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ABSTRACT

Motivation Cytosine DNA methylation is one of the major epigenetic
modifications and influences gene expression, developmental
processes, X-chromosome inactivation, and genomic imprinting.
Aberrant methylation is furthermore known to be associated with
several diseases including cancer. The gold standard to determine
DNA methylation on genome-wide scales is “bisulfite sequencing”:
DNA fragments are treated with sodium bisulfite resulting in the
conversion of unmethylated cytosines into uracils, while methylated
cytosines remain unchanged. The resulting sequencing reads thus
exhibit asymmetric bisulfite-related mismatches and suffer from an
effective reduction of the alphabet size in the unmethylated regions,
rendering the mapping of bisulfite sequencing reads computationally
much more demanding. As a consequence, currently available read
mapping software often fails to achieve high sensitivity and in many
cases requires unrealistic computational resources to cope with large
real-life datasets.

Results Here, we present a seed-based approach based on
enhanced suffix arrays in conjunction with Myers bit-vector algorithm
to efficiently extend seeds to optimal semi-global alignments while
allowing for bisulfite-related substitutions. It outperforms most current
approaches in terms of sensitivity and performs time-competitive
in mapping hundreds of millions of sequencing reads to vertebrate
genomes.

Availability The software segenehl is freely available at htt p://
www. bi oi nf. uni -1 ei pzi g. de/ Sof t war e/ segenehl .

Contact Steve Hoffmann st eve@i oi nf . uni - | ei pzi g. de

1 INTRODUCTION

Cytosine DNA methylation is one of the major epigenetic
modifications in eukaryotes (Esteller, 2005). The epigenet
modification pathways governing DNA methylation and histon
modifications are strongly coupled with each other (Cedar &

*to whom correspondence should be addressed

Bergman, 2009). Hypermethylations in promotors of genes ar
associated with stable repression of its activity (as inecab
X-chromosome inactivation) that can be maintained through
cell divisions (Weber & Schubeler, 2007). During mamnmalia
development, methylation patterns are largely rearrantjeslery
early stages, methylation marks are erased to allow flexible
short-term regulation by histone modifications, while wifgead

de novo methylations in later stages enable long-term silencing
of pluripotency-related or imprinted genes (Reik, 2007n |
mammalian genomes, DNA methylation also ensures genomic
integrity by inactivating and immobilizing transposabliereents
and hence preventing chromosomal instability, transionator
gene disruption (Weber & Schubeler, 2007). In cancer cells
this overall stable landscape of DNA methylations is heavil
distorted by wide-spread and massive hypomethylatiorg, ie.
repetitive sequences, and by silencing of tumor-suppregsioes

by hypermethylating their promotors (Esteller, 2007).

Capturing DNA methylations on genome-wide scales in high
resolution has become technically and economically féagibly
with the advent of high-throughput sequencing (HTS) tetbgies.
DNA methylations are commonly captured either by sequencin
methylated DNA that was isolated by antibodies or protegss,

in methylated DNA immunoprecipitation (MeDIP) (Weberet al.,
2005) andvViIBD-isolated genome sequencing (MiGS) (Serreet al.,
2010), or by sequencing DNA reads treated with sodium bisulfi
to selectively convert unmethylated cytosines to uradti®imer

et al., 1992). Since the first approach merely enriches sequencing
reads with methylation marks by pull down with antibodies or
proteins, it is not possible to accurately pinpoint frequerexact
location, and sequence context of the modifications. Thatisa
procedure is further biased towards enrichment of highlshyiated
regions (Lister & Ecker, 2009). Sequencing techniques dase
on bisulfite treatment, on the other hand, facilitate siimise
resolution, so that the methylation state of each singlesiye
can be analyzed. Thus, they are capable of detecting intkaiee
methylation levels in heterogeneous samples or imprintkes,
One drawback of this method is the fact that hydroxymetieglat
cytosines, present in some mammalian cell types, cannot be

(© Oxford University Press 2012.
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Watson (+) /ZGTATCGATTGACT +FW CokusAl i gnment (Cokus et al., 2008) uses an exhausting
) m m CATAGCTAACTGA +RC tree search with base probability vectors. More recent austh
" GTATCGACTGACT either allow for asymmetric bisulfite-related mismatchggijcally
inATAGgTGACTGA*S‘ implemented by means of hash-tables as@ (Li et al., 2008)

Crick (<) and RVAP (Smith et al., 2009), or use a collapsed alphabet so
that the asymmetry is disregarded altogether. In the laytiee
of methods, each cytosine is converted to a thymine (or geani
to adenine to match the minus strand) in the reads as well as in
Fig. 1. Possible read types (+FW, +RC, -FW, .-RC).in bisulfite sequmenc the genomic sequence. BoBS Seeker (Chenet al., 2010) and
protocols. Methylatgd and unmethylated cytos!nes in tmegec sequence g ¢imr k (Krueger & Andrews, 2011) usBowt i e (Langmead
(left) are colored in red and blue, respectively, and pwsgiin the . . . .
read sequences (right) derived from genomic cytosines aleretl o al, 2009) to maP the gonverted strings using different alignme
correspondingly. Note that the intermediate conversiorumhethylated policies. The res“'"r_‘g alignments are then post-prombﬂ;s&ecover
cytosines into uracils after bisulfite treatment is omitted the methylated positions. None of the available tools camat

for insertions and deletions (indels) in the read alignm@&hts is a

major drawback since indels are known to be the predominaoit e

type in 454 sequencing data and small indels contributéfgigntly
distinguished from methylation marks after conversiorhwiddium  to the genetic variation in Human (Millst al., 2011). Overall,
bisulfite. The role of the hydroxymethylation is not yet kmowtit ~ currently available bisulfite mappers may not be able to cujte
might be involved in demethylation or alterations of theathatin ~ higher error rates potentially caused by erroneous PCRes|dow-
structure (Huangt al., 2010). quality reference genomes, mapping to the genome of a glosel
related organism, or extensive allelic variations. Fomepiz, the
Amphioxus genome exhibits substantial allelic variatiathvg.7%
SNPs and 6.8% polymorphic indels (Putnatral., 2008). In the
Ciona intestinalis, another important model organism, the average
SNP rate is 1.2% but the variations are not uniformly disitelol

TATAGCTGATTGA -Fw
ATATCGACTAACT -RC

Due to its high resolution and the possibility of unbiasedayee
coverage, bisulfite sequencing has been established agyohed “
standard” method to capture DNA methylation. In the earlies
approach of this type, reduced representation bisulfiteesgzing
(RRBS) py Messnergt al. (2005)‘. genomic regions with CpG and locally increase to 10-15% within windows of 100 nudiges
dinucleotides are enriched by prior digestion with Mspl. rslo (Dehalet al., 2002)

recent protocols avoid this bias. Both methylC-seq (Listeal., ” '

2009) and BS-seq (Cokuset al., 2008) are protocols for the segemehl is an efficient read mapping tool based on suffix arrays
construction of the bisulfite-treated libraries for higiteughput  that readily accommodates indels using an extended veositire
sequencing. They mainly differ in their amplification prdoee: ~ matching statistics (Hoffmanet al., 2009). Here, we demonstrate
while methylC-seq involves only a single amplification, B&  that the mapping of bisulfite sequencing data can be incatgadr
uses two amplification steps in order to ensure only fullplii®-  into the framework using a hybrid approach that combinesl see
converted sequences to be amplified and hence sequence8- In Bsearches in the suffix array on a collapsed alphabet wittmapti
seq, first, adapters containing unmethylated cytosinedigated  semi-global alignments around seed matches using a spedial
to the DNA fragment. After treatment with sodium bisulfithet  extension of Myers bit-vector algorithm.

first amplification is performed using primers complementar

fully bisulfite-converted adapters, then digested with Drgnd

again amplified using common Solexa adapters. This resufir 2 RESULTS

different types of bisulfite reads: +FW and +RC from the plus

strand and -FW and -RC from the minus strand (Fig. 1). In cas& 1 Seed search on collapsed alphabet

of methylC-seq, only two of these read types (+FW and -FW) may

occur and are expected to be sequenced at similar rate. 8eyorOur matching strategy uses seeds that serve as anchors for
the extensive study of Listest al. (2009) as part of the UCSD subsequent semi-global alignments (see Suppl. Fig. 1).s€kd
Human Reference Epigenome Mapping Project, the methylafes search is efficiently facilitated isegenehl by an enhanced suffix
silkworm (Xianget al., 2010), honey bee (Lyket al., 2010), and  array (ESA) (Abouelhodat al., 2004). The ESA data structure
Human peripheral blood mononuclear cells étial., 2010) have  supports exact query searches with an effort proportionahé
been analyzed by means of bisulfite sequencing. Moreover, thlengthm of the query sequence and largely independent of the size
technology has been applied to identify methylation vaoiet in of the reference genome. Our method aims to identify seedheasat
epigenetic domains across cancer types (Haassaln, 2011). starting at each position. To improve the sensitivity of Heed
search in the presence of sequencing errors, a limited nuofbe
mismatches as well as indels (insertions and deletionspistated.

For the technical details, we refer to Hoffmagtral. (2009).

Standard DNAseq mapping algorithms may run into problemsnwvh
dealing with the potentially high number of converted ciites in
bisulfite sequencing reads: the bisulfite conversion caadasge
number of mismatches between read and reference genome thet facilitate efficient mapping of bisulfite-treated secgiag data,
should not be penalized. The asymmetry of the resultingmragc it is necessary to cope with a high number of bisulfite-relate
rule, i.e., a genomic cytosine should match a thymine in daglr mismatches. To overcome this issue, the nucleotide alphiabe
but notvice versa, complicates the issue. Early bisulfite mapping collapsed to three characters. To enable the seed searchtlon b
methods employed very time-consuming strategBSVIAP (Xi & strands, two reference genomes and their correspondingsESA
Li, 2009), for instance, iterates over all possible C/T @sions, one with C-to-T and one with G-to-A conversions, are created




Since forward (C-to-T) and backward (G-to-A) ESA can be usedWe executed all programs with default parameters but astjust

consecutively, only disk storage but not core memory iscédig. ~ some options, e.g., error limits and filtering constraintspbtain

The reduced alphabet requires somewhat longer seeds toeensumore sensitive mappings and hence to assess the capabgiagio

unambiguous matches, leading to an increase in runtime mall s  approach to cope with more difficult settings, see Methods fo

constant factor compared to ordinary read matching. further details on parameters and the evaluation proce@uerall,
segenehl obtained recall rates above 92% (with D=1 difference
allowed in the seed) and 81% (for exact seed matches) in every

2.2 Myers bit-vector algorithm setting and hence outperforms all other programs in thipets

In the least challenging scenario with low mismatch rate )(58

programs except foBS Seeker are able to recover the original

position of more than 89% of the reads correctly (Suppl. B&).

By increasing the mismatch rate (10%), the recall rates lérot

programs drop considerably down to 60% and 7@%genehl

still achieves a recall rate above 93% (D=1) and 82% (D=0)oAgn

the other program3dyAQ performs best and is only slightly inferior

Yo segenehl in its less sensitive setting (Fig. 2a). As for the

introduction of indels into the read datggenehl largely retains

its good performance, while a substantial loss is obseniddthe

other tools (Fig. 2b and Suppl. Fig. 2b). This is also truedsecof

To efficiently cope with bisulfite conversions, we furthetended  the artificial dataset with the low error rate (5%) includigy few

the bit-vector algorithm of Myers to fully support the nuclacid indels (Fig. 2b). In more challenging scenarios, the reca#s of

code of the International Union of Pure and Applied Chemistr these programs even drops below 40% (Suppl. Fig. 2b).

(IUPAC) which encodes nucleotide ambiguity, e.g., the IGPA

nucleotide symbol “Y” denotes either cytosine or thyminey B

means of the IUPAC nucleotide code, bisulfite-sensitivgratients

can be computed where asymmetric bisulfite-related coiovers

are implicitly treated as matches. The overhead of thisnsioa

of Myers’ algorithm is only nominal, see Methods for further

details. Overall, the major advantage of this mapping egpais

that, in contrast to other bisulfite mappers, no post-pingof the

mapping is required.

After seed matchingsegenehl calculates semi-global alignments
of the query with the reference genome loci indicated by #desls
using the fast bit-vector algorithm of Myers (1999). In arde
prevent spurious hitsegenehl employs a user-defined accuracy
threshold (option A) specifying the minimal required percentage
of matches within the calculated read alignment. By default
segenehl reports all read matches where the minimal accurac
criteria is met. In case of best-only (optietd 1), only those read
matches are reported whose alignment contains the miniunabar

of errors (mismatches + insertions + deletions) among althes.

segenehl obtains the higher recall rates at the cost of a reduced
time performance. On averageegenehl with D=1 is around five-
fold slower than with D=0. Hence, the choice of this paramete
is a tradeoff between speed and recall and is dependent on the
user’s requirements. The running timedw{QandBS Seeker are
comparable t@egenehl with lower sensitivity whereaBVAP is
about four times faster. In terms of memory, the programsgore
between 2.6 GB (in case @dSSeeker) and 5.6 GB of virtual
memory (in case oMAQ). Note that the actual amount of used
physical memory is lower than the virtual memory consummptio
2.3 Evaluation on artificial data For examplesegenehl requires around 5.2 GB of virtual but only
3.2 GB of physical memory.

To evaluate the performance of the bisulfite versios@§enehl , —, o qer 1o verify that the superior sensitivity segemehl does
we compared it to existing methods on artificial as well ag-rea not lead to a substantial loss of mapping specificity, we tedin

life data sets. The artificial query datasets were compoded Gpe nymper of false positive mappings in each artificial bemark.

10 million reads of length 80 nt randomly §elected from aIZ(E) M Among the uniquely mapped reads with less than 13 mismatehes
large reference sequence. The reference itself was gedewith a indels,segemehl does not report a single false positive mapping.

uniform nucleotide distribution and randomly methylatgtbsines Thus, by limiting the number of permitted errors and retitrgto

on both strands at a rate of 50%. To mimick the methyIC-seounique'y mapped readsegenehl does not lose specificity while
protocol, only +FW and -FW reads were generated from eaahdtr achieving very high sensitivities

of the reference. The sodium bisulfite treatment was siradlat

by converting each unmethylated cytosine on the referente i TO assess whether higher mapping sensitivities may alsstass
a thymine. We remark thasegenehl can also map bisulfite in calling the methylation state more accurately, we aseunb
Sequencing data generated with the BS_Seq |ibrary pre'para’[ additional methylation Calling benchmarks. The datasdth an
protocol of Cokust al. (2008). In this case, the mapping is extended expected ten-fold coverage were composed of 2.5 millioultiis

to both strands with each of the alphabet conversions raktzer ~ reads, mimicking the methylC-seq protocol, which were canly

only C-to-T on the plus strand and G-to-A on the minus straind o Selected from a 10MB large reference sequence where 50% of
the genome sequence. The sensitivitysefgenehl on artificial ~ the cytosines on each strand have been artificially methylat
datasets m|m|ck|ng the BS_Seq |ibrary preparations arpsﬂ'en”ar Furthermore, errors (mismatches or mismatches + inde|$)3 we
to the results on methy|C_Seq datasets (data not Shown). introduced in the read sequences at different rates (5%,, 10%

) . . . ) and 15%). To assess the performance of re-calling thedeiaiti
To consider genomic aberrations such as mutations and pobmisms methylation states using the mapping output, we mapped each

as well as sequencing errors, we further introduced randomyasacet with each of the bisulfite mapping tools, filtered out

sequence errors into the bisulfite reads at different eatasr(5%, ambiguously mapped reads, and determined the methylatitess
10%) and for error types (mismatches or mismatches andsjndelusing simple majority voting under a minimal coverage of & s

at the ratio 4:1). In our benchmark, we compaegenehl V0.1 \1aihqds for further details. For each dataset and mappialy,to
with RMAP v2.05,BS Seeker , MAQVO0.7.1, andBi smar k v0.5.1.
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Fig. 2. Performance evaluation on artificial datasets. The bendtsressessed the performancesefgenehl with D=1 (in red) and D=0 (in dark red),
RMAP (in green),BS Seeker (in black), MAQ (in blue), andBi smar k (in orange) in terms of recall rate, running time (in user g)odind peak virtual
memory consumption by mapping 10 million artificial bis@fittads to a 200 MB large random reference. Furthermore, iEmpaitches at a rate of 10% or
(b) mismatches + indels at a rate of 5% were randomly intredunto the bisulfite reads. The recall rate is the relativelmer of mapped reads where the
score of the best alignment is found to be unique and thenatigiosition on the artificial reference was recovered otigreThe recall rate was estimated on
subsets of the artificial reads with limited number of introed mismatches or mismatches + indels. The overall reztallaf each program with the entire
query dataset is given in the legend. Note that the prepsotgsme is not included in the measurement.

1.0

recall rates and false discovery rates at different scai@fsuvere
estimated (see Fig. 3 and Suppl. Fig. 3).

0.8
I

Overall, the methylation calls usirgegenehl 's mapping output
obtained higher recall rates at a lower false discovery mate
every setting compared to the other mappers. For exampté, wi
low and medium error rates (5% and 10%), it is possible to & }fﬂ
recover more than 95% of the methylation marks correcthhwit o |
segenehl while the recall rates of methylation calls using the 000000 000004 000008 " 000012 © 0.oh00 0.0004 0.0008
output of RVAP, MAQ, andBi smar k vary between 80% and 90%. FDR FDR
In the most challenging scenarios with high error rates (15% (a) (b)
the mapping output of segemehl can still be used to infer the
methylation state of more than 84% and 93% of the cytosines ) ] )
with D=0 and D=1, respectively, while retaining FDRs below Fig. 3 Performance in meth)_/latlon calling benchmarks. _Recalda.rm
0.1%. In addition, we simulated bisulfite reads from an artificial f“’?°“°” of FDR after evaluating the per_forma_ncg in methgta Cf"'ng
L . . . . using the mapping output afegenehl with D=1 (in red) and D=0 (in
genome containing sites with foyr different methylathtesa(ZO%, dark red),RVAP (in green),MAQ (in blue), andBi smar k (in orange). We
40%, 60%, or 80%). We estimated the methylation rates annerefore mapped 2.5 million artificial bisulfite reads, imng mismatches
calculated the differences from the simulated levels (grfor atarate of (a) 10% or (b) 15%, with each program to a 10 MB leegrence
the alignments of each program. Errors of thegenehl based  sequence, see Methods section for details on generatiogvahgtion of the
estimator were compared to estimators based on other aiginm datasets. The inlay in the left panel magnifies the area wherf€DR is close
methods. Overall, witsegenehl alignments, the accuracy of the to zero (same units on axes). Note that the same colors arfibéyare used
estimated methylation rates is superior to the other tesigtl —in i both panels. The peak recall rates with 10% mismatchéspdmel) are

particular in benchmarks with higher error rates (see SEjgp.S4  0-966 and 0.952 fosegemehl with D=1 and D=0, respectively, 0.8 for
and S5). RVAP, 0.9 for MAQ and 0.871 foBi snar k. In case of 15% mismatches

(right panel), the peak recall rates are 0.933 and 0.848dgenehl with
We emphasize that methylation calling is primarily a staisd D=1 and D=0, respectively, 0.385 f&VAP, 0.614 forMAQ and 0.52 for
problem inherently distinct from read mapping. Hence, wedus Bi smark.
here simple benchmark settings with uniform methylatiotiguas
and sequencing errors. Partial chemical conversion, fetancte,
may reduce the sensitivity of a simple methylation callinggedure
such as majority voting and call for a more sophisticatetissical Next, we compared the bisulfite mapping tools on two real-lif

moc(iel. It does not affect, however, the mappability of inival datasets. Both SRR019048 (15,331,851 reads of length &) an
reads. SRR019597 (5,943,586 reads of length 76) are part of theevhol
genome shotgun bisulfite sequencing dataset of the humarelH1 ¢
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2.4 Mapping of real-life data




line by Listeret al. (2009). segenehl clearly outperforms the

approach to this problem based @egenehl to efficiently

other programs in both datasets by reporting more mappets rea perform bisulfite mapping with high sensitivity. Our methad

with a lower number of errors. The results including runniinge,
memory usage, fraction of unique best mapped reads, aritbfrad
unique best mapped reads at a given maximum error cutofien g
in Tab. 1. The latter measure makes it possible to determiether

insensitive to contaminations and handles insertions atetidns
already during the initial seed search. Compared to comgpeti
methods, our approach provides significantly higher reeadls as
measured on artificial datasets. While the recall rate oft rother

a higher overall number of mapped reads is merely reached byools is drastically reduced by a larger number of mismatabre

allowing more errors in the read alignment or whether it imoted

a few indels in the read data, these effects only slightlgcfthe

by also mapping more reads with few errors indicating bettersensitivity ofsegenehl . This increase in sensitivity does not come

mapping capabilities of the methoslegenehl is able to map an

at the cost of specificity and may finally result in better perfance

additional number of around 234,000 and 88,000 reads fram thin calling methylation state or methylation le\as well.

datasets SRR019048 and SRR019597, respectively, withupriy
two mismatches, insertions, or deletions. Only a smalkdéffice in
the number of mapped reads is observed betwegremrehl 's D=0
and D=1 options. Similar to the artificial benchmarks, thenhar
of mapped reads witBS Seeker is significantly lower compared
to RVAP, MAQ, andBi smar k, which show similar results in both
real-life datasets. By allowing non-unique mappirgsgenehl is
able to obtain mappings for more than 98% of the reads in efch

The algorithm is specifically designed to map also ambigueads.

In some application scenarios, these reads are of intardstoavey
useful biological information. For example, repetitiveeralents
were reported to be hypermethylated (Weber & Schiibeleéd70
but may be extensively demethylated during developmenhi(@g
etal., 2009) or tumorgenesis (Esteller, 2007; Watanabe & Maekawa
2010).

(0]

the real-life datasetsn addition to these rather challenging datasetsDue to its highly time-efficient index structursegenmehl has

due to their poor base calling qualities, we analyzed a tdmsalfite
dataset with good base calling qualities by Listeal. (2011) and
obtained concordant results (see Supplementary Table S1).

Strikingly, the running time okegenehl is lower compared to
RMAP, MAQ, andBi snar k even for the sensitive D=1 parameter

setting. The increase varies from 13% to 189% for SRR01904
and SRR019597. The less sensitive setting comes with a 2

fold and 18-fold decrease in the running time compare/AQ).
In addition, RVAP and MAQ in contrast to the other programs

including segenehl , do not support multi-threading and hence

cannot benefit from commonly available multi-core machiridss
is a major technical shortcoming in the light of the size diadats

to be mapped. The high mapping accuracy and speed is paid f

strong advantages over the existing methods in mappinglifeal
datasets of Human both in terms of sensitivity and runninggti

at the expense of a higher memory requirements. By supportin
multi-threading, the software can furthermore take fuNattage

of multi-processor architectures and completes mappinhafe
éhan 540 million sequencing reads (SRX006240 dataset kerlLis
et al., 2009) on the Human genome in only around three and a half
days using a two Quad-core machine with 64 GB of core memory.
It further supports mapping of bisulfite sequencing datanfimth
currently existing library protocol, methylC-seq and B&tsand
provides output in standardized sequence/alignment mamyS
format for which various post-processing utilities areikade such

(;ars samtools (Lét al., 2009).

by the rather high memory consumption, which exceeds that ofn addition to mapping bisulfite sequencing data, our apgroa
the other tools by a factor of five to ten: The enhanced suffixmight also assist in mapping ancient DNA (Priufral., 2010;

array of the human genome used$sygenehl consumes around

73 GB of virtual memory but only 53 GB of the physical memory.

Briggs et al., 2007), where read ends are heavily exposed to
deamination, i.e., cytosines are converted to thymine, theelarge

The software thus requires equipment at the top end of whatime-scales. Due to the short read length of ancient sedugenc
at present can be considered standard hardware. At the tost data, trimming of 5" and 3’ end of reads may not be adequate

higher running time, it is also possible to reegenehl on each

and impede their mappability. By simply adjusting the casian

chromosome separately with a peak memory consumption of 6 GBunctions, this version cfegenehl can also be applied to datasets
of RAM. Detailed information on merging the mapping output of generated with the PAR-CLIP protocol where protein bindsitgs

each chromosome, updating SAM tags, and enforcing (if ed}ir
the best-only matching strategy is given on our website thmge
with the necessary tools.

3 DISCUSSION

The analysis of bisulfite sequencing data has remained kenbaig
problem. Existing tools either do not provide an all-in-@oéution
but are based on post-processing output of common mappafg) to

can be identified genome-wide at high resolution by use of UV
cross-linking and photoactivatable nucleosides such dd 46
6SG. These are specifically converted near cross-linkidghamce
binding sites and might assist in post-processing to redhee
number of false positives. By regarding these specific asimes

as matchesegenehl becomes insensitive to the number of these
conversions under any parameter setting. We have not igaésd

the performance afegenehl on these types of sequencing data
so far. They are, however, a natural objective of futureasse

(e.g.Bowt i e) leading to losses in sensitivity, or show undesirable

runtime performance — in particular for vertebrate datasén
addition, none of the existing tools is able to consider rises
or deletions and even very few indels, e.g., originatingmfro
sequencing errors or genomic variations, effectively rfastthe

mapping of sequencing reads. We have presented here a novel
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Table 1. Performance evaluation on real-life datasets. The tesesasd the performances#genehl with
D=0 orD=1¢F 1,-H 1, -A 70), BSSeeker (-t N, -e 80, -m 3), RVAP (- B, - m 20), MAQ (- M
c,-n 3,-e 500), andBi smark (--directional,-n 3,-e 500) by mapping two lanes of a whole
genome shotgun bisulfite sequencing dataset of the humarelHline (published by Listeet al. (2009))
against the Human genome in terms of running time (in userefopeak virtual memory consumption,
and fraction of unique best mapped reads (overall or sutketivby the maximal number of mismatches +
indels in the alignment). Note that last measure only casidead mappings where the score of the best
alignment is found to be unique. The best value in each measu., lowest running time, lowest memory
consumption, or highest number of unique best mapped réagsinted in boldface. The real-life datasets
consists of 15,331,851 reads of length 87 nt and 5,943,58#sref length 76 nt in case of SRR019048 and
SRR019597, respectively. Note that the preprocessingigmet included in the time measurement. Details
on the selected parameters of each program are given in ttbesection.

(a) SRR019048

running user memoty mismatches+indels
time (min) (MB) =0 <1 <2 <3 <4 <5 <10 max
segenehl (D=1) 844 74995 22.8 334 388 432 472 511 687 87.2
segenehl (D=0) 224 74999 22.8 334 388 431 47.2 511 685 87.0
BS Seeker 247 9280 22.7 325 37.2 40.7 40.7 40.7 40.7 40.7
RMVAP? 1003 7687 228 32,6 37.3 40.8 438 46.7 60.0 783
MAQ 22635 8798 227 321 365 39.8 427 455 581 795
Bi smar k 1909 14649 227 323 369 403 432 46.0 585 79.1
(b) SRR019597
running user memoty mismatches+indels
time (min) (MB) =0 <1 <2 <3 <4 <5 <10 max
segenehl (D=1) 256 74995 39.9 53.3 59.7 64.2 67.9 71.2 82.990.0
segenehl (D=0) 72 74999 39.9 533 59.7 642 679 712 8280.2
BS Seeker 86 6081 39.8 523 581 620 620 620 62.0 62.0
RMVAP? 487 5846 39.9 525 582 621 650 67.6 774 875
MAQ 4782 3425 39.1 51.3 56.8 605 63.3 658 751 86.5
Bi smar k 741 14649 39.7 521 578 615 644 67.0 763 87.6

1 virtual memory consumption shown while the required phglsinemory considerably less. For examplegenehl uses
only around 52 GB of physical memoyRVAP andMAQdo not provide multi-threading.

4 METHODS

4.1 Seed search

table is generated by sorting all suffixes of the genomic secel using
the algorithm introduced by Ko & Aluru (2003). Second, theliéidnal
tables, namely Icp table, child table, and suffix link talden be efficiently
constructed according to Abouelhoetaal. (2004). Overall, the construction

In segenehl , the seed search is facilitated by use of the enhanced suffixof an ESA index require€(n) in time wheren denotes the length of the

array as described in Hoffmanet al. (2009). In brief, the concept of
suffix array is based on lexicographically sorting all suffof the genomic
sequence. By additionally employing Icp-table and chillgathe ESA is
equivalent to a suffix tree (Abouelhodt al., 2004). The suffix tree is a
directed rooted tree in which edges are labeled with a ngpiestring such
that each suffix is formed by the concatenation of edge laifedgactly one
path from the root to a leaf. Hence, a simple seed search ik8#e can
be imagined as top-down traversal of the correspondingxsiéfe with the
query sequence. To facilitate imperfect seed searches emckhallow for
mismatches, insertions, and deletions, it is possible tonemate alternative
paths along the perfect matching path. However, the numibalteynative
matching paths increases exponentially with higher numbémpermitted
errors. Hence, for the sake of time efficiency, the numbem@fre during
seed search is limited. To perform seed searches at each position,
a greedy substring search was implemented. This approd@esisuffix
link information on previously computed matching paths &edce avoids
recomputations. To construct an enhanced suffix array, fistsuffix array

genomic sequence.

For DNAseq and RNAseq reads, the seed search is performed!-dettar
nucleotide alphabetypna = {A,C,G, T}, in both read and genome
sequence. In the case of mapping bisulfite sequencing redsbstitutions
of genomic cytosines to thymines in the read sequence nebéeé taken
care of during the search and should not be penalized ase@onsidering
these bisulfite conversions explicitly would imply a potalty exponential
enumeration and hence hamper the mapping performancedecaisly. \We
therefore introduce two conversion functiofis_.t and fg_. a such that

T z=C
feot(x) = )

x otherwise

A =G
Jo—a(@) = {x otherwise

wherex € Ypna. In the first stage of the algorithm, th .+ converted
reads are mapped to a reference that has been convertedfavith. In




order to consider bisulfite conversion on the minus strands mecessary
to additionally map the read converted wifg_. A to the fc_a converted
reference in the second stage since DNA methylations asadspecific.
Note that by mapping the 4-letter alphabet to a 3-letter adph bisulfite-
related conversions appear as matches but at the same gnasytmmetry
of the substitution leads to an implicit underestimatiorthef edit distance.

4.2 Bisulfite-sensitive semi-global alignment

Following the seed search in the ES#egenehl extends the seeds to
semi-global alignments. In contrast to the seed search ercdmverted
references, the alignment should employ the asymmetridfiismatching
rule where a genomic cytosine and thymine in the read predacmatch
but notvice versa. For this purpose, we extended the highly efficient bit-
vector algorithm of Myers (1999). Instead of computing oplye entry
in the dynamic programming matrix at a time, this algorithomputes
w entries simultaneously where as the word size of the machine. It
takes advantage of the high efficiency of low-level bit ofieres due to
bit-level parallelism in common processors. Thus, the afr®yers’ bit-
vector algorithm is entirely based on bit operations intigdifferentiating
between matches and mismatches which are initially preatedmnd stored
in bit-vectors. For each characteof the alphabeEpna, a bit-vectorB,, of
lengthm is constructed where: denotes the length of the read sequence
Subsequently, the bit-vectors are initialized by a funtiimosuch a way that
i-th bit in B is set iff x and thei-th character of- produce an alignment
match. This algorithm has runtime 61((m/w) - 1) wherel is the length
of the read and reference substring. In our implementatibe,reference
substring is bounded by + 2 - k wherek is defined by the maximal
permitted errors in the read alignment. Hence, the alguoritias a runtime
complexity of O((m/w) - (m + 2 - k)) in time. Sincew = 64 in our
implementation, the algorithm runs @(m + 2 - k) for reads of size up to
64.

Commonly, the function to differentiate matches and mismes simply
tests for character equality. Here, it was extended to &ulyport the IUPAC
nucleotide code. For example, the IUPAC symbol Y, denotipgranidine,
produces a match with both C and T. By converting Ts into Yhiwithe read
sequence, the asymmetric bisulfite matching rule is intplidghtegrated.
Again, due to the strand specificity of DNA methylations, de@quences
matching to the minus strand are translated differenty, @very adenine in
the read is converted into an R, the IUPAC symbol for a pu@eerall, the
necessary modifications only concern the initializatioacpdure and hence
result merely in nominal overhead.

4.3 Benchmarking Procedure

With a few exceptions, all programs were executed with defsarameters
for artificial and real life datasets. Some options, such rasr dimits
and filtering constraints, were adjusted to obtain a higkesisvities. We
executedsegenehl in default mode, where at most one mismatch or indel
is permitted in the seed (optionD) and where the maximum expectation
value (option+ E) is set to five. In addition, we also executedgenehl in

a less sensitive but more time-performant configuratiomwi® 0. Seeds
with more than 500 matches in the genome are dismissed byldgfation

- M. Due to the high number of read errors, the minimal requal@ghment
accuracy (option A) was adjusted to 80% and 70% in artificial and real-
life benchmarks, respectively, asgégenehl was set to report best-scoring
hits only. ForBSSeeker, MAQ and MAQ, we permitted the maximum
of 3 mismatches to obtain optimal sensitivity and adjustesl dption- e

in BSSeeker to the largest read length occurring in the benchmarks. In
the same vein, the maximum number of mismatches was usedMaP

(- m 20). To avoid hits to be discarded due to the sum-of-basetipsli
policy, MAQwas executed with the optiecre 500. The parameters were set
analogously foBi smar k. In contrast tBS Seeker , RMAP, orBi snar k,
where non-unique best mapped reads (regarding their afighstore) are

dismissed by defaullyhQreports a best hitin any case but assigns a mapping
quality of zero in case multiple hits with equal score (surbage qualities at
mismatch positions) were found. Such ambiguously best ethpgads were
rejected prior to any of the evaluations.

For each program, artificial, and real life datasets, we sa&skrunning
time (in user mode), peak virtual memory consumption, awdlreate in
mapping the different datasets on the same machine with @Hz 64-
Bit Quad-Core CPUs and 126 GB of RAM. The time as well as the argm
measurements were performed using ymix Note that the preprocessing
times for generating index structures like the ESA or Busdaitheeler
transform are not included in the measures. We estimatedetiel rate
as the relative number of reads where the score of the begsinadint is
found to be unique (i.e. unique best mapped reads) and thi@arposition
on the artificial reference was recovered correctly. Howesptimal read
alignments under the unit cost model may become ambigudbhsngertions
and deletions. Therefore, any reported position with aat®n of less
than 11nt from its original position was deemed as correctaddition
to the overall recall rate of each program in the datasetscaleulated
the recall rates at a given maximum number of read errorsnfatches
or mismatches+indels). Note that the number of errors in dpgmal
read alignment may be smaller than the number of introducesise For
example, an unmethylated cytosine that is converted to itig/miuring the
bisulfite treatment but subsequently called as cytosinetalaebase calling
error will not affect the alignment score. For each programjllustrated the
overall running time and memory consumption as well as thelreate of
these subdatasets as function of their maximal number @fdated errors
(Fig. 2 and Supp. Fig. 2).

In the artificial methylation benchmarks, all programs wexrecuted as
described above and the mapping output of each mapper wedstasall
the methylation states. In order to ensure a fair compariserimplemented
a simple methylation caller based on majority voting. Gitleaposition of a
cytosine, the list of bases within read sequences, whialuefy map to this
position on the same strand, commonly denoted as crossigdstextracted
and the most frequent base in the cross-section is detedmifthere is a
tie or the most frequent base is neither C nor T, the cytosineot called
and hence counted as false negative (FN). If the most abumtianacter
is C or T, the cytosine is called methylated or unmethylategdpectively.
The methylation call is counted as true positive (TP) if ta# matches the
artificial methylation state and counted as false positie) (otherwise. To
limit the number of false positives, only cytosine sites evealled where
the coverage on the strand exceeded a given minimal valee further
calculate the methylation rate, i.e. the fraction of nomvasted over the
sum of non-converted and converted baJéw entire methylation caller is
by construction unaware of any particular features of thppiray tools.

We provide the methylation caller as additional file. It uskes output
generated byrpi | eup from thesant ool s package which can easily be
created from any SAM- or BAM-formatted mapping output. Byireating
the recall rate, i.e., TP/(TP+FN), and false discovery, ria¢e, FP/(TP+FP),
we can compare the performance in methylation calling usiegnapping
output of each bisulfite mapper.
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