of the
phosphoprotein Hcls1 by the Tyrosine-protein kinase Lyn.

Some of the extracted information described above is dis-
carded before constructing the network. For each protein-
protein interaction aZ-score, indicating similarity between
the two proteins, is calculated. Links are only added to the
network if they are below the thresholdZ ≤ 2. Also the set
of metabolic reactions is reduced before implementing them
as links. If two proteins have a highly abundant metabolite,
such as ATP or Water, as their only common substrate, this link
will not be further regarded. To be exact, we have removed all
chemicals from reactions between enzymes that do not transfer
carbon-atoms, according to Ma & Zeng [12] and Arita [1].

The next step of the network construction is the addition
of weights for nodes and links. The information for the
weights is thereby derived from gene expression data from
cells of the observed system. Ideally, two different measures
are processed, a reference sample with normal conditions

4http://www.thebiogrid.org/
5http://dip.doe-mbi.ucla.edu/dip/
6http://biocyc.org/
7http://www.genome.jp/kegg/
8http://www.pathguide.org/

and the comparison sample that was collected under special
conditions, e.g. stress, drug insertion, or viral infection. The
latter sample type can be a single measurement or a time-
series of gene expression measurements. The values of the
comparison sample are normalized relative to the reference
sample, i.e. values are equal or greater than zero; values
below 1 indicate down-regulation; values above 1 indicate
up-regulation. The normalized expression values, i.e.fold-
changes, are used directly as node weights. For the edge
weights, expression values for both adjacent nodes are taken
into account. If only one value per node is available, a simple
log cost is used, which is the logarithm of the sum of the
two values (Equation 1). Some more complex cost functions
can be chosen, but are not explained here. For time-series as
values, the Pearson correlation (Equation 2) defines the cost
function for the edge weights. Sometimes it is useful to use
forward or backward Pearson correlations (Equation 3, 4).

LC(X, Y ) = log(|X + Y |) (1)

PC(X, Y ) =
(E(XY ) − E(X)E(Y ))

√

V ar(X)V ar(Y )
(2)

FPC(X, Y ) = PC(X(2,n)Y (1,n−1)) (3)

BPC(X, Y ) = PC(Y (2,n)X(1,n−1)) (4)

Definition A network here is a directed, weighted graphG =
(V, E, f, g) comprising a set of vertices (nodes)V and edges
(links) E ⊆ V × V . Here f : V → R is a mapping that
assigns each nodev ∈ V its normalized expression value (or
the mean of its values) as weight. The mappingg : E → R

defines for each edgee = (v, w) ∈ E a weight according to
the expression values of its nodes. For this mapping one of
the above functions (LC,PC,FPC,BPC) is chosen.

Some additional data structures are build up during the
network construction. For every node in the network the
cheapest incoming and outgoing links and pathways are stored.
Hence we have four maps with information for all nodes. The
maps for links and pathways contain similar information in the
beginning, but the pathway map is updated during the pathway
generation algorithm (Section II-C). The number of cheapest
links and pathways that is stored is defined by the user.

B. Sub-network Choice, Evaluation and Optimization

Since we do not want to regard the entire network, we
choose a set of corner points which we will call seed nodes.
The set of seed nodes either stems from a prior analysis of
the network or an arbitrary number of nodes with the highest
node weights is chosen, which is then further improved. From
these seed nodes we will span the sub-network. For this aim,
we build all possible pairs of seed nodes and generate thek-
shortest simple pathways between them (Section II-C). Those
pathways are then used to build up one particular sub-network
of the original network.



As described above (Section II-A) all links are assigned
weights from which we can calculate the pathway cost, as
we will see in Section II-C. To obtain a score for the sub-
network, the costs of all relevant pathways that make up the
sub-network are summed up.
Assigning scores to the sub-networks allows for comparison
of sub-networks spanned from different seed node sets. The
first use of this will be to check to what extent the current seed
nodes contribute to the sub-network score. If the contribution
of a node is zero, this node will be discarded from the seed
node set. Further, we can apply evolutionary optimization
algorithms, such as simple hill-climbing, Monte Carlo Search
or Genetic Algorithms on the seed node set, using the sub-
network cost as the fitness function. Seed nodes with low
contributions will be exchanged with nodes apart from the
seed nodes. If the new sub-network has a higher score, the
replacement becomes permanent. Repeating in this way, the
optimal sub-network can be found.

C. k-shortest simple Path Algorithm

After determining the seed nodes and building all-to-all
pairs, thek-shortest simple pathways (see Definition below)
are generated in a forward/backward chaining approach.
Starting from two opposite nodes, the seed and the target
node, we expand the pathways that span between them
(Figure 2b). In the network construction step (Section
II-A) we created sets with shortest outgoing and incoming
connections. From the seed node we will expand all links
from the outgoing set. Accordingly, for the target we expand
by the incoming link set. The nodes that were added during
insertion of links to the seed node are now checked with all
nodes connected to the target node. If a node is found that
is part of pathways to both, seed and target node, then those
pathways are connected, evaluated and stored (Figure 2c). In
the next steps this procedure is repeated until no new nodes
can be added anymore or the pathway lengths reach a certain
user-defined threshold (Figure 2c-e). In each step the number
of pathways from the seed or to the target, respectively, is
reduced to a certain number, that is again specified by the
user, before starting the next expansion cycle. Only the nodes
added in the previous step are considered for the expansion.
Further it is ensured that no duplicate nodes are inserted into
a pathway.
If a common node is found by the forward chaining from the
source and the backward chaining from the target, all possible
combinations between pathways from source to the common
node and pathways from the common node to the target node
are generated. This means, if we havem pathways ending
in the common node andn pathways originating from the
common node,m ∗ n complete pathways are produced.
Redundant pathways are avoided by assigning unique pathway
ID’s. The ID of a complete pathway is a combination of
the ID’s of its two intermediary pathways, from source to
common node and from the common node to the target,
respectively. The check for duplicate nodes is done implicitly.
During the expansion steps it is always ensured that the

(a) (b)

(c) (d)

(e) (f)

Fig. 2. k-shortest simple Path Algorithm. Dark Red = Seed Node, Dark Blue
= Target Node, Red = Expanded Nodes (forward), Blue = Expanded Nodes
(backward), Light Red = Added Nodes (forward), Light Blue = Added Nodes
(backward), Green = Common Node / Pathway Node. (a) The constructed
network; (b) First Step: Expansion from Source and Target; (c) Second Step:
Reduction to k’-shortest pathways (k’=4) and Expansion, first Common Node
(green) found; (d) Third Step: Reduction + Expansion, Common Node found;
(e) Fourth Step: Reduction, no new Expansion; (f) The four weighted shortest
pathways through the network.



Fig. 3. Overview of tasks and message passing. In circles arethe different
process roles. Numbered are the tasks for each role. Edges describe the content
and direction of the passed messages.

intermediary pathways do not contain duplicate nodes.
Additionally, by determining common nodes in the forward
and backward chaining procedures we make sure that the
common node is the only intersection of the two pathways
that are being combined. Hence, we generate simple (loop
free) pathways.
Finally, the cost of all pathways is calculated and the
pathways are sorted by their cost. The cost of a pathway
p is computed from the sum of the costs of all its links
l ∈ Lp , divided by the pathway length (|L|, the number of
links). Optionally, the former term can be divided by a power
|L|k, with the pathway length as the base and a real number
k > 0 as the exponent, if longer pathways (k > 1) or shorter
pathways (k < 1) are preferred.

PathwayCost(p) =

∑

l∈Lp

LinkCost(l)

|L|k
(5)

From the final sorted list of pathways, the top k pathways are
returned to the sub-network handling.

D. Parallel Implementation

The kPathA program is implemented in Java, using mpiJava
for the communication between the parallel processing nodes.
It is written for the use on Linux clusters, but works
on several other platforms as well. The requirements for
the platforms are working LAM/MPI or MPICH/MPI
packages and the restrictions of the respective packages.
The information exchange between the processes is done
exclusively by message passing, thus, no shared memory
is needed. Therefore, kPathA allows for real remote and
distributed computing.
Although kPathA can be run on an arbitrary number
of parallel processes, a minimum of three processes is
suggested, since three different roles will be assigned for
the three distinct parts of the algorithm. These parts are

the sub-network handling (Section II-B) and the forward
and backward chaining routines (Section II-C). There is one
master process responsible for the sub-network handling and
all other processes will be assigned either a forward chaining
task or a backward chaining task. The network construction
(Section II-A) is executed by all processes in the beginning.
The communication between the single processes can be
described as follows (Figure 3). After the computation
of the seed node pairing, the master process assigns the
task by sending to each process the information about its
appointed role (forward or backward chaining), the seed
nodes for this process and the corresponding partner process,
as well as the address of the partner process for the further
message interaction between forward and backward process.
In return it receives acknowledgments of start and end of
the computation from the respective processes. Using this
information, the master process builds up and maintains lists
of free and busy processes needed for the next round of
assigning seed node pairs. After all pathway generation tasks
are done, every process sends thek-shortest simple pathways,
stored throughout the computation, to the master process.As
the final step, the singlek-shortest pathway sets are combined
into one graph representing the response network.
Additional communication is performed between the process
pairs, i.e. the process responsible for the forward chaining
part (source) and the corresponding process for backward
chaining (target). After receiving the necessary information
about the appointed task, as described above, the processes
generates and expands thek-shortest simple pathways. With
each expansion cycle, the backward chaining process sends
all newly discovered nodes, one by one, to the partner
process. The forward chaining process then checks if the
received nodes occur in any of its pathways. It returns all
found pathways in separate messages, or one message stating
that no pathway was found. Finally the backward chaining
process sends a notification message to its partner when it
is done with the expansion, such that both process can stop
their computation.

III. A PPLICATION

We have applied the algorithm to analyze response net-
works with respect to human host response against avian flu
infections. For this purpose, Normal Human Bronchial Ep-
ithelial Cells (NHBE) have been infected by H5N1 influenza
virus with a Multiplicity Of Infection (MOI) of 0.01. Gene
expression data has been obtained by using an Agilent DNA
chip 24h after Mock infection (no influenza infection baseline)
and after infection with H5N1 virus. Gene expression values
have been normalized and p-values calculated using a one-
sample Student’s t-test according to Agilent. Only data with
p-values below a certain cutoff value were deemed to be
statistically significant. The cutoff value was chosen suchthat
less than one false positives can be expected per experiment.
As outlined in section II-A, we used normalized expression
values between 0h and 24h (fold-changes) as node weights



Fig. 4. Human response network after 24h of H5N1 influenza infection measured against Mock infection. The cell cycle controlling genescdk2 and thecdc
genes are prominently expressed and up-regulated by virus mediation, whereas the anti-inflammatory response genesfos/jun are down-regulated. Red nodes
refer to up-regulated genes, blue nodes denote down-regulated genes, white nodes indicate genes with no changes in gene-expression. Yellow edges refer to
high edge scores. Arrows denote metabolic reactions, no arrow-tips stand for protein-protein binding, diamonds indicate activation, Ts indicate inhibition of
gene expression, circles refer to phosphorylation.

in the constructed human network. In the case that gene
expression for a particular gene has not been measured or the
measurement has been determined to be insignificant, a fold-
change of1, i.e. no change between baseline and measurement
was assigned for this particular gene in the network. As we
were focusing on a single normalized measurement at 24h, we
were using a simple log cost (Eq. 1) to assign edge weights.

Figure 4 shows a simple response network using this data
after calculation by kPathA. The network has been pruned
by allowing a maximum ofk = 3 paths between each pair
of seed nodes and by restricting the maximum weighted path
length l to 13 or shorter. The response network identifies two
well known processes affected by viral infections - immune
response and cell cycle activation. The cell division cycle
regulators (Cdc6, Cdca5 and Cdc45l) are prominently acti-
vated together with the minichromosome maintenance proteins
(Mcm10, Mcm6, Mcm2). It is know that influenza virus infec-

tion modulates the cell cycle control and induces apoptosisby
cell cycle arrest. The transcription factors Egr1, Jun and Fos
are early responders during infection, inflammation and other
cellular stress. Influenza infection seems to inhibit the early
immune response triggered by this group of defense genes. A
similar response has been reported by Djavaniet al. (2007)
after infection with the lymphocytic choriomeningitis virus
(LCMV) in a monkey model for Lassa fever [4]. Interested
to report with this respect is a regulatory network identified
by Djavani et al. that includes Egr1, Egr2, Fos, Jun and
Ptgs2 (Figure 5). In contrast to Djavaniet al., Ptgs2, Il1ra
and Il1rl19 are up-regulated. These results indicate moderately
different host responses during different viral infections even
for such a compact and highly connected network of major
host responding genes.

9Not shown: as well as Il1r2



Fig. 5. A sub-network of the response network from Figure 4 (upper left
corner) reveals interactions between the major gene products affected by
virulent infections. This network is in accordance with Figure 5 of Djavaniet
al. (2007) [4]. In contrast to Djavaniet al., Ptgs2, Il1ra and Il1rl1 (not shown:
as well as Il1r2) are up-regulated. Egr1, Egr2, Fos, Fosb aretranscription
factors. Ptgs2 encodes prostaglandin-endoperoxide synthase 2, IL1A/B code
for interleukin 1 and Il1rl1 belongs to the interleukin 1 receptor family.
Color coding is according to Figure 4. Oval nodes refer to Gene Ontology
terms of the “Biological Processes” sub-ontology with dashed arrows to the
corresponding genes.
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Fig. 6. The reduction of computation time by parallel computation. For
extensive computations, e.g. larger pathway length (green), the speedup is
almost linear. However, it is limited by the message passing. Hence the
flattening at the end of all curves.

IV. CONCLUSION

This paper has described the first strictly parallel imple-
mentation for solving thek-shortest simple path problem, .i.e.,
finding k-shortest loop-free paths between a pair of nodes in a
network. We were motivated to develop this high performance
computational method for the identification and analysis of
weighted, so called, response networks in large biochemical
network maps. The algorithm is versatile insofar, by accom-

modating weighted directional networks with different types of
interactions. Weights have been calculated from experimental
expression data by utilizing a variety of scoring functions,
including arithmetic and geometric mean between expression
levels of connected genes or correlation functions in the case
of time-resolved expression data.

The kPathA program has been implemented in Java, using
mpiJava for the communication between the parallel process-
ing nodes. It has been written for the use on Linux clusters, but
can easily be implemented on several other platforms through
LAM/MPI or MPICH/MPI as well. The information exchange
between the processes is done exclusively by message pass-
ing, thus, no shared memory is needed. Therefore, kPathA
allows for real remote and distributed computing such as Grid
Computing, for example.

We have tested the algorithm on a Fedora Linux compute
cluster with up to 15 CPUs10 (2x3.0 GHz and 4GB). Data
for the computation originates from a hybrid human network
consisting of 45,041 nodes and 438,567 interactions and
gene expression information obtained from human cell-lines
infected by influenza virus. Speedup of the computation is
linear for large cut-off values for the maximal path-length
l (Figure 6). For shorter cut-off values the processes spend
most of their time in message passing and negotiating with
the master node due to unsuccessful path-connection between
the forward and backward chaining processes.

Overall, we have developed a novel algorithm, kPathA, for
the k-shortest simple path problem that is capable to identify
response networks in large biochemical network maps. We
have tested kPathA on a large human network together with
human host response against viral influenza infection recorded
by gene expression experiments.

These response networks provide a window into potential
cellular processes during the early innate immune responseand
virus triggered processes within human bronchial epithelial
cells (Figure 4), e.g. for the identification of essential regula-
tory networks during early virus infection response (Figure 5.
Especially under the imminent threat of a pandemic caused
by novel influenza strains, such as the current H1N1 strain,
these analyses are crucial for a comprehensive understanding
of molecular processes during early phases of infection. Such
a systems level understanding will aid in the identificationof
therapeutic markers and in drug development for diagnosis and
finally prevention of a potentially dangerous disease.
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