Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Sonja J. Prohaska

Bioinformatics Group
Institute of Computer Science
University of Leipzig

October 25, 2010
Genome-scale *in silico* Model

- functional *-omics* = annotating *-omics* data
- integrating *-omics* data of different kinds = systems biology
- Represent biological systems by networks.
- “*-omics*” data provide information about network components and their interactions.
Genome-scale *in silico* Model

1. Genome Sequence

2. Genome annotation

3. ‘OMICs’ data integration
 - Metabolomics
 - Proteomics
 - Fluxomics
 - Biochemistry

4. Network reconstruction
 \[1 \times + 1 \times \rightarrow 1 \times \rightarrow 1 \times \rightarrow 1 \times \]

5. Stoichiometric representation
 \[S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

6. Systems Boundaries
 - Extracellular
 - Intracellular

7. Constraints
 - Balances
 - Mass
 - Energy
 - Solvent capacity
 - Bounds
 - Thermodynamics
 - Enzyme/transporter capacity
 - Non-linear P/C phenomena

8. Steady-State Model

9. Optimal Steady-State Solution
3. get the **nodes of the network** and integrate
 - (functional) genomics → all functional elements (mainly protein genes) that could be found and annotated in the genome
 - metabolomics → all metabolites present in a cell (substrates, cofactors, byproducts, etc. of chemical reactions)
 - proteomics → all structural proteins and enzymes (catalysts of chemical reactions) present in a cell
 - fluxomics → flows and reaction rates of all chemical reactions in a cell
The Cell as a Chemical Reaction Network

4. get the **edges of the network** by representing the chemical reactions
 - allow chemical reactions forming or breaking covalent bonds
 - allow chemical reactions that cause association or dissociation of molecules

5. get the **stoichiometry** of the chemical reactions right
 - balance atom composition (and mass)
 - invariant between organisms, independent of changes to conditions

 - get the **thermodynamics** of the chemical reactions right
 - balance energy, derive relative rates of reactions
 - dependent on changes to (physiological) conditions
 - sequence alteration in binding surfaces can alter the thermodynamics of molecule association in different species

 - get **direction and absolute rate** of reactions
 - determined by **enzymes** and their activity
The Cell as a Chemical Reaction Network

Stady-State Networks

- biological systems exist in a stady state (rather than in equilibrium)
6. boundaries for (Sub-)systems need to be defined
8. a network is in stady-state if the in-flow is equal to the out-flow (i.e. no accumulation or depletion of molecules occurs)
The Interactive Process of Network Reconstruction

1. identify relevant metabolic genes from genome annotation
2. translate gene functions into balanced chemical reactions
3. network assembly from individual reactions
4. problem of incomplete data: fill in missing reactions to satisfy stady-state assumption
5. test the model in silico and compare results with physiological data
6. use gene essentiality date to validate reconstruction
7. refine interatively
The Interactive Process of Network Reconstruction

Iterative model building → Network reconstruction → Computational analysis of network capabilities → In silico hypothesis → Experimental verification

- Genetic
- Biochemical
- Proteomic
- Metabolomic
- Data
Formulating Biochemical Reactions

- **First step**: Substrate specificity
 - Primary metabolites: FUM, SUCC
 - Coenzymes: MQNH₂, MQN

- **Second step**: Neutral Formulae
 - C₄H₂O₄, C₅H₄O₄
 - C₅H₄O₂, C₅H₂O₂

- **Third step**: Charged Formulae
 - C₄H₂O₄, C₅H₄O₄
 - C₅H₄O₂, C₅H₂O₂

- **Fourth step**: Stoichiometry
 - 1 FUM + 1 MQNH₂ \(\rightarrow \) 1 SUCC + 1 MQN

- **Fifth step**: Directionality
 - 1 FUM + 1 MQNH₂ \(\leftrightarrow \) 1 SUCC + 1 MQN

- **Prokaryotes**:
 - extracellular space
 - cytoplasm
 - periplasm

- **Eukaryotes**:
 - mitochondria
 - peroxisome
 - lysosome
 - vacuole
 - Golgi apparatus
 - endoplasmatic reticulum

- **Localization**
 - 1 FUM [c] + 1 MQNH₂ [c] \(\leftrightarrow \) 1 SUCC [c] + 1 MQN [c]
Constraint-based Modelling Approach

stoichiometric matrix

\[
S_{mv} = \begin{pmatrix}
0 & 0 & 1 \\
0 & -1 & -1 \\
0 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{pmatrix}
\]

- while \(m \) are the metabolites, \(v \) are the fluxes/reactions
- a stoichiometric matrix \(S \) transforms the flux vector \(v = (v_1, v_2, \ldots, v_n) \) into a vector of time derivates of the concentration vector \(x = (x_1, x_2, \ldots, x_n) \)
- \(\frac{dx}{dt} = Sv \), steady state balance \(Sv = 0 \)
- \(\frac{dx_i}{dt} = \sum_k S_{ik}v_k \) is the sum of all fluxes producing or consuming \(x_i \)
Constraint-based Modelling Approach

stoichiometric matrix

\[S_{mv} = \begin{pmatrix}
0 & 0 & 1 \\
0 & -1 & -1 \\
0 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 0 & -1 \\
1 & 0 & 0 \\
\end{pmatrix} \]

\[m_1 = c_1; \quad m_2 = c_2; \quad m_3 = c_3; \quad m_4 = c_2c_3; \quad m_5 = c_1c_3; \quad m_6 = c_3c_2 \]

- reversible conversion: \(c_2c_3 \xrightleftharpoons{v_1} c_3c_2 \)
- bi-molecular association: \(c_s + c_3 \xrightarrow{v_2} c_2c_3 \)
- cofactor-coupled reaction: \(c_2 + c_1c_3 \xrightarrow{v_3} c_2c_3 + c_1 \) with \(c_1 \) as co-factor
Constraint-based Modelling Approach

network representation

Dr. Prohaska Sysbio
Constraint-based Modelling Approach

- physiochemical constraints (inviolable)
 - mass, energy and momentum conserved
 - slow diffusion of macromolecules in viscous medium
 - reaction rates determined by local concentrations
 - reactions proceed in the direction of negative free-energy change

- spatial constraints
 - transport, structures
 - e.g. length, packaging and accessibility constrain arrangement of DNA

- environmental constraints
 - e.g. nutrient availability, temperature and osmolarity
 - important to determine phenotypic properties and fitness

- regulatory (self-imposed) constraints
 - allow the cell to eliminate suboptimal phenotypic states
 - e.g. transcriptional, translational, enzyme activity regulation
Given the Network…

- sample the network and study network properties
 - population of the flux space
 - interdependencies and complexity
 - robustness to disturbance
 - flexibility to adopt to changing environments

- given an objective function linear optimization or linear programming can be used to calculate one optimal reaction network state (e.g. optimal growth)

- in large, more interconnected networks alternative optima can be examined with mixed-integer LP algorithms

- optimize overproduction of a product: simultaneously optimize growth and secretion of the target product by (multiple) gene deletion.
References
