Interaktionen von RNAs und Proteinen

Sonja Prohaska

Computational EvoDevo group
Universität Leipzig

SS2019
DNA-DNA Interactions: Nuclear Organization

A. Interphase nucleus

- Chromosome territory (CT borders)
- Euchromatin
- Heterochromatin
- Nuclear pore
- Nucleoli

B. Prometaphase nucleus

- Chromosome
- Nuclear membrane
Nuclear Bodies Associated and Their Function

- Nucleolus: Associated with rDNA transcription and post-translational modifications.
- Nuclear Speckle: Involved in RNA splicing and stress response.
- Nuclear Stress Body: Related to stress, HS gene, and Pol II.
- Transcription Factory: Involved in transcription.
- Cajal Body: Associated with pre-snRNA and snRNP biogenesis.
- Gemini of Cajal Body: Unknown function.
- Histone Locus Body: Involved in histone pre-mRNA synthesis.
- Paraspeckle: Associated with A-to-I edited RNA and nuclear RNA retention.

Interaktionen von RNAs und Proteinen
Organization of Nuclear Bodies by Long Noncoding RNAs

arcRNAs: architectural long noncoding RNAs

- nascent arcRNAs serve as scaffold for RNA binding proteins
- results in strong local enrichment of specific factors
Chromosome Territories

Interaktionen von RNAs und Proteinen
Attachment of Chromatin to Nuclear Envelope

- S/MARs: Scaffold/Membrane attachment regions

Key:
- Green: Active gene
- Red: Repressed gene
- Blue: Enhancer
- Yellow: Promoter gene
- Gray: Lamin
A Special Territory: The Inactive X Chromosome

Dosage compensation in placental mammals

WHAT is happening?

- random X-inactivation
- female: $X, X \rightarrow X_a$ (active), X_i (inactive)
- male: $X, Y \rightarrow X_a$
X Chromosome Inactivation (XCI)

HOW is it happening?

Interaktionen von RNAs und Proteinen
XCI – Counting and Choosing

A (a) Autosomes work as a diploid pair to create a single blocking factor

X chromosomes bound by blocking factor remains active
Remaining X chromosome(s) inactivates

(b) Autosomes create a swarm of blocking factors

X chromosome with blocking factor remains active
X chromosomes bound by competence factor inactivate

B

X chromosomes create competence factors
Blocking factor neutralizes one of two competence factors

C

X chromosomes

serveral model try to explain Interaktionen von RNAs und Proteinen
XCI – Main Player(s) Xist (and Tsix)

- IncRNA **Xist** (X-inactive specific transcript) expressed from inactive X chromosome is responsible for silencing the X in *cis* → X_i (inactive)
- IncRNA **Tsix** (antisense of Xist) expressed from active X chromosome is responsible for silencing Xist in *cis* → X_a (active)
The X Inactivation Center (Xic)

- **Xist**: X-inactivation specific transcript
 - 17kb, spliced and polyadenylated transcript
- **Tsix**: antisense RNA of Xist
- genes (RNA or protein coding) promoting Xist expression
- genes (RNA or protein coding) suppressing Xist expression
Proposed mechanisms

- Xist has binding sites for proteins (similar to arcRNAs)
- SPEN binds “repeatA” on Xist
 interacts with SMRT-HDAC3 \(\rightarrow \) deacetylation
 may recruit PRC2 \(\rightarrow \) H3K27me3 (repressive mark)
 may recruit PRC1 \(\rightarrow \) H2AK119ub (repressive mark)
 excludes PolII from Xist-coated chromosome
- RBM15-WTAP interacts with Xist
 recruits m\(^6\)A machine that methylates Xist
 YTHDC1 reads m\(^6\)A enables transcriptional silencing
- **LBR** (lamina binding receptor) links Xist-coated chromatin to lamin in the lamina
Xist Spreading and Lamina Localization

Interaktionen von RNAs und Proteinen
TADs at the Xic

Interaktionen von RNAs und Proteinen
Measuring Chromatin Interactions

Chromosome Conformation Capture

- a method to measure chromatin-chromatin interactions

Hi-C Method
Topologically Associated Domains (TADs)

Structure of TADs

- Inactive TAD 1
- Active TAD
- Inactive TAD 2

Subdomains

Boundary Interactions
CTCF motifs
H3K36me3
H3K27me3

Interactions
Enhancers
Genes

Current Opinion in Genetics & Development
Topologically Associated Domains (TADs)

Functional/Regulatory Relevance
van Bemmel et al.
The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist

Cerase et al.
Phase separation drives X-chromosome inactivation: a hypothesis
Nature Structural and Molecular Biology 26, 331–334 (2019)

Chen et al.
Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing
Science 6311(354), 468–472 (2016)

Wang et al.
Comment on “Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing”
Science 6343(356), eaal4976 (2017)

Pollex et al.
Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation

da Rocha et al.
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation
Nature Structural and Molecular Biology volume 24, pages 197–204 (2017)