Using the RNA sequence-tostructure map

for functional evolution of ribozyme-catalyzed metabolisms

Alexander Ullrich, Christoph Flamm and Lukas Endler University of Vienna, Theoretical Chemistry Group aullrich@tbi.univie.ac.at

Outline

- 1. The RNA sequence-to-structure map
- 2. Using the sequence-to-structure map
- 3. Evolution of metabolic networks
- 4. Integrating the sequence-to-structure map
- 5. Results / Comparison
- 6. Application / Outlook

The RNA sequence-to-structure map

P. Schuster. A testable genotype-phenotype map: modeling evolution of RNA molecules

The RNA sequence-to-structure map

- Many-to-One Property:
 - More sequences than structures
 - Many sequences map to the same structure
- Different Frequencies:
 - Highly frequent and rare structures
- Neutral Networks:
 - Sequences with the same structure build extensive connected networks
 - Allows genetic drift along these networks
- Intertwined Neighborhood
 - All frequent structures lie in close proximity
 - e.g.: length = 100 --> radius = 15 mutations

Using the sequence-to-structure map

- Evolutionary Algorithms:
 - Reproduction, Variation, Selection (Fitness)
 - Population of Individuals with Genotype and Phenotype
 - Basic EA: Genotype = Phenotype
 - Others: Mapping from Genotype to Phenotype
 - Problem: sub-optimal traps
 - Solution: redundant mapping

Voting Mapping

- Trivial voting performs like direct mapping
- Better standard voting mapping

Cellular Automaton (CA)

Random Boolean Network (RBN)

Mappings based on the sequence-to-structure map

- First, the RNA-sequence is folded into its minimum free energy structure
- Option 1:
 - Equidistant target structures or structure templates are generated
 - One target for each phenotype
 - Map to the phenotype with the closest target
- Option 2:
 - Extract features from the structure (and sequence)
 - Trivial voting from features to phenotype

Option 1

• 2 versions: bp distance, ensemble distance

Option 2

Functional evolution of metabolic networks

Functional evolution of metabolic networks

- Genome = RNA-sequence (TATA-box + genes)
- Genes (Genotype) = RNA-sequence
- Metabolism = bipartite graph (metabolites + enzymes)
- Metabolites = chemical graph (atom type + chemical bond)
- Enzymes (Phenotype) = superimposition of two chemical graphs (transition state structure)
 - Chemical reaction = Graph rewrite rule

Functional evolution of metabolic networks

- Evaluation = metabolic pathway analysis
- Scores = metabolic yield
- Selection = 50% with highes yield
- Genetic operations = Mutation, Duplication
- Reproduction = asexual
- Protocoll
 - Genetic events
 - Phenotypic events
 - Metabolic network
 - Network properties

Integrating the sequence-to-structure map

- Genotype = RNAsequence
- Phenotype = Graph rewrite rule
- Mapping: Sequence
 - --> Structure
 - --> reduced Structure
 - --> Features
 - --> ITS ID
 - --> ITS
 - --> Graph rewrite rule

Integrating the sequence-to-structure map

AUGAGUAUAAGUUAAUGGUUAAAGUAAAUGUCUUCCACACAUUCCAUGUGAGUUCGAUUCUCACUACUCAU

Integrating the sequence-to-structure map

Section	Loop	C-G pair	Neighbor > 5 bp	Bond	Valence	Seq. $(loop)$	Sequence
$1 \pmod{1}$	yes	0	yes $(+1)$	1 "–"	3	4	4 = C
2 (blue)	yes	1	yes $(+1)$	2 "="	4	1	4 = C
3 (gray)	no	-	no	0 ""	3	4	4 = C
4 (yellow)	yes	0	no	0 ""	1	4	4 = C
5 (pink)	no	-	yes $(+1)$	1 "–"	2	2	2 = 0
6 (green)	yes	1	no	1 "–"	3	3	3 = N

- Comparison of different mappings
 - Neutral walk
 - Neutral networks
 - Redundancy
 - Extension
 - Entanglement
- Results from the simulation
 - Networks
 - Connectivity
 - Enzymes
 - Evolution

Genotype Space

M. Shackleton, R. Shipman, M. Ebner. An investigation of redundant genotypephenotype mappings and their role in evolutionary search.

- Neutrality:
 - RNA : 50%
 - CA : 42%
 - RBN : 58% --> most robust, but!
- Encountered Phenotypes (length=100)
 - RNA : 198 --> most evolvable
 - CA : 99
 - RBN : 145

Encountered Phenotypes (length=20)

- RNA : 106 --> most innovative
- CA : 41
- RBN : 60

• Access to phenotypes via one-point-mutation:

- RNA : 28 --> most intertwined !!!
- CA : 14
- RBN : 21

Specificity of enzymes in the example network

Application / Outlook

- Evolutionary Algorithms
- Evolutionary studies
 - Metabolic networks, catalytic elements
 - Gene regulatory networks
- Simulation
 - Mapping
 - RNA
 - Evolution
 - Selection vs neutral theory
 - Smooth vs rugged parts in phenotype / fitness landscape
 - Network / System properties

Acknowledgement

- University of Vienna
 - Christoph Flamm
 - TBI Group
- University of Leipzig
 Peter Stadler
- EBI
 - Lukas Endler
- Funding
 - Vienna Science and Technology Foundation WWTF

Thanks for your attention.

Questions? Comments? Suggestions?