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Abstract

In the course of evolution, biological organ-
isms have developed certain desirable proper-
ties such as the robustness against metabo-
lite fluctuations or mutational errors, as well as
the ability to switch flexibly between functional
modules. Knowledge about the emergence of
these properties is beneficial both for under-
standing the underlying evolutionary mecha-
nisms as well as for developing principles for
the construction of artificial systems. We inves-
tigate the formation of complex biological sys-
tems and the emergence of their properties us-
ing a multilevel computational model simulating
the evolution of an early metabolism. Differ-
ent evolutionary scenarios are simulated and
compared regarding several measures for ro-
bustness, flexibility and modularity. We use
well known graph measures as well as specif-
ically developed flux- and steady-state-based
measures based on Minimal knockout sets and
chemical organizations.

Complex Properties

Robustness is the ability of a system to adapt to changes in
the environment or in itself. Therefore it is distinguished be-
tween robustness against genetic changes such as muta-
tion, enzyme knockout and robustness against epigenetic
changes or noise like fluctuations in the metabolite concen-
trations. Complex biological systems and scale-free archi-
tectures in general are known to be particularly robust. The
power-law distribution of the node degrees is one explana-
tion for the robustness against knockouts.
Modularity in a system means that it is composed of sev-
eral subsystems (modules) exhibiting distinct functions and
containing further subsystems or elementary components.
Most biological systems are modular and metabolic net-
works are found to be organized in an hierarchy of mod-
ules [1]. The origin and preservation of modularity is not
perfectly known, but changing environment or goals and
horizontal gene-transfer are suggested sources. A high
average clustering coefficient and a power law scaling of
the clustering coefficient against the node degree are indi-
cators for modular systems.

Connectivity Distribution

The connectivity distribution of metabolic networks
follows a power law (k−γ). For the networks from the
KEGG database we find that γ is close to two. For
the networks evolved under static conditions (also
those with HGT) we find a similar distribution. The
networks from simulations with changing environ-
ment we also find a scale-free distribution but with
γ closer to one.
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Connectivity distribution of metabolites from KEGG networks (black) and three simulation
scenarios, static conditions (blue), changing conditions (red), HGT (green). For compar-
ison the dotted lines show, exponential distribution (green) and power law distributions
γ = 1 (red), γ = 2 (black).

Clustering Coefficient

In modular networks the scaling of the clustering coefficient
against the node degree follows a power law with γ close
to one. The KEGG networks show such a scaling, whereas
the simulated networks deviate in different parts from that
scaling. In the static simulation the hub-metabolites have a
low clustering coefficient compared to the simulations with
changing environment. This could indicate that modules
in these networks are less connected among each other.
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Clustering Coefficient of metabolites against the node degree. Investigated networks are network maps
(black circles) and pathways (grey boxes) from the KEGG database, as well as networks from three different
simulations, static behavior (blue diamonds), changing environment (red triangle) and HGT (green triangle).

Summary

Three simulation scenarios were performed
and analyzed to find potential causes for the
emergence of complex properties such as
robustness, flexibility and modularity. The
first scenario assumes a static behavior, with
steady environment and few mutations. The
second scenario, in contrast, goes through
permanent change of environment. The third
scenario works under a steady environment
but an increased mutation rate and horizontal
gene transfer (HGT) between individuals. The
shown measures indicate an higher mutational
robustness of systems evolved in a static en-
vironment. Modularity seems only abundant in
the scenarios with changing environment and
horizontal gene transfer.

Computational Model
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Scheme of the simulation system. (A) Decoding of (RNA-)genes to catalytic molecules; (B) Assignment of catalytic functions
to “ribozymes”; (C) Construction and stochastic simulation of the metabolic network; (D) Metabolic Flux analysis and fitness
evaluation; (E) Application of genetic variation operators.

The computational model [2] is composed of
a genetic and a metabolic subsystem. The
genetic subsystem is implemented as a cyclic
RNA genome. The RNA sequence corre-
sponding to the “coding sequence” of a gene
is folded into the (secondary) structure using
the Vienna RNA Package(Step A).
During chemical reactions, bond forma-
tion/breaking is confined to a small subset
of atoms of the reacting molecules. A cyclic
graph abstraction, called the imaginary transi-
tion state (ITS) [3], can be used to capture the
changes in the reactive center. Furthermore,
over 90% of all known organic reactions can
be classified by their ITS and organized in
a hierarchical structure [3]. Sequence and
structure features of the folded RNA gene
products are mapped into the classification

tree of organic reactions for functional assign-
ment of the catalytic set (Step B).
The metabolic subsystem is built upon a
graph-based artificial chemistry endowed with
a built-in thermodynamics. To generate the
metabolic reaction network, induced by the
catalytic set on the set of metabolites, a rule-
based stochastic simulation is performed. Re-
action rates are calculated “on the fly” from the
chemical graphs of the reactants.
To identify the elementary flux modes, i.e., ex-
treme pathways, of the resulting reaction net-
work, a metabolic flux analysis is performed.
(Step D). The fitness of an organism is com-
puted as the maximum of the yield function
(e.g. biomass production) over all extreme
pathways. Finally, genetic variation operators
are applied to the genome (Step E).

Pathway Analysis

Metabolic pathway analysis is the calculation and analysis of
the pathway distribution of a steady-state metabolic network to
gain insights about its structure, functionality and properties. The
calculation starts with the formation of the stoichiometric matrix
presentation of the network and delivers the extreme pathways,
spanning the entire steady state flux space, as the final result.
Bounding the solution space through flow restrictions allows the
computation of the optimal yield using a linear optimization, this
process is called flux balance analysis (FBA).
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Extreme Pathways are the set of essential pathways through
which all other possible pathways of the metabolic network can
be generated, they are also minimal in the sense that they do not
consist of smaller pathways.
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Minimal knockout sets are sets of reactions that need to be re-
moved in order to disable the function of a certain target reaction,
this means that there may not be any extreme pathway containing
this target reaction.
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The size distribution of the minimal knockout sets are a good indication
for the robustness of a network. If most sets are small then a few
knockouts can block a vital function of the system. However, large
sets imply a lower likelihood for blocked function since there would
have to be many knockouts at the same time.
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Minimal knockout set (MKS) size distribution for the three simulation scenarios, over several time steps (after 10, 50, 100, 250, 500 and 1000
generations). Static behavior (left), Changing Environment (middle) and increased mutation rate with horizontal gene transfer (right).

One can see that in all scenarios the robustness increases in the
course of evolution. In the static scenarios, the increase is faster and
stronger than in the scenario with changing environment. This under-
lines the results from the connectivity distribution that the robustness
towards knockouts/mutations is decreased by additional perturbation
via environmental change. The abundance of several peaks in the last
time step of the HGT scenario might indicate different modules.

Ongoing Work

We follow two approaches two find signs of modularity by analysing
the set of elementary pathways. In the first one we look at all possible
combinations of these pathways and compute their optimal outcome
with Flux balance analysis. This information can be used like an
energy landscape, from which we can in turn determine an energy
barrier tree. An energy barrier between two states (combinations) tells
us the metabolic cost of the cell to switch from one state to the other.

Left: Schema for a barrier tree, with an example for n energy barrier. States (black bars) represent combinations of active elementary modes.
Right: Schema for a Hierarchical Clustering, leaves correspond to elementary modes.

If there are cheap connections between all states, the system is highly
flexible. However, if we find high barriers between sets of combina-
tions, the system is highly modular. The second approach is to define
a similarity measure among pathways and then cluster all elementary
pathways. Different similarity measures could indicate different types
of modules.

Chemical Organizations

A chemical organization is a closed and self-maintaining set of com-
ponents, here metabolites and enzymes. It represents a steady-state
of the cell in which it can produce all of the used components by itself.
The organizations of a system are related to each other and can be
represented in a hierarchy. The constitution of this hierarchy and the
organizations on each level can give insights about the robustness
and modularity of the system.
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The distribution of Organizations per hierarchy level in relative frequencies for the three simulation scenarios and over several time steps (after
10, 50, 100, 250, 500 and 1000 generations). Static behavior (left), Changing Environment (middle) and increased mutation rate with

horizontal gene transfer (right).

More organizations in the higher levels mean more alternative states
which implies higher robustness. In the static simulations the trend
goes to a more robust situation. The simulation with changing envi-
ronment has more organizations close to the smallest organization
making it more evolvable/flexible.
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The distribution of Organization Sizes (relative size to the full organization) on an hierarchy level for the three simulation scenarios and over
several time steps (after 10, 50, 100, 250, 500 and 1000 generations). Static behavior (left), Changing Environment (middle) and increased

mutation rate with horizontal gene transfer (right).

A flatter slope means smaller differences between organizations of
different levels, thus making the transition smoother. The high size
differences in later stages of the changing environment scenario
could also speak for abundance of modules.
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