Prediction of lethal and synthetically lethal knock-outs in regulatory networks

Gunnar Boldhaus,¹ Florian Greil,² and Konstantin Klemm¹

¹Bioinformatics Group, Institute for Computer Science, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany ²Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

I. VARIATION OF SYSTEM SIZE

FIG. S1: Probability of lethal single node knock-outs as a function of density ρ in networks with n = 10 (upper panel) and n = 30 nodes (lower panel). Other details are as in Figure 3 in the main article.

FIG. S2: Lethality of knock-outs as a function of density ρ in networks with n = 10 (left panels) and n = 30 nodes (right panels). Other details are as in Figure 4 in the main article.

	struct. lethality	out-deg. out	+ in-deg. out	– in-deg.	betw.centr.	in-deg.
p = 0.21	0.710	0.662	0.637	0.595	0.572	0.476
a = 0.05, r = 0.58	0.750	0.703	0.621	0.671	0.584	0.469
p = 0.28	0.668	0.637	0.612	0.584	0.563	0.488
a = 0.1, r = 0.58	0.726	0.688	0.616	0.653	0.583	0.483
p = 0.32	0.651	0.626	0.601	0.579	0.561	0.492
a = 0.05, r = 0.25	0.697	0.678	0.629	0.623	0.596	0.527
p = 0.37	0.634	0.614	0.590	0.572	0.556	0.494
a = 0.1, r = 0.25	0.678	0.663	0.618	0.613	0.584	0.523

TABLE S1: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with n = 10 nodes. Other details are as in Table 1 in the main article.

TABLE S2: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with n = 30 nodes. Other details are as in Table 1 in the main article.

	struct. lethality	out-deg. out	+ in-deg. out	– in-deg.	betw.centr.	in-deg.
p = 0.11	0.657	0.642	0.613	0.588	0.567	0.484
a = 0.05, r = 0.58	0.708	0.692	0.625	0.647	0.586	0.490
p = 0.20	0.605	0.597	0.574	0.563	0.557	0.493
a = 0.1, r = 0.58	0.648	0.640	0.592	0.605	0.573	0.496
p = 0.26	0.587	0.580	0.561	0.552	0.549	0.495
a = 0.05, r = 0.25	0.673	0.668	0.624	0.609	0.590	0.528
p = 0.31	0.575	0.570	0.553	0.546	0.544	0.496
a = 0.1, r = 0.25	0.625	0.620	0.585	0.582	0.567	0.513

	struct.	syn. let.	out-overlap	repl.	centr.	evol.	distance	in-overlap
p = 0.21	0.895	(0.903)	0.840 (0.849)	0.598	(0.601)		-	0.494 (0.493)
a = 0.05, r = 0.58	0.908	(0.915)	$0.881 \ (0.888)$	0.598	(0.602)	0.619	(0.618)	$0.519\ (0.517)$
p = 0.28	0.828	(0.838)	0.768(0.780)	0.587	(0.590)		-	0.497(0.497)
a = 0.1, r = 0.58	0.887	(0.896)	$0.851 \ (0.860)$	0.593	(0.597)	0.570	(0.570)	$0.514\ (0.512)$
p = 0.32	0.790	(0.802)	$0.731 \ (0.744)$	0.582	(0.586)		-	$0.499 \ (0.500)$
a = 0.05, r = 0.25	0.817	(0.828)	$0.790 \ (0.795)$	0.620	(0.627)	0.634	(0.632)	$0.585\ (0.581)$
p = 0.37	0.746	(0.759)	$0.690 \ (0.705)$	0.578	(0.582)		-	$0.500 \ (0.500)$
a = 0.1, r = 0.25	0.777	(0.791)	$0.749\ (0.759)$	0.604	(0.610)	0.595	(0.593)	$0.561 \ (0.560)$

TABLE S3: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have n = 10 nodes. Other details are as in Table 2 in the main article.

TABLE S4: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have n = 30 nodes. Other details are as in Table 2 in the main article.

	struct. syn. let	. out-overlap	repl. centr.	evol. distance	in-overlap
p = 0.11	0.895(0.901)	0.874 (0.879)	0.605(0.609)	-	0.502(0.501)
a = 0.05, r = 0.58	$0.912\ (0.919)$	$0.897 \ (0.903)$	$0.601 \ (0.604)$	$0.585\ (0.586)$	$0.533\ (0.533)$
p = 0.20	$0.761 \ (0.768)$	0.728(0.738)	0.579(0.583)	-	$0.501 \ (0.501)$
a = 0.1, r = 0.58	$0.827 \ (0.837)$	0.802(0.813)	0.590(0.595)	$0.538\ (0.538)$	$0.518\ (0.518)$
p = 0.26	$0.700 \ (0.706)$	$0.661 \ (0.673)$	0.562(0.566)	-	$0.500 \ (0.500)$
a = 0.05, r = 0.25	$0.792\ (0.803)$	0.768(0.782)	$0.595\ (0.598)$	$0.599\ (0.597)$	$0.566\ (0.566)$
p = 0.31	$0.666 \ (0.670)$	$0.621 \ (0.634)$	$0.551 \ (0.554)$	-	$0.500 \ (0.500)$
a = 0.1, r = 0.25	$0.710\ (0.719)$	0.674(0.693)	$0.573 \ (0.577)$	$0.557\ (0.556)$	$0.538\ (0.538)$

II. UNIFORM CHOICE OF FIXED POINT

FIG. S3: Probability of lethal single node knock-outs as a function of density ρ in networks with n = 10 using uniform choice of the functional fixed point. Other details are as in Figure 3 in the main article.

TABLE S5: Overview of the area under the ROC curves for prediction of single node knock-outs in networks with n = 10 nodes using uniform choice of the functional fixed point. Other details are as in Table 1 in the main article.

	struct. lethality	out-deg. out	+ in-deg. out	– in-deg.	betw.centr.	in-deg.
p = 0.21	0.695	0.625	0.596	0.582	0.569	0.496
a = 0.05, r = 0.58	0.743	0.658	0.594	0.622	0.578	0.480
p = 0.28	0.652	0.606	0.576	0.573	0.548	0.503
a = 0.1, r = 0.58	0.710	0.640	0.591	0.600	0.574	0.503
p = 0.32	0.630	0.592	0.566	0.564	0.539	0.504
a = 0.05, r = 0.25	0.686	0.625	0.590	0.583	0.565	0.518
p = 0.37	0.612	0.583	0.560	0.558	0.534	0.503
a = 0.1, r = 0.25	0.657	0.610	0.582	0.569	0.549	0.521

FIG. S4: Lethality of knock-outs as a function of density ρ in networks with n = 10 using uniform choice of the functional fixed point. Other details are as in Figure 4 in the main article.

TABLE S6: Overview of the area under the ROC curves for prediction of double node knock-outs which exhibit synthetic lethality. Networks have n = 10 nodes. The functional fixed point is determined by uniform choice. Other details are as in Table 2 in the main article.

	struct. syn. let.	out-overlap	repl. c	centr.	evol. distance	in-overlap
p = 0.21	$0.910\ (0.918)$	0.854 (0.863)	0.612 ((0.616)	-	0.497(0.498)
a = 0.05, r = 0.58	$0.921\ (0.929)$	0.896 (0.904)	0.594 ((0.599)	$0.621 \ (0.620)$	$0.523 \ (0.522)$
p = 0.28	$0.844 \ (0.855)$	0.776(0.788)	0.592 ((0.596)	-	$0.498 \ (0.499)$
a = 0.1, r = 0.58	$0.903\ (0.912)$	$0.866 \ (0.875)$	0.594 ((0.598)	$0.571 \ (0.570)$	0.514(0.513)
p = 0.32	0.803(0.814)	$0.733 \ (0.746)$	0.586 ((0.590)	-	$0.500 \ (0.501)$
a = 0.05, r = 0.25	0.835(0.847)	0.807 (0.819)	0.600 ((0.608)	$0.630 \ (0.628)$	0.582(0.580)
p = 0.37	0.760(0.771)	0.689(0.703)	0.575 ((0.579)	-	$0.498 \ (0.500)$
a = 0.1, r = 0.25	$0.802\ (0.816)$	0.764(0.778)	0.596 ((0.603)	0.604(0.602)	$0.568\ (0.569)$