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ABSTRACT

Motivation Cytosine DNA methylation is one of the major epigenetic
modifications and influences gene expression, developmental
processes, X-chromosome inactivation, and genomic imprinting.
Aberrant methylation is furthermore known to be associated with
several diseases including cancer. The gold standard to determine
DNA methylation on genome-wide scales is “bisulfite sequencing”:
DNA fragments are treated with sodium bisulfite resulting in the
conversion of unmethylated cytosines into uracils, while methylated
cytosines remain unchanged. The resulting sequencing reads thus
exhibit asymmetric bisulfite-related mismatches and suffer from an
effective reduction of the alphabet size in the unmethylated regions,
rendering the mapping of bisulfite sequencing reads computationally
much more demanding. As a consequence, currently available read
mapping software often fails to achieve high sensitivity and in many
cases requires unrealistic computational resources to cope with large
real-life datasets.

Results Here, we present a seed-based approach based on
enhanced suffix arrays in conjunction with Myers bit-vector algorithm
to efficiently extend seeds to optimal semi-global alignments while
allowing for bisulfite-related substitutions. It outperforms most current
approaches in terms of sensitivity and performs time-competitive
in mapping hundreds of millions of sequencing reads to vertebrate
genomes.

Availability The software segemehl is freely available at http://
www.bioinf.uni-leipzig.de/Software/segemehl.

Contact Steve Hoffmann steve@bioinf.uni-leipzig.de

1 INTRODUCTION

Cytosine DNA methylation is one of the major epigenetic
modifications in eukaryotes (Esteller, 2005). The epigenetic
modification pathways governing DNA methylation and histone
modifications are strongly coupled with each other (Cedar &
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Bergman, 2009). Hypermethylations in promotors of genes are
associated with stable repression of its activity (as in case of
X-chromosome inactivation) that can be maintained throughout
cell divisions (Weber & Schübeler, 2007). During mammalian
development, methylation patterns are largely rearranged. In very
early stages, methylation marks are erased to allow flexible
short-term regulation by histone modifications, while wide-spread
de novo methylations in later stages enable long-term silencing
of pluripotency-related or imprinted genes (Reik, 2007). In
mammalian genomes, DNA methylation also ensures genomic
integrity by inactivating and immobilizing transposable elements
and hence preventing chromosomal instability, translocation, or
gene disruption (Weber & Schübeler, 2007). In cancer cells,
this overall stable landscape of DNA methylations is heavily
distorted by wide-spread and massive hypomethylations, e.g. in
repetitive sequences, and by silencing of tumor-suppressor genes
by hypermethylating their promotors (Esteller, 2007).

Capturing DNA methylations on genome-wide scales in high
resolution has become technically and economically feasible only
with the advent of high-throughput sequencing (HTS) technologies.
DNA methylations are commonly captured either by sequencing
methylated DNA that was isolated by antibodies or proteins,as
in methylated DNA immunoprecipitation (MeDIP) (Weberet al.,
2005) andMBD-isolated genome sequencing (MiGS) (Serreet al.,
2010), or by sequencing DNA reads treated with sodium bisulfite
to selectively convert unmethylated cytosines to uracils (Frommer
et al., 1992). Since the first approach merely enriches sequencing
reads with methylation marks by pull down with antibodies or
proteins, it is not possible to accurately pinpoint frequency, exact
location, and sequence context of the modifications. The isolation
procedure is further biased towards enrichment of highly methylated
regions (Lister & Ecker, 2009). Sequencing techniques based
on bisulfite treatment, on the other hand, facilitate single-base
resolution, so that the methylation state of each single cytosine
can be analyzed. Thus, they are capable of detecting intermediate
methylation levels in heterogeneous samples or imprinted genes.
One drawback of this method is the fact that hydroxymethylated
cytosines, present in some mammalian cell types, cannot be
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Fig. 1. Possible read types (+FW, +RC, -FW, -RC) in bisulfite sequencing
protocols. Methylated and unmethylated cytosines in the genomic sequence
(left) are colored in red and blue, respectively, and positions in the
read sequences (right) derived from genomic cytosines are colored
correspondingly. Note that the intermediate conversion ofunmethylated
cytosines into uracils after bisulfite treatment is omitted.

distinguished from methylation marks after conversion with sodium
bisulfite. The role of the hydroxymethylation is not yet known but it
might be involved in demethylation or alterations of the chromatin
structure (Huanget al., 2010).

Due to its high resolution and the possibility of unbiased genome
coverage, bisulfite sequencing has been established as the “gold
standard” method to capture DNA methylation. In the earliest
approach of this type, reduced representation bisulfite sequencing
(RRBS) by Meissneret al. (2005), genomic regions with CpG
dinucleotides are enriched by prior digestion with MspI. More
recent protocols avoid this bias. Both methylC-seq (Listeret al.,
2009) and BS-seq (Cokuset al., 2008) are protocols for the
construction of the bisulfite-treated libraries for high-throughput
sequencing. They mainly differ in their amplification procedure:
while methylC-seq involves only a single amplification, BS-seq
uses two amplification steps in order to ensure only fully bisulfite-
converted sequences to be amplified and hence sequenced. In BS-
seq, first, adapters containing unmethylated cytosines areligated
to the DNA fragment. After treatment with sodium bisulfite, the
first amplification is performed using primers complementary to
fully bisulfite-converted adapters, then digested with DnpI, and
again amplified using common Solexa adapters. This results in four
different types of bisulfite reads: +FW and +RC from the plus
strand and -FW and -RC from the minus strand (Fig. 1). In case
of methylC-seq, only two of these read types (+FW and -FW) may
occur and are expected to be sequenced at similar rate. Beyond
the extensive study of Listeret al. (2009) as part of the UCSD
Human Reference Epigenome Mapping Project, the methylomesof
silkworm (Xianget al., 2010), honey bee (Lykoet al., 2010), and
Human peripheral blood mononuclear cells (Liet al., 2010) have
been analyzed by means of bisulfite sequencing. Moreover, this
technology has been applied to identify methylation variations in
epigenetic domains across cancer types (Hansenet al., 2011).

Standard DNAseq mapping algorithms may run into problems when
dealing with the potentially high number of converted cytosines in
bisulfite sequencing reads: the bisulfite conversion causesa large
number of mismatches between read and reference genome that
should not be penalized. The asymmetry of the resulting matching
rule, i.e., a genomic cytosine should match a thymine in the read
but not vice versa, complicates the issue. Early bisulfite mapping
methods employed very time-consuming strategies.BSMAP (Xi &
Li, 2009), for instance, iterates over all possible C/T conversions,

CokusAlignment (Cokus et al., 2008) uses an exhausting
tree search with base probability vectors. More recent methods
either allow for asymmetric bisulfite-related mismatches,typically
implemented by means of hash-tables as inMAQ (Li et al., 2008)
and RMAP (Smith et al., 2009), or use a collapsed alphabet so
that the asymmetry is disregarded altogether. In the lattertype
of methods, each cytosine is converted to a thymine (or guanine
to adenine to match the minus strand) in the reads as well as in
the genomic sequence. BothBSSeeker (Chenet al., 2010) and
Bismark (Krueger & Andrews, 2011) useBowtie (Langmead
et al., 2009) to map the converted strings using different alignment
policies. The resulting alignments are then post-processed to recover
the methylated positions. None of the available tools can account
for insertions and deletions (indels) in the read alignment. This is a
major drawback since indels are known to be the predominant error
type in 454 sequencing data and small indels contribute significantly
to the genetic variation in Human (Millset al., 2011). Overall,
currently available bisulfite mappers may not be able to copewith
higher error rates potentially caused by erroneous PCR clones, low-
quality reference genomes, mapping to the genome of a closely
related organism, or extensive allelic variations. For example, the
Amphioxus genome exhibits substantial allelic variation with 3.7%
SNPs and 6.8% polymorphic indels (Putnamet al., 2008). In the
Ciona intestinalis, another important model organism, the average
SNP rate is 1.2% but the variations are not uniformly distributed
and locally increase to 10-15% within windows of 100 nucleotides
(Dehalet al., 2002).

segemehl is an efficient read mapping tool based on suffix arrays
that readily accommodates indels using an extended versionof the
matching statistics (Hoffmannet al., 2009). Here, we demonstrate
that the mapping of bisulfite sequencing data can be incorporated
into the framework using a hybrid approach that combines seed
searches in the suffix array on a collapsed alphabet with optimal
semi-global alignments around seed matches using a specialized
extension of Myers bit-vector algorithm.

2 RESULTS

2.1 Seed search on collapsed alphabet

Our matching strategy uses seeds that serve as anchors for
subsequent semi-global alignments (see Suppl. Fig. 1). Theseed
search is efficiently facilitated insegemehl by an enhanced suffix
array (ESA) (Abouelhodaet al., 2004). The ESA data structure
supports exact query searches with an effort proportional to the
lengthm of the query sequence and largely independent of the size
of the reference genome. Our method aims to identify seed matches
starting at each position. To improve the sensitivity of theseed
search in the presence of sequencing errors, a limited number of
mismatches as well as indels (insertions and deletions) is evalutated.
For the technical details, we refer to Hoffmannet al. (2009).

To facilitate efficient mapping of bisulfite-treated sequencing data,
it is necessary to cope with a high number of bisulfite-related
mismatches. To overcome this issue, the nucleotide alphabet is
collapsed to three characters. To enable the seed search on both
strands, two reference genomes and their corresponding ESAs,
one with C-to-T and one with G-to-A conversions, are created.

2



Since forward (C-to-T) and backward (G-to-A) ESA can be used
consecutively, only disk storage but not core memory is affected.
The reduced alphabet requires somewhat longer seeds to ensure
unambiguous matches, leading to an increase in runtime by a small
constant factor compared to ordinary read matching.

2.2 Myers bit-vector algorithm

After seed matching,segemehl calculates semi-global alignments
of the query with the reference genome loci indicated by the seeds
using the fast bit-vector algorithm of Myers (1999). In order to
prevent spurious hits,segemehl employs a user-defined accuracy
threshold (option-A) specifying the minimal required percentage
of matches within the calculated read alignment. By default,
segemehl reports all read matches where the minimal accuracy
criteria is met. In case of best-only (option-H 1), only those read
matches are reported whose alignment contains the minimal number
of errors (mismatches + insertions + deletions) among all matches.

To efficiently cope with bisulfite conversions, we further extended
the bit-vector algorithm of Myers to fully support the nucleic acid
code of the International Union of Pure and Applied Chemistry
(IUPAC) which encodes nucleotide ambiguity, e.g., the IUPAC
nucleotide symbol “Y” denotes either cytosine or thymine. By
means of the IUPAC nucleotide code, bisulfite-sensitive alignments
can be computed where asymmetric bisulfite-related conversions
are implicitly treated as matches. The overhead of this extension
of Myers’ algorithm is only nominal, see Methods for further
details. Overall, the major advantage of this mapping strategy is
that, in contrast to other bisulfite mappers, no post-processing of the
mapping is required.

2.3 Evaluation on artificial data

To evaluate the performance of the bisulfite version ofsegemehl,
we compared it to existing methods on artificial as well as real-
life data sets. The artificial query datasets were composed of
10 million reads of length 80 nt randomly selected from a 200 MB
large reference sequence. The reference itself was generated with a
uniform nucleotide distribution and randomly methylated cytosines
on both strands at a rate of 50%. To mimick the methylC-seq
protocol, only +FW and -FW reads were generated from each strand
of the reference. The sodium bisulfite treatment was simulated
by converting each unmethylated cytosine on the reference into
a thymine. We remark thatsegemehl can also map bisulfite
sequencing data generated with the BS-seq library preparation
protocol of Cokuset al. (2008). In this case, the mapping is extended
to both strands with each of the alphabet conversions ratherthan
only C-to-T on the plus strand and G-to-A on the minus strand of
the genome sequence. The sensitivity ofsegemehl on artificial
datasets mimicking the BS-seq library preparations are very similar
to the results on methylC-seq datasets (data not shown).

To consider genomic aberrations such as mutations and polymorphisms
as well as sequencing errors, we further introduced random
sequence errors into the bisulfite reads at different error rates (5%,
10%) and for error types (mismatches or mismatches and indels
at the ratio 4:1). In our benchmark, we comparesegemehl v0.1
with RMAP v2.05,BSSeeker, MAQ v0.7.1, andBismark v0.5.1.

We executed all programs with default parameters but adjusted
some options, e.g., error limits and filtering constraints,to obtain
more sensitive mappings and hence to assess the capability of each
approach to cope with more difficult settings, see Methods for
further details on parameters and the evaluation procedure. Overall,
segemehl obtained recall rates above 92% (with D=1 difference
allowed in the seed) and 81% (for exact seed matches) in every
setting and hence outperforms all other programs in this respect.
In the least challenging scenario with low mismatch rate (5%), all
programs except forBSSeeker are able to recover the original
position of more than 89% of the reads correctly (Suppl. Fig.2a).
By increasing the mismatch rate (10%), the recall rates of other
programs drop considerably down to 60% and 70%.segemehl
still achieves a recall rate above 93% (D=1) and 82% (D=0). Among
the other programs,MAQ performs best and is only slightly inferior
to segemehl in its less sensitive setting (Fig. 2a). As for the
introduction of indels into the read data,segemehl largely retains
its good performance, while a substantial loss is observed with the
other tools (Fig. 2b and Suppl. Fig. 2b). This is also true in case of
the artificial dataset with the low error rate (5%) includingonly few
indels (Fig. 2b). In more challenging scenarios, the recallrates of
these programs even drops below 40% (Suppl. Fig. 2b).

segemehl obtains the higher recall rates at the cost of a reduced
time performance. On average,segemehlwith D=1 is around five-
fold slower than with D=0. Hence, the choice of this parameter
is a tradeoff between speed and recall and is dependent on the
user’s requirements. The running times ofMAQ andBSSeeker are
comparable tosegemehl with lower sensitivity whereasRMAP is
about four times faster. In terms of memory, the programs consume
between 2.6 GB (in case ofBSSeeker) and 5.6 GB of virtual
memory (in case ofMAQ). Note that the actual amount of used
physical memory is lower than the virtual memory consumption.
For example,segemehl requires around 5.2 GB of virtual but only
3.2 GB of physical memory.

In order to verify that the superior sensitivity ofsegemehl does
not lead to a substantial loss of mapping specificity, we counted
the number of false positive mappings in each artificial benchmark.
Among the uniquely mapped reads with less than 13 mismatches+
indels,segemehl does not report a single false positive mapping.
Thus, by limiting the number of permitted errors and restricting to
uniquely mapped reads,segemehl does not lose specificity while
achieving very high sensitivities.

To assess whether higher mapping sensitivities may also assist
in calling the methylation state more accurately, we assembled
additional methylation calling benchmarks. The datasets with an
expected ten-fold coverage were composed of 2.5 million bisulfite
reads, mimicking the methylC-seq protocol, which were randomly
selected from a 10 MB large reference sequence where 50% of
the cytosines on each strand have been artificially methylated.
Furthermore, errors (mismatches or mismatches + indels) were
introduced in the read sequences at different rates (5%, 10%,
and 15%). To assess the performance of re-calling these artificial
methylation states using the mapping output, we mapped each
dataset with each of the bisulfite mapping tools, filtered out
ambiguously mapped reads, and determined the methylation states
using simple majority voting under a minimal coverage of 5, see
Methods for further details. For each dataset and mapping tools,
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Fig. 2. Performance evaluation on artificial datasets. The benchmarks assessed the performance ofsegemehl with D=1 (in red) and D=0 (in dark red),
RMAP (in green),BSSeeker (in black), MAQ (in blue), andBismark (in orange) in terms of recall rate, running time (in user mode), and peak virtual
memory consumption by mapping 10 million artificial bisulfite reads to a 200 MB large random reference. Furthermore, (a) mismatches at a rate of 10% or
(b) mismatches + indels at a rate of 5% were randomly introduced into the bisulfite reads. The recall rate is the relative number of mapped reads where the
score of the best alignment is found to be unique and the original position on the artificial reference was recovered correctly. The recall rate was estimated on
subsets of the artificial reads with limited number of introduced mismatches or mismatches + indels. The overall recall rate of each program with the entire
query dataset is given in the legend. Note that the preprocessing time is not included in the measurement.

recall rates and false discovery rates at different score cutoffs were
estimated (see Fig. 3 and Suppl. Fig. 3).

Overall, the methylation calls usingsegemehl’s mapping output
obtained higher recall rates at a lower false discovery ratein
every setting compared to the other mappers. For example, with
low and medium error rates (5% and 10%), it is possible to
recover more than 95% of the methylation marks correctly with
segemehl while the recall rates of methylation calls using the
output ofRMAP, MAQ, andBismark vary between 80% and 90%.
In the most challenging scenarios with high error rates (15%),
the mapping output of segemehl can still be used to infer the
methylation state of more than 84% and 93% of the cytosines
with D=0 and D=1, respectively, while retaining FDRs below
0.1%. In addition, we simulated bisulfite reads from an artificial
genome containing sites with four different methylation rates (20%,
40%, 60%, or 80%). We estimated the methylation rates and
calculated the differences from the simulated levels (error) for
the alignments of each program. Errors of thesegemehl based
estimator were compared to estimators based on other alignment
methods. Overall, withsegemehl alignments, the accuracy of the
estimated methylation rates is superior to the other tools tested — in
particular in benchmarks with higher error rates (see Supp.Fig. S4
and S5).

We emphasize that methylation calling is primarily a statistical
problem inherently distinct from read mapping. Hence, we used
here simple benchmark settings with uniform methylation patterns
and sequencing errors. Partial chemical conversion, for instance,
may reduce the sensitivity of a simple methylation calling procedure
such as majority voting and call for a more sophisticated statistical
model. It does not affect, however, the mappability of individiual
reads.

(a) (b)

Fig. 3. Performance in methylation calling benchmarks. Recall rate as
function of FDR after evaluating the performance in methylation calling
using the mapping output ofsegemehl with D=1 (in red) and D=0 (in
dark red),RMAP (in green),MAQ (in blue), andBismark (in orange). We
therefore mapped 2.5 million artificial bisulfite reads, containing mismatches
at a rate of (a) 10% or (b) 15%, with each program to a 10 MB largereference
sequence, see Methods section for details on generation andevaluation of the
datasets. The inlay in the left panel magnifies the area wherethe FDR is close
to zero (same units on axes). Note that the same colors and symbols are used
in both panels. The peak recall rates with 10% mismatches (left panel) are
0.966 and 0.952 forsegemehl with D=1 and D=0, respectively, 0.8 for
RMAP, 0.9 forMAQ, and 0.871 forBismark. In case of 15% mismatches
(right panel), the peak recall rates are 0.933 and 0.843 forsegemehl with
D=1 and D=0, respectively, 0.385 forRMAP, 0.614 forMAQ, and 0.52 for
Bismark.

2.4 Mapping of real-life data

Next, we compared the bisulfite mapping tools on two real-life
datasets. Both SRR019048 (15,331,851 reads of length 87) and
SRR019597 (5,943,586 reads of length 76) are part of the whole
genome shotgun bisulfite sequencing dataset of the human H1 cell
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line by Lister et al. (2009). segemehl clearly outperforms the
other programs in both datasets by reporting more mapped reads
with a lower number of errors. The results including runningtime,
memory usage, fraction of unique best mapped reads, and fraction of
unique best mapped reads at a given maximum error cutoff are given
in Tab. 1. The latter measure makes it possible to determine whether
a higher overall number of mapped reads is merely reached by
allowing more errors in the read alignment or whether it is obtained
by also mapping more reads with few errors indicating better
mapping capabilities of the method.segemehl is able to map an
additional number of around 234,000 and 88,000 reads from the
datasets SRR019048 and SRR019597, respectively, with onlyup to
two mismatches, insertions, or deletions. Only a small difference in
the number of mapped reads is observed betweensegemehl’s D=0
and D=1 options. Similar to the artificial benchmarks, the number
of mapped reads withBSSeeker is significantly lower compared
to RMAP, MAQ, andBismark, which show similar results in both
real-life datasets. By allowing non-unique mappings,segemehl is
able to obtain mappings for more than 98% of the reads in each of
the real-life datasets.In addition to these rather challenging datasets
due to their poor base calling qualities, we analyzed a recent bisulfite
dataset with good base calling qualities by Listeret al. (2011) and
obtained concordant results (see Supplementary Table S1).

Strikingly, the running time ofsegemehl is lower compared to
RMAP, MAQ, andBismark even for the sensitive D=1 parameter
setting. The increase varies from 13% to 189% for SRR019048
and SRR019597. The less sensitive setting comes with a 26-
fold and 18-fold decrease in the running time compared toMAQ.
In addition, RMAP and MAQ, in contrast to the other programs
including segemehl, do not support multi-threading and hence
cannot benefit from commonly available multi-core machines. This
is a major technical shortcoming in the light of the size of datasets
to be mapped. The high mapping accuracy and speed is paid for
by the rather high memory consumption, which exceeds that of
the other tools by a factor of five to ten: The enhanced suffix
array of the human genome used bysegemehl consumes around
73 GB of virtual memory but only 53 GB of the physical memory.
The software thus requires equipment at the top end of what
at present can be considered standard hardware. At the cost of
higher running time, it is also possible to runsegemehl on each
chromosome separately with a peak memory consumption of 6 GB
of RAM. Detailed information on merging the mapping output of
each chromosome, updating SAM tags, and enforcing (if desired)
the best-only matching strategy is given on our website together
with the necessary tools.

3 DISCUSSION

The analysis of bisulfite sequencing data has remained a challenging
problem. Existing tools either do not provide an all-in-onesolution
but are based on post-processing output of common mapping tools
(e.g.Bowtie) leading to losses in sensitivity, or show undesirable
runtime performance – in particular for vertebrate datasets. In
addition, none of the existing tools is able to consider insertions
or deletions and even very few indels, e.g., originating from
sequencing errors or genomic variations, effectively obstruct the
mapping of sequencing reads. We have presented here a novel

approach to this problem based onsegemehl to efficiently
perform bisulfite mapping with high sensitivity. Our methodis
insensitive to contaminations and handles insertions and deletions
already during the initial seed search. Compared to competing
methods, our approach provides significantly higher recallrates as
measured on artificial datasets. While the recall rate of most other
tools is drastically reduced by a larger number of mismatches or
a few indels in the read data, these effects only slightly affect the
sensitivity ofsegemehl. This increase in sensitivity does not come
at the cost of specificity and may finally result in better performance
in calling methylation state or methylation levelas well.

The algorithm is specifically designed to map also ambiguousreads.
In some application scenarios, these reads are of interest and convey
useful biological information. For example, repetitive elements
were reported to be hypermethylated (Weber & Schübeler, 2007)
but may be extensively demethylated during development (Gehring
et al., 2009) or tumorgenesis (Esteller, 2007; Watanabe & Maekawa,
2010).

Due to its highly time-efficient index structure,segemehl has
strong advantages over the existing methods in mapping real-life
datasets of Human both in terms of sensitivity and running time,
at the expense of a higher memory requirements. By supporting
multi-threading, the software can furthermore take full advantage
of multi-processor architectures and completes mapping ofmore
than 540 million sequencing reads (SRX006240 dataset by Lister
et al., 2009) on the Human genome in only around three and a half
days using a two Quad-core machine with 64 GB of core memory.
It further supports mapping of bisulfite sequencing data from both
currently existing library protocol, methylC-seq and BS-seq, and
provides output in standardized sequence/alignment map (SAM)
format for which various post-processing utilities are available such
as samtools (Liet al., 2009).

In addition to mapping bisulfite sequencing data, our approach
might also assist in mapping ancient DNA (Prüferet al., 2010;
Briggs et al., 2007), where read ends are heavily exposed to
deamination, i.e., cytosines are converted to thymine, over the large
time-scales. Due to the short read length of ancient sequencing
data, trimming of 5’ and 3’ end of reads may not be adequate
and impede their mappability. By simply adjusting the conversion
functions, this version ofsegemehl can also be applied to datasets
generated with the PAR-CLIP protocol where protein bindingsites
can be identified genome-wide at high resolution by use of UV
cross-linking and photoactivatable nucleosides such as 4SU or
6SG. These are specifically converted near cross-linking and hence
binding sites and might assist in post-processing to reducethe
number of false positives. By regarding these specific conversions
as matches,segemehl becomes insensitive to the number of these
conversions under any parameter setting. We have not investigated
the performance ofsegemehl on these types of sequencing data
so far. They are, however, a natural objective of future research.
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Table 1. Performance evaluation on real-life datasets. The tests assessed the performance ofsegemehl with
D=0 or D=1 (-F 1, -H 1, -A 70), BSSeeker (-t N, -e 80, -m 3), RMAP (-B, -m 20), MAQ (-M
c, -n 3, -e 500), andBismark (--directional, -n 3, -e 500) by mapping two lanes of a whole
genome shotgun bisulfite sequencing dataset of the human H1 cell line (published by Listeret al. (2009))
against the Human genome in terms of running time (in user mode), peak virtual memory consumption,
and fraction of unique best mapped reads (overall or subdivided by the maximal number of mismatches +
indels in the alignment). Note that last measure only considers read mappings where the score of the best
alignment is found to be unique. The best value in each measure, e.g., lowest running time, lowest memory
consumption, or highest number of unique best mapped reads,is printed in boldface. The real-life datasets
consists of 15,331,851 reads of length 87 nt and 5,943,586 reads of length 76 nt in case of SRR019048 and
SRR019597, respectively. Note that the preprocessing timeis not included in the time measurement. Details
on the selected parameters of each program are given in the Methods section.

(a) SRR019048

running user memory1 mismatches+indels
time (min) (MB) = 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 10 max

segemehl (D=1) 844 74995 22.8 33.4 38.8 43.2 47.2 51.1 68.7 87.2
segemehl (D=0) 224 74999 22.8 33.4 38.8 43.1 47.2 51.1 68.5 87.0
BSSeeker 247 9280 22.7 32.5 37.2 40.7 40.7 40.7 40.7 40.7
RMAP2 1003 7687 22.8 32.6 37.3 40.8 43.8 46.7 60.0 78.3
MAQ2 22635 8798 22.7 32.1 36.5 39.8 42.7 45.5 58.1 79.5
Bismark 1909 14649 22.7 32.3 36.9 40.3 43.2 46.0 58.5 79.1

(b) SRR019597

running user memory1 mismatches+indels
time (min) (MB) = 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 10 max

segemehl (D=1) 256 74995 39.9 53.3 59.7 64.2 67.9 71.2 82.990.0
segemehl (D=0) 72 74999 39.9 53.3 59.7 64.2 67.9 71.2 82.890.2
BSSeeker 86 6081 39.8 52.3 58.1 62.0 62.0 62.0 62.0 62.0
RMAP2 487 5846 39.9 52.5 58.2 62.1 65.0 67.6 77.4 87.5
MAQ2 4782 3425 39.1 51.3 56.8 60.5 63.3 65.8 75.1 86.5
Bismark 741 14649 39.7 52.1 57.8 61.5 64.4 67.0 76.3 87.6

1 Virtual memory consumption shown while the required physical memory considerably less. For example,segemehl uses
only around 52 GB of physical memory.2 RMAP andMAQ do not provide multi-threading.

4 METHODS

4.1 Seed search

In segemehl, the seed search is facilitated by use of the enhanced suffix
array as described in Hoffmannet al. (2009). In brief, the concept of
suffix array is based on lexicographically sorting all suffixes of the genomic
sequence. By additionally employing lcp-table and child table, the ESA is
equivalent to a suffix tree (Abouelhodaet al., 2004). The suffix tree is a
directed rooted tree in which edges are labeled with a non-empty string such
that each suffix is formed by the concatenation of edge labelsof exactly one
path from the root to a leaf. Hence, a simple seed search in theESA can
be imagined as top-down traversal of the corresponding suffix tree with the
query sequence. To facilitate imperfect seed searches and hence allow for
mismatches, insertions, and deletions, it is possible to enumerate alternative
paths along the perfect matching path. However, the number of alternative
matching paths increases exponentially with higher numbers of permitted
errors. Hence, for the sake of time efficiency, the number of errors during
seed search is limited. To perform seed searches at each query position,
a greedy substring search was implemented. This approach utilizes suffix
link information on previously computed matching paths andhence avoids
recomputations. To construct an enhanced suffix array, first, the suffix array

table is generated by sorting all suffixes of the genomic sequence using
the algorithm introduced by Ko & Aluru (2003). Second, the additional
tables, namely lcp table, child table, and suffix link table,can be efficiently
constructed according to Abouelhodaet al. (2004). Overall, the construction
of an ESA index requiresO(n) in time wheren denotes the length of the
genomic sequence.

For DNAseq and RNAseq reads, the seed search is performed on a4-letter
nucleotide alphabet,ΣDNA = {A, C, G, T}, in both read and genome
sequence. In the case of mapping bisulfite sequencing reads,the substitutions
of genomic cytosines to thymines in the read sequence need tobe taken
care of during the search and should not be penalized as errors. Considering
these bisulfite conversions explicitly would imply a potentially exponential
enumeration and hence hamper the mapping performance considerably. We
therefore introduce two conversion functionsfC→T andfG→A such that

fC→T(x) =

(

T x = C

x otherwise

fG→A(x) =

(

A x = G

x otherwise

wherex ∈ ΣDNA . In the first stage of the algorithm, thefC→T converted
reads are mapped to a reference that has been converted withfC→T. In
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order to consider bisulfite conversion on the minus strand, it is necessary
to additionally map the read converted withfG→A to thefG→A converted
reference in the second stage since DNA methylations are strand-specific.
Note that by mapping the 4-letter alphabet to a 3-letter alphabet bisulfite-
related conversions appear as matches but at the same time the asymmetry
of the substitution leads to an implicit underestimation ofthe edit distance.

4.2 Bisulfite-sensitive semi-global alignment

Following the seed search in the ESA,segemehl extends the seeds to
semi-global alignments. In contrast to the seed search on the converted
references, the alignment should employ the asymmetric bisulfite matching
rule where a genomic cytosine and thymine in the read produces a match
but not vice versa. For this purpose, we extended the highly efficient bit-
vector algorithm of Myers (1999). Instead of computing onlyone entry
in the dynamic programming matrix at a time, this algorithm computes
w entries simultaneously wherew as the word size of the machine. It
takes advantage of the high efficiency of low-level bit operations due to
bit-level parallelism in common processors. Thus, the coreof Myers’ bit-
vector algorithm is entirely based on bit operations including differentiating
between matches and mismatches which are initially precomputed and stored
in bit-vectors. For each characterx of the alphabetΣDNA , a bit-vectorBx of
lengthm is constructed wherem denotes the length of the read sequencer.
Subsequently, the bit-vectors are initialized by a function in such a way that
i-th bit in Bx is set iff x and thei-th character ofr produce an alignment
match. This algorithm has runtime ofO((m/w) · l) wherel is the length
of the read and reference substring. In our implementation,the reference
substring is bounded bym + 2 · k wherek is defined by the maximal
permitted errors in the read alignment. Hence, the algorithm has a runtime
complexity ofO((m/w) · (m + 2 · k)) in time. Sincew = 64 in our
implementation, the algorithm runs inO(m + 2 · k) for reads of size up to
64.

Commonly, the function to differentiate matches and mismatches simply
tests for character equality. Here, it was extended to fullysupport the IUPAC
nucleotide code. For example, the IUPAC symbol Y, denoting apyrimidine,
produces a match with both C and T. By converting Ts into Ys within the read
sequence, the asymmetric bisulfite matching rule is implicitly integrated.
Again, due to the strand specificity of DNA methylations, read sequences
matching to the minus strand are translated differently, i.e., every adenine in
the read is converted into an R, the IUPAC symbol for a purine.Overall, the
necessary modifications only concern the initialization procedure and hence
result merely in nominal overhead.

4.3 Benchmarking Procedure

With a few exceptions, all programs were executed with default parameters
for artificial and real life datasets. Some options, such as error limits
and filtering constraints, were adjusted to obtain a higher sensitivities. We
executedsegemehl in default mode, where at most one mismatch or indel
is permitted in the seed (option-D) and where the maximum expectation
value (option-E) is set to five. In addition, we also executedsegemehl in
a less sensitive but more time-performant configuration with -D 0. Seeds
with more than 500 matches in the genome are dismissed by default (option
-M). Due to the high number of read errors, the minimal requiredalignment
accuracy (option-A) was adjusted to 80% and 70% in artificial and real-
life benchmarks, respectively, andsegemehlwas set to report best-scoring
hits only. ForBSSeeker, MAQ, and MAQ, we permitted the maximum
of 3 mismatches to obtain optimal sensitivity and adjusted the option-e
in BSSeeker to the largest read length occurring in the benchmarks. In
the same vein, the maximum number of mismatches was used forRMAP
(-m 20). To avoid hits to be discarded due to the sum-of-base-qualities-
policy,MAQwas executed with the option-e 500. The parameters were set
analogously forBismark. In contrast toBSSeeker, RMAP, orBismark,
where non-unique best mapped reads (regarding their alignment score) are

dismissed by default,MAQ reports a best hit in any case but assigns a mapping
quality of zero in case multiple hits with equal score (sum ofbase qualities at
mismatch positions) were found. Such ambiguously best mapped reads were
rejected prior to any of the evaluations.

For each program, artificial, and real life datasets, we assessed running
time (in user mode), peak virtual memory consumption, and recall rate in
mapping the different datasets on the same machine with two 2.27 GHz 64-
Bit Quad-Core CPUs and 126 GB of RAM. The time as well as the memory
measurements were performed using unixps. Note that the preprocessing
times for generating index structures like the ESA or Burrows-Wheeler
transform are not included in the measures. We estimated therecall rate
as the relative number of reads where the score of the best alignment is
found to be unique (i.e. unique best mapped reads) and the original position
on the artificial reference was recovered correctly. However, optimal read
alignments under the unit cost model may become ambiguous with insertions
and deletions. Therefore, any reported position with a deviation of less
than 11 nt from its original position was deemed as correct. In addition
to the overall recall rate of each program in the datasets, wecalculated
the recall rates at a given maximum number of read errors (mismatches
or mismatches+indels). Note that the number of errors in theoptimal
read alignment may be smaller than the number of introduced errors. For
example, an unmethylated cytosine that is converted to thymine during the
bisulfite treatment but subsequently called as cytosine dueto a base calling
error will not affect the alignment score. For each program,we illustrated the
overall running time and memory consumption as well as the recall rate of
these subdatasets as function of their maximal number of introduced errors
(Fig. 2 and Supp. Fig. 2).

In the artificial methylation benchmarks, all programs wereexecuted as
described above and the mapping output of each mapper was used to call
the methylation states. In order to ensure a fair comparison, we implemented
a simple methylation caller based on majority voting. Giventhe position of a
cytosine, the list of bases within read sequences, which uniquely map to this
position on the same strand, commonly denoted as cross-section, is extracted
and the most frequent base in the cross-section is determined. If there is a
tie or the most frequent base is neither C nor T, the cytosine is not called
and hence counted as false negative (FN). If the most abundant character
is C or T, the cytosine is called methylated or unmethylated,respectively.
The methylation call is counted as true positive (TP) if the call matches the
artificial methylation state and counted as false positive (FP) otherwise. To
limit the number of false positives, only cytosine sites were called where
the coverage on the strand exceeded a given minimal value.We further
calculate the methylation rate, i.e. the fraction of non-converted over the
sum of non-converted and converted bases.The entire methylation caller is
by construction unaware of any particular features of the mapping tools.

We provide the methylation caller as additional file. It usesthe output
generated bympileup from thesamtools package which can easily be
created from any SAM- or BAM-formatted mapping output. By estimating
the recall rate, i.e., TP/(TP+FN), and false discovery rate, i.e., FP/(TP+FP),
we can compare the performance in methylation calling usingthe mapping
output of each bisulfite mapper.
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