A new simulation: going metabolic

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

November 3, 2008

WHY?

Why go metabolic?

Why go metabolic?

Why go metabolic?

Why simulate?

HOW?

RNA sequence-to-structure map

- Redundancy: Many more sequences than structures.
- Sensitivity: Small changes in the sequences may lead to large changes in the structure.
- Neutrality: A substantial fraction of mutations does not alter the structure.

Walter Fontana & Peter Schuster, J. Theor. Biol. 194:491-515 (1998)

Cell with Genome

- Molecules are abstracted to vertex and edge labeled graphs
- Neighborhood relations are preserved by this abstraction.
- Spacial properties (e.g. Chirality, E/Z isomery) can be handled by extending the label set.
- Use graph-indices and QM to calculate physical properties

Cell with Genome and Metabolites

Alexander Ullrich A new simulation: going metabolic

$\mathsf{CH}_3\mathsf{CO}_2\mathsf{Et} + \mathsf{HCI} + \mathsf{H}_2\mathsf{O} \Longrightarrow \mathsf{CH}_3\mathsf{CO}_2\mathsf{H} + \mathsf{EtOH} + \mathsf{HCI}$

Fujita, Hendrickson, ...

From structure to function

Neutrality is higher than in the RNA sequence-to-structure map.

Cell with Genome, Metabolites and Enzymes

From gene to function

AUGAGUAUAAGUUAAAGUAAAGUAAAUGUCUUCCACACAUUCCAUGUGAGUUCGAUUCUCACUACUCAU

Chemical Reaction as Graph Rewrite Rule

Graph-grammars are a context sensitive language!

The Cell

Alexander Ullrich A new simulation: going metabolic

THE NEXT STEP!

Iterating the Graph Grammar

cyanide, formaldehyde glycol; aldolcondensation, tautomerization

Cell-Population

Analysis of the networks

• Metabolic Pathway Analysis

• Pathway Distribution using extreme pathways

- Calculating the Yield of all extreme pathways
- At least one of those Pathways has optimal Yield

Alexander Ullrich A new simulation: going metabolic

The next Generation

Alexander Ullrich A new simulation: going metabolic

Analysis

Network Graphs

Cell/Enzyme Evolution

Connectivities

Enzyme	e37	e45	e12	e44	e18	e27	e6	e82	e4	e62	e124	e130	e^2
Generation	1	1	1	2	- 3	3	7	10	14	42	44	51	53
Connectivity	4	5	12	9	4	2	2	2	2	2	3	1	6

Specificity of enzymes in the example network

Analysis of metabolic networks

• Metabolic Pathway Analysis

• Pathway Distribution using extreme pathways

• Knockout Analysis using minimal knockout sets

• Viable Conditions using the notion of biological organizations

Measuring Robustness

Knockout set size distribution

• Elementary mode measures

$$R_{1} = \frac{\sum_{i=1}^{r} z^{(i)}}{r \cdot z}$$

$$R_{2} = \frac{\sum_{i}^{r} R_{1}^{(i)}}{n}$$

$$R_{3} = \min \left\{ R_{1}^{(1)}, R_{1}^{(2)}, \dots, R_{1}^{(n)} \right\}$$

Problems and Solutions

- Combinatorial Explosion of the Networks
- Open-ended Simulation

Avoiding Combinatorial Explosion

Faulon, J-L, (2001) J Chem Inf Comput Sci 41:894-908

Adding Complexity

- Introduction of further functions for metabolites
 - Biomass, Membrane, Genetic material, ...
- Introduction of further functions for enzymes
 - Catalyst, Transporter, Transcrition factor, ...

Thanks to:

- University of Vienna
 - Christoph Flamm
 - The entire TBI-Group (Ilenia, Ronny, Dill, Christian, ...)
- University of Leipzig
 - Peter Stadler
 - Konstantin Klemm
- EBI
 - Lukas Endler
- University of Freiburg
 - Martin Mann
- Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) for Funding You for listening!