Prediction of lethal and synthetically lethal knock-outs in regulatory networks

Gunnar Boldhaus, ${ }^{1}$ Florian Greil, ${ }^{2}$ and Konstantin Klemm ${ }^{1}$
${ }^{1}$ Bioinformatics Group, Institute for Computer Science, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany ${ }^{2}$ Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

I. VARIATION OF SYSTEM SIZE

FIG. S1: Probability of lethal single node knock-outs as a function of density ρ in networks with $n=10$ (upper panel) and $n=30$ nodes (lower panel). Other details are as in Figure 3 in the main article.

FIG. S2: Lethality of knock-outs as a function of density ρ in networks with $n=10$ (left panels) and $n=30$ nodes (right panels). Other details are as in Figure 4 in the main article.

TABLE S1: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with $n=10$ nodes. Other details are as in Table 1 in the main article.

	struct. lethality out-deg. out + in-deg. out - in-deg. betw.centr. in-deg.					
$p=0.21$	0.710	0.662	0.637	0.595	0.572	0.476
$a=0.05, r=0.58$	0.750	0.703	0.621	0.671	0.584	0.469
$p=0.28$						
$a=0.1, r=0.58$	0.726	0.688	0.616	0.653	0.583	0.488
$p=0.32$			0.626	0.601	0.579	0.561
$a=0.05, r=0.25$	0.697	0.678	0.629	0.623	0.596	0.492
$p=0.37$	0.634	0.614	0.590	0.572	0.556	0.494
$a=0.1, r=0.25$	0.678	0.663	0.618	0.613	0.584	0.523

TABLE S2: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with $n=30$ nodes. Other details are as in Table 1 in the main article.

	struct. lethality	out-deg. out + in-deg. out - in-deg. betw.centr. in-deg.				
$p=0.11$	0.657	0.642	0.613	0.588	0.567	0.484
$a=0.05, r=0.58$	0.708	0.692	0.625	0.647	0.586	0.490
$p=0.20$	0.605	0.597	0.574	0.563	0.557	0.493
$a=0.1, r=0.58$	0.648	0.640	0.592	0.605	0.573	0.496
$p=0.26$	0.587	0.580	0.561	0.552	0.549	0.495
$a=0.05, r=0.25$	0.673	0.668	0.624	0.609	0.590	0.528
$p=0.31$		0.575	0.570	0.553	0.546	0.544
$a=0.1, r=0.25$	0.625	0.620	0.585	0.582	0.567	0.513

TABLE S3: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have $n=10$ nodes. Other details are as in Table 2 in the main article.

	struct. syn. let. out-overlap	repl. centr.	evol. distance	in-overlap	
$p=0.21$	$0.895(0.903)$	$0.840(0.849)$	$0.598(0.601)$	-	$0.494(0.493)$
$a=0.05, r=0.58$	$0.908(0.915)$	$0.881(0.888)$	$0.598(0.602)$	$0.619(0.618)$	$0.519(0.517)$
$p=0.28$	$0.828(0.838)$	$0.768(0.780)$	$0.587(0.590)$	-	$0.497(0.497)$
$a=0.1, r=0.58$	$0.887(0.896)$	$0.851(0.860)$	$0.593(0.597)$	$0.570(0.570)$	$0.514(0.512)$
$p=0.32$	$0.790(0.802)$	$0.731(0.744)$	$0.582(0.586)$	-	$0.499(0.500)$
$a=0.05, r=0.25$	$0.817(0.828)$	$0.790(0.795)$	$0.620(0.627)$	$0.634(0.632)$	$0.585(0.581)$
$p=0.37$	$0.746(0.759)$	$0.690(0.705)$	$0.578(0.582)$	-	$0.500(0.500)$
$a=0.1, r=0.25$	$0.777(0.791)$	$0.749(0.759)$	$0.604(0.610)$	$0.595(0.593)$	$0.561(0.560)$

TABLE S4: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have $n=30$ nodes. Other details are as in Table 2 in the main article.

	struct. syn. let.	out-overlap	repl. centr.	evol. distance	in-overlap
$p=0.11$	$0.895(0.901)$	$0.874(0.879)$	$0.605(0.609)$	-	$0.502(0.501)$
$a=0.05, r=0.58$	$0.912(0.919)$	$0.897(0.903)$	$0.601(0.604)$	$0.585(0.586)$	$0.533(0.533)$
$p=0.20$	$0.761(0.768)$	$0.728(0.738)$	$0.579(0.583)$	-	$0.501(0.501)$
$a=0.1, r=0.58$	$0.827(0.837)$	$0.802(0.813)$	$0.590(0.595)$	$0.538(0.538)$	$0.518(0.518)$
$p=0.26$	$0.700(0.706)$	$0.661(0.673)$	$0.562(0.566)$	-	$0.500(0.500)$
$a=0.05, r=0.25$	$0.792(0.803)$	$0.768(0.782)$	$0.595(0.598)$	$0.599(0.597)$	$0.566(0.566)$
$p=0.31$	$0.666(0.670)$	$0.621(0.634)$	$0.551(0.554)$	-	$0.500(0.500)$
$a=0.1, r=0.25$	$0.710(0.719)$	$0.674(0.693)$	$0.573(0.577)$	$0.557(0.556)$	$0.538(0.538)$

II. UNIFORM CHOICE OF FIXED POINT

FIG. S3: Probability of lethal single node knock-outs as a function of density ρ in networks with $n=10$ using uniform choice of the functional fixed point. Other details are as in Figure 3 in the main article.

TABLE S5: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with $n=10$ nodes using uniform choice of the functional fixed point. Other details are as in Table 1 in the main article.

	struct. lethality	out-deg. out + in-deg. out - in-deg. betw.centr. in-deg.				
$p=0.21$	0.695	0.625	0.596	0.582	0.569	0.496
$a=0.05, r=0.58$	0.743	0.658	0.594	0.622	0.578	0.480
$p=0.28$	0.652	0.606	0.576	0.573	0.548	0.503
$a=0.1, r=0.58$	0.710	0.640	0.591	0.600	0.574	0.503
$p=0.32$	0.630	0.592	0.566	0.564	0.539	0.504
$a=0.05, r=0.25$	0.686	0.625	0.590	0.583	0.565	0.518
$p=0.37$		0.612	0.583	0.560	0.558	0.534
$a=0.1, r=0.25$	0.657	0.610	0.582	0.569	0.549	0.521

FIG. S4: Lethality of knock-outs as a function of density ρ in networks with $n=10$ using uniform choice of the functional fixed point. Other details are as in Figure 4 in the main article.

TABLE S6: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have $n=10$ nodes. The functional fixed point is determined by uniform choice. Other details are as in Table 2 in the main article.

	struct. syn. let. out-overlap	repl. centr.	evol. distance	in-overlap	
$p=0.21$	$0.910(0.918)$	$0.854(0.863)$	$0.612(0.616)$	-	$0.497(0.498)$
$a=0.05, r=0.58$	$0.921(0.929)$	$0.896(0.904)$	$0.594(0.599)$	$0.621(0.620)$	$0.523(0.522)$
$p=0.28$	$0.844(0.855)$	$0.776(0.788)$	$0.592(0.596)$	-	$0.498(0.499)$
$a=0.1, r=0.58$	$0.903(0.912)$	$0.866(0.875)$	$0.594(0.598)$	$0.571(0.570)$	$0.514(0.513)$
$p=0.32$	$0.803(0.814)$	$0.733(0.746)$	$0.586(0.590)$	-	$0.500(0.501)$
$a=0.05, r=0.25$	$0.835(0.847)$	$0.807(0.819)$	$0.600(0.608)$	$0.630(0.628)$	$0.582(0.580)$
$p=0.37$	$0.760(0.771)$	$0.689(0.703)$	$0.575(0.579)$	-	$0.498(0.500)$
$a=0.1, r=0.25$	$0.802(0.816)$	$0.764(0.778)$	$0.596(0.603)$	$0.604(0.602)$	$0.568(0.569)$

