Mutation Rates and Sequence Changes
part of “Fortgeschrittene Methoden in der Bioinformatik”

Sonja Prohaska
Professorship for Bioinformatics
University Leipzig

Leipzig, WS 2010/11
From Molecular to Population Genetics

- **Mutation Rate**
 - **Molecular Level**
 - Mutation rate
 - Retention
 - Repair
 - Discarded mutation
 - Nucleotide change

- **Fixation Rate**
 - **Population Level**
 - Positive selection
 - Drift
 - Negative selection, drift
 - Discarded allele
 - New, minor allele
 - Fixed allele

- **Evolution Rate**
 - Substitution
 - Functionally relevant
 - Functionally neutral
 - Neutral substitution
Nucleotide Exchanges

transition: exchange purine for purine (C ↔ T) or pyrimidine for pyrimidine (A ↔ G)

transversion: exchange purine for pyrimidine or pyrimidine for purine (C | T ↔ A | G)

synonymous substitution: nucleotide changes that are functionally neutral

nonsynonymous substitution: nucleotide changes that change the function
take two species that diverged a time T ago (i.e. had a common ancestor a time T ago)
select regions that
- are 1:1 orthologs of each other (i.e. have a common ancestral sequence in the common ancestor and were not duplicated since)
- evolved neutrally (i.e. were not under positive or negative selection since their divergence from the common ancestor)
- can be aligned without errors

count the number of substitutions
correct for reversion and multiple mutations at the same site and biases

divide the number of nucleotide exchanges (mutations) by T
Selection can only occur at nonsynonymous sites.

Mutations fixed by **purifying selection**: the rate of fixation of synonymous changes is greater than the rate of fixation of nonsynonymous changes ($\omega_S < 1$).

Mutations fixed by **positive selection**: the rate of fixation of nonsynonymous changes is greater than the rate of fixation of synonymous changes ($\omega_S > 1$).

\[
\omega_S = \frac{d_N}{d_S}
\]

ω_S ... selection ratio
d_s ... synonymous divergence per synonymous site
d_N ... nonsynonymous divergence per nonsynonymous site
The following would be more accurate:

\[\omega = \frac{d_N}{2T \mu_N} \]

(2)

The selection ratio \(\omega \) is the ratio of the rate of nonsynonymous substitutions per site \(d_N \) to the rate of nonsynonymous mutations per site \(\mu_N \).

How can we estimate \(\mu_N \)?
4-fold Degenerate Sites

?-fold degenerate site: ? = the number of different nucleotides that can occur at the site without changing the protein sequence

<table>
<thead>
<tr>
<th>first base in codon</th>
<th>second base in codon</th>
<th>third base in codon</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

Assumption: 4-fold degenerate sites are synonymous sites.
Nucleotide Occurrence at Codon Positions in *Drosophila melanogaster*

![Graphs showing nucleotide occurrence at codon positions in Drosophila melanogaster.](image_url)
Why are nucleotide frequencies different for different codon positions?

Potential Causes

- codon usage bias
- base composition bias
- selective constraints on other levels than the coding sequence
Relative Synonymous Codon Usage (RSCU)

\[E(X_{ij}) = \frac{\sum_j X_{ij}}{n_{ij}} \] \hspace{1cm} (3)

\[RSCU_{ij} = \frac{X_{ij}}{E(X_{ij})} = \frac{X_{ij}}{X_{ij}/(1/n_i \sum_{j=1}^n X_{ij})} \] \hspace{1cm} (4)

- \(i \) \(\ldots \) index running over the 20 amino acids
- \(j_i \) \(\ldots \) index running over the codons for amino acid \(i \)
- \(n_{ij} \) \(\ldots \) the number of different codons for amino acid \(i \)
- \(X_{ij} \) \(\ldots \) observed number of codon \(j \) for amino acid \(i \)

- \(RSCU_{ij} = 1 \) usage of codon \(j \) is neither preferred nor avoided
- \(RSCU_{ij} > 1 \) codon \(j \) is used preferentially
- \(RSCU_{ij} < 1 \) codon \(j \) is avoided
Base Composition Skew (BCS)

\[BCS = \sum_{n_i \in \{ACGT\}} (n_i - E(n_i))^2 \]

(5)

Sum of the squared deviation of the observed nucleotide frequency from the expected nucleotide frequency:

\[E(n_A) = E(n_T) = E(n_C) = E(n_G) = 0.25. \]
Genomic Mutation Distances

\[d_{Sg} = (1 - f_g)d_{\mu g} \] \hspace{1cm} (6)

- \(d_{Sg} \) … synonymous distance for gene \(g \) according to the Tamura-Nei model
- \(f_g \) … fraction of mutations underestimated due to biases
- \(d_{\mu g} \) … mutation distance for gene \(g \)

\[f_g = \eta BCS_g \] \hspace{1cm} (7)

- \(BCS_g \) … base composition skew for gene \(g \)
- \(\eta \) … obtained by dividing the absolute value of the slope of the linear regression of \(BSC \) on \(d_S \) by the \(y \)-intercept of the regression line