Sequencing of DNA modifications
part of “High-Throughput Analyzes of Genome Sequenzes”

Jan Engelhardt

Bioinformatics
University of Leipzig

Leipzig, WS 2014/15
Chemical modifications
DNA modifications: 5-Methylcytosine (5mC)

- the most commonly known DNA modification
- DNA methyltransferases (DNMT1, DNMT3a/b (DNMT3L))
- predominantly occurs at 'CpG' motifs in (vertebrate) genomes
- genes can be silenced by 5mC in their promoter
- cell-type specific 5mC pattern
5mC - Easy maintenance over cell divisions

- DNMT1: Maintenance methyltransferase
- DNMT3a/b: De-novo methyltransferases

DNA modifications: 5-Hydroxymethylcytosine (5hmC)

- is processed from 5mC
- reported to be present in human and mouse in 2009
- Ten-eleven translocation methylcytosine dioxygenase (TET 1-3): catalyses oxidation of 5mC
- lower levels than 5mC but present in “most” cells
- controversial reports about the function
5-formylcytosine (5fC) and 5-carboxycytosine (5caC)
What is the problem?

What happens if we sequence DNA including 5mC?

- methylated cytosine (5mC) appear as normal cytosine (C) in standard sequencing
- we need to find a way to distinguish C and 5mC
Solution - Bisulphite treatment

What happens if we treat DNA with bisulphite?

- all unmethylated cytosines (C) are converted to uracil (U after PCR T)
- all methylated cytosines (5mC) stay the same

Conversions:

- C → T
- 5mC → C
Bisulphite treatment
Bisulphite sequencing

Cokus et al’s library protocol

- DNA fragments
- Ligated with adapters of DpnI restriction sites
- Bisulfite converted
 - Digested by DpnI restriction enzyme
 - 5-bp sequence tags formed
- Ligated with Solexa adapters
 - PCR I
 - PCR II
- BS reads

Lister et al’s library protocol

- DNA fragments
- Ligated with cytosine-methylated adapters
- Bisulfite converted
 - PCR
- BS reads
Problem?

Unfortunately we just messed up our whole genome...

Read: \textcolor{red}{GTTATTTCGATTTTGACGT}

Genome: \textcolor{blue}{GCTACTCGACCTGACGT}

- 4 introduced mismatches
- results in a pretty bad score despite of a “perfect” hit
- C/T mismatches are not only introduced by the conversion (sequencing errors, SNPs)
Standard segemehl

Workflow:
1) Use enhanced suffix array to find the position of a read in the genome
 (Efficient data structure to handle big genomic data and find (almost) exact hits)
2) Use the hits from step 1) as anchors and try to extend the regions according to given parameters (e.g. maximum number of mismatches)
 (Efficient algorithm to build “good” semi-global alignments)
Extended segemehl - Overview

- bisulfite reads
- genome

segemehl:
- seed search on collapsed alphabet
- E-value & maxocc filter
- bisulfite-sensitive semi-global alignment
- accuracy filter

 genome indices of collapsed alphabet

.sam file
Extended segemehl - Seed search on collapsed alphabet

Normal 4-letter nucleotide alphabet: $\sum_{DNA} = \{A, C, G, T\}$

We use two collapsed alphabets successively:

$$f_{C\rightarrow T}(x) = \begin{cases} T, & \text{falls } x = C \\ x, & \text{otherwise} \end{cases}$$

$$f_{G\rightarrow A}(x) = \begin{cases} A, & \text{falls } x = G \\ x, & \text{otherwise} \end{cases}$$

Workflow

1) Map $f_{C\rightarrow T}$ converted reads to $f_{C\rightarrow T}$ converted reference genome (+FW)
2) Map $f_{G\rightarrow A}$ converted reads to $f_{G\rightarrow A}$ converted reference genome (-FW)
Extended segemehl - Bisulphite-sensitive semi-global alignment

Normally, only equal character are regarded as matches (e.g. A= A, T=T).
Now possible bisulphite conversions are taken into account: IUPAC symbols were implemented Y = C or T, R = A or G; New comparison: C = Y (C or T), T = Y, A = R, G = R;
Methylation calling

For every cytosine in the genome the most frequent base (in the reads) is calculated.
If the most frequent base is C the cytosine is called methylated.
If the most frequent base is T the cytosine is called unmethylated.
(Otherwise there is a problem with the reference)
Possible problems?
Possible problems?

- reduced complexity of the genome during mapping (longer reads are necessary)
- incomplete bisulphite conversion
- methylation is different in individual cells; normally a pool of cells is sequenced;
- degradation of DNA during bisulphite treatment (according to wikipedia)
- what happened to sequencing errors and SNPs?
- 5mC and 5hmC cannot be distinguished
Other modifications

Limitation of BS-seq
In 2009 it was reported that 5hmC can be found in human and mouse brains and in addition that BS-seq can not distinguish it from 5mC.
(Still makes people unhappy)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>5mC</th>
<th>5hmC</th>
<th>5fC</th>
<th>5caC</th>
</tr>
</thead>
<tbody>
<tr>
<td>untreated</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BS-seq</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>oxBs-seq</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>TAB-seq</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>redBS-seq</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>hydroxylamin</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>CAB-Seq</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>C</td>
</tr>
</tbody>
</table>
oxBS-seq

Literature
