Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	

Functional Evolution of Ribozyme-catalyzed Metabolisms in a graph-based Toy-Universe

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Warnemünde October 13, 2008

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00 0	00000	00000 00	

Introduction

Motivation Approaching the Problem

Simulation

Overview Objectives

Model

Mapping Artificial Chemistry

Outlook

Results Outlook

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	0 00	00	00000	00000	
Mativation					

Why Metabolic Networks?

Available Data

- complete annotated genomes
- pathway databases
- Amount of Research
 - Systems biology
 - Flux Analysis
 - Simulations
- Application
 - metabolic engineering
 - functional genomics
 - determination of pharmaceutical targets
 - understanding complex systems

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	0 0	00	00000	00000	
Motivation					

What do we want to find out?

Evolution of catalytic molecules

- stepwise or patchwork or ... ?
- preferred properties
- Evolution of complex biological networks
 - necessary conditions
 - knockout criteria
- Emergence of system-level properties
 - influences
 - dependency

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 •0	00	00000	00000	
Approaching	the Problem				

Analysis of metabolic networks

Metabolic Pathway Analysis

Pathway Distribution using extreme pathways

Knockout Analysis using minimal knockout sets

Viable Conditions using the notion of biological organizations

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	
Approaching	the Problem				

Simulation of metabolic networks

- Limitation of a static-image approach
 - Knowledge horizon: common ancestor of modern cells
 - No Data before the emergence of a property
- Achievements of simulation approaches
 - Bonhoeffer: Evolution of connectivity; Cooperation vs Competition
 - Segovia: Preferential biochemical coupling of reactions vs Patchwork and stepwise evolution

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	0 0	00000	00000	

Overview

Simulation - Overview

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00 0	00000 0	00000	
Overview					

Simulation - Overview

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	
Objectives					

Simulation - Objectives

- ► Flexible
 - observation of different phenomenas
 - $\blacktriangleright \Rightarrow$ user-defined environment and chemistry
- Realistic
 - representations close to the real world
 - $\blacktriangleright \Rightarrow$ graph representations, RNA sequence to structure map
- Unbiased
 - existence of options for alternative solutions
 - \Rightarrow different reactions, molecules, genetic operations
- Open-ended
 - emergence of new adaptive traits
 - increase in complexity
 - ▶ ⇒ pushing the borders further (Outlook)

Alexander Ullrich

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00 0	00000 0	00000 00	

Model - Parts

Genome

- circular (random) RNA-sequence
- Genes of fixed length
- TATA-box

Metabolism

- bidirectional and bipartite graph
- Nodes = Metabolite or Enzymes
- Edges = Reactions

Metabolites

- Molecular-, Orbital Graph, SMILES or ID
- Environment can be defined by user

Enzymes

- Transition State, Graph-rewrite Rule
- Reaction-set can be refined by user

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline I	ntroduction	Simulation	Model	Outlook	Acknowledgements
	00	00 0	00000 0	00000 00	

Model - Parts

- Evaluation
 - Metabolic Pathway Analysis
- Scores
 - Optimal metabolic yield
- Selection
 - Now: Yield
- Genetic Operations
 - Now: Mutation, Duplication
- Reproduction
 - asexual
- Protocol
 - Mutations, Phylogeny, MPA statistics, Network

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00 0	●0000 ○	00000 00	

Mapping from Gene to Enzyme - Why?

Evolution of catalytic elements

- comparable to RNA or Protein folding
- evolutionary steps (and influences) are traceable

Redundancy

- is abundant in real world systems
- allows for evolvability AND robustness

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model o●ooo o	Outlook 00000 00	Acknowledgements ○

Mapping from Gene to Enzyme - How?

RNA-Sequence

- RNA-Structure
- reduced Structure
- Features
- ITS ID
- ITS
- Graph-rewriting Rule

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000 0	00000 00	

Alexander Ullrich

Mapping from Gene to Enzyme - Example

Section	Loop	C-G pair	Neighbor > 5 bp	Bond	Valence	Seq. (loop)	Sequence
1 (red)	yes	0	yes (+1)	1 "-"	2	4	4 = C
2 (blue)	yes	1	no	1 "-"	3	1	3 = N
3 (gray)	no		yes (+1)	1 "-"	3	4	4 = C
4 (yellow)	yes	0	no	0 " "	2	4	4 = C
5 (pink)	no	-	yes (+1)	1 "-"	2	2	2 = 0
6 (green)	yes	0	no	0 " "	2	3	3 = N

ALIGGIULA A AGU A A A UGU CULICO A CAO A UU CO A UGU GAGUU CO A UUCU CAO U A CUCA U

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model ○○○●○ ○	Outlook 00000 00	Acknowledgements O

Mapping from Gene to Enzyme - Comparison

Random neutral walk

- 100 steps, 256 phenotypes
- ▶ neutral mutations ⇒ robustness
- ► encountered phenotypes ⇒ evolvability
- neighboring phenotypes
 innovation

Genotype Space

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000 0	00000 00	

Mapping from Gene to Enzyme - Comparison

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	
Artificial Che	mistry				

Artificial Chemistry

Now: Toy Chemistry

Alexander Ullrich

► In Process: Quantum Chemistry

► Task: Reaction Rate Calculation

- Determination of Transition State Geometry
- Energy Calculation for all three molecules
- Calculation of Activion Energy

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	
Artificial Che	mistry				

Artificial Chemistry

Now: Toy Chemistry

Alexander Ullrich

- In Process: Quantum Chemistry
- Task: Reaction Rate Calculation
 - Determination of Transition State Geometry
 - Energy Calculation for all three molecules
 - Calculation of Activion Energy

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 00	
Artificial Che	mistry				

Artificial Chemistry

- Now: Toy Chemistry
- In Process: Quantum Chemistry
- Task: Reaction Rate Calculation
 - Determination of Transition State Geometry
 - Energy Calculation for all three molecules
 - Calculation of Activion Energy

Institute for Theoretical Chemistry University of Vienna

Functional Evolution of Ribozyme-catalyzed Metabolisms in a graph-based Toy-Universe

Alexander Ullrich

Outline	Introduction 00 00	Simulation 00 0	Model 00000 0	Outlook ●○○○○ ○○	Acknowledgements ○
Results					
_					

- Metabolite Connectivity follows a power law distribution
- Highly connected Enzymes and Metabolites origin (mostly) from the first generations
- Robustness can emerge/evolve without selecting for it

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction 00 00	Simulation 00 0	Model 00000 0	Outlook ○●○○○ ○○	Acknowledgements O
Results					

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction 00 00	Simulation	Model 00000 0	Outlook ○○●○○ ○○	Acknowledgements O
Results					

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation 00 0	Model 00000 0	Outlook ○○○●○ ○○	Acknowledgements O
Results					

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model 00000 0	Outlook ○○○○● ○○	Acknowledgements O
Results					

Specificity of enzymes in the example network

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000 • 0	
Outlook					

Ongoing Experiments

Calculating different measures for robustness

- Knockout set size distribution
- Ratio between enzyme activity and the flux in the network
- Elementary mode measures

$$R_{1} = \frac{\sum_{i=1}^{r} z^{(i)}}{r \cdot z}$$

$$R_{2} = \frac{\sum_{i} R_{1}^{(i)}}{n}$$

$$R_{3} = \min \left\{ R_{1}^{(1)}, R_{1}^{(2)}, \dots, R_{1}^{(n)} \right\}$$

- The Role of ineffective parts of the Genome
- Determining good kinetic parameters (reaction rates)

Alexander Ullrich

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model	Outlook	Acknowledgements
	00 00	00	00000	00000	
Outlook					

Future Objectives

Alexander Ullrich

- Study of the catalytic molecules
 - major transitions in the evolution
- Regulatory Elements/Network
- Interaction between cells
 - Competition vs Cooperation
 - Additional modes

Institute for Theoretical Chemistry University of Vienna

Outline	Introduction	Simulation	Model 00000 0	Outlook 00000 00	Acknowledgements ●

Thanks to:

- University of Vienna
 - Christoph Flamm
 - ► The entire TBI-Group
- University of Leipzig
 - Peter Stadler
 - Konstantin Klemm
- EBI
 - Lukas Endler
- Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) for Funding You for listening!

Alexander Ullrich