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abstract: Many questions in comparative biology require that new
data be collected, either to build a comparative database for the first
time or to augment existing data. Given resource limitations in col-
lecting data, the question arises as to which species should be studied
to increase the size of comparative data sets. By taking hypotheses,
existing data relevant to the hypotheses, and a phylogeny, we show
that a method of “phylogenetic targeting” can systematically guide
data collection while taking into account potentially confounding
variables and competing hypotheses. Phylogenetic targeting selects
potential candidates for future data collection, using a flexible scoring
system based on differences in pairwise comparisons. We used sim-
ulations to assess the performance of phylogenetic targeting, as com-
pared with the less systematic approach of randomly selecting species
(as might occur when data have been collected without regard to
phylogeny and variation in the traits of interest). The simulations
revealed that phylogenetic targeting increased the statistical power
to detect correlations and that power increased with the number of
species in the tree, even when the number of species studied was
held constant. We also developed a Web-based computer program
called PhyloTargeting to implement the approach (http://
phylotargeting.fas.harvard.edu).

Keywords: comparative method, phylogeny, correlated evolution,
taxon sampling, pairwise comparison.

Introduction

The comparative method has played a major role in un-
covering adaptive trait evolution in biological systems
(Ridley 1983; Harvey and Pagel 1991; Pagel 1999; Martins
2000). The comparative method has, for example, revealed
links between mating systems and sperm competition in
primates (Harcourt et al. 1981) and other animals (Møller
1991; Hosken 1997). The comparative method also sup-
ports a model of sexual selection in which females choose

* Corresponding author; e-mail: carnold@fas.harvard.edu.

Am. Nat. 2010. Vol. 176, pp. 601–612. � 2010 by The University of Chicago.
0003-0147/2010/17605-52091$15.00. All rights reserved.
DOI: 10.1086/656490

males on the basis of their ability to resist parasites (Ham-
ilton and Zuk 1982), and it has been used to probe the
origins of both parasitic and symbiotic associations (e.g.,
Hugot 1999; Lutzoni et al. 2001). More recently, com-
parative methods have been applied to study phylogenetic
community ecology (Webb et al. 2002), for example, in
the context of the phylogenetic overdispersion of mam-
malian communities (Cooper et al. 2008). The compar-
ative method can also be used to address conservation
issues (Fisher and Owens 2004), such as questions in-
volving the factors that influence rates of extinction
(Purvis et al. 2000b) and how the phylogenetic clumping
of conservation threat status can lead to greater loss of
phylogenetic diversity when species become extinct (Purvis
et al. 2000a).

A comparative analysis requires data on a set of species
relevant to a hypothesis of interest. Usually, however, data
are available for only a fraction of the species in a clade,
and data collection in both the field and the laboratory is
expensive and time consuming. A proper selection of spe-
cies to study is a nontrivial and multifaceted problem (Gar-
land 2001; Westoby 2002) that has rarely been addressed
in a systematic way. Instead, species are often chosen either
randomly or subjectively (Westoby 1999; Faustino et al.
2010) because they are of “particular (and perhaps irra-
tional) interest” (Garland 2001, p. 119). Two problems are
introduced when species are chosen in an unsystematic
way. First, the full range of variation is not used to test
the hypotheses. Second, taxonomic gap bias may occur,
meaning that data collection has been focused on a few
“popular” lineages. These different kinds of biases—in-
complete variation and gap biases—can make a momen-
tous difference to the conclusions one draws. In studies
of primates, for example, results of comparative research
are likely to change when the sample is tilted toward ter-
restrial species rather than those that live in trees, because
terrestrial species possess larger body masses, exhibit dif-
ferent locomotor patterns, and live in larger social groups
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(Clutton-Brock and Harvey 1977; Martin 1990; Nunn and
van Schaik 2002).

To address these issues, methods are required that quan-
tify potential biases in comparative data sets and identify
the species that should be studied in the future. Indeed,
it is common to read in articles of comparative research
that further sampling is required to validate the findings,
because either the sample sizes were small or the sample
was biased toward particular species within a clade (e.g.,
in the study of sleep patterns; Roth et al. 2006; Capellini
et al. 2009; Nunn et al. 2009). Unfortunately often, how-
ever, only general guidelines for this selection process have
been given, and these guidelines are often specific to the
question of interest (Westoby 2002). To our knowledge,
no method yet exists that is flexible and specific enough
to address the crucial task of prioritizing future research
in light of specific hypotheses about the apportionment
of variation in relation to one or more ecological factors.

Only a handful of studies have investigated ways of
systematically identifying species to study. For example,
Ackerly (2000) compared the performance of different
taxon sampling strategies and found their statistical per-
formances to differ substantially. One of the algorithms
he examined is based on the pairwise comparison ap-
proach (Felsenstein 1985, p. 13; Møller and Birkhead 1992;
Oakes 1992; Read and Nee 1995; Purvis and Bromham
1997; Maddison 2000) and identifies meaningful com-
parisons by selecting species pairs that differ by a certain
amount in the independent variable, following the sug-
gestion of Westoby (1999). Although it overestimates the
magnitude of the correlation, Ackerly (2000) showed that
this design increases the statistical power to detect cor-
related evolution (see also Garland 2001). Major weak-
nesses of the method are that the threshold for when dif-
ferences are large is arbitrary, that it is dependent on the
data set, and that it must be set manually, which limits its
applicability considerably. Mitani et al. (1996) considered
sampling strategies in relation to testing competing hy-
potheses, while Read and Nee (1995) discussed the need
to identify pairs that contribute for or against hypotheses.
Similarly, Maddison (2000) presented a methodology for
choosing species pairs in which each pair is “a comparison
relevant for the question of interest” (p. 198). However,
his method is designed for binary rather than continuously
varying data and can handle only fully bifurcating trees,
and thus it does not provide enough flexibility for iden-
tifying meaningful comparisons with real data.

The method of pairwise comparisons has been used
frequently to identify meaningful comparisons. Several
reasons exist for using pairwise comparisons. For example,
the method of pairwise comparison relies on fewer as-
sumptions (Ackerly 2000; Maddison 2000; Hearn and
Huber 2006) than other methods. Thus, unlike phyloge-

netically independent contrasts (PIC; Felsenstein 1985;
Harvey and Pagel 1991; Garland et al. 1992), pairwise
comparison does not require a specific model of evolution
or the estimation of states at interior nodes. In addition,
some sets of species within a larger clade might not be
directly comparable in standard implementations of com-
parative methods, such as PIC. In regard to mammalian
sleep, for example, some cetaceans sleep with only one-
half of their brains (Lyamin et al. 2008), making it difficult
to compare the measurements of sleep in cetaceans with
those in other mammals. The method of selecting specific
pairwise comparisons provides a way to limit comparisons
so that cetaceans are compared only with other cetaceans
and noncetaceans are compared only with noncetaceans.
Similarly, some behavioral experiments might require sim-
ilar sensory modalities or cognitive ability among species
in the data set. Pairwise comparisons of some close rela-
tives may be more appropriate for selecting species for
focused comparative experiments that take these factors
into account.

When using the method of pairwise comparisons, it is
important that all pairs are phylogenetically independent,
that is, that no branches are shared among the compari-
sons (Felsenstein 1985; Maddison 2000). In figure 2, for
example, different sets of phylogenetically independent
pairs (which we call a “pairing”; see Maddison 2000) are
shown for each tree. Thus, when selecting phylogenetically
independent pairs, the selection of a particular pair con-
strains which other pairs can be selected.

Here we present a new approach, which we call “phy-
logenetic targeting,” to systematically identify the species
to be studied. Phylogenetic targeting is a taxon sampling
approach that aims to prioritize future research by iden-
tifying species that should be studied in a target-oriented
way under consideration of the specific hypotheses and
data. It is not a new way to analyze comparative data or
a substitute for existing analysis methods, but rather it
draws on existing methods in comparative biology. This
method uses the pairwise comparison approach and is
based on a scoring system that incorporates phylogeny and
data on variables relevant to testing hypotheses, specifically
involving the predictor and response variables in a com-
parative test. The predictor variables can include poten-
tially confounding variables or variables relevant to testing
alternative hypotheses for an association. If external in-
formation suggests that comparisons should be restricted
taxonomically or in relation to existing data, one can use
the method to limit the species to be compared.

After assigning a score for each pair of species, phylo-
genetic targeting uses a newly developed algorithm to select
the set of phylogenetically independent pairs of species
that offer greater statistical power to test the hypothesis
when data have been collected on the dependent variable.
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Figure 1: Flow chart for applying phylogenetic targeting. Phylogenetic
targeting is essentially a taxon sampling technique to systematically guide
future data collection.

After data collection, pairwise contrasts for the targeted
species pairs can be used to test hypotheses, or one can
use standard comparative techniques for testing correlated
character evolution (fig. 1). This decision is up to the
investigator and depends on the actual hypotheses, data,
and analysis preferences (see “Discussion”). We use com-
puter simulations to assess the degree to which phyloge-
netic targeting, compared with random sampling of spe-
cies, increases statistical power for detecting correlated trait
evolution. We have also implemented the method online
(http://phylotargeting.fas.harvard.edu). We anticipate that
the general approach developed here for pairwise com-
parisons can be adjusted for use with additional compar-
ative methods, such as PIC or generalized least squares
approaches, and we discuss some of these potential
extensions.

Methods

The method requires a phylogeny and one or more explicit
hypotheses that offer predictions for how variation in one
trait (X1) correlates with variation in another trait that is
common to all the hypotheses and, because it is not known
in all the species, is the “target” of the analysis (Yt; fig. 1).
We call this association between Yt and X1 the primary
hypothesis. Additional hypotheses, if desired, are imple-
mented through traits X2 … Xn, which relate to competing
hypotheses or potentially confounding variables. The goal
of the method is to identify species that should be studied,
with regard to Yt, through the use of phylogenetic rela-
tionships and data already collected for the X traits. Thus,
a species cannot be included in a phylogenetic targeting
analysis if data on the X trait are lacking for that species.
We assume that larger evolutionary changes in X1 provide
higher statistical power for comparative tests to test the
hypotheses, because they increase the available range of
variation (Westoby et al. 1998; Westoby 1999; Garland
2001; Garland et al. 2005). We also assume that the char-
acters show a linear relationship. Different targeting anal-
yses are likely to focus on a primary hypothesis and various
combinations of alternative hypotheses, and both discrete
and continuous traits can be used. Scores, such that higher
values indicate more preferred species to study, are cal-
culated on the basis of user-defined criteria involving con-
trol of confounding variables, testing of alternative hy-
potheses, and availability of data on Yt for one or more
species in a clade.

Calculating Pairwise Comparisons

The analysis starts by calculating all possible n # (n �
pairwise comparisons. In the tree shown in figure 2,1)/2

for example, 15 comparisons can be constructed. The

method as such does not rely on using only pairs of sister
species, as pairs of more distantly related species could
also offer compelling tests of the hypotheses (Read and
Nee 1995; Westoby 1999; Maddison 2000). Pairwise com-
parisons with missing data in any of the traits except Yt

are excluded. In addition, certain species can be excluded
manually from the analysis, for example, in cases where
an experiment can be applied to only certain species on
the tree.
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Figure 2: Three of the 15 possible pairings for an example tree. Paired species are highlighted in black. One pairing has three pairs, 10 pairings
have two pairs, and four pairings have only one pair. In all pairings, pairs are phylogenetically independent, and no additional pair can be added
without violating the requirement of phylogenetic independence.

If discrete characters with more than two possible states
are used, they can be treated as ordered (costs between
different pairs of states are different, as a particular se-
quence exists in which the states must occur through evo-
lution) or unordered (every state change is equal, as each
state can directly be transformed into any other state;
Slowinski 1993).

Calculating Scores for Models with a
Single Predictor (Yt and X1)

For predictions that involve only a primary hypothesis
(i.e., only one independent variable), phylogenetic target-
ing uses a scoring system that maximizes the variability
in X1. In other words, species pairs that differ the most in
X1 are targeted. If we were interested in hypotheses that
involve body mass as an independent variable, for ex-
ample, phylogenetic targeting gives pairs with the largest
differences in body mass higher scores. Thus, pairwise
comparisons with large differences in X1 are scored more
positively, whereas smaller differences are scored less pos-
itively. These contrasts are then standardized to a scale of
0 to 1, with a difference of 0 assigned a score of 0 and
the largest difference in all considered pairs assigned a
score of 1. Note that even if no zero contrasts are found
in the data, the method fixes the lowest contrast as 0. All
other differences are assigned a score between 0 and 1 by
applying a linear scaling transformation. We call this the
score of X1. If X1 is an unordered discrete character, then
the score will be either 0 or 1 regardless of the actual
difference in character state assignments, whereas the dif-
ference is scored on an interval between 0 and 1 in the
case of an ordered character, with the maximum number
of character steps scored as 1.

Calculating Scores for Models with
Covariates (Yt, X1, X2 … Xn)

Models that incorporate additional traits enable the testing
of different kinds of hypotheses (e.g., mutually exclusive
and non–mutually exclusive), and they can be used to
control for confounding variables. For each X2 … Xn, a
separate scoring mechanism is defined in which larger con-
trasts have either a negative or a positive influence on the
overall score. The decision as to whether larger differences
in each of the variables X2–Xn are scored higher or lower
depends on whether the variables reflect confounding var-
iables or a desire to distinguish among competing hy-
potheses. To simplify discussion, we consider a case in
which only one additional variable is included; that is,

. Further details on the specifics of scoringY p f(X , X )t 1 2

are given below.
To control for confounding variables, the goal is to min-

imize variation in the predictor variable that corresponds
to the confounding variable of interest, that is, X2. Thus,
pairwise comparisons in X2 that make the absolute value
of change in a particular confounding variable as small as
possible are scored higher, whereas pairwise comparisons
with larger differences are scored lower (scoreNC, i.e., the
score from standardizing the covariate for “no change”).
The smallest pairwise contrast is assigned a score of 1,
whereas the maximum pairwise contrast is assigned a score
of 0. All other differences are assigned a score between 0
and 1.

To address mutually exclusive hypotheses, the goal is to
maximize scores for X2 that differ maximally from con-
trasts in X1. Two different scoring options can be applied
that both target large differences but differ in how they
score these differences. The first option positively scores
the differences in X2 that are in the opposite direction
from the difference in X1, and it negatively scores differ-
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Table 1: Illustration of the scoring system and the maximal pairing

Pairwise
comparison

X1 X2 Summed
score

Sum of
branch lengths

Standardized
summed

scoreDraw Score Draw ScoreNC ScoreSD ScoreOD

s1-s2a .5 .385 �3 .831 �.171 .171 1.216 6 .496
s1-s3 .8 .615 �1.5 .916 �.086 .086 1.531 6 .625
s1-s4 1.3 1 �2.7 .848 �.154 .154 1.848 6 .755
s1-s5 1 .769 14.8 .169 .831 �.831 .938 8 .332
s1-s6 .6 .462 9.6 .461 .539 �.539 .922 8 .326
s2-s3 .3 .231 1.5 .916 .084 �.084 1.146 4 .573
s2-s4 .8 .615 .3 .983 .017 �.017 1.599 4 .799
s2-s5 .5 .385 17.8 0 1 �1 .385 8 .136
s2-s6 .1 .077 12.6 .292 .708 �.708 .369 8 .13
s3-s4a .5 .385 �1.2 .933 �.069 .069 1.317 2 .931
s3-s5 .2 .154 16.3 .084 .916 �.916 .238 8 .084
s3-s6 .2 .154 �11.1 .376 �.634 .634 .53 8 .187
s4-s5 .3 .231 �17.5 .017 �1 1 .248 8 .088
s4-s6 .7 .538 �12.3 .309 �.703 .703 .847 8 .3
s5-s6a .4 .308 5.2 .708 .292 �.292 1.016 2 .718

Note: As applied to figure 3. Draw p raw difference of trait values (see fig. 3). See scoring section for details on scoreNC, scoreSD, and

scoreOD. Calculation of the summed score was based on the score of X1 and the scoreNC scoring option for X2; sum of branch lengths was

calculated according to the tree in figure 2.
a Pairs that are selected in the maximal pairing.

ences in the same direction as X1 (scoreOD, i.e., the score
from standardizing the covariate in the opposite direction).
The largest difference in the opposite direction is assigned
a score of 1, whereas the largest difference in the same
direction is assigned a score of �1. A difference of 0 is
assigned a score of 0. In analogy to models with a single
predictor, the method fixes the lowest contrast as 0, even
if no zero contrasts are found in the data. This ensures
that all nonzero differences are assigned a score that is
different from 0. All other differences are assigned a score
between �1 and 1 by applying a linear scaling transfor-
mation, which is calculated separately for positive and neg-
ative contrasts. The second option is the opposite of the
first option; that is, differences in the opposite direction
from the difference in X1 are scored negatively and dif-
ferences in the same direction are scored positively
(scoreSD, i.e., the score from standardizing the covariate in
the same direction). For example, this option might be
useful if an increase in X1 is predicted to reduce Yt and
an increase in X2 is predicted to increase Yt. Thus, it is
necessary to give higher scores to contrasts in the same
direction for X1 and X2 in order to distinguish among the
hypotheses.

For models with covariates, the direction of change for
X2 … Xn always refers to the direction of change in X1;
for example, a positive value means that the direction of
change is the same as in X1. By doing so, we force the
difference in X1 (Draw; see table 1) to be positive and achieve
consistency with other widely used programs, such as
CAIC (Purvis and Rambaut 1995) and PDAP-Mesquite

(Midford et al. 2005). This “positivization assumption”
also helps to make sense of the other trait differences and
their directions when using the computer program, as it
becomes possible to determine whether other pairwise
comparisons are consistently positively or negatively as-
sociated with X1 (e.g., if X2 is positive, then it must be in
the same direction as X1). Although this is not strictly
necessary for the algorithms implemented here, it helps
to guide manual selection of contrasts in the Web-based
implementation of phylogenetic targeting.

Summed Score and Standardizing Scores
for Branch Lengths

For each pairwise comparison, the scores for all traits are
summed up to define the summed score (see table 1 for
a case involving X2 as a confounding variable, i.e., scoreNC).
The summed score combines the information from all of
the traits and thus represents the strength of a pair for
testing the hypotheses. For models with Yt and X1 only,
the summed score thus equals the score of X1.

Regardless of the scoring model, summed scores can
sometimes be uninformative when compared among dif-
ferent pairs because the more divergent two species are,
the more likely it is that they have evolved larger differ-
ences. In other words, different pairs will have different
expected amounts of change (i.e., variance). This problem
can be overcome by normalizing the summed score by its
expected variance (square root of the sum of the branch
lengths that connect the two species; Felsenstein 1985; Gar-
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Figure 3: Example data set and phylogeny for applying phylogenetic targeting. The tree shows continuously varying traits X1, X2, and Yt, and a
binary trait Bt, indicating whether the species has already been studied in relation to Yt. Two species have already been studied regarding Yt, and
data on Yt are missing for four species. The goal is to identify which of the four unstudied species should be targeted for studying Yt.

land et al. 1992). We call this the standardized summed
score. In this score, all pairwise comparisons have a com-
mon variance, which is required by most statistical tests
(see also “Discussion”).

Table 1 summarizes and applies the scoring system to
the data set in figure 3, on the basis of controlling for X2

as a confounding variable (scoreNC). Different standardized
summed scores would be obtained if we treated X2 as
representing a competing hypothesis and depending on
the expected direction of X2 in the context of competing
hypotheses (see data for scoreSD and scoreOD in table 1).

Availability Variable

In addition to manually excluding species from an analysis,
it is possible to define an “availability variable” to auto-
matically exclude species or pairs in relation to the avail-
ability of data for Yt. One can thus use the availability
variable to identify other species that should be studied
in the context of existing data on Yt. An availability variable
also provides a way to quickly pinpoint where the missing
data points are in a phylogenetic context, which can help
to identify biases in the distribution of the studied species.

The availability variable must be a discrete binary var-
iable that identifies whether data are available for Yt for a
particular species. For example, consider the scenario in
figure 3, in which Bt is the availability variable. Possible

options would be to consider only pairs where data are
available for both species in the pair (exclusion of all pairs
except s1-s5), for one species in the pair (exclusion of s1-
s5 and all combinations of s2, s3, s4, and s6), for at least
one species in the pair (as for when data are available for
one species, but also including s1-s5), and for neither of
the species in the pair (exclusion of the nine pairs with
s1 and s5). Thus, this scoring procedure can be used in a
variety of ways. For example, if the availability variable
indicates that data are available for only a fraction of the
species, then the majority of the pairs will be excluded if
the option is chosen to consider only pairs where one
species has already been studied and data are needed for
the other species. In such a case, the pairs remaining are
those containing one studied species and one that has yet
to be studied. It can thus be seen as an additional selection
factor that effectively constrains the species to be targeted.

Maximal Pairing Algorithm

The actual selection of species is performed by a dynamic
programming algorithm that we call maximal pairing. The
maximal pairing algorithm is a general optimization al-
gorithm that selects pairs of species that are phylogenet-
ically independent (see also Arnold and Stadler 2010). In
contrast to PIC, where pairs can also involve internal nodes
on the tree, the maximal pairing algorithm selects only
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pairs between the tips of the tree. The selection of pairs
is based on the summed score for each pair, and the al-
gorithm determines the set of phylogenetically indepen-
dent pairs that maximizes the sum of the individual
summed scores (table 1). This criterion is therefore as-
sumed to maximize the power to test the hypotheses, given
constraints on maintaining phylogenetic independence.
With large data sets, it is difficult to find the maximal
pairing manually, due to the large number of possible
pairings and the complex phylogenetic dependence of pairs
that must not share a branch (fig. 2). Despite some dif-
ferences that involve execution time and representation of
polytomies, the maximal pairing algorithm also works for
polytomous trees (see app. A in the online edition of the
American Naturalist for more details).

For models that involve only X1, for example, maximal
pairing generally selects pairs of closely related species that
maximize differences in X1; these pairs are often distantly
related to the other pairs that are selected. In a comparative
test, such a design is considered to be especially powerful
(Garland et al. 2005). If, however, an additional trait X2

is used to control for confounding variables (thereby scor-
ing small differences in X2 higher with scoreNC), then the
algorithm both maximizes differences in X1 and minimizes
differences in X2. Conversely, if one aims to maximize
differences in X2 (thereby scoring larger differences in X2

that are opposite in sign to X1 higher with scoreOD), then
the algorithm maximizes differences in X1 and maximizes
differences in X2 opposite in sign to corresponding dif-
ferences in X1. Similar logic applies to scoreSD. It is worth
noting, however, that because of the phylogenetic con-
straints and the standardizing of contrasts, maximal pair-
ing does not simply select the pairs with the most extreme
character differences; instead, pairs with small differences
among closely related species are also frequently selected.

Simulations

We compared the performance of phylogenetic targeting
with that of random selection of species, using simulations.
The aim of the simulations was to generate data with
known degrees of correlation between pairs of variables
and then to select subsets of species either randomly or
with phylogenetic targeting. To perform the simulations,
we first generated phylogenetic trees and character data,
using the GEIGER package (Harmon et al. 2008) in R (R
Development Core Team 2009) according to a uniform
birth-death process ( , ). We created 1,500b p 0.15 d p 0
random phylogenies for a series of , 70, and 90N p 50
taxa. We then simulated character evolution for two con-
tinuously varying characters on each tree, using nine dif-
ferent models of evolution (table B1 in the online edition
of the American Naturalist) with character states (0, 0) at

the root of the tree. When simulating the non-Brownian-
motion models of evolution, we transformed the tree in
GEIGER (Harmon et al. 2008), simulated traits on the
transformed tree, and then analyzed the data on the orig-
inal tree, thereby simulating a case where the branch
lengths failed to accurately reflect trait evolution (see app.
B). Characters were simulated with a variance of 1 and
correlations of both 0 and 0.5 for each tree. This procedure
yielded 81,000 simulated data sets for analysis (1,500 trees
across three sets of species, and simulating data under nine
models of evolution and two levels of correlation, i.e.,
1,500 # 3 # 2 # 9). For the Brownian-motion simu-
lations reported in the text, analyses are based on 9,000
simulated data sets, with the remainder presented in the
supplement.

Using these data and phylogenies, we selected subsets
of species randomly and with phylogenetic targeting. In
each simulation file, we selected the first simulated trait
to be X1; the second variable was assumed to be Yt. We
also standardized the scores. The maximal pairing was then
calculated, and we selected the six highest-scoring pairs.
We also randomly selected six phylogenetically indepen-
dent pairs. To investigate whether the number of selected
pairs impacts statistical performance, all analyses were re-
peated with 9 and 12 pairs.

To evaluate the statistical properties of both sampling
approaches, we performed standard statistical tests on the
basis of the selected pairwise comparisons. For this we
used the character differences for X1 and Yt for the selected
pairs and then standardized them by their expected var-
iance (square root of the sum of the branch lengths that
connect the two species). We tested for an association
between the two characters based on correlation through
the origin (Garland et al. 1992), using a t-test with N �

degrees of freedom and . We determined Type2 a p 0.05
I error rates (incorrectly rejecting a true null hypothesis
of no association between traits) and statistical power
(probability of rejecting a false null hypothesis) for both
sampling approaches. Type I error rates were calculated as
the proportion of significant results based on forP p .05
data sets in which , while statistical power was basedr p 0
on the proportion of significant results for data sets in
which .r p 0.5

In addition to tests based on pairwise comparisons, we
performed tests based on the full set of independent con-
trasts. We did this because many users may be interested
in using a full set of contrasts, yet the method operates
by examining pairwise comparisons. Thus, understanding
the statistical performance of phylogenetic targeting when
it is used with PIC is an important step and expands its
application spectrum. After pruning the tree to the subset
of the selected pairs, we calculated PIC (Felsenstein 1985),
using the APE package (Paradis et al. 2004). We tested for
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Figure 4: Simulation results for the percentage of the used range of
variation for X1 when species pairs are selected with phylogenetic targeting
(filled bars) and randomly (open bars). The X-axis plots the effects of the
number of pairs that have been selected (6, 9, and 12). Contrasts were
standardized.

a significant correlation between the two characters, using
the methods described above.

We also tested how the inclusion of randomly selected,
nontargeted species affects the results. This simulates a
common situation because data are often already available
for some species but missing for others. Specifically, we
examined how including k random species affects the re-
sults for tests based on pairwise comparisons and PIC
(with values of k ranging from 2 to 10 in steps of 2). We
included these additional species from the set of species
that were not selected by phylogenetic targeting (and thus
without using the availability variable).

Finally, we analyzed how much of the original range of
variation in the simulated data was available after the data
were pruned to the selected species. This gives insights to
the range of variation that is available for hypothesis testing
under the two sampling techniques.

Results

PhyloTargeting Program

We created a freely available computer program,
PhyloTargeting, that implements the phylogenetic target-
ing approach. It is Web based, taking the data as a Nexus
file (Maddison et al. 1997) and providing a user-friendly,
interactive, step-by-step interface, a variety of analysis op-
tions, and graphical visualizations of the results. The pro-
gram is publicly available at http://phylotargeting.fas
.harvard.edu.

Simulations

The simulations revealed that phylogenetic targeting sub-
stantially increases the range of biological variation that is
sampled relative to random sampling (fig. 4). Phylogenetic
targeting also provided substantially higher statistical
power for detecting a true relationship (fig. 5). This held
for both the pairwise tests and tests based on PIC. For the
pairwise tests, Type I error rates for were elevateda p 0.05
if the number of selected pairs was small, but they de-
creased to the expected level when more pairs were se-
lected. For the tests based on PIC, Type I error rates were
close to the expected level in all scenarios. Importantly,
Type I error rates under random sampling and phyloge-
netic targeting were generally indistinguishable. All sim-
ulation results (including the results not highlighted in the
article) are provided in an Excel file titled “Simulation
Results,” available in the online edition of the American
Naturalist.

Increasing the number of pairs that are selected by the
sampling algorithms increased statistical power, as was ex-
pected (fig. 5). For the pairwise tests, it also decreased

Type I error rates. The number of taxa per tree, however,
revealed a more surprising effect. Even when the number
of pairs was held constant, the statistical power increased
with the number of taxa in the clade under phylogenetic
targeting, and Type I error rates did not increase (fig. 5).
When species were selected randomly, however, power did
not increase with increasing clade size.

When the true correlation was 0.5, mean values of r
were elevated; moreover, they increased with the number
of species per tree (see “Simulation Results” Excel file).
Thus, a sampling regime based on phylogenetic targeting
resulted in biased estimates of evolutionary trait correla-
tions when , whereas a random selection of speciesr ( 0
resulted in no bias. Importantly, however, no bias was
found when the true correlation was 0, as is shown in the
results for Type I error rates. Furthermore, the bias de-
creased when additional, randomly selected species were
included (see also “Discussion”).

The results highlighted above are for a Brownian-
motion process of character evolution. For the alternative
models that we tested (see app. B), many of the results
were comparable. However, for most of these analyses,
Type I error rates were highly elevated and statistical power
was reduced under the two sampling approaches and for
PIC on the full tree (which we used as a control). Not
surprisingly, the pairwise tests showed substantially less
elevated Type I error rates if model assumptions were vi-
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Figure 5: Selected results from the simulations under Brownian motion. Type I errors and statistical power for correlation tests based on pairwise
comparisons (PC) and phylogenetically independent contrasts (PIC) are shown for phylogenetically targeted (PT) and random (R) taxon sampling.
The first three bars in each category represent Type I error rates (based on 50-, 70-, and 90-species trees), and the last three bars represent statistical
power (also based on 50-, 70-, and 90-species trees). Contrasts were standardized, and six pairs were selected.

olated, possibly because the method of pairwise compar-
isons relies on fewer assumptions.

Discussion

Comparative studies generally make use of available data.
Here we show that the comparative approach can also be
used to target species for future data collection. By ap-
plying the phylogenetic targeting concept, we can identify
species that offer higher power to test predictions of a
comparative hypothesis. Moreover, phylogenetic targeting
provides a way to control for confounding variables when
selecting species for further study or when testing com-
peting hypotheses. The method will most likely be used
to augment existing data, but it can also be applied to
generate new data sets in the context of finite resources
for data collection.

A major strength of the approach is that phylogenetic
information is incorporated when selecting species to
study (Garland 2001; Garland et al. 2005), thereby en-
suring that the selected pairs are phylogenetically inde-
pendent of one another. This makes it possible to analyze
the data with standard statistical methods (i.e., pairwise
tests). However, the simulations revealed that, when com-
pared with PIC, statistical power here is reduced (see also
Ackerly 2000). This may be due to the fact that for pairwise
differences, the number of data points is reduced by a
factor of approximately 2 because only the tips of the tree

and not the interior nodes are contrasted. Furthermore,
the bias in estimating the correlation coefficient is in-
creased with pairwise comparisons. We therefore advise
users to analyze the selected species with standard com-
parative methods on the basis of the full set of contrasts
whenever possible, instead of using the differences for the
selected pairs directly.

The simulation results revealed that phylogenetic tar-
geting, compared with a random selection of species, pro-
vides many advantages for detecting correlated trait evo-
lution. Statistical power was strongly increased in all of
the cases we examined. Phylogenetic targeting used a
higher percentage of the available range of variation for a
character than did random sampling of species. We can
therefore be more certain that the pattern holds generally
across the clade of organisms rather than, for example,
only among the species that are larger in body size or more
amenable to study. Surprisingly, the simulations also re-
vealed that statistical power increased with the number of
species per tree, even when the number of taxa selected
for study remained constant. Type I errors, however, were
always close to the nominal level and were indistinguish-
able between phylogenetic targeting and random species
sampling. Thus, applying the method to larger clades re-
sulted in increased power without increasing the number
of pairs examined, probably because having more taxa
increased the magnitude of the differences that could be
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selected overall (which in turn increased the ability to
detect a correlation).

Phylogenetic targeting should be used with caution
when one wants to determine the magnitude of a corre-
lation. Like the pairwise approach of Westoby (1999), it
overestimates the correlation coefficient (Ackerly 2000).
This was true for both the pairwise tests and PIC, and the
bias was stronger with the pairwise tests. The simulations
also revealed that this overestimation increases with the
number of species per tree, thus mirroring the increase in
power. In the context of applying the method to real-world
data in which data for Yt are already available for some
of the species, however, simulations confirmed that this
bias decreases substantially with the number of randomly
selected species for which data are already available. For
most questions of interest that we envision, data are often
available on Yt for a number of species that often com-
prised a majority of the species in the data set. When such
data are available, inclusion of already available data in
subsequent analysis after applying phylogenetic targeting
is highly recommended. Alternatively, users can imple-
ment the availability variable option described above to
more fully integrate decisions about future data collection
with already-studied species. Furthermore, as noted above,
the bias is likely to decrease if additional traits representing
confounding variables or alternative hypotheses are in-
cluded in the analysis.

A few limitations and assumptions of phylogenetic tar-
geting should be noted. Although the maximal pairing
selects the set of species pairs that have the highest overall
scores according to a user-defined scoring model, it may
select species that are not directly comparable in relation
to a particular test, such as an experiment that involves
testing cognitive abilities. To overcome this possible weak-
ness, our PhyloTargeting program provides a way for the
user to manually select pairs in which particular compar-
isons are possible and to exclude other comparisons. Phy-
logenetic targeting must be used with caution if nonlinear
relationships exist between the variables, and we advise
users to critically examine the variables beforehand. Other
critical issues are the phylogenetic tree, the representation
of polytomies (see app. B), and the branch lengths on
which the species selection is based. The selection of spe-
cies can vary substantially between similar tree topologies
due to the fact that the maximal pairing algorithm strictly
maximizes the overall score, which can sometimes be
heavily influenced by the topology. Branch lengths are as-
sumed to be proportional to the expected variance in the
amount of evolutionary changes along each branch
(Brownian motion); this assumption becomes important
in both phylogenetic targeting and subsequent analyses,
particularly for PIC. If these assumptions are violated, Type
I error rates are inflated and statistical power is reduced

(Dı́az-Uriarte and Garland 1996; Quader et al. 2004). In-
deed, the simulations confirmed this effect; for almost all
of the alternative models, Type I error rates were highly
elevated. The only exception is the early-burst model,
which yielded results that were very similar to those for
Brownian motion (“Simulation Results” Excel file).

Because sister taxa will tend to be similar in many ways,
confounding variables are expected to be less of a problem
in comparisons of sister species (Harvey and Pagel 1991;
Møller and Birkhead 1992). In our approach, however,
more distantly related species pairs can also be selected.
This can be critical, because other unmeasured, confound-
ing variables may be introduced to the analysis. The com-
parison of distantly related species is comparable to an
experiment with multiple uncontrolled variables (Garland
and Adolph 1994; Garland 2001). The more distantly re-
lated two species are, the more likely it is that such an
effect could bias the results. Including additional variables
in the calculations makes it possible to control for some
confounding variables when measurements are available.

We recommend that users standardize pairs to meet
statistical requirements of subsequent statistical tests (i.e.,
equal variances among pairs). Standardization has not typ-
ically been implemented for pairwise comparisons, but it
is necessary if one wishes to use parametric statistical tests
that make assumptions about homoscedasticity. When
contrasts are standardized, distantly related pairs are se-
lected less often. This may be useful if large differences
are informative only when the species are closely related
(e.g., to control for possibly unknown confounding var-
iables) or if comparisons should be made between closely
related species (e.g., because of biological differences that
limit comparability of experimental results). Standardi-
zation as such affects the selection of pairs.

Another argument for standardization is that fewer
traits should change on shorter branches, and thus it helps
to control for confounding variables. However, standard-
ization may exaggerate evolutionary differences for close
relatives when differences are due to sampling error or
within-species variation (Purvis and Webster 1999). It can
therefore overestimate the importance of certain species
pairs if they are close relatives. We may sometimes expect
a larger absolute change in some trait, regardless of its rate
of change, to be more valuable in testing a hypothesis than
a small change over a short branch. For example, brain
size that increases by an order of magnitude might be a
stronger test than a smaller amount of brain change, even
if the small change occurs over a small branch. Using the
program that we provide, the choice of standardization is
left up to the user (with the default option to standardize
scores) and is based on his or her preferences, the as-
sumptions of subsequent methods, and the particulars of
the biological system.
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Phylogenetic targeting works best for continuous traits,
but it can also be used with discrete traits. However, phy-
logenetic targeting that is based purely on discrete char-
acters is more challenging because the number of distinct
differences is typically smaller. In such cases, it is common
to find that numerous pairs have the maximal possible
score. This will ultimately result in multiple optimal so-
lutions in the maximal pairing algorithm. However, be-
cause the current implementation returns only one opti-
mal solution, it is difficult to evaluate its uniqueness.
Possible work-arounds would be to add a continuous var-
iable or to standardize contrasts; both of these would help
to generate variation in the scores and thus aid in deciding
among the possible pairs of taxa.

The maximal pairing algorithm falls in a class of general
combinatorial optimization problems that are of consid-
erable interest in comparative phylogenetics and, more
generally, bioinformatics. Several modifications of this al-
gorithm have practical importance as well. For example,
the algorithm could be modified to select only a fixed
number of pairs (given by the researcher), thereby incor-
porating the fact that limited resources are available to
select species for future study. This important variant is
described in more detail elsewhere (see Arnold and Stadler
2010). It might also be desirable to take into account the
conservation statuses of different species to ensure that
species are studied before they become extinct. More gen-
erally, the selection of species could be based not solely
on pairwise comparisons but on the full set of contrasts,
possibly in combination with examining the raw data space
or regularly sampling character values along the entire
range of a character of interest. Here we laid down the
foundation for systematically identifying species for future
study. Many possible extensions and modifications of the
approach are possible, particularly as they relate to alter-
native ways of sampling species.

In summary, we provided a systematic method of se-
lecting species for future study that offers greater statistical
power to test adaptive hypotheses, as compared with a
random selection of species. With this method of phylo-
genetic targeting, it is also possible to control for con-
founding variables, incorporate alternative hypotheses,
and make use of existing data on the trait of interest. It
therefore provides a way to guide the selection of species
relative to a priori hypotheses. Through our Web-based
computer program, other researchers are able to easily
implement this approach in a flexible and user-friendly
way.
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